
1 

 

2025/07/27 

藪友良 1  

『入門 実践する計量経済学』の解答例  

 『入門  実践する計量経済学』 (東洋経済新報社、2023 年 )の解答例です。

実証分析の解答は、サポートウェブサイトの再現プログラム (Stata、R、

Python)によって再現ができます。なお、こちらには初版 (第 2 刷 )以降に追加

された練習問題の解答も掲載してます。初版 (第 1 刷 )を利用されている方は、

ウェブサイトから新しい練習問題をダウンロードできます 2。  

 

第 1 章の答え  

練習問題 1 

観察データを用いて経済モデルを推定し、その結果に基づいて経済理論を検

証すること。観察データを分析し、推定結果に基づいて、新たな経済理論を構

築すること。  

 

練習問題 2 

第 1 の理由は経済理論の数学化、第 2 の理由はデータ整備の急速な進展、第

3 の理由は PC の急速な進歩にある (詳しくは、 1.4 節参照 )。  

 

練習問題 3 

(a)  ①量的データ、②横断面データ  

(b)  ①質的データ、②パネルデータ  

(c)  ①質的データ、②繰り返し横断面データ  

(d)  ①量的データ、②時系列データ  

 

練習問題 4 

金融関係のデータ (株価やドル円レートなど )は、日次データが利用できる。

 
1 何かタイポ、誤り、分かり難い箇所があれば教えてください。連絡先は以下となります。

tomoyabu82@gmail .com  
2ご自分の教科書に問題が記載されていないときは、以下のサイトをチェックしてください。  

https : / /www.fbc.ke io .ac. jp /~tyabu/ke iryo /quest ions.pdf  

mailto:tomoyabu82@gmail.com
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失業率、物価指数、鉱工業生産指数などは月次データ、GDP は四半期データで

利用できる。  

 

練習問題 5 

季節性は、天候、暦、社会慣習などの要因から生じる。天候要因は、気温や

降水量などの変動から発生する。暦要因は、各月に含まれる日数の違いなどか

ら生じる。社会慣習要因は、さまざまな社会慣習から生じる変動となる。詳し

くは、コラム 1-1 を参照されたい。  

 

練習問題 6 

商品別の売上が、天気や気温などによって、どのように変化するかを推定す

る。推定式が分かれば、当日の天気や気温などの情報を入力することで、当日

の売り上げを予測できる。売り上げが予測できれば、その分だけ仕入れを行え

ば良いことになり、適正な商品在庫が可能となる。食品の廃棄を減らすことに

つながり、企業利益の改善につながる。  

年齢や性別別に、来店時間や売れ筋商品を調べることもできる。これらの情

報を用いれば、来店時間に合わせて売れ筋商品を多く並べることができる。た

とえば、高齢者は、平日昼間に来店する傾向があるならば、高齢者が好む商品

を平日昼間に多くならべることで売り上げを伸ばすことができる。  

 

練習問題 7 

①  Google で「 estat」と入力すると、以下の項目が出るのでクリックする。  

 

②  そうすると以下のような画面が表示される。「 e-Stat」は便利なサイトなので、

ぜひ新規登録しよう。  
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③   キーワード検索で、「人口」と入力して検索すると、以下のような画面が

表示される。人口に関連した様々な統計データがあることがわかる。これら

をクリックして、自分が必要なデータがあるのかを調べることができる。他

にも自分の関心があるワードを検索してみてほしい。  

 

 

練習問題 8 

①   Google で「 fred data」と検索する。そうすると、以下のような項目が出る

ので、これをクリックする。  

 

 

②   そうすると以下のような画面が表示される。ここで、検索枠に「 gdp japan」

と入力して検索しよう。なお、GDP は国内総生産 (Gross Domestic Product)

を表す。  
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③   Real Gross Domestic Product があるので、これをクリックする。データ

は 1994 年第 1 四半期 (1994Q1)から 2022 年第 1 四半期 (2022Q1)までの実

質 GDP になる。また、 seasonally adjusted とあるので、季節調整済み系

列とわかる。  

 

④  下画面右上にある「DOWNLOAD」をクリックし、file format を指定すれば

データをダウンロードできる。観察頻度などを変更したいなら、「 EDIT 

GRAPH」をクリックし、変更しよう。設定を変更すると図の形状も変化し、

download 時のデータも変更される。  

 

 

練習問題 9 

①  Google で「東京大学   SSJDA」と検索すると、以下のような画面が出てくる。

ここで、「利用データを探す」をクリックしよう。  
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②  以下の画面が表示されるので、「データ検索システム」をクリックする。  

 

③   下画面では、多数のデータが掲載されている。検索をしてデータを絞りた

いなら、キーワードを入力して検索ボタンを押せばよい。このウェブサイト

を調べて、どのようなデータがあるか確認してほしい。  

 

＊  SSJDA のミクロデータは、学部生であっても利用可能だが、指導教官から

代理で申請してもらう必要がある。授業の担当教員もしくはゼミ指導教員にお

願いしてみることをお勧めします。  
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練習問題 10 

①  Google で「日本銀行  オルタナティブデータ分析」と検索すると、以下のよ

うな項目が表示される。こちらをクリックしよう。  

 

②   そうすると以下の画面が表示される。これをみると、オルタナティブデー

タを用いた日本銀行の取り組みが紹介されたサイトであることが分かる。  

 

③  画面を下にスクロールすると、いろいろな研究が紹介されている (2022 年 6

月 8 日時点 )。自分に関心のあるテーマが見つかったら、ぜひクリックして

読んでみて欲しい。  

 

*2025 年 6 月 25 日にチェックしたところ、このサイトはあまり更新されてい

ないようです。  
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第 2 章の答え  

練習問題 1   

OLS 推定量 𝛼̂は、 𝛼̂ = 𝑌̄ − 𝛽̂𝑋̄であり、これを書き換えると次式となる。  

𝑌̄ = 𝛼̂ + 𝛽̂𝑋̄ 

よって、𝑋 = 𝑋̄のとき回帰直線 𝑌̂ = 𝛼̂ + 𝛽̂𝑋の値は 𝑌̄ = 𝛼̂ + 𝛽̂𝑋̄であり、回帰直線は点

(𝑋̄, 𝑌̄)を通ることが確認できる (下図参照 )。  

              図  回帰直線の性質  

 

 

 

 

 

 

 

 

練習問題 2  

標本平均は、それぞれ次のようになる。  

𝑌̄ =
1

5
(3 + 6 + 5 + 7 + 9) = 6

 

𝑋̄ =
1

5
(5 + 6 + 5 + 8 + 11) = 7

 

また、標本分散は、それぞれ次のようになる。  

𝑠𝑌
2 =

1

5 − 1
[(3 − 6)2 + (6 − 6)2 + (5 − 6)2 + (7 − 6)2 + (9 − 6)2] = 5 

𝑠𝑋
2 =

1

5 − 1
[(5 − 7)2 + (6 − 7)2 + (5 − 7)2 + (8 − 7)2 + (1 − 7)2] = 6.5 

最後に、標本共分散 𝑠𝑋𝑌は、  

1

5 − 1
[(3 − 6)(5 − 7) + (6 − 6)(6 − 7) + (5 − 6)(5 − 7) + (7 − 6)(8 − 7) + (9 − 6)(1 − 7)] 

