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2025/10/22  

藪友良  

変量効果モデル  

パネル分析における変量効果では、説明変数と個別効果が無相関と仮定され

ています。これは特殊ケースであり、一般には成立しない仮定になります。本

稿では、変量効果の前提に基づく推定法である変量効果推定を解説します。な

お、こちらは藪友良『入門  実践する計量経済学』 (2023 年、東洋経済新報社 )

の補足資料です。  

 

変量効果の前提  

パネルデータは、同一対象を調査した横断面データが複数時点にわたり記録

されたものです (1.3.1 節参照 )。ここで、パネルデータとして、以下の変数を

考えましょう。  

𝑋𝑖,𝑡        𝑌𝑖,𝑡 

ここで、 𝑖は観測番号 (𝑖 = 1,2, … , N)、 𝑡は時点 (𝑡 = 1,2, … , T)を表します。  

モデルを次のようにします。  

𝑌𝑖,𝑡 = 𝛼 + 𝛽𝑋𝑖,𝑡 + 𝑍𝑖 + 𝑢𝑖,𝑡 

𝑍𝑖は個体 𝑖の個別要因であり、時間を通じて一定の変数とします。これは分析者

に観察できない変数 (たとえば、 𝑍1𝑖として生まれつきの能力など )であってもか

まいません。変量効果の前提が正しいとき、説明変数𝑋𝑖,𝑡と個別要因 𝑍𝑖は無相関

であり、固定効果の前提が正しいとき、説明変数𝑋𝑖,𝑡と個別要因 𝑍𝑖に相関がある

とします。  

 

例：  変量効果の前提が正しいケース  

 新薬の効果を知りたいため、新薬と偽薬をランダムに割り当てます。説明変数

𝑋𝑖,𝑡は新薬を割り当てたら 1 となるダミー変数です。このとき、新薬割当の有無

𝑋𝑖,𝑡は、個人属性 𝑍𝑖と無相関ですから、変量効果の前提が正しことになります。

この場合であれば、変量効果を前提にすることで効率的な推定が可能になりま

す。  
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変量効果推定  

変量効果モデルでは、個別要因𝑍𝑖は確率変数であり、その期待値は 0、分散は

𝜎𝑧
2、異なる個体 ( 𝑖,  𝑗)の個別要因 (𝑍𝑖 , 𝑍𝑗)は互いに無相関と仮定されます (E[𝑍𝑖] = 0、

𝐸[𝑍𝑖
2] = 𝜎𝑧

2、E[𝑍𝑖𝑍𝑗] = 0)。そして、変量効果のもとで、説明変数𝑋𝑖,𝑡と個別要因𝑍𝑖は

無相関です 1。つまり、全ての時点 𝑡に関して、Cov(𝑍𝑖 , 𝑋𝑖,𝑡) = 0が成立します。最後

に、誤差項𝑢𝑖,𝑡は期待値 0、分散𝜎𝑢
2、系列相関がなく (𝐸[𝑢𝑖,𝑡𝑢𝑖,𝑠] = 0)、また、𝑢𝑖,𝑡は𝑍𝑖

や𝑋𝑖,𝑡とも無相関とします。  

変量効果モデルは、次のように表されます。  

𝑌𝑖,𝑡 = 𝛼 + 𝛽𝑋𝑖,𝑡 + (𝑍𝑖 + 𝑢𝑖,𝑡) 

