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藪友良 

クラスターロバスト標準誤差 

パネルデータでは、個体𝑖に着目すれば誤差項𝑒𝑖,𝑡は計𝑇個の時系列データ(𝑒𝑖,1, 𝑒𝑖,2, … , 𝑒𝑖,𝑇)

となります。この𝑇個の時系列データは、1つのクラスター(集団)を形成し、その中で系列

相関が発生します。推定量の標準誤差は、こうしたクラスター構造に対して頑健な標準誤

差を用いる必要があります。この標準誤差は、クラスターロバスト標準誤差と呼ばれます。

クラスターロバスト標準誤差は、不均一分散と系列相関に頑健な標準誤差(HAC標準誤差)

の 1種です。ここでは、クラスターロバスト標準誤差の考え方と推定方法を紹介します。

なお、本稿は、藪友良『入門 実践する計量経済学』(2023年、東洋経済新報社)の補足資料

です。 

 

1. プールド OLS  

ここで次のモデルを考えましょう。 

𝑌𝑖,𝑡 = 𝛼 + 𝛽𝑋𝑖,𝑡 + 𝑢𝑖,𝑡 

個別効果がないため、定数項は一定としました。個体は𝑖 = 1,2, … , 𝑁、時点は𝑡 = 1,2, … , 𝑇 

ですから、サンプルサイズは NTです。 

個体𝑖と𝑗が異なるなら、どの時点𝑡と𝑠に対しても誤差項は無相関とします。 

𝐸[𝑢𝑖,𝑡𝑢𝑗,𝑠] = 0 

しかし、誤差項は個体内(クラスター内)では、系列相関が許容されます。 

𝐸[𝑢𝑖,𝑡𝑢𝑖,𝑠] ≠ 0 

ここでは、プールド OLS 推定量におけるクラスター標準誤差の推定方法を説明します。 

 

1.1. プールド OLS 推定量 の分散 

プールド OLS 推定量は、単回帰による通常の OLS と同じで次のように表せます(OLS

推定量の公式は P32 参照)1。 

𝛽̂ =
∑ ∑ (𝑋𝑖,𝑡 − 𝑋̄)𝑇

𝑡=1 (𝑌𝑖,𝑡 − 𝑌̄)𝑁
𝑖=1

∑ ∑ (𝑋𝑖,𝑡 − 𝑋̄)2𝑇
𝑡=1

𝑁
𝑖=1

 

 

1  分母の 2 重和 ΣΣは次のように展開できます。 

∑ ∑(𝑋𝑖,𝑡 − 𝑋̄)2

𝑇

𝑡=1

𝑁

𝑖=1

= ∑ (∑(𝑋𝑖,𝑡 − 𝑋̄)2

𝑇

𝑡=1

)

𝑁

𝑖=1

 

= ∑((𝑋𝑖,1 − 𝑋̄)2 + (𝑋𝑖,2 − 𝑋̄)2 + ⋯ + (𝑋𝑖,𝑇 − 𝑋̄)2)

𝑁

𝑖=1

 

= ((𝑋1,1 − 𝑋̄)2 + (𝑋1,2 − 𝑋̄)2 + ⋯ + (𝑋1,𝑇 − 𝑋̄)2) 

+((𝑋2,1 − 𝑋̄)2 + (𝑋2,2 − 𝑋̄)2 + ⋯ + (𝑋2,𝑇 − 𝑋̄)2) 

… 

+((𝑋𝑁,1 − 𝑋̄)2 + (𝑋𝑁,2 − 𝑋̄)2 + ⋯ + (𝑋𝑁,𝑇 − 𝑋̄)2) 

つまり、これは𝑋𝑖,𝑡の偏差の 2 乗和になります。 



ここで、その確率的表現は次のようになります(確率的表現は『入門 実践する計量経済学』

P58 参照)。 

𝛽̂ = 𝛽 +
∑ ∑ (𝑋𝑖,𝑡 − 𝑋̄)𝑇

𝑡=1 𝑢𝑖,𝑡
𝑁
𝑖=1

∑ ∑ (𝑋𝑖,𝑡 − 𝑋̄)2𝑇
𝑡=1

𝑁
𝑖=1

 