であり、これを計算すると、 5.25 となる。標本相関係数は、これまでの情報を

𝑌̂ = 𝛼̂ + 𝛽̂𝑋 

 

𝑋̅ 

 

𝑌̅ 
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用いて、 𝑟𝑋𝑌 =
5.25

√5×6.5
= 0.9209となる。  

 

練習問題 3  

予測値 𝑌̂𝑖 = 𝛼̂ + 𝛽̂𝑋𝑖と練習問題 1 で求めた式 𝑌̄ = 𝛼̂ + 𝛽̂𝑋̄を用いると、次の関係が

得られる。  

∑(𝑌̂𝑖 − 𝑌̄)
2

𝑛

𝑖=1

=∑(𝛼̂ + 𝛽̂𝑋𝑖 − (𝛼̂ + 𝛽̂𝑋̄))
2

𝑛

𝑖=1  

=∑(𝛽̂𝑋𝑖 − 𝛽̂𝑋̄)
2

𝑛

𝑖=1

= 𝛽̂2∑(𝑋𝑖 − 𝑋̄)
2

𝑛

𝑖=1  

この偏差 2 乗和を決定係数の式に代入すると、  

𝑅2 =
∑ (𝑌̂𝑖 − 𝑌̄)

2𝑛
𝑖=1

∑ (𝑌𝑖 − 𝑌̄)2
𝑛
𝑖=1

= 𝛽̂2
∑ (𝑋𝑖 − 𝑋̄)

2𝑛
𝑖=1

∑ (𝑌𝑖 − 𝑌̄)2
𝑛
𝑖=1  

となる。この式から、𝛽̂ = 0の場合、決定係数も 0 となることがわかる。𝛽̂ = 0は、

説明変数𝑋で被説明変数𝑌の動きを全く説明できない状況であり、このとき、決

定係数は 0 になるといえる。  

OLS 推定量の公式 𝛽̂ =
∑ (𝑋𝑖−𝑋)(𝑌𝑖−𝑌̄)
𝑛
𝑖=1

∑ (𝑋𝑖−𝑋̄)
2𝑛

𝑖=1

を代入すると、次のように表現できる。  

𝛽̂2
∑ (𝑋𝑖 − 𝑋̄)

2𝑛
𝑖=1

∑ (𝑌𝑖 − 𝑌̄)2
𝑛
𝑖=1

= (
∑ (𝑋𝑖 −𝑋)(𝑌𝑖 − 𝑌̄)
𝑛
𝑖=1

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

)

2
∑ (𝑋𝑖 − 𝑋̄)

2𝑛
𝑖=1

∑ (𝑌𝑖 − 𝑌̄)2
𝑛
𝑖=1

=
(∑ (𝑋𝑖 − 𝑋̄)(𝑌𝑖 − 𝑌̄)

𝑛
𝑖=1 )2

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1 ∑ (𝑌𝑖 − 𝑌̄)2

𝑛
𝑖=1

 

 

練習問題 4  

(a) OLS 推定量は次のようになる。  

𝛽̂ = −
430

400
= −1.075 

𝛼̂ = 65 − (−1.075) × 25 = 91.875 

クラス人数が 0 人は概念的にないため、定数項は数学的切片と解釈される。𝛽̂ =

−1.075から、クラス人数が 1 人増えると、クラス平均点が 1.075 点下がる。  

(b) クラスの人数が 20 のとき、予測値は次のようになる。  

𝑌̂ = 91.875 − 1.075 × 20 = 70.375 

(c)決定係数は、練習問題 3 の関係式を用いると、次のようになる。  
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𝑅2 = (1.075)2
400

500
= 0.9245

 

平均点の全変動のうち 92.45%はクラスサイズの変動で説明できる。  

 

練習問題 5  

(a)OLS 推定量は次のようになる。  

𝛽̂ =
1000

250
= 4 

𝛼̂ = 90 − 4 × 20 = 10 

定数項は、気温が 0 度のときの冷麺の売り上げ個数である。係数 𝛽̂ = 4から、気

温が 1 度上がると、売り上げ個数は 4 個増える。  

(b)気温が 30 度のとき、予測値は次のようになる。  

𝑌̂ = 10 + 4 × 30 = 130 

(c) 決定係数は、練習問題 3 の関係式を用いると、次のようになる。  

𝑅2 = 𝛽̂2
∑ (𝑋𝑖 − 𝑋̄)

2𝑛
𝑖=1

∑ (𝑌𝑖 − 𝑌̄)2
𝑛
𝑖=1

= 42
250

5000
= 0.8

 

売り上げ個数の全変動のうち 80%は気温の変動により説明できる。

 
 

練習問題 6  

練習問題 3 の結果から、  

𝑅2 =
(∑ (𝑋𝑖 − 𝑋̄)(𝑌𝑖 − 𝑌̄)

𝑛
𝑖=1 )2

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1 ∑ (𝑌𝑖 − 𝑌̄)2

𝑛
𝑖=1  

     =

{
 

 ∑ (𝑋𝑖 − 𝑋̄)(𝑌𝑖 − 𝑌̄)
𝑛
𝑖=1

√∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1 ∑ (𝑌𝑖 − 𝑌̄)2

𝑛
𝑖=1 }

 

 
2

 

ここで、右辺の分母と分子を 𝑛 − 1で割ると、次式となり、これはまさに 𝑋𝑖と 𝑌𝑖の

標本相関係数の 2 乗である。  

{
 

 1
𝑛 − 1

∑ (𝑋𝑖 − 𝑋̄)(𝑌𝑖 − 𝑌̄)
𝑛
𝑖=1

√ 1
𝑛 − 1

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

1
𝑛 − 1

∑ (𝑌𝑖 − 𝑌̄)2
𝑛
𝑖=1 }

 

 
2
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練習問題 7  

係数βを 0 としたモデルでは、残差 2 乗和は次のようになる。  

∑𝑢̃𝑖
2

𝑛

𝑖=1

=∑(𝑌𝑖 − 𝛼̃)
2

𝑛

𝑖=1

 

定数項 𝛼̃に関して残差 2 乗和を微分して 0 と置くと、  

𝜕∑ 𝑢̃𝑖
2𝑛

𝑖=1

𝜕𝛼̃
=∑

𝜕𝑢̃𝑖
2

𝜕𝛼̃

𝑛

𝑖=1

=∑
𝜕𝑢̃𝑖

2

𝜕𝑢̃𝑖

𝜕𝑢̃𝑖
𝜕𝛼̃

𝑛

𝑖=1

= −2∑(𝑌𝑖 − 𝛼̂)

𝑛

𝑖=1

= 0 

となる。式展開では、次の関係式を用いた。  

𝜕𝑢̃𝑖
2

𝜕𝑢̃𝑖
= 2𝑢̃𝑖 = 2(𝑌𝑖 − 𝛼̃) 

𝜕𝑢̃𝑖
𝜕𝛼̃

=
𝜕(𝑌𝑖 − 𝛼̃)

𝜕𝛼̃
= −1 

ここで、両辺を－ 2 で割ると、次の正規方程式が得られる。  

∑(𝑌𝑖 − 𝛼̂)

𝑛

𝑖=1

= 0

 