= 𝛼 + 𝛽𝑋𝑖,𝑡 + 𝑒𝑖,𝑡 

ここで、 𝑒𝑖,𝑡 = 𝑍𝑖 + 𝑢𝑖,𝑡は新しい誤差項です。個別要因𝑍𝑖は説明変数𝑋𝑖,𝑡と無相関

ですから、説明変数𝑋𝑖,𝑡は誤差項 𝑒𝑖,𝑡と無相関です (説明変数は外生変数 )。  

プールド OLS でも、係数𝛽の一致推定量が得られます。しかし、誤差項 𝑒𝑖,𝑡は

標準的仮定 5(誤差項同士が無相関 )を満たしておらず、系列相関を除いたうえ

で OLS 推定することで、より効率的な推定量が得られます (これは一般化最小

2 乗推定 (GLS 推定 )です )。  

標準的仮定 5 を満たしていないことは簡単に確認できます。異なる時点の誤

差項 𝑒𝑖,𝑡 = 𝑍𝑖 + 𝑢𝑖,𝑡と 𝑒𝑖,𝑠 = 𝑍𝑖 + 𝑢𝑖,𝑠は、同じ個別要因𝑍𝑖を含んでいますから、両者

には相関が生じるわけです。これは次の式から確認できます。  

𝐸[𝑒𝑖,𝑡𝑒𝑖,𝑠] = 𝐸[(𝑍𝑖 + 𝑢𝑖,𝑡)(𝑍𝑖 + 𝑢𝑖,𝑠)] 

                                                          = 𝐸[𝑍𝑖
2] + 𝐸[𝑍𝑖𝑢𝑖,𝑡] + 𝐸[𝑍𝑖𝑢𝑖,𝑠] + 𝐸[𝑢𝑖,𝑡𝑢𝑖,𝑠] 

= 𝐸[𝑍𝑖
2] = 𝜎𝑧

2 

式展開では、𝐸[𝑢𝑖,𝑡𝑢𝑖,𝑠] = 0、𝐸[𝑍𝑖𝑢𝑖,𝑡] = 𝐸[𝑍𝑖𝑢𝑖,𝑠] = 0を用いました。  

変量効果推定量 (random effects estimator)は、パラメータを一般化最小 2 乗法

によって推定します。つまり、元の式を変形して、誤差項の系列相関を除いて

から OLS 推定するわけです。この点を詳しく見ていきましょう。  

 

 
1 教科書では、固定効果を 𝛼𝑖 = 𝛼 + 𝑍𝑖と定義し、変量効果とは説明変数と固定効果が無相関である

と定義しました。ここで、 𝑋𝑖,𝑡と 𝛼𝑖 = 𝛼 + 𝑍𝑖が無相関なら、 𝛼は定数ですから、 𝑋𝑖,𝑡と 𝑍𝑖が無相関になり

ます。  
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変量効果推定の詳細  

時点 𝑡に関して、𝑌𝑖,𝑡 = 𝛼 + 𝛽𝑋𝑖,𝑡 + 𝑒𝑖,𝑡の和を取ると、  

∑ 𝑌𝑖,𝑡

𝑇

𝑡=1
= ∑ (𝛼 + 𝛽𝑋𝑖,𝑡 + 𝑒𝑖,𝑡)

𝑇

𝑡=1
 

= 𝑇𝛼 +  𝛽 ∑ 𝑋𝑖,𝑡

𝑇

𝑡=1
+ ∑ 𝑒𝑖,𝑡

𝑇

𝑡=1
 

となり、さらに上式の両辺を𝑇で割ると、時間平均の関係式が得られます。  

𝑌̅𝑖 = 𝛼 +  𝛽𝑋̅𝑖 + 𝑒̅𝑖 

ただし、各変数の時間平均を次のように定義しています。  

𝑌̅𝑖 =
1

𝑇
∑ 𝑌𝑖,𝑡

𝑇

𝑡=1

,   𝑋̅𝑖 =
1

𝑇
∑ 𝑋𝑖,𝑡

𝑇

𝑡=1

,  𝑒̅𝑖 =
1

𝑇
∑ 𝑒𝑖,𝑡

𝑇

𝑡=1

  

誤差項の平均 𝑒̅𝑖は次のように分解できます。  

𝑒̅𝑖 =
1

𝑇
∑ 𝑒𝑖,𝑡

𝑇

𝑡=1

=
1

𝑇
∑(𝑍𝑖 + 𝑢𝑖,𝑡)

𝑇

𝑡=1

= 𝑍𝑖 + 𝑢̅𝑖 

パラメータ 𝜃を次のように定義します。  

𝜃 = 1 − (
𝜎𝑢

2

𝜎𝑍
2 + 𝑇𝜎𝑢

2
)

1
2

 