= 𝛽 +
∑ ∑ 𝑣𝑖,𝑡

𝑇
𝑡=1

𝑁
𝑖=1

∑ ∑ (𝑋𝑖,𝑡 − 𝑋̄)2𝑇
𝑡=1

𝑁
𝑖=1

 

式展開では、10.3.1 節と同様に、𝑣𝑖,𝑡 = (𝑋𝑖,𝑡 − 𝑋̄)𝑢𝑖,𝑡と定義しました。 

ここで推定量𝛽̂の分散は、𝑋𝑖,𝑡が非確率変数とすると、次のようになります。 

𝐸 [(𝛽̂ − 𝛽)
2

] = 𝐸 [(
∑ ∑ 𝑣𝑖,𝑡

𝑇
𝑡=1

𝑁
𝑖=1

∑ ∑ (𝑋𝑖,𝑡 − 𝑋̄)2𝑇
𝑡=1

𝑁
𝑖=1

)

2

] 

     =
𝐸 [(∑ 𝑞𝑖

𝑁
𝑖=1 )

2
]

{∑ ∑ (𝑋𝑖,𝑡 − 𝑋̄)2𝑇
𝑡=1

𝑁
𝑖=1 }

2 

最後の式展開では、𝑞𝑖 = ∑ 𝑣𝑖,𝑡
𝑇
𝑡=1 と定義しました。上式分子は、 

𝐸 [(∑ 𝑞𝑖

𝑁

𝑖=1

)

2

] = 𝐸[𝑞1
2] + 𝐸[𝑞2

2] + ⋯ + 𝐸[𝑞𝑁
2 ] 

となります(式展開では、iと jが異なるとき、𝐸[𝑞𝑖𝑞𝑗] = 0を用いました)2。 

 𝜎𝑞𝑖
2 = 𝐸[𝑞𝑖

2]と表記すると、推定量𝛽̂の分散は次のように表せます。 

𝐸 [(𝛽̂ − 𝛽)
2

] =
∑ 𝜎𝑞𝑖

2𝑁
𝑖=1

{∑ ∑ (𝑋𝑖,𝑡 − 𝑋̄)2𝑇
𝑡=1

𝑁
𝑖=1 }

2 

分散の平均𝜎̅𝑞
2 =

1

𝑁
∑ 𝜎𝑞𝑖

2𝑁
𝑖=1 と定義すると、推定量𝛽̂の分散は、次のようにも表現できます。 

𝑁𝜎̅𝑞
2

(∑ (𝑋𝑖 − 𝑋̄)2𝑛
𝑖=1 )

2 

 

 

 

 

2 𝑖と𝑗が異なるとき、期待値𝐸[𝑞𝑖𝑞𝑗]は 0 になります。 

𝐸[𝑞𝑖𝑞𝑗] = 𝐸 [(∑ 𝑣𝑖,𝑡

𝑇

𝑡=1

) (∑ 𝑣𝑗,𝑡

𝑇

𝑡=1

)] 

                         = 𝐸 [(∑(𝑋𝑖,𝑡 − 𝑋̄)𝑢𝑖,𝑡

𝑇

𝑡=1

) (∑(𝑋𝑗,𝑡 − 𝑋̄)𝑢𝑗,𝑡

𝑇

𝑡=1

)] 

                           = ∑ ∑(𝑋𝑖,𝑡 − 𝑋̄)(𝑋𝑗,𝑠 − 𝑋̄)𝐸[𝑢𝑖,𝑡𝑢𝑗,𝑠]