上式を満たす 𝛼̃は最小 2 乗推定量であるため、 𝛼̂と表記している。この場合、残

差は 𝑢̂𝑖 = 𝑌𝑖 − 𝛼̂であるため、正規方程式から残差の和は 0 となる。そして、正規

方程式を展開すると、  

∑𝑌𝑖 − 𝑛

𝑛

𝑖=1

𝛼̂ = 0 

であり、さらに両辺を 𝑛で割ると、 𝛼̂ =
1

𝑛
∑ 𝑌𝑖
𝑛
𝑖=1 = 𝑌̄となる。  

 

練習問題 8  

 ２章補足では、偏微分を用いて最小 2 乗 (OLS)推定量を導出しました。しか

し、OLS 推定量が本当に残差 2 乗和を最小化しているのか、もしくは最大化し

てしまっているかはわかりません (付録 B の B.3 節 )。この練習問題では、OLS

推定量が残差 2 乗和を最小化していることを証明します。  

(a) 残差 2 乗和は、次のように表現できる。  

∑(𝑌𝑖 − 𝛼̃ − 𝛽𝑋𝑖)
2

𝑛

𝑖=1

=∑(𝑌𝑖 − 𝛼̂ − 𝛽̂𝑋𝑖 + (𝛼̂ − 𝛼̃) + (𝛽̂ − 𝛽)𝑋𝑖)
2

𝑛

𝑖=1
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𝑌𝑖 = 𝛼̂ + 𝛽̂𝑋𝑖 + 𝑢̂𝑖を書き換えると、𝑢̂𝑖 = 𝑌𝑖 − 𝛼̂ − 𝛽̂𝑋𝑖となる。上式の右辺に、𝑢̂𝑖 = 𝑌𝑖 −

𝛼̂ − 𝛽̂𝑋𝑖を代入すると、右辺は次のようになる。  

∑(𝑢̂𝑖 + (𝛼̂ − 𝛼̃) + (𝛽̂ − 𝛽)𝑋𝑖)
2

𝑛

𝑖=1

 

(b) 上式右辺は、次のように展開できる。  

∑(𝑢̂𝑖 + {(𝛼̂ − 𝛼̃) + (𝛽̂ − 𝛽)𝑋𝑖})
2

𝑛

𝑖=1

 = ∑𝑢̂𝑖
2

𝑛

𝑖=1

 +∑{(𝛼̂ − 𝛼̃) + (𝛽̂ − 𝛽)𝑋𝑖}
2

𝑛

𝑖=1

 

                                                      +2(𝛼̂ − 𝛼̃)∑𝑢̂𝑖

𝑛

𝑖=1⏟  
=0

+ 2(𝛽̂ − 𝛽)∑𝑢̂𝑖𝑋𝑖

𝑛

𝑖=1⏟    
=0

 

                                          = ∑𝑢̂𝑖
2

𝑛

𝑖=1

+∑((𝛼̂ − 𝛼̃) + (𝛽̂ − 𝛽)𝑋𝑖)
2

𝑛

𝑖=1

 

式展開では、残差の性質 (∑ 𝑢̂𝑖
𝑛
𝑖=1 = 0、∑ 𝑢̂𝑖𝑋𝑖

𝑛
𝑖=1 = 0)を用いた。  

(c)これまでの結果をまとめると、次のようになる。  

∑(𝑌𝑖 − 𝛼̃ − 𝛽𝑋𝑖)
2

𝑛

𝑖=1

=∑𝑢̂𝑖
2

𝑛

𝑖=1

+∑((𝛼̂ − 𝛼̃) + (𝛽̂ − 𝛽)𝑋𝑖)
2

𝑛

𝑖=1

 

ここで、右辺第 2 項は 2 乗和なので 0 以上となる。このため、次式が成立する。  

∑𝑢̂𝑖
2

𝑛

𝑖=1

≤∑(𝑌𝑖 − 𝛼̃ − 𝛽𝑋𝑖)
2

𝑛

𝑖=1

 

左辺は OLS 推定量の残差 2 乗和であり、右辺は任意の𝛼 ̃と𝛽 ̃に対する残差 2 乗

和である。このため、OLS 推定量 (𝛼̂、 𝛽̂)は残差 2 乗和∑ (𝑌𝑖 − 𝛼̃ − 𝛽𝑋𝑖)
2𝑛

𝑖=1 を最小に

していることが確認できる。  
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第 3 章の答え  

練習問題 1  

𝑋と𝑌の関係を知るためには、 𝑌の変動は必要ない。𝑋が変動していて、 𝑌が全

く変動していなければ、𝑋は𝑌に何の影響も与えておらず、係数 𝛽は 0 と推定で

きる。これは、OLS 推定量の公式、つまり、次式から明らかである。  

𝛽̂ =
∑ (𝑋𝑖 − 𝑋̄)(𝑌𝑖 − 𝑌̄)
𝑛
𝑖=1

∑ (𝑋𝑖 − 𝑋̄)
2𝑛

𝑖=1

 

ここで、𝑌𝑖の変動が 0 なら𝑌𝑖 = 𝑌̄であり (𝑌𝑖 − 𝑌̄ = 0)、∑ (𝑋𝑖 − 𝑋̄)(𝑌𝑖 − 𝑌̄)
𝑛
𝑖=1 = 0となり、

𝛽̂ = 0と推定される。  

 

練習問題 2   

仮定 3(誤差項𝑢の期待値が 0)が成立するよう定数項𝛼が (暗黙のうちに )定義さ

れているため、問題とならない (詳しくは 3.2.3 節を参照されたい )。  

 

練習問題 3  

係数𝛽は真の値であり、OLS 推定量 𝛽̂はデータから計算される 𝛽の推定量とな

る。OLS 推定量 𝛽̂は不偏性があるため、平均的には真の値 𝛽と一致する。また、

OLS 推定量 𝛽̂は一致性があるため、サンプルサイズが大きければ、 𝛽̂は真の値𝛽

と一致することになる。  

練習問題 4  

誤差項 𝑢𝑖は、実現値と真の回帰式からの予測値との差であるのに対し、残差

𝑢̂𝑖は、実現値と推定された回帰式からの予測値となる。  

誤差項  𝑢𝑖 = 𝑌𝑖 − (𝛼 + 𝛽𝑋𝑖) 

残差   𝑢̂𝑖 = 𝑌𝑖 − (𝛼̂ + 𝛽̂𝑋𝑖) 

なお、誤差項は観察できないが、残差は観察できるという違いもある。両者は

混同しやすい概念なので注意してほしい。  

 

練習問題 5  

図 (a)をみると、どのようなサンプルサイズ 𝑛に対しても、推定量 𝛽̂1の分布の中

心は𝛽となっているため、不偏性があることがわかる。また、サンプルサイズ𝑛
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が∞のとき、𝛽̂1は𝛽と一致していることから、𝛽̂1は一致性がある。これに対して、

図 (b)をみると、推定量 𝛽̂2の分布の中心は 𝛽ではないため、 𝛽̂2には不偏性がない。

しかし、サンプルサイズ 𝑛が∞のとき、𝛽̂2は𝛽に一致していることから、𝛽̂2には一

致性がある。  

 

練習問題 6  

サンプルサイズが 8 のとき、推定結果は  

𝑌̂ = 2.62 + 0.163𝑋
     (1.05)   (0.029)

 

