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藪友良 

カウントデータ 

カウントデータ(count data)とは、ある事象が一定期間に生じた回数を記録したデータ

になります。回数は非負の整数(0、1、2、…)だけをとります(概念上、マイナスの回数は

ありません)。たとえば、1か月間に病院に行った回数、1日の交通事故件数、ある女性の

子供の数などが該当します。カウントデータは、一般に、小さな値を取ることが多く、ま

た、0の値を取ることが多いデータです。仮に、大きな値を取り、0の値を取らないな

ら、通常の連続変数として扱うことができます。本稿では、被説明変数がカウントデータ

とした代表的モデルとして、ポアソン回帰モデルと負の二項分布モデルを紹介します12。 

本稿は、藪友良『入門 実践する計量経済学』(2023 年、東洋経済新報社)の補足資料に

なります。 

 

線形モデル 

被説明変数𝑌がカウントデータであっても、通常の線形モデルとして推定することは可能

です。 

𝑌 = 𝛼 + 𝛽𝑋 + 𝑢 

このとき、限界効果(𝑋⁡が 1単位変化したときの𝑌の変化量)は𝛽となり、その解釈も容易にな

ります。線形モデルは有用である一方、その欠点として 2点が挙げられます。 

第 1 に、カウントデータ𝑌は 0 を含むことが多く、その場合、被説明変数として、対数

ln⁡(𝑌)を用いることができないという点です。この点はカウントデータの対数をとっていな

いなら問題はありません。 

第 2 に、線形モデルは予測値に負の値が生じるという欠点です。これは予測値𝑌̂が𝑋の線

形関数、つまり、 

𝑌̂ = 𝛼̂ + 𝛽̂𝑋 

であり、説明変数𝑋が大きかったり、小さかったりすると、予測値が負の値になるからです。

カウントデータは非負の整数ですから、予測値が負となるというのはおかしな性質です。 

これらの問題を避けるためには、カウントデータであることを明示的に扱ったモデルを

考える必要があります。これがポアソン回帰モデルと負の二項分布モデルになります。以下

では、ポアソン分布を紹介した後、期待値の対数が線形モデルとしたポアソン回帰モデル、

また、ポアソン回帰モデルを拡張した負の二項分布モデルを紹介します。 

 
1 分析方法の詳細に関心がある読者は、以下の書籍を参照してください。Cameron, A. Colin, and Pravin K. Trivedi. 

"Regression Analysis of Count Data,” Cambridge University Press, Cambridge, U.K. 

2 近年では、貿易における重力モデルを推定するために、ポアソン回帰モデルが使われるようになっています。貿易額

は大きな値をとる変数であり、ポアソン回帰とは無関係に思われます。この点に関心がある読者は、サポートウェブサ

イトの追加資料「貿易における重力モデル」を参照してください。 



ポアソン分布 

 ポアソン分布は、稀にしか発生しない事象の発生回数を表す離散確率分布となります。そ

の例としては、ある航空会社の 1 年間の事故件数、ある病気の 1 日の新規感染者数などが

挙げられます。 

 

ポアソン分布(Poisson distribution) 

確率変数𝑌が値𝑦をとる確率は次のように表せます。 

𝑃{𝑌 = 𝑦} =
𝑒−𝜇𝜇𝑦

𝑦!
 

値𝑦は非負の整数(0、1、2、…)であり、𝜇 > 0は強度と呼ばれるパラメータです。記号!は階乗

を表し、たとえば、0! = 1、1! = 1、2! = 2 × 1、3! = 3 × 2 × 1です。 

 

このとき、ポアソン確率変数𝑌の期待値は強度𝜇となり、分散もまた強度𝜇となります。 

𝐸[𝑌] = 𝜇 

𝑉(𝑌) = 𝜇 

つまり、強度𝜇は稀な事象の平均回数であり、回数の分散にもなっています(期待値と分散の

導出は補足を参照してください)。 

図 1(a)では、強度𝜇 = 1としたポアソン分布を描いています。図をみると、𝑦 = 0、もしく

は𝑦 = 1の確率が高く、それ以降は確率が小さくなります。これを数式から確認しましょう。

𝜇 = 1のとき1𝑦 = 1となることに注意すると、確率は次のようになります。 

𝑃{𝑌 = 𝑦} =
𝑒−1

𝑦!
 