𝑇

𝑠=1

𝑇

𝑡=1

= 0 

最後の展開では、 𝑖と𝑗が異なるとき、𝐸[𝑢𝑖,𝑡𝑢𝑗,𝑠] = 0となることを用いました。 



1.2. クラスターロバスト標準誤差 

ここで、𝜎𝑞𝑖
2 は定義から次のようになります。 

𝜎𝑞𝑖
2 = 𝐸[𝑞𝑖

2] =  𝐸 [(∑ 𝑣𝑖,𝑡

𝑇

𝑡=1

)

2

] 

つまり、𝜎𝑞𝑖
2 は自己共分散𝐸[𝑣𝑖,𝑡𝑣𝑖,𝑠]から構成されるわけです。10.3 節では、T が大きいとし

て、これらの自己共分散を標本自己共分散によって推定しました。しかし、パネルデータ

では、一般に T が小さく、この方法を用いることはできません。 

ここで、𝜎𝑞𝑖
2 = 𝐸[𝑞𝑖

2]であるため、その推定量として𝑞𝑖
2 = (∑ 𝑣𝑖,𝑡

𝑇
𝑡=1 )2 = (∑ (𝑋𝑖,𝑡 −𝑇

𝑡=1

𝑋̄)𝑢𝑖,𝑡)2を用いることが自然です。しかし、誤差項𝑢𝑖が観察できないため、誤差項𝑢𝑖の推定

量である残差𝑢̂𝑖に置き換えることで、𝜎𝑞𝑖
2 の推定量𝑞̂𝑖

2を次のように求めることができます。 

𝑞̂𝑖
2 = (∑ 𝑣̂𝑖,𝑡

𝑇

𝑡=1

)

2

= (∑(𝑋𝑖 − 𝑋̄)2𝑢̂𝑖
2

𝑇

𝑡=1

)

2

 

しかし、これは𝜎𝑞𝑖
2 を観測値𝑞̂𝑖

2だけで推定しており、その精度精度はかなり低くなります。 

パネルデータは一般に、T は小さいですが、N が大きいという特徴があります。M.アレ

ラーノ(Manuel Arellano)は、この特徴を生かして、個々の𝜎𝑞𝑖
2 ではなく、その平均𝜎̅𝑞

2なら

高い精度で推定できるとしました3。つまり、個々の𝑞̂𝑖
2は推定誤差が大きい一方、N が十分

に大きければ、その平均である 

𝜎̂̅𝑞
2 =

1

𝑛
∑ 𝑞̂𝑖

2

𝑛

𝑖=1

=
1

𝑁
∑ (∑ 𝑣̂𝑖,𝑡

𝑇

𝑡=1

)

2𝑁

𝑖=1

 

は個々の推定誤差が打ち消しあうことで正確に推定できるわけです。 

推定量𝛽̂の分散の式に平均𝜎̂̅𝑞
2を代入すると、分散の推定量が得られます。 

𝑁𝜎̂̅𝑞
2

(∑ (𝑋𝑖 − 𝑋̄)2𝑛
𝑖=1 )

2 =
∑ (∑ 𝑣̂𝑖,𝑡

𝑇
𝑡=1 )

2𝑁
𝑖=1

(∑ (𝑋𝑖 − 𝑋̄)2𝑛
𝑖=1 )

2 

そして、分散の推定量の平方根がクラスターロバスト標準誤差(cluster robust standard 

errors)になります。 

√
∑ (∑ 𝑣̂𝑖,𝑡

𝑇
𝑡=1 )

2𝑁
𝑖=1

{∑ ∑ (𝑋𝑖,𝑡 − 𝑋̄)2𝑇
𝑡=1

𝑁
𝑖=1 }

2 

 

3 Arellano, Manuel. "Computing robust standard errors for within-groups estimators." Oxford Bulletin of Economics & 

Statistics 49.4 (1987).なお、Arellano のアイデアは、ロバスト標準誤差を開発した H.ホワイト(Halbert White)のアイデ

アに基づいています。詳しくは、サポートウェブサイトの「不均一分散に頑健な標準誤差」、もしくは以下の論文を読

んでください。White, Halbert. "A heteroskedasticity-consistent covariance matrix estimator and a direct test for 

heteroskedasticity." Econometrica: journal of the Econometric Society (1980): 817-838.  