となる。式の下に表記されたカッコ内の値は標準誤差である。自由度 𝑛 − 2は、

6 と小さな値であることから、𝑡6,0.05 = 2.447は 1.96 よりかなり大きくなる 3。95%

信頼区間は、 𝛽̂ = 0.163、標準誤差 𝑠𝛽̂ = 0.029を用いて、  

0.163 − 2.447 × 0.029⏟              
=0.092

< 𝛽 < 0.163 + 2.447 × 0.029⏟              
=0.234

 

となる。下限と上限を計算すると、これは (0.092、0.234)区間となる。  

 724 物件のデータを用いて同じ推定をすると、  次のようになる。  

𝑌̂ = 2.69 + 0.160𝑋
     (0.101)   (0.003)

 

ここで、 𝑛は 724と大きいため、 𝑡𝑛−2,0.05として 1.96 を用いる (なお、 𝑡722,0.05は、

1.9632551 となり、ほぼ同じ値である 4)。  

0.160 − 1.96 × 0.003⏟              
=0.154

< 𝛽 < 0.160 + 1.96 × 0.003⏟              
=0.166

 

となる。これは (0.154、0.166)区間であり、信頼区間は狭く、𝛽の範囲をかなり絞

りこめていることがわかる。  

 

練習問題 7  

∑ (𝑢𝑖/𝜎)
2𝑛

𝑖=1 は自由度 𝑛の𝜒2分布、∑ (𝑢̂𝑖/𝜎)
2𝑛

𝑖=1 は自由度 𝑛 − 2の𝜒2分布に従う (補足

参照 )。𝜒2確率変数の期待値は自由度であるから、それぞれの期待値はそれぞれ  

𝐸 [∑(
𝑢𝑖
𝜎
)
2

𝑛

𝑖=1

] = 𝑛 

 
3 Excel では、 𝑡6,0.05は「 =TINV(0 .05 ,6)  」と入力すれば求められる。  
4 Excel では、 𝑡722,0.05は「 = TINV(0 .05 ,722 )  」と入力すれば求められる。  
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𝐸 [∑(
𝑢̂𝑖
𝜎
)
2𝑛

𝑖=1

] = 𝑛 − 2 

 

練習問題 8  

 期待値をとると、  

𝐸 [
1

𝑛
∑𝑢̂𝑖

2

𝑛

𝑖=1

] =
𝜎2

𝑛
𝐸 [∑(

𝑢̂𝑖
𝜎
)
2𝑛

𝑖=1

]
⏟        

自由度 =𝑛−2

=
𝑛 − 2

𝑛
𝜎2 

となる。式展開では、∑ (
𝑢̂𝑖

𝜎
)
2

𝑛
𝑖=1 は自由度𝑛 − 2の𝜒2分布に従うため、その期待値は

自由度𝑛 − 2となることを用いた (巻末付録 C の C.2 節参照 )。  

なお、次の関係から、∑ 𝑢̂𝑖
2𝑛

𝑖=1 /𝑛は誤差項の分散𝜎2を過小推定していることが理

解できる。  

𝐸 [
1

𝑛
∑𝑢̂𝑖

2

𝑛

𝑖=1

] =
𝑛 − 2

𝑛
𝜎2 < 𝜎2 

 

練習問題 9  

OLS 推定量 𝛼̂の確率的表現は、 𝛼̂ = 𝛼 − (𝛽̂ − 𝛽)𝑋̄ + 𝑢̄となるため、その期待値は

 
𝐸[𝛼̂] = 𝛼 − (𝐸[𝛽̂] − 𝛽)𝑋̄ + 𝐸[𝑢̄]

 

   

= 𝛼 − (𝛽 − 𝛽)𝑋̄ + 0 = 𝛼 

となる (不偏性が満たされる )。式展開では、𝐸[𝛽̂] = 𝛽となること、また、標準的

仮定 3 から  

𝐸[𝑢̄] =
1

𝑛
𝐸[𝑢1 + 𝑢2 +⋯+ 𝑢𝑛] = 0 

が成立することを用いた。  

 

練習問題 10  

OLS 推定量の確率的表現から、𝛼̂ − 𝛼 = −(𝛽̂ − 𝛽)𝑋̄ + 𝑢̄となる。このため、OLS 推

定量 𝛼̂の分散は、  

𝑉(𝛼̂) = 𝐸[(𝛼̂ − 𝛼)2] 

 = 𝐸[(−(𝛽̂ − 𝛽)𝑋̄ + 𝑢̄)2] 
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                                     = 𝑋̄2𝐸[(𝛽̂ − 𝛽)2] − 2𝑋̄𝐸[(𝛽̂ − 𝛽)𝑢̄] + 𝐸[𝑢̄2] 

となる。ここで、右辺第 1項は 𝛽̂の分散で𝐸[(𝛽̂ − 𝛽)2] = 𝜎2/∑ (𝑋𝑖 − 𝑋̅)
2𝑛

𝑖=1 となる。ま

た、右辺第 2 項は、  

𝛽̂ − 𝛽 =
∑ (𝑋𝑖 − 𝑋̄)
𝑛
𝑖=1 𝑢𝑖
∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

 

を用いると、下記のように 0 となる 5。  

𝐸[(𝛽̂ − 𝛽)𝑢̄] = 𝐸 [(
∑ (𝑋𝑖 − 𝑋̄)
𝑛
𝑖=1 𝑢𝑖
∑ (𝑋𝑖 − 𝑋̄)

2𝑛
𝑖=1

)(
∑ 𝑢𝑖
𝑛
𝑖=1

𝑛
)]

=
1

𝑛∑ (𝑋𝑖 − 𝑋̄)
2𝑛

𝑖=1

𝐸 [(∑(𝑋𝑖 − 𝑋̄)

𝑛

𝑖=1

𝑢𝑖)(∑𝑢𝑖

𝑛

𝑖=1

)] 

=
1

𝑛∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

𝜎2∑(𝑋𝑖 − 𝑋̄)

𝑛

𝑖=1⏟      
=0

= 0 

最後に、右辺第 3 項は次のようになる。  

𝐸[𝑢̄2] = 𝐸 [(
∑ 𝑢𝑖
𝑛
𝑖=1

𝑛
)

2

] =
1

𝑛2
𝑛𝜎2 =

𝜎2

𝑛
 

これらの結果を𝑉(𝛼̂)の右辺に代入すると、  

𝑉(𝛼̂) = 𝑋̄2 𝐸[(𝛽̂ − 𝛽)2]⏟        

=
𝜎2

∑ (𝑋𝑖−𝑋̅)
2𝑛

𝑖=1

− 2𝑋̄ 𝐸[(𝛽̂ − 𝛽)𝑢̄]⏟        
=0

+ 𝐸[𝑢̄2]⏟  

=
𝜎2

𝑛

 

= 𝜎2 (
1

𝑛
+

𝑋̄2

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

) 

となる。この式から、 𝑛が大きくなると、分散が 0 に近づくことが分かる。  

ここで、上式の右辺は、  

𝜎2 (
1

𝑛
+

𝑋̄2

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

) = 𝜎2 (
∑ (𝑋𝑖 − 𝑋̄)

2𝑛
𝑖=1

𝑛∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

+
𝑛𝑋̄2

𝑛∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

) 

 
5 式展開では、 𝐸[(∑ (𝑋𝑖 − 𝑋̄)

𝑛
𝑖=1 𝑢𝑖)(∑ 𝑢𝑖

𝑛
𝑖=1 )] = 𝜎2 ∑ (𝑋𝑖 − 𝑋̄)