ここで、 𝜃の構成要素
𝜎𝑢

2

𝜎𝑍
2+𝑇𝜎𝑢

2は、 𝑒̅𝑖の分散に占める 𝑢̅𝑖の分散の割合になります  

(補足参照 )2。この割合は 0 から 1 の間の値をとるため、パラメータ 𝜃もまた 0

から 1 の間の値をとります (なお、𝐸[𝑍𝑖
2] = 𝜎𝑧

2、𝐸[𝑢𝑖,𝑡
2 ] = 𝜎𝑢

2です )。  

被説明変数𝑌𝑖,𝑡から時間平均 𝑌̅𝑖の一定割合 𝜃を引くと次のようになります 3。  

𝑌𝑖,𝑡 − 𝜃𝑌̅𝑖 = (𝛼 + 𝛽𝑋𝑖,𝑡 + 𝑒𝑖,𝑡) − 𝜃(𝛼 +  𝛽𝑋̅𝑖 + 𝑒̅𝑖) 

= 𝛼(1 − 𝜃) + 𝛽(𝑋𝑖,𝑡 − 𝜃𝑋̅𝑖) + (𝑒𝑖,𝑡 − 𝜃𝑒̅𝑖) 

 

このとき、新しい誤差項 𝑒𝑖,𝑡 − 𝜃𝑒̅𝑖から系列相関は消えるため、被説明変数𝑌𝑖,𝑡 −

 
2 𝑍𝑖の分散 𝜎𝑍

2が大きいと、 𝜃は 1 に近い値となります。つまり、 𝑒̅𝑖の変動に占める 𝑍𝑖の割合が大きい

とき、 𝜃は 1 に近い値となるわけです。また、 𝑇が大きいとき、 𝑢̅𝑖は 0 となるため、 𝑒̅𝑖の変動に占め

る 𝑍𝑖の割合が大きくなり、 𝜃は 1 に近い値になります。  
3 ここで 𝜃は、プールド OLS からの残差 𝑒̂𝑖,𝑡を用いて、分散 𝜎𝑢

2と 𝜎𝑧
2を推定することで得られます。 𝜎𝑢

2

と 𝜎𝑧
2を推定する方法として、たとえば、 𝐸[𝑒𝑖,𝑡𝑒𝑖,𝑠] = 𝜎𝑧

2に注目し、異なる時点の残差の積 ( 𝑒̂𝑖,𝑡𝑒̂𝑖,𝑠)を用い

て、 𝜎𝑧
2を推定することができます (推定量を 𝜎̂𝑧

2と表記する )。また、 𝐸[𝑒𝑖,𝑡
2 ] = 𝐸 [(𝑍𝑖 + 𝑢𝑖,𝑡)

2
] = 𝐸[𝑍𝑖

2] +

𝐸[𝑢𝑖,𝑡
2 ] = 𝜎𝑧

2 + 𝜎𝑢
2となることから (つまり、 𝜎𝑢

2 = 𝐸[𝑒𝑖,𝑡
2 ] − 𝜎𝑧

2となることから )、残差 𝑒̂𝑖,𝑡の分散 𝜎̂𝑒
2を推定し、

𝜎̂𝑢
2を 𝜎̂𝑒

2 − 𝜎̂𝑧
2として推定できます。  
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𝜃𝑌̅𝑖、説明変数𝑋𝑖,𝑡 − 𝜃𝑋̅𝑖とした OLS 推定を実行すれば、より効率的な推定が可能

です (𝑒𝑖,𝑡 − 𝜃𝑒̅𝑖の系列相関が 0 となることの証明は補足参照 )。これは一般化最小

2 乗 (GLS)推定であり、変量効果推定量 (random effects estimator)と呼ばれま

す。  

 誤差項の平均は 𝑒̅𝑖 = 𝑍𝑖 + 𝑢̅𝑖となるため、変量効果推定の誤差項は次のように

なります。  

𝑒𝑖,𝑡 − 𝜃𝑒̅𝑖 = (𝑍𝑖 + 𝑢𝑖,𝑡) − 𝜃(𝑍𝑖 + 𝑢̅𝑖) 