実証分析では、クラスターロバスト標準誤差は、ロバスト標準誤差よりも大きな値をと

ることが多くなります。パネルデータでは、系列相関が生じることが一般的ですから、ぜ

ひクラスターロバスト標準誤差を用いるようにしましょう。 

 

2. 固定効果推定量  

個別要因𝑍𝑖がある場合、モデルは次のようになります。 

𝑌𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑋𝑖,𝑡 + 𝑢𝑖,𝑡 

ここで定数項は個体によって異なります。誤差項に関しては、これまでと同様、クラスタ

ー間では無相関ですが、クラスター内では系列相関があると仮定します。ここでは、個別

要因が存在するため、固定効果推定を行います。 

 

2.1. 固定効果推定量の別表現 

各個体について時間平均との差をとることで個別要因を取り除く作業を行います。まず、

時間に関して和をとります。 

∑ 𝑌𝑖,𝑠

𝑇

𝑠=1
= ∑ (𝛼𝑖 + 𝛽𝑋𝑖,𝑠 + 𝑢𝑖,𝑠)

𝑇

𝑠=1
 

= 𝑇𝛼𝑖 +  𝛽 ∑ 𝑋𝑖,𝑠

𝑇

𝑠=1
+ ∑ 𝑢𝑖,𝑠

𝑇

𝑠=1
 

上式の両辺を𝑇で割ると、時間平均の関係式が得られます。 

𝑌̅𝑖 = 𝛼𝑖 + 𝛽𝑋̅𝑖 + 𝑢̅𝑖 

ただし、時間平均は次のように定義しました。 

𝑌̅𝑖 =
1

𝑇
∑ 𝑌𝑖,𝑠

𝑇
𝑠=1 、𝑋̅𝑖 =

1

𝑇
∑ 𝑋𝑖,𝑠

𝑇
𝑠=1 、𝑢̅𝑖 =

1

𝑇
∑ 𝑢𝑖,𝑠

𝑇
𝑠=1  

次に、𝑌𝑖,𝑡から時間平均𝑌̅𝑖を引くと、次のようになります。 

𝑌𝑖,𝑡 − 𝑌̅𝑖 = (𝛼𝑖 + 𝛽𝑋𝑖,𝑡 + 𝑢𝑖,𝑡) − (𝛼𝑖 + 𝛽𝑋̅𝑖 + 𝑢̅𝑖) 

=  𝛽(𝑋𝑖,𝑡 − 𝑋̅𝑖) + (𝑢𝑖,𝑡 − 𝑢̅𝑖) 

ここで、時間平均との差をそれぞれ 

𝑌̃𝑖,𝑡 = 𝑌𝑖,𝑡 − 𝑌̅𝑖 

𝑋̃𝑖,𝑡 =  𝑋𝑖,𝑡 − 𝑋̅𝑖 

𝑢̃𝑖,𝑡 =  𝑢𝑖,𝑡 − 𝑢̅𝑖 

と定義すると、個別要因が除去された次式が得られます。 

𝑌̃𝑖,𝑡 = 𝛽𝑋̃𝑖,𝑡 + 𝑢̃𝑖,𝑡 

 ここで、定数項は 0になっていますから、係数𝛽は定数項なしの OLS 推定量として求め

ることができます。 

𝛽̂ =
∑ ∑ 𝑋̃𝑖,𝑡𝑌̃𝑖,𝑡

𝑇
𝑡=1

𝑁
𝑖=1

∑ ∑ 𝑋̃𝑖,𝑡
2𝑇

𝑡=1
𝑁
𝑖=1

 