𝑛
𝑖=1 を用いた。これが正しいことを、 𝑛 = 2のケー

スで確認する。 𝑛 = 2の場合、 𝐸[(∑ (𝑋𝑖 − 𝑋̄)
2
𝑖=1 𝑢𝑖)(∑ 𝑢𝑖

2
𝑖=1 )]は、  

𝐸[((𝑋1 − 𝑋̄)𝑢1 + (𝑋2 − 𝑋̄)𝑢2)(𝑢1 + 𝑢2)]

= (𝑋1 − 𝑋̄)𝐸[𝑢1
2] + (𝑋2 − 𝑋̄)𝐸[𝑢2

2] + (𝑋1 − 𝑋̄)𝐸[𝑢1𝑢2] + (𝑋2 − 𝑋̄)𝐸[𝑢1𝑢2] 
となる。仮定 4 から 𝐸[𝑢1

2] = 𝐸[𝑢2
2] = 𝜎2、仮定 5 から 𝐸[𝑢1𝑢2] = 0となるため、上式右辺は次のようにな

る。  

𝜎2[(𝑋1 − 𝑋̄) + (𝑋2 − 𝑋̄)] = 𝜎
2∑(𝑋𝑖 − 𝑋̄)

2

𝑖=1
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                                                 = 𝜎2 (
∑ 𝑋𝑖

2 − 𝑛𝑋̄2𝑛
𝑖=1

𝑛∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

+
𝑛𝑋̄2

𝑛∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

) 

=
𝜎2∑ 𝑋𝑖

2𝑛
𝑖=1

𝑛∑ (𝑋𝑖 − 𝑋̄)
2𝑛

𝑖=1

 

と書き換えられる。式展開では次の関係式を用いた。  

∑(𝑋𝑖 − 𝑋̄)
2

𝑛

𝑖=1

=∑(𝑋𝑖
2 − 2𝑋̄𝑋𝑖 +

𝑛

𝑖=1

𝑋̄2) 

=∑𝑋𝑖
2

𝑛

𝑖=1

− 2𝑋̄∑𝑋𝑖

𝑛

𝑖=1

+ 𝑛𝑋̄2 =∑𝑋𝑖
2 − 𝑛𝑋̄2

𝑛

𝑖=1

 

練習問題 11  

𝛼̂と 𝛽̂の共分散は、 𝛼̂ − 𝛼 = −(𝛽̂ − 𝛽)𝑋̄ + 𝑢̄を用いると、  

𝐶𝑜𝑣(𝛼̂, 𝛽̂) = 𝐸[(𝛼̂ − 𝛼)(𝛽̂ − 𝛽)] 

       =  𝐸[(−(𝛽̂ − 𝛽)𝑋̄ + 𝑢̄)(𝛽̂ − 𝛽)] 

              =  −𝑋̄𝐸 [(𝛽̂ − 𝛽)
2
] + 𝐸[(𝛽̂ − 𝛽)𝑢̄]⏟        

=0

 

となる。練習問題 10 で示したとおり、右辺第 2 項は 0 となるため、共分散は次

のようになる。  

𝐶𝑜𝑣(𝛼̂, 𝛽̂) = −
𝜎2𝑋̄

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

 

 この結果から、𝑋̄ > 0なら 𝛼̂と 𝛽̂の共分散は負となる。下図では、𝑋̄ > 0として回

帰直線を描いた。回帰直線は点 (𝑋̄, 𝑌̄)を通るため、 𝛽̂が小さくなると (傾きがゆる

くなると )、切片 𝛼̂が大きくなる  (つまり、 𝛼̂と 𝛽̂に負の相関がある )。  

図  共分散𝑪𝒐𝒗(𝜶̂, 𝜷̂) 

 

 

 

 

 

 

 

𝑌̂ = 𝛼̂ + 𝛽̂𝑋 

 

𝑋̅ 

 

𝑌̅ 

 

𝟎 

切 片 が 大

きくなる  

𝛽̂が小さくなる  
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逆に、この式から、𝑋̄ < 0なら 𝛼̂と 𝛽̂の共分散は正となる。下図では、𝑋̄ < 0とし

て回帰直線を描いた。回帰直線は点 (𝑋̄, 𝑌̄)を通るため、 𝛽̂が小さくなると (傾きが

ゆるくなると )、切片 𝛼̂が小さくなる (つまり、 𝛼̂と 𝛽̂に正の相関がある )。  

図  共分散𝑪𝒐𝒗(𝜶̂, 𝜷̂) 

 

 

 

 

 

 

 

 

 

練習問題 12  

 定数項がない回帰モデルは、 3 章以降でも用いられますので、この問題は理

解するようにしてください。  

(a)  定数項がない回帰モデルでは、残差 2 乗和は∑ 𝑢̃𝑖
2𝑛

𝑖=1 = ∑ (𝑌𝑖 − 𝛽𝑋𝑖)
2𝑛

𝑖=1 となる。  

𝛽に関して残差 2 乗和∑ 𝑢̃𝑖
2𝑛

𝑖=1 = ∑ (𝑌𝑖 − 𝛽𝑋𝑖)
2𝑛

𝑖=1 を微分して 0 と置くと、  

𝜕∑ 𝑢̃𝑖
2𝑛

𝑖=1

𝜕𝛽
=∑

𝜕𝑢̃𝑖
2

𝜕𝑢̃𝑖

𝜕𝑢̃𝑖

𝜕𝛽

𝑛

𝑖=1

= −2∑(𝑌𝑖 − 𝛽̂𝑋𝑖)𝑋𝑖

𝑛

𝑖=1

= 0 

であり、この両辺を－ 2 で割ると、次の正規方程式が得られる。  

∑(𝑌𝑖 − 𝛽̂𝑋𝑖)𝑋𝑖

𝑛

𝑖=1

= 0 

正規方程式の左辺を展開すると、  

∑𝑋𝑖𝑌𝑖 − 𝛽̂

𝑛

𝑖=1

∑𝑋𝑖
2

𝑛

𝑖=1

= 0 

となり、この式を 𝛽̂について解くと、最小 2 乗推定量が得られる。  

𝛽̂ =
∑ 𝑋𝑖𝑌𝑖
𝑛
𝑖=1

∑ 𝑋𝑖
2𝑛

𝑖=1

 

𝑌̂ = 𝛼̂ + 𝛽̂𝑋 

 

𝑋̅ 

 

𝑌̅ 

 

𝟎 

切 片 が 小

さくなる  

𝛽̂が小さくなる  
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残差の定義 𝑢̂𝑖 = 𝑌𝑖 − 𝛽̂𝑋𝑖に注意すると、正規方程式は残差の性質②、つまり、  

∑𝑋𝑖𝑢̂𝑖

𝑛

𝑖=1

= 0 

を意味する。定数項がないため、正規方程式は 1 本だけであり、残差の性質①

∑ 𝑢̂𝑖
𝑛
𝑖=1 = 0は成立しない。  

 

(b) OLS 推定量 𝛽̂である  

𝛽̂ =
∑ 𝑋𝑖𝑌𝑖
𝑛
𝑖=1

∑ 𝑋𝑖
2𝑛

𝑖=1

 