ここで0! = 1と 1! = 1から、𝑦 = 0と𝑦 =1 の確率はともに𝑒−1 = 0.368です。また、𝑦 = 2な

ら確率𝑒−1/2! = 0.184、𝑦 = 3なら確率𝑒−1/3! = 0.061となります。 

図 1：ポアソン分布 

(a) 𝝁 = 𝟏                                 (b) 𝝁 = 𝟑 
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これに対して、図 1(b)では、𝜇 = 3としたポアソン分布を描いています。図をみると、𝑦は

2 と 3 の確率が高くなります。これらの図から、期待値と分散が強度𝜇に依存して変わるこ

とが理解できます。 

 

例 1：新規感染者 

 ある病気の 1日の新規感染者数の平均が 1人だったとしましょう。このとき、強度を𝜇 =

1と設定できますから、新規感染者数の分布は図 1(a)のようになります。感染者数が 0人と

なる確率は 37%、1人となる確率は 37%、2人となる確率は 18%、3人となる確率は 6%程

度です。平均が 1人であっても、0人となったり、2人以上となったりすることが頻繁に生

じます。 

 

ポアソン回帰モデル 

 ポアソン分布では、強度𝜇は定数と仮定されますが、強度𝜇は説明変数𝑋に依存しているか

もしれません。たとえば、学生の欠席回数は、年齢や性別などによっても変わるかもしれま

せん。強度が説明変数に依存する可能性を考慮したのがポアソン回帰モデルになります。以

下では簡単化のため、説明変数が確率変数ではないとして議論します。 

 

ポアソン回帰モデル(Poisson regression model)  

確率変数𝑌はポアソン分布とし、強度𝜇は次のように設定されます。 

𝜇 = 𝑒𝛼+𝛽𝑋⁡ 

 

ポアソン分布では、強度𝜇は𝑌の期待値となりますから、 

𝐸[𝑌] = 𝑒𝛼+𝛽𝑋 

となります。指数関数は 0 より大きな値しかとらないので、期待値𝐸[𝑌]は 0 より大きな値

になります。また、分散も強度であり、次のようになります。 

𝑉(𝑌) = 𝑒𝛼+𝛽𝑋 

ここで、分散は𝑋の値に依存して変わるため、これは不均一分散を意味しています。 

なお、期待値の式の対数をとると、 

ln⁡(𝐸[𝑌]) = 𝛼 + 𝛽𝑋⁡ 

となります。つまり、ポアソン回帰モデルは、期待値の対数を被説明変数とした対数線形モ

デルとしても解釈ができます。なお、𝑌は 0 の値をとることもありますが、𝑌の期待値は 0

より大きいため、期待値の対数を定義することが可能です。 

∂xj∂λ=λ⋅βj 

ポアソン回帰モデルの係数の解釈 

 モデルはln⁡(𝐸[𝑌]) = 𝛼 + 𝛽𝑋⁡であるため、係数𝛽は対数線形モデルの解釈と同じです(6.3.2

節参照)。この点を確認しましょう。𝑋が𝑋 + 1に変化したとき、𝐸[𝑌]は𝐸[𝑌′]に変化するとし



ます。上記のモデルから、次の式が成立します。 

ln⁡(𝐸[𝑌′]) − ln⁡(𝐸[𝑌]) = (𝛼 + 𝛽(𝑋 + 1)) − (𝛼 + 𝛽𝑋) = 𝛽 

これを βについて解くと、

 

𝛽 = ln(𝐸[𝑌′]) − ln(𝐸[𝑌]) = ln (1 +
𝐸[𝑌′] − 𝐸[𝑌]

𝐸[𝑌]
) ≈

𝐸[𝑌′] − 𝐸[𝑌]

𝐸[𝑌]
 

となります(教科書の巻末付録 A参照)。記号≈は近似で等しいことを表します。これは𝑋⁡が

1単位変化すると、期待値𝐸[𝑌]が 100×𝛽%変化することを意味します。 

上式は、𝑌の変化が小さいときの近似ですが、𝑌の変化が大きいとき近似は不正確となり

ます。このとき、近似を使わないでも、𝛽 = ln(𝐸[𝑌′]) − ln(𝐸[𝑌])が成立するため、 

𝑒𝛽 =⁡
𝐸[𝑌′]

𝐸[𝑌]
 