= (1 − 𝜃)𝑍𝑖 + 𝑢𝑖,𝑡 − 𝜃𝑢̅𝑖 

つまり、 𝜃が 1 なら個別要因𝑍𝑖が完全に取り除かれており、変量効果推定と固

定効果推定は同じ結果になります。これに対し、 𝜃が 0 なら、個別要因 𝑍𝑖が全

て残されるため、変量効果推定とプールド OLS は同じ結果になります。現実

のデータ分析では、 𝜃は 0 から 1 の間の値をとり、変量効果推定は、プールド

OLS や固定効果推定とは異なる結果になります。  

 

変量効果推定の長所と短所  

 変量効果推定の長所と短所を説明します。第 1 の長所は、変量効果の前提が

正しいなら、一般化最小 2 乗法によって効率的な推定が可能になっている点で

す。つまり、パラメータを高い精度で推定でき (標準誤差が小さい )、有意な結

果が得られやすくなります。  

第 2 の長所は、変量効果モデルでは、時間を通じて一定の要因でも説明変数

に含めることができる点です。変量効果モデルでは、時間を通じて一定の他変

数を加えても、多重共線性は発生しません。  

短所は、変量効果の前提 (説明変数と個別効果が無相関 )が特殊ケースである

点です。この仮定は一般には成立しないため、変量効果推定はバイアスを持っ

た推定量となります 4。  

 最後に、𝑢𝑖,𝑡には系列相関がないと仮定しましたが、現実には、系列相関が

存在します。このため、変量効果推定を行ったうえで、クラスターロバスト標

 
4 個別効果を考慮しながら、時間を通じて一定の変数の係数を推定する方法としてハウスマン =テ

イラー法があります。詳しくは、教科書の練習問題 13 .13 を参照してください。 Sta ta では、

xth tay lo r というコマンドがあります。  
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準誤差を用いて、信頼区間や仮説検定を行うことが推奨されます。  

 

例 :交通事故死者数と酒税  

 飲酒運転は交通事故の原因の 1 つとされます。このため、酒税を上げること

で飲酒運転を減らせるなら、交通事故死者数を減少させることが可能かもしれ

ません。 J・ストック／M・ワトソンは、 Introduction  to Econometrics )で、 1982

～ 88 年の米国 48 州の酒税と交通事故死者数の関係を調べた研究を紹介してい

ます (N=48、T=7、N×T=336)。  

 ここで i 州の t 年における酒税額 (ビール 1 ケース当たり )を X i , t とし、 t 年に

おける交通事故死者数 (1 万人当たり )を Y i , t とします。変量効果推定量は  

𝑌𝑖,𝑡 = −0.052𝑋𝑖,𝑡 

                           (0 .110)  

となります (カッコ内はクラスターロバスト標準誤差 )。X の係数は負にはなっ

ていますが、 0 に近い値となり有意でもありません。予想とは異なり、酒税を

増やしても、死者数を減らすという効果を見出すことができませんでした。し

かし、この推定では、酒税額は、州固有の要因と無相関と仮定しており、何ら

かのバイアスを発生させている可能性があります。州固有の要因 (道路の舗装

率、飲酒に関するモラル、運転マナー、道路の混雑率など )の存在は大きく、

これらは酒税額と相関すると考えるのが自然です。  

次に、同じデータを固定効果モデルで推定すると、  

𝑌𝑖,𝑡 = −0.656𝑋𝑖,𝑡 +州固有の要因 

                           (0 .29)** 

となります (カッコ内はクラスターロバスト標準誤差 )。ダミー変数は多いので

「州固有の効果」と省略して表示しています。州固有の要因を考慮することで、

酒税額の係数は有意に負となります。係数が－ 0.656 であるとは、酒税が 1 ド

ル増えると交通事故死者数が 0.656 人減少することを意味します。固定効果推

定量では、個別効果が説明変数と相関する可能性を許容しており、こちらの方

が信頼できる結果となります。  
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補足  

𝝈𝒖
𝟐/(𝝈𝒁

𝟐 + 𝑻𝝈𝒖
𝟐)の意味  

𝑒̅𝑖 = 𝑍𝑖 + 𝑢̅𝑖から、 𝑒̅𝑖の分散は次のようになります。  

𝑉(𝑒̅𝑖) = 𝑉(𝑍𝑖 + 𝑢̅𝑖) =  𝑉(𝑍𝑖) + 𝑉(𝑢̅𝑖) 