に、𝑌𝑖 = 𝛽𝑋𝑖 + 𝑢𝑖を代入すると、 𝛽̂の確率的表現が得られる。  

𝛽̂ =
∑ 𝑋𝑖(𝛽𝑋𝑖 + 𝑢𝑖)
𝑛
𝑖=1

∑ 𝑋𝑖
2𝑛

𝑖=1

= 𝛽 +
∑ 𝑋𝑖𝑢𝑖
𝑛
𝑖=1

∑ 𝑋𝑖
2𝑛

𝑖=1

 

 

(c) 確率的表現の期待値をとると、  

𝐸[𝛽̂] = 𝛽 +
∑ 𝑋𝑖𝐸[𝑢𝑖]
𝑛
𝑖=1

∑ 𝑋𝑖
2𝑛

𝑖=1

= 𝛽 

となり、 𝛽̂は不偏性を満たす (仮定 1 と仮定 3 に注意 )。  

次に、分散は、  

𝑉(𝛽̂) = 𝐸 [(𝛽̂ − 𝛽)
2
] = 𝐸 [(

∑ 𝑋𝑖𝑢𝑖
𝑛
𝑖=1

∑ 𝑋𝑖
2𝑛

𝑖=1

)

2

] 

=
1

(∑ 𝑋𝑖
2𝑛

𝑖=1 )
2  𝐸 [(∑𝑋𝑖𝑢𝑖

𝑛

𝑖=1

)

2

] 

=
1

(∑ 𝑋𝑖
2𝑛

𝑖=1 )
2  𝜎

2∑𝑋𝑖
2

𝑛

𝑖=1

=
𝜎2

∑ 𝑋𝑖
2𝑛

𝑖=1

 

となる。式展開では、  

𝐸 [(∑𝑋𝑖𝑢𝑖

𝑛

𝑖=1

)

2

] = 𝜎2∑𝑋𝑖
2

𝑛

𝑖=1

 

を用いた (𝐸[𝑢𝑖
2] = 𝜎2、 𝑖 ≠ 𝑗なら𝐸[𝑢𝑖𝑢𝑖] = 0に注意 )6。  

 
6 𝑛 = 2として証明しよう。 𝐸[(∑ 𝑋𝑖𝑢𝑖

𝑛
𝑖=1 )2]は、 𝑛 = 2のとき、次のようになる。  

𝐸[(𝑋1𝑢1 +𝑋2𝑢2)
2] = 𝑋1

2 𝐸[𝑢1
2]⏟  

=𝜎2

+𝑋2
2 𝐸[𝑢2

2]⏟  
=𝜎2

+ 2𝑋1𝑋2 𝐸[𝑢1𝑢2]⏟    
=0

= 𝑋1
2𝜎2 +𝑋2

2𝜎2 = 𝜎2(𝑋1
2 + 𝑋2

2) 
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ここで、𝑉(𝛽̂) = 𝜎2/∑ 𝑋𝑖
2𝑛

𝑖=1 であるから、サンプルサイズ 𝑛が大きくなると、分母

∑ 𝑋𝑖
2𝑛

𝑖=1 が大きくなり、分散𝑉(𝛽̂)は 0 に収束する。まとめると、モデル (𝑌𝑖 = 𝛽𝑋𝑖 +

𝑢𝑖)が正しいならば、 𝛽̂は不偏性を満たし、𝑛が大きいと分散は 0 となるため、一

致性も満たしていることがわかる。  

 

(d) 定数項なしの OLS 推定には問題が 2 つある。  

第 1 の問題は、本当は𝛼 ≠ 0にもかかわらず、定数項なしの OLS 推定をする

と、バイアスが発生する点である。下図では、真の関係を実線 (𝛼 + 𝛽𝑋、ただし、

𝛼 > 0とした )、定数項なしの推定から得られた回帰直線を点線 𝛽̂𝑋で表した。デー

タは𝛼 + 𝛽𝑋で観察されるが、回帰直線は原点を通るように推定される。ここで、

𝛽̂ > 𝛽であり、 𝛽̂にはバイアスが存在することがわかる。  

図：  定数項なしの回帰におけるバイアス  

                                         

 

 

 

       

 

 

第 2 の問題は、決定係数の 2 つの定義（ 2.6 参照）が一致しないという点であ

る。つまり、  

∑ (𝑌̂𝑖 − 𝑌̄)
2𝑛

𝑖=1

∑ (𝑌𝑖 − 𝑌̄)2
𝑛
𝑖=1

≠ 1 −
∑ 𝑢̂𝑖

2𝑛
𝑖=1

∑ (𝑌𝑖 − 𝑌̄)2
𝑛
𝑖=1

 

となる。この点を確認しよう。 𝑌𝑖 = 𝑌̂𝑖 + 𝑢̂𝑖に注意すると、𝑌𝑖の全変動は、  

∑(𝑌𝑖 − 𝑌̄)
2

𝑛

𝑖=1

=∑(𝑌̂𝑖 − 𝑌̄ + 𝑢̂𝑖)
2

𝑛

𝑖=1

 

=∑(𝑌̂𝑖 − 𝑌̄)
2

𝑛

𝑖=1

+∑𝑢̂𝑖
2

𝑛

𝑖=1

+ 2∑(𝑌̂𝑖 − 𝑌̄)𝑢̂𝑖

𝑛

𝑖=1

 

と分解できる。定数項なしの場合、残差の性質① (残差の和は 0)は成立しないた

め、右辺第 3 項目は 0 とならない。第 3 項目が 0 でないことは、  

𝑌 𝛽̂𝑋 

𝛼 + 𝛽𝑋 

𝑋 0
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∑(𝑌̂𝑖 − 𝑌̄)𝑢̂𝑖

𝑛

𝑖=1

=∑𝑌̂𝑖𝑢̂𝑖

𝑛

𝑖=1

− 𝑌̄∑𝑢̂𝑖

𝑛

𝑖=1

= 𝛽̂∑𝑋𝑖𝑢̂𝑖

𝑛

𝑖=1⏟    
=0

− 𝑌̄∑𝑢̂𝑖

𝑛

𝑖=1⏟  
≠0

≠ 0 

と確認できる。つまり、  

∑(𝑌𝑖 − 𝑌̄)
2

𝑛

𝑖=1

≠∑(𝑌̂𝑖 − 𝑌̄)
2

𝑛

𝑖=1

+∑𝑢̂𝑖
2

𝑛

𝑖=1

 

であるから、決定係数の 2 つの定義は一致しないことになる。  

 以上から、事前情報によって、𝛼 = 0が正しい場合は良いが、そうでなければ、

定数項を入れた推定が望ましい。なお、事前情報によって、𝛼 = 0が正しい場合

は稀であり、定数項を含めた推定を行うことが一般的となる。  

 

練習問題 13  

(a) 残差は、真の値𝑌𝑖と予測値 𝑌̂𝑖の差として、次式で表される。  

𝑢̂𝑖 = 𝑌𝑖 − 𝑌̂𝑖 = (𝛼 + 𝛽𝑋𝑖 + 𝑢𝑖) − (𝛼̂ + 𝛽̂𝑋𝑖) 

                     = 𝑢𝑖 − (𝛼̂ − 𝛼) − (𝛽̂ − 𝛽)𝑋𝑖 

 