となります(この式が正しいことは両辺の対数をとったら明らかです)。つまり、𝑋⁡が 1単位

変化すると、期待値が100 × (𝑒𝛽 − 1)%変化します。𝑌の変化が 20%くらいまでは近似でも

問題ありませんが、それを超えたら、こちらを使ってみることをお勧めします(補足参照)。 

線形モデルとの比較に関心があるなら、通常の限界効果（𝑋が 1 単位変化したときの𝐸𝑌]

の変化量）を推定することも可能です3。𝐸[𝑌] = 𝑒𝛼+𝛽𝑋において、𝑍 = 𝛼 + 𝛽𝑋と置くと、合成

関数の微分の公式によって、限界効果は次式になります。 

𝑑𝐸[𝑌]

𝑑𝑋
=
𝑑𝑒𝑍

𝑑𝑍

𝑑𝑍

𝑑𝑋
= 𝑒𝛼+𝛽𝑋𝛽 

限界効果は、𝑋の値によって値が変わります。実証分析では、プロビットやロジットと

同様に、平均限界効果が掲載されます。ここで、予測値を𝑌̂𝑖 = 𝑒𝛼̂+𝛽̂𝑋𝑖と定義すると、平均

限界効果(average marginal effect)は次のように計算できます。 

1

𝑛
∑

𝑑𝐸[𝑌𝑖]

𝑑𝑋𝑖

𝑛

𝑖=1

= 𝛽̂
1

𝑛
∑𝑒𝛼̂+𝛽̂𝑋𝑖

𝑛

𝑖=1

= 𝛽̂
1

𝑛
∑𝑌̂𝑖

𝑛

𝑖=1

 

ここで、𝑌𝑖と𝑌̂𝑖の平均は同じため、平均限界効果は𝛽̂⁡𝑌̅としても計算できます。 

 

最尤推定 

ポアソン回帰モデルは非線形モデルであり、通常の最小 2乗法によって推定できません。

しかし、ここで𝑌はポアソン分布であることが分かっているため、最尤法によってパラメー

タを推定することができます(最尤法は 12.3節参照、ポアソン回帰の尤度は補足参照)。 

ポアソン分布は、期待値と分散がともに強度𝜇としているため、ポアソン回帰モデルでも、

期待値と分散は同じと仮定されます。 

𝑉(𝑌) = 𝐸[𝑌] = 𝑒𝛼+𝛽𝑋⁡ 

これは非現実的仮定です。実際、カウントデータの多くは、𝑉(𝑌) > 𝐸[𝑌]という傾向がみら

 
3 最初の方法では、𝑋が変化したときの𝐸[𝑌]の変化率を調べています。ここでは、𝑋が変化したときの𝐸[𝑌]の変化量に

関心があります。 



れます。この現象は過剰分散(overdispersion)と呼ばれます。 

ポアソン分布の仮定が誤っていたとしても、𝐸[𝑌] = 𝑒𝛼+𝛽𝑋⁡が成立していれば、最尤推定量

はパラメータの一致推定量となることが知られています。ただし、ポアソン分布の仮定が誤

っていると、通常の標準誤差は、本当の標準誤差を過小評価する傾向があるため、ロバスト

標準誤差を用いることが推奨されます。 

 

負の二項分布モデル 

 ポアソン分布の拡張として、負の二項分布モデルがあります。負の二項分布モデルでは、

追加的なパラメータ𝜃が導入されることで、期待値と分散が異なる可能性が許容されます。 

 

負の二項分布モデル(negative binominal model) 

ポアソン分布の強度𝜇は、次のように設定されます。 

𝜇 = 𝑉𝑒𝛼+𝛽𝑋⁡ 

ここで、𝑉は正の値を取る確率変数であり、その期待値は 1、分散は1/𝜃と仮定されます(ただ

し、𝜃 > 0とする)4。パラメータ𝜃が∞であれば、𝑉は常に値 1をとるため、負の二項分布は

ポアソン分布と同じになります。 

 

このとき、𝑌の期待値と分散は、それぞれ 

𝐸[𝑌] = 𝑒𝛼+𝛽𝑋 

𝑉(𝑌) = 𝑒𝛼+𝛽𝑋 (1 +
𝑒𝛼+𝛽𝑋

𝜃
) 