= 𝜎𝛼
2 + 𝜎𝑢

2/𝑇 

よって、 𝑒̅𝑖の分散のうち、 𝑢̅𝑖の分散の割合は次のようになります。  

𝑉(𝑢̅𝑖)

𝑉(𝑍𝑖) + 𝑉(𝑢̅𝑖)
=

𝜎𝑢
2/𝑇

𝜎𝑢
2/𝑇 + 𝜎𝑧

2
=

𝜎𝑢
2

𝜎𝑢
2 + 𝑇𝜎𝑧

2
 

変量効果モデルの誤差項の性質  

証明の前に、式展開で有用な式を導出します。  

       (1 − 𝜃)2 = (1 − [1 − (
𝜎𝑢

2

𝜎𝑢
2+𝑇𝜎𝑧

2)
1/2

])
2

=
𝜎𝑢

2

𝜎𝑢
2+𝑇𝜎𝑧

2               (A1) 

また、 (1 − 𝜃)2 = 1 − 2𝜃 + 𝜃2から次のようになります。  

𝜃2 − 2𝜃 = (1 − 𝜃)2 − 1 =
𝜎𝑢

2

𝜎𝑢
2+𝑇𝜎𝑧

2 − 1              (A2) 

ここでは、新しい誤差項 𝑒𝑖,𝑡 − 𝜃𝑒̅𝑖には系列相関がないことを確認します (期待

値が 0、分散一定は練習問題参照 )。異時点間の共分散は次のとおりです。  

𝐸[(𝑒𝑖,𝑡 − 𝜃𝑒̅𝑖)(𝑒𝑖,𝑠 − 𝜃𝑒̅𝑖)] = 𝐸 [(𝑍𝑖 + 𝑢𝑖,𝑡 − 𝜃(𝑍𝑖 + 𝑢̅𝑖)) (𝑍𝑖 + 𝑢𝑖,𝑠 − 𝜃(𝑍𝑖 + 𝑢̅𝑖))] 

=  𝐸 [((1 − 𝜃)𝑍𝑖 + (𝑢𝑖,𝑡 − 𝜃𝑢̅𝑖)) ((1 − 𝜃)𝑍𝑖 + (𝑢𝑖,𝑠 − 𝜃𝑢̅𝑖))] 

= (1 − 𝜃)2𝐸[𝑍𝑖
2] + 𝐸[(𝑢𝑖,𝑡 − 𝜃𝑢̅𝑖)(𝑢𝑖,𝑠 − 𝜃𝑢̅𝑖)] 

ここで右辺 2 項目は、  

𝐸[(𝑢𝑖,𝑡 − 𝜃𝑢̅𝑖)(𝑢𝑖,𝑠 − 𝜃𝑢̅𝑖)] = 𝐸 [(𝑢𝑖,𝑡 − 𝜃
𝑢𝑖,1 + ⋯ + 𝑢𝑖,𝑇

𝑇
) (𝑢𝑖,𝑠 − 𝜃

𝑢𝑖,1 + ⋯ + 𝑢𝑖,𝑇

𝑇
)] 

   = 𝜃2
𝑇𝜎𝑢

2

𝑇2
− 𝜃

2𝜎𝑢
2

𝑇
=

𝜎𝑢
2

𝑇
(𝜃2 − 2𝜃) =

𝜎𝑢
2

𝑇
(

𝜎𝑢
2

𝜎𝑢
2 + 𝑇𝜎𝑧

2
− 1) 