(b)  𝐸[𝑢̂𝑖
2] = 𝜎2(1 − ℎ𝑖𝑖)の意味を考えてみよう。この結果から、誤差項の分散は

𝜎2で一定である一方、残差の分散は変化することがわかる。また、レバレッジ

ℎ𝑖𝑖は定義によって 0 以上となる (厳密には、𝑋𝑖 = 𝑋̄のとき ℎ𝑖𝑖 = 1/𝑛で最小となるた

め 1/𝑛 ≤ ℎ𝑖𝑖となる )7。よって、残差 2 乗の期待値は、誤差項の分散 𝜎2より小さい。  

𝐸[𝑢̂𝑖
2] = 𝜎2(1 − ℎ𝑖𝑖) < 𝜎

2 

この結果から、残差 2 乗は𝜎2の不偏推定量ではなく、過小推定する性質がある

と理解できる。ただし、 𝛼̂と 𝛽̂は一致推定量であるから、サンプルサイズが大き

ければ 𝑢̂𝑖 = 𝑢𝑖となる。  

 𝐸[𝑢̂𝑖
2] = 𝜎2(1 − ℎ𝑖𝑖)を証明しよう。𝐸[𝑢̂𝑖] = 0から、𝑉(𝑢̂𝑖) = 𝐸[𝑢̂𝑖

2]となる。 (a)の結果

を用いると、残差 2 乗の期待値は次のように展開できる。  

 

7  重回帰分析では、レバレッジは、 i 番目のデータ (1 ,  𝑋1𝑖、 𝑋2𝑖、…、 𝑋𝐾𝑖)が、他のデータに比べて、

どれぐらい異なるかを示す。 Stata では、レバレッジは reg Y X とした後、 predict leverage ,  hat

とすれば計算できる。  
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𝐸[𝑢̂𝑖
2] = 𝐸 [(𝑢𝑖 − (𝛼̂ − 𝛼) − (𝛽̂ − 𝛽)𝑋𝑖)

2
] 

  = 𝐸[𝑢𝑖
2] + 𝐸[(𝛼̂ − 𝛼)2]⏟        

＝ 𝑉(𝛼̂)

+ 𝑋𝑖
2 𝐸 [(𝛽̂ − 𝛽)

2
]⏟        

=𝑉(𝛽̂)

  + 2𝑋𝑖 𝐸[(𝛼̂ − 𝛼)(𝛽̂ − 𝛽)]⏟            
=𝐶𝑜𝑣(𝛼̂,𝛽̂)

     

 −2𝐸[𝑢𝑖(𝛼̂ − 𝛼)] − 2𝑋𝑖𝐸[𝑢𝑖(𝛽̂ − 𝛽)] 

ここで、𝑉(𝛼̂)、𝑉(𝛽̂)、𝐶𝑜𝑣(𝛼̂, 𝛽̂)は、  

𝑉(𝛼̂) = 𝜎2 (
1

𝑛
+

𝑋̄2

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

)、𝑉(𝛽̂) =
𝜎2

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

、𝐶𝑜𝑣(𝛼̂, 𝛽̂) = −
𝜎2𝑋̄

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

 

となる (3 章の P59、練習問題 10、  11 参照 )。 𝛽̂の確率的表現を用いると、  

𝐸[𝑢𝑖(𝛽̂ − 𝛽)] = 𝐸 [𝑢𝑖
∑ (𝑋𝑖 − 𝑋̄)𝑢𝑖
𝑛
𝑖=1

∑ (𝑋𝑖 − 𝑋̄)
2𝑛

𝑖=1

] =
(𝑋𝑖 − 𝑋̄)𝐸[𝑢𝑖

2]

∑ (𝑋𝑖 − 𝑋̄)
2𝑛

𝑖=1

=
(𝑋𝑖 − 𝑋̄)𝜎

2

∑ (𝑋𝑖 − 𝑋̄)
2𝑛

𝑖=1

 

となり、 𝛼̂の確率的表現を使うと、  

𝐸[𝑢𝑖(𝛼̂ − 𝛼)] = 𝐸[𝑢𝑖(−(𝛽̂ − 𝛽)𝑋̄ + 𝑢̄)] 

= −𝑋̄𝐸[𝑢𝑖(𝛽̂ − 𝛽)] +
1

𝑛
𝐸 [𝑢𝑖 (∑𝑢𝑖

𝑛

𝑖=1

)] 

= −
𝑋̄(𝑋𝑖 − 𝑋̄)𝜎

2

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

+
𝜎2

𝑛
 

となる (式展開では、𝐸[𝑢𝑖
2] = 𝜎2、𝐸[𝑢𝑖𝑢𝑗] = 0 for 𝑖 ≠ 𝑗を用いた )。  

これらを𝐸[𝑢̂𝑖
2]の式に代入すると、次式ように展開できる。  

𝐸[𝑢̂𝑖
2] = 𝜎2 {1 + (

1

𝑛
+

𝑋̄2

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

) +
𝑋𝑖
2𝜎2

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

− 2
𝑋𝑖𝑋̄

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

+ 2(
𝑋̄(𝑋𝑖 − 𝑋̄)𝜎

2

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

−
1

𝑛
) − 2

𝑋𝑖(𝑋𝑖 − 𝑋̄)

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

} 

= 𝜎2 {1 −
1

𝑛
+
𝑋̄2 + 𝑋𝑖

2 − 2𝑋𝑖𝑋̄ + 2𝑋̄(𝑋𝑖 − 𝑋̄) − 2𝑋𝑖(𝑋𝑖 − 𝑋̄)

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

} 

= 𝜎2 {1 −
1

𝑛
−

(𝑋𝑖 − 𝑋̄)
2

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

} = 𝜎2(1 − ℎ𝑖𝑖) 

 ここで、1/𝑛、(𝑋𝑖 − 𝑋̄)
2ともに正であり、ℎ𝑖𝑖が 0 以上となる。また、𝐸[𝑢̂𝑖

2] = 𝜎2(1 −

ℎ𝑖𝑖)は 0 以上であるから、 ℎ𝑖𝑖は 1 以下となる。  

 

(c) 単回帰分析の場合、レバレッジの総和は、∑
1

𝑛

𝑛
𝑖=1 = 𝑛

1

𝑛
= 1に注意すると、  
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∑ ℎ𝑖𝑖

𝑛

𝑖=1

=∑(
1

𝑛
+

(𝑋𝑖 − 𝑋̄)
2

∑ (𝑋𝑖 − 𝑋̄)
2𝑛

𝑖=1

) = 1 +
∑ (𝑋𝑖 − 𝑋̄)

2𝑛
𝑖=1

∑ (𝑋𝑖 − 𝑋̄)
2𝑛

𝑖=1

𝑛

𝑖=1

= 2 

となる。この結果を用いると、次のようになる。  

𝐸 [∑ 𝑢̂𝑖
2

𝑛

𝑖=1
] =∑ 𝐸[𝑢̂𝑖

2]
𝑛

𝑖=1
= 𝜎2∑ (1− ℎ𝑖𝑖)

𝑛

𝑖=1
= 𝜎2(𝑛 − 2) 

𝑠2が不偏推定量であることを、次のようにして示せる。  

𝐸[𝑠2] =
1

𝑛 − 2
 𝐸 [∑ 𝑢̂𝑖

2
𝑛

𝑖=1
] =

1

𝑛 − 2
 𝜎2(𝑛 − 2) = 𝜎2 

3 章の補足証明と異なり、ここでは、誤差項が正規分布するという仮定を用い

ておらず、𝑠2の不偏性を示すには、正規分布の仮定が不要であることがわかる。  

 