となり、期待値と分散が異なる可能性が許容されています。なお、𝑒𝛼+𝛽𝑋と𝜃は正の値をとり

ますから、𝑒𝛼+𝛽𝑋 > 0です。 

これらの式から、2 つの点が明らかです。第 1 に、負の二項分布では、過剰分散(𝑉(𝑌) >

𝐸[𝑌])が制約として課されている点です。このため、過剰分散ではないなら、負の二項分布

は適切ではないかもしれません。第 2 に、𝜃が∞なら、𝑉(𝑌) = 𝐸[𝑌]となる点です。このた

め、負の二項分布はポアソン回帰を内包したモデルといえます。 

カウントデータは通常の線形モデルでも推定できますが、結果の頑健性を調べるために

も、ポアソン回帰モデルと負の二項分布モデルによる推定も合わせて行うことが推奨され

ます56。 

 
4 厳密には、確率変数𝑉はガンマ分布 Gamma(θ、θ)に従うと仮定されます。 

5 カウントデータに 0 が多く含まれている場合、ゼロ過剰(zero inflated)ポアソン回帰とゼロ過剰負の二項分布モデル

を用いることができます。たとえば、ゼロ過剰ポアソン回帰では、確率𝑝でカウントが 0 となり、確率1 − 𝑝でカウント

がポアソン回帰から決定されるとします。 

6 Stata では、ポアソン回帰は poisson コマンド、負の 2 項分布は nbreg コマンドで実行できます。最後に r を入れ

るとロバスト標準誤差、irr を入れると係数 βの代わりに、𝑒𝛽が計算されます。また、限界効果に関心があるなら、

margins, dydx(説明変数)とすれば計算できます。Stataでは、θ ではなく、alpha= 1/θ が推定されます。Rのプログラムに



例 2：逮捕回数の決定要因は何か 

 Wooldridge『Introductory Econometrics』では、カリフォルニア生まれの男性 2725 人

分のデータ(CRIME1)を用いて、逮捕回数の決定要因が分析されています。これらの男性は、

1960年もしくは 1961年に生まれており、1986年より前に逮捕歴があります。 

図 2(a)では、1986 年の逮捕回数の相対頻度を描いており、逮捕回数は 0 回から 12 回の

間で分布しています。逮捕回数 0回が約 72%、1回が約 20%となっています。図 2(b)では、

強度𝜇 = 0.5としたポアソン分布を描いており、ポアソン分布が逮捕回数の分布を近似でき

ていることがわかります。 

図 2: 逮捕回数とポアソン分布 

(a) 逮捕回数の相対頻度           (b) 強度𝝁 = 𝟎. 𝟓としたポアソン分布 

  

 被説明変数は 1986年の逮捕回数であり、説明変数は、有罪率(1986年より前の逮捕のう

ち有罪となった割合)、投獄期間(1986年に何カ月投獄されていたか)、所得(1986年の所得)、

黒人ダミーとします。表 1では、線形モデル、ポアソン回帰、負の二項分布モデルからの推

定結果を示しています。どの推定でも係数の符号や有意性は同じです。過去の有罪率が高い

と、罰則の厳しさを恐れるからか、1986 年の逮捕回数が減少します。また、投獄期間が長

いと、その間は悪いことができないため、逮捕回数が減少しています。また、所得が上がる

と逮捕回数は減少し、黒人であると(白人に比べて)逮捕回数が増加します。 

線形モデルと他のモデルでは、係数の意味が異なることに注意が必要です。たとえば、 

線形回帰モデルでは、投獄期間が 1 か月増えると 0.029 だけ逮捕回数が減少しています。

これに対し、ポアソン回帰では、投獄期間が 1か月増えると 8.1%だけ逮捕回数が減少しま

す。線形モデルとの比較のため、ポアソン回帰の係数−0.081から限界効果をもとめてみま

す。逮捕回数の平均が 0.4044なので、限界効果は−0.033(= −0.081×0.4044)です。これは

線形モデルの係数とほぼ同じ値です。 

同様に、線形モデルでは、黒人は白人より 0.288回だけ逮捕回数が増えるとしています。

これに対し、ポアソン回帰の係数 0.5114は、近似を使うと、黒人は 51.4%だけ逮捕回数が

 
関しては、松浦寿幸氏のウェブサイトに説明がまとめられています。https://note.com/toshi_matsuura/n/n75177561bd30 
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増えることを意味します。しかし、Yの変化は大きいため、近似は不正確であると疑われま