と表現できます (式展開では (A2)式を用いました )。これと (A1)式を共分散の式

に代入すると、共分散が 0 となることを確認できます。  

𝐸[(𝑒𝑖,𝑡 − 𝜃𝑒̅𝑖)(𝑒𝑖,𝑠 − 𝜃𝑒̅𝑖)] =
𝜎𝑢

2

𝜎𝑢
2 + 𝑇𝜎𝑧

2
𝜎𝑧

2 +
𝜎𝑢

2

𝑇
(

𝜎𝑢
2

𝜎𝑢
2 + 𝑇𝜎𝑧

2
− 1) 

     =
𝜎𝑢

2𝜎𝑧
2

𝜎𝑢
2 + 𝑇𝜎𝑧

2
−

𝜎𝑢
2𝜎𝑧

2

𝜎𝑢
2 + 𝑇𝜎𝑧

2
= 0 
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練習問題  1 

新しい誤差項 𝑒𝑖,𝑡 − 𝜃𝑒̅𝑖は標準的仮定を満たす。補足では、系列相関がないこと

を確認したので、ここでは期待値 0、分散一定を証明しなさい。  

 

答え  

期待値は 0 となることを確認します。  

𝐸[𝑒𝑖,𝑡 − 𝜃𝑒̅𝑖] = E[(𝑍𝑖 + 𝑢𝑖,𝑡) − 𝜃(𝑍𝑖 + 𝑢̅𝑖)] 

=  E[𝑍𝑖] + 𝐸[𝑢𝑖,𝑡] − 𝜃(𝐸[𝑍𝑖] + 𝐸[𝑢̅𝑖]) = 0 

式展開では、E[𝑍𝑖] = 0、𝐸[𝑢̅𝑖] = 0を用いました。  

次に、分散が一定であることを確認します。分散は、次のようになります

(式展開では、𝑍𝑖と𝑢𝑖,𝑡が無相関であることに注意 )。  

𝐸 [(𝑒𝑖,𝑡 − 𝜃𝑒̅𝑖)
2

] = E [((1 − 𝜃)𝑍𝑖 + (𝑢𝑖,𝑡 − 𝜃𝑢̅𝑖))
2

] 

  = (1 − 𝜃)2E[𝑍𝑖
2] + 𝐸[(𝑢𝑖,𝑡 − 𝜃𝑢̅𝑖)

2
] 

ここで右辺 2 項は  

𝐸 [(𝑢𝑖,𝑡 − 𝜃𝑢̅𝑖)
2

] =  E [(𝑢𝑖,𝑡 − 𝜃
𝑢𝑖,1 + ⋯ + 𝑢𝑖,𝑇

𝑇
)

2

]

=  E[𝑢𝑖,𝑡
2 ] + 𝜃2

(E[𝑢𝑖,1
2 ] + ⋯ + E[𝑢𝑖,𝑇

2 ])

𝑇2
−

2𝜃E[𝑢𝑖,𝑡
2 ]

𝑇
 

    = 𝜎𝑢
2 +

𝜃2𝜎𝑢
2

𝑇
−

2𝜃𝜎𝑢
2

𝑇
= 𝜎𝑢

2 +
𝜎𝑢

2

𝑇
(𝜃2 − 2𝜃) 

となります。これを分散の式に代入すると、分散が一定を確認できます。  

𝐸 [(𝑒𝑖,𝑡 − 𝜃𝑒̅𝑖)
2

] = (1 − 𝜃)2E[𝑍𝑖
2] + 𝜎𝑢

2 +
𝜎𝑢

2

𝑇
(𝜃2 − 2𝜃) 

   = 𝜎𝑢
2 + (

𝜎𝑢
2

𝜎𝑢
2 + 𝑇𝜎𝑧

2
) 𝜎𝑧

2 +
𝜎𝑢

2

𝑇
(

𝜎𝑢
2

𝜎𝑢
2 + 𝑇𝜎𝑧

2
− 1) 

= 𝜎𝑢
2 +

𝜎𝑢
2𝜎𝑎

2

𝜎𝑢
2 + 𝑇𝜎𝑧

2
−

𝜎𝑢
2𝜎𝑧

2

𝜎𝑢
2 + 𝑇𝜎𝑧

2
= 𝜎𝑢

2 

なお、式展開では (A1)(A2)を用いました。  