定数項なしの OLS推定は、3章の練習問題 12を参照してください。なお、上式は、11.3 節

のダミー変数を用いた固定効果推定量と同じになることが知られています4。 

 

2.2.  クラスターロバスト標準誤差 

 固定効果推定量の確率的表現を求めます。ここで、𝑌̃𝑖,𝑡 =  𝛽𝑋̃𝑖,𝑡 + 𝑢̃𝑖,𝑡を代入すると、次の

ようになります。 

𝛽̂ =
∑ ∑ 𝑋̃𝑖,𝑡𝑌̃𝑖,𝑡

𝑇
𝑡=1

𝑁
𝑖=1

∑ ∑ 𝑋̃𝑖,𝑡
2𝑇

𝑡=1
𝑁
𝑖=1

=
∑ ∑ 𝑋̃𝑖,𝑡(𝛽𝑋̃𝑖,𝑡 + 𝑢̃𝑖,𝑡)𝑇

𝑡=1
𝑁
𝑖=1

∑ ∑ 𝑋̃𝑖,𝑡
2𝑇

𝑡=1
𝑁
𝑖=1

 

= 𝛽 +
∑ ∑ 𝑋̃𝑖,𝑡𝑢̃𝑖,𝑡

𝑇
𝑡=1

𝑁
𝑖=1

∑ ∑ 𝑋̃𝑖,𝑡
2𝑇

𝑡=1
𝑁
𝑖=1

 

= 𝛽 +
∑ ∑ 𝑣𝑖,𝑡

𝑇
𝑡=1

𝑁
𝑖=1

∑ ∑ 𝑋̃𝑖,𝑡
2𝑇

𝑡=1
𝑁
𝑖=1

 

最後の式展開では、𝑣𝑖,𝑡 = 𝑋̃𝑖,𝑡𝑢̃𝑖,𝑡と定義しました。 

固定効果推定量𝛽̂の分散は、𝑋𝑖,𝑡が非確率変数とすると、次のようになります。 

𝐸 [(𝛽̂ − 𝛽)
2

] = 𝐸 [(
∑ ∑ 𝑣𝑖,𝑡

𝑇
𝑡=1

𝑁
𝑖=1

∑ ∑ 𝑋̃𝑖,𝑡
2𝑇

𝑡=1
𝑁
𝑖=1

)

2

] 

  =
𝐸 [(∑ 𝑞𝑖

𝑁
𝑖=1 )

2
]

{∑ ∑ 𝑋̃𝑖,𝑡
2𝑇

𝑡=1
𝑁
𝑖=1 }

2 

             =
𝑁𝜎̅𝑞

2

(∑ ∑ 𝑋̃𝑖,𝑡
2𝑇

𝑡=1
𝑁
𝑖=1 )

2 

ただし、式展開では、𝑞𝑖 = ∑ 𝑣𝑖,𝑡
𝑇
𝑡=1 、𝜎𝑞𝑖

2 = 𝐸[𝑞𝑖
2]、𝜎̅𝑞

2 =
1

𝑁
∑ 𝜎𝑞𝑖

2𝑁
𝑖=1 としました。これはプー

ルド OLS と類似の結果であり、𝜎̅𝑞
2の推定も同じ方法をとることができます。 

具体的には、固定効果推定の残差𝑢̂𝑖,𝑡を用いて、𝑞̂𝑖 = ∑ 𝑣̂𝑖,𝑡
𝑇
𝑡=1 = ∑ 𝑋̃𝑖,𝑡𝑢̂𝑖,𝑡

𝑇
𝑡=1 を計算し、2

乗の平均として𝜎̂̅𝑞
2を推定します。 

𝜎̂̅𝑞
2 =

1

𝑛
∑ 𝑞̂𝑖

2

𝑛

𝑖=1

=
1

𝑁
∑ (∑ 𝑣̂𝑖,𝑡

𝑇

𝑡=1

)

2𝑁

𝑖=1

 