す。実際、正しい計算は0.672(= 𝑒0.514 − 1)であり、0.514よりずいぶん大きくなります。こ

れは黒人であると白人より 67.2%だけ逮捕回数が多いことがわかります。また、ポアソン回

帰の限界効果は 0.2078(=0.514×0.4044)であり、線形モデルの係数に近い値になっていま

す。 

表 1: 推定結果 

 

注) カッコ内はロバスト標準誤差を用いた。また、***は 1%有意、**は 5%有意、*は 10%有意を表す。OBSはサンプル

サイズとなる。 

 

表 1 をみると、ポアソン回帰と負の二項分布の係数はほぼ同じ値になっています。これ

はポアソン分布の推定量は一致性を持っていることから妥当な結果でしょう。また、負の二

項分布において、1/θは 0.989ですから、θは逆数 1.011となります。θは小さな値ですから、

過剰分散が生じており、負の二項分布が妥当なモデルとわかります。実際、AICをみると、

負の二項分布が最も小さな値となり、当てはまりが良いモデルとわかります。6.4.3節では、

AICが小さいほど良いモデルであったことを思い出してください。 

 

  

線形モデル ポアソン回帰 負の二項分布

過去の有罪率 -0.136 *** -0.389 *** -0.450 ***

(0.034) (0.100) (0.102)

投獄期間 -0.029 *** -0.081 *** -0.088 ***

(0.005) (0.020) (0.022)

所得 -0.002 *** -0.009 *** -0.009 ***

(0.000) (0.001) (0.001)

黒人ダミー 0.288 *** 0.514 *** 0.510 ***

(0.058) (0.093) (0.092)

定数項 0.547 *** -0.501 *** -0.483 ***

(0.028) (0.062) (0.064)

1/θ 0.989

(0.139)

AIC 6746.98 4556.17 4362.36

OBS 2745 2745 2745



補足 

ポアソン分布は確率の和が 1となる 

ここで確率の和が 1となることを確認します。まず、 

𝑒𝜇 = ∑
𝜇𝑦

𝑦!

∞

𝑦=0

 

となります7。この結果から、 

∑
𝑒−𝜇𝜇𝑦

𝑦!

∞

𝑦=0

= 𝑒−𝜇∑
𝜇𝑦

𝑦!

∞

𝑦=0

= 𝑒−𝜇𝑒𝜇 = 1 

 

ポアソン分布の期待値と分散 

𝑌がポアソン分布に従うとし、期待値と分散がそれぞれ𝜇となることを証明します。まず、 

期待値は次のようになります。 

𝐸[𝑌] = ∑𝑦
𝑒−𝜇𝜇𝑦

𝑦!

∞

𝑦=0

 

= ∑𝑦
𝑒−𝜇𝜇𝑦

𝑦!

∞

𝑦=1

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡= 𝜇𝑒−𝜇∑
𝜇𝑦−1

(𝑦 − 1)!

∞

𝑦=1

 

ここで𝑘 = 𝑦 − 1と定義すると、上式は 

𝜇𝑒−𝜇∑
𝜇𝑘

𝑘!

∞

𝑘=0

 

となり、ここで𝑒𝜇 = ∑
𝜇𝑘

𝑘!
∞
𝑘=0 から期待値は𝜇となります。 

 次に 2乗の期待値は次のように展開できます。 

𝐸[𝑌2] = ∑𝑦2
𝑒−𝜇𝜇𝑦

𝑦!

∞

𝑦=0

 

= ∑(𝑦(𝑦 − 1) + 𝑦)
𝑒−𝜇𝜇𝑦

𝑦!

∞

𝑦=0

 

 

7  𝑒𝜇𝑥を𝑥に関してマクローリン展開すると、次のようになります。 

𝑒𝜇𝑥 = 1 +
1

1!
𝜇𝑥 +

1

2!
𝜇2𝑥2 +

1

3!
𝜇3𝑥3 +⋯ 

式展開では、
𝑑𝑒𝜇𝑥

𝑑𝑥
= 𝜇𝑒𝜇𝑥、

𝑑2𝑒𝜇𝑥

𝑑𝑥2
= 𝜇2𝑒𝜇𝑥、

𝑑3𝑒𝜇𝑥

𝑑𝑥3
= 𝜇3𝑒𝜇𝑥を用いました。上式を𝑥 = 1で評価すると次式が得られます。 

𝑒𝜇 = 1 +
1

1!
𝜇 +

1

2!
𝜇2 +

1

3!
𝜇3 +⋯ =∑

𝜇𝑦

𝑦!