そして、分散の式に推定量 𝜎̂̅𝑞
2を代入し、平方根をとるとクラスターロバスト標準誤差

(cluster robust standard errors)が得られます。 

√
𝑁𝜎̂̅𝑞

2

{∑ ∑ 𝑋̃𝑖,𝑡
2𝑇

𝑡=1
𝑁
𝑖=1 }

2 = √
∑ (∑ 𝑣̂𝑖,𝑡

𝑇
𝑡=1 )

2𝑁
𝑖=1

{∑ ∑ 𝑋̃𝑖,𝑡
2𝑇

𝑡=1
𝑁
𝑖=1 }

2 

 

4 FWL定理によって両者が同じになることを示すことができます。興味がある方は、本書サポートウェブサイトの

「FWL定理と重回帰分析」と 11章模範解答の補足を参照してください。 



3. まとめ 

パネルデータにおけるクラスターロバスト標準誤差を紹介しました。クラスターロバス

ト標準誤差は HAC 標準誤差の 1 種ですが、10 章で T が∞になるとしたアプローチとは異

なり、N が∞になるとしたアプローチを用いています。T が大きく N が小さい場合、もし

くは、誤差項がクラスター間で相関している場合については、Stock and Watson の

『Introduction to Econometrics』を参照してください。 

 

補足：横断面データとクラスターロバスト標準誤差 

本稿では説明していませんが、クラスターロバスト標準誤差はパネルデータだけでなく、

横断面データでも用いられます。たとえば、小学生の標準テストの成績とクラスサイズの

関係が知りたいとします。生徒は互いに影響を与え合うと考えると、生徒間の成績がクラ

ス内で相関している可能性があります。この場合、1 クラスを 1 つのクラスター(集団)と

考えて、クラス内での誤差項同士の相関を許容したクラスターロバスト標準誤差を用いる

ことが適切となります5。 

ここで次のモデルを考えます。 

𝑌𝑖,𝑗 = 𝛼 + 𝛽𝑋𝑖,𝑗 + 𝑢𝑖,𝑗 

𝑗クラスの生徒𝑖の点数を𝑌𝑖,𝑗、そして𝑗クラスの生徒𝑖の勉強時間を𝑋𝑖,𝑗とします。ここで、 

𝑗 = 1,2, . . , 𝐽とし、また、𝑖 = 1,2, … , 𝑁𝑗とします。つまり、クラスは計𝐽個あり、クラス𝑗に 

は𝑁𝑗人の生徒がいます。このため、サンプルサイズは∑ 𝑁𝑗
𝐽
𝑗=1 となります。 

このとき、OLS 推定量は 

𝛽̂ =
∑ ∑ (𝑋𝑖,𝑗 − 𝑋̄)

𝑁𝑗

𝑖=1
(𝑌𝑖,𝑗 − 𝑌̄)𝐽

𝑗=1

∑ ∑ (𝑋𝑖,𝑗 − 𝑋̄)2𝑁𝑗

𝑖=1
𝐽
𝑗=1

 

このとき、その確率的表現は次のようになります。 

𝛽̂ = 𝛽 +
∑ ∑ (𝑋𝑖,𝑗 − 𝑋̄)

𝑁𝑗

𝑖=1
𝑢𝑖,𝑗

𝐽
𝑗=1

∑ ∑ (𝑋𝑖,𝑗 − 𝑋̄)2𝑁𝑗

𝑖=1
𝐽
𝑗=1

 

これは 1.1 節と同じ式であり、同様の式展開をすることでクラスターロバスト標準誤差を

計算することができます。 

 

5 たとえば、横断面データを Stata で分析するときは、reg Y X, cluster(class_id)とすれば、クラスターロバスト標準誤

差を計算できます。ここで、Y は被説明変数、X は説明変数、class_id はクラス番号に当たります。クラスターロバス

ト標準誤差は、通常のロバスト標準誤差よりも大きな値をとることが多くなります。 