∞

𝑦=0

 



= ∑𝑦(𝑦 − 1)
𝑒−𝜇𝜇𝑦

𝑦!

∞

𝑦=0

+∑𝑦
𝑒−𝜇𝜇𝑦

𝑦!

∞

𝑦=0

 

右辺第 2項は期待値𝜇であり、右辺第 1項は 

∑𝑦(𝑦 − 1)
𝑒−𝜇𝜇𝑦

𝑦!

∞

𝑦=0

= ∑𝑦(𝑦 − 1)
𝑒−𝜇𝜇𝑦

𝑦!

∞

𝑦=2

 

= 𝜇2𝑒−𝜇∑
𝜇𝑦−2

(𝑦 − 2)!

∞

𝑦=2

 

となります。ここで、𝑘 = 𝑦 − 2と定義すると、上式は𝜇2となります。以上から、2乗の期待

値は𝐸[𝑌2] = 𝜇2 + 𝜇です。 

 分散は 2乗の期待値から期待値の 2乗を引いたものですから、次式が得られます。 

𝑉(𝑌) = 𝐸[𝑌2] − 𝐸[𝑌]2 

= (𝜇2 + 𝜇) − 𝜇2 = 𝜇 

 

ポアソン回帰の対数尤度 

ポアソン回帰モデルでは、 

𝑃{𝑌𝑖 = 𝑦𝑖} =
𝑒−𝜇𝜇𝑦𝑖

𝑦𝑖!
 

としています(ただし、𝜇 = 𝑒𝛼+𝛽𝑋𝑖 ⁡)。上式の対数をとると、次のようになります。 

𝑦𝑖(𝛼 + 𝛽𝑋𝑖) − (𝑒𝛼+𝛽𝑋𝑖) − ln⁡(𝑦𝑖!) 

ここでln⁡(𝑦!)は、パラメータ(𝛼、𝛽)に依存していないため無視することができます。よっ

て、最尤法は対数尤度である次式を最大にするようにパラメータを決めます。 

∑{𝑦𝑖(𝛼 + 𝛽𝑋𝑖) − 𝑒𝛼+𝛽𝑋𝑖}

𝑛

𝑖=1

 

 対数尤度を𝛼に関して偏微分して 0と置くと 

𝜕

𝜕𝛼
∑{𝑦𝑖(𝛼 + 𝛽𝑋𝑖) − 𝑒𝛼+𝛽𝑋𝑖}

𝑛

𝑖=1

=∑{𝑦𝑖 − 𝑒𝛼+𝛽𝑋𝑖}

𝑛

𝑖=1

= 0 

となり、さらに𝛽に関して偏微分して 0と置くと次の式が得られます。 

𝜕

𝜕𝛽
∑{𝑦𝑖(𝛼 + 𝛽𝑋𝑖) − 𝑒𝛼+𝛽𝑋𝑖}

𝑛

𝑖=1

=∑{𝑦𝑖 − 𝑒𝛼+𝛽𝑋𝑖}𝑋𝑖

𝑛

𝑖=1

= 0 

残差を𝑦𝑖 − 𝑒𝛼+𝛽𝑋𝑖と考えると、最初の式は残差の和が 0、2番目の式は残差と説明変数の

積和が 0を意味しています。なお、両式を満たすパラメータ(𝛼、𝛽)は最尤推定量(𝛼̂𝑀𝐿、𝛽̂𝑀𝐿)

となりますが、解析的には解けないため、数値探索法で見つけることになります。 

 

 

 

 



対数近似の正確 

 係数の解釈を行うとき、次の近似を行いました。 

ln (1 +
𝐸[𝑌′] − 𝐸[𝑌]

𝐸[𝑌]
) ≈

𝐸[𝑌′] − 𝐸[𝑌]

𝐸[𝑌]
 

この近似は変化率が何%までであれば正確といえるでしょうか。ここで変化率を𝜀として、 

ln(1 + 𝜀)と𝜀を図示しました。図 3をみると、𝜀が 0.2くらいまでは正確ですが、それを超え

ると差が大きくなっていくことがわかります。このため、変化率が 0.2を超えていたら、近

似を使わない計算を調べてみることが大事だと思います。

 図 3: 対数差の近似は正確か？ 
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