(d)  標準化残差 𝑢̅𝑖は次のように定義される。  

𝑢̅𝑖 = (1 − ℎ𝑖𝑖)
−1/2𝑢̂𝑖 

このとき、標準化残差の期待値は  

𝐸[𝑢̅𝑖] = (1 − ℎ𝑖𝑖)
−1/2𝐸[𝑢̂𝑖] = (1 − ℎ𝑖𝑖)

−1/2 × 0 = 0 

となり、また、標準化残差の 2 乗の期待値は 𝜎2となる。  

𝐸[𝑢̅𝑖
2] = (1 − ℎ𝑖𝑖)

−1𝐸[𝑢̂𝑖
2] = (1 − ℎ𝑖𝑖)

−1(1 − ℎ𝑖𝑖)𝜎
2 = 𝜎2 

よって、標準化残差の 2 乗は、𝜎2の不偏推定量である。また、  

𝐸[𝑠2] =
1

𝑛
𝐸 [∑ 𝑢̅𝑖

2
𝑛

𝑖=1
] =

1

𝑛
∑ 𝐸[𝑢̅𝑖

2]
𝑛

𝑖=1
=
1

𝑛
𝑛𝜎2 = 𝜎2 

となり、 𝑠2の不偏性が満たされる。なお、標準化残差は 9 章の練習問題でも用  

いられるので、覚えておいてほしい。  
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第 4 章の答え  

練習問題 1  

帰無仮説は棄却することに意味がある。帰無仮説を採択しても、帰無仮説が

正しいのか、対立仮説が正しいのか、どちらともいえない。帰無仮説を採択し

ても、帰無仮説が正しいと、誤って解釈しないように注意が必要である。  

ハーバード大学元学長 L・サマーズ (Lawrence Summers)は、「統計学の授業

で学生が何度も注意をうけるように、帰無仮説を棄却できないということは帰

無仮説の正しさを意味していない」と述べている。これは当然のことだが、勘

違いしやすい点なので注意したい。  

 

練習問題 2  

第 1 種の過誤は、帰無仮説𝐻0が正しいとき、帰無仮説𝐻0を誤って棄却し、対

立仮説𝐻1を採択することをいう。第 2 種の過誤は、対立仮説𝐻1が正しいとき、

帰無仮説𝐻0を誤って採択することをいう (詳しくは、4.2.2 節参照 )。  

  

練習問題 3  

有意水準を低く設定する場合として、医薬品の開発やドーピング検査などが

ある。医薬品開発では、帰無仮説（「医薬品の効果がない」）を誤って棄却して

効果のない薬 (または有害な薬 )を市場に出すデメリットは大きいため有意水準

は低く設定される。また、ドーピング検査では、帰無仮説 (「ドーピングをし

ていない」 )を誤って棄却して選手のキャリアを傷つけるコストは大きいため

やはり有意水準は低く設定される。  

逆に、有意水準を低く設定しないものとして、人間ドックなどの簡易検査が

ある。帰無仮説 (「病気にかかっていない（陰性）」 )を誤って棄却しても、精

密検査を行えば良いだけなので、大きな問題はない。逆に、帰無仮説を誤って

採択し、病気を放置してしまうコストは大きい。  

 

練習問題 4  

有意水準 1%とした帰無仮説𝐻0:   𝛽 = 𝛽0の採択域 (−𝑐 < 𝑡𝛽̂ < 𝑐)は、𝑐 = 𝑡𝑛−2,0.01とす

ることで、次のようになる。  
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−𝑡𝑛−2,0.01 <
𝛽̂ − 𝛽0
𝑠𝛽̂

< 𝑡𝑛−2,0.01 

これを書き換えると (両辺に−𝑠𝛽̂を掛けてから両辺に 𝛽̂を足すと )、次の関係式が

得られる。  

𝛽̂ − 𝑡𝑛−2,0.01𝑠𝛽̂ < 𝛽0 < 𝛽̂ + 𝑡𝑛−2,0.01𝑠𝛽̂ 

上式左辺はまさに 99%信頼区間の下限 𝛽̂ − 𝑡𝑛−2,0.01𝑠𝛽̂であり、右辺は 99%信頼区

間の上限 𝛽̂ + 𝑡𝑛−2,0.01𝑠𝛽̂と一致している。このため、係数𝛽の 99%信頼区間の中に 𝛽0

が含まれる場合には、有意水準 1%で帰無仮説𝐻0は採択され、99%信頼区間の外

に𝛽0がある場合には、有意水準 1%で帰無仮説𝐻0は棄却される。  

 

練習問題 5  

𝑝値は、帰無仮説を棄却できる最も小さい有意水準を示している。 4.4.2 節で

学習したとおり、有意性は次のように判断される。  

𝑝値≤ 0.01ならば、        有意水準 1%で帰無仮説𝐻0は棄却される  

0.01 < 𝑝値≤ 0.05 ならば、   有意水準 5%で帰無仮説𝐻0は棄却される  

0.05 < 𝑝値≤ 0.1 ならば、    有意水準 10%で帰無仮説𝐻0は棄却される  

0.1 < 𝑝値ならば、        有意水準 10%でも帰無仮説𝐻0は棄却されない  

ここで、𝑝値= 0.09であるため、 有意水準 10%ならば帰無仮説は棄却されるが、

有意水準 5%や 1%では棄却されない。また、𝑝値= 0.15なら、有意水準 10%であ

っても、帰無仮説は棄却されない。  

 

練習問題 6  

t 値は 𝑡∗ = −0.95である。 t 分布は標準正規分布と同じと仮定すると、  

𝑝値 = 𝑃{0.95 < |𝑍|} 

となる。ただし、 𝑍は標準正規確率変数となる。  

これは標準正規分布表を用いることで計算できる。まず、 𝑃{𝑍 < 0.95} =

0.8289となるため、確率の和は 1 から、  

𝑃{𝑍 > 0.95} = 1 −  𝑃{𝑍 < 0.95} = 0.1711 

となる。また、標準正規分布は 0 を中心に左右対称なので、 𝑃{𝑍 < −0.95} =

0.1711となり、よって、 𝑝値は次のようになる。  
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𝑃{0.95 < |𝑍|} =  𝑃{𝑍 > 0.95} +  𝑃{𝑍 < −0.95} = 0.1711 × 2 = 0.3422 

Excel を用いるなら、𝑃{𝑍 < −0.95}は、「=NORM.S.DIST(-0.95,TRUE) 」と入

力すれば計算できる。これは 0.171056 となり、これを 2 倍すると 0.3421 とな

る。  

 

練習問題 7  

第 1 の理由は、推定値と標準誤差がわかれば、簡単に 95%信頼区間を計算で

きるからである。第 2 の理由は、カッコ内に t 値を掲載することによって、仮

説検定の結果 (有意性 )を強調しすぎてしまうからである (4.6.3 節参照 )。  

 

練習問題 8  

たとえば、女性ダミーを 𝐹𝑖としよう (女性ダミーは、女性なら 1 となり、男性

なら 0 となるダミー変数である )。このとき、標本平均の分子∑ 𝐹𝑖
𝑛
𝑖=1 は、データ

における女性の総数であり、それをサンプルサイズ 𝑛で割ることで、データにお

ける女性の割合を求めることができる。つまり、  

1

𝑛
∑𝐹𝑖

𝑛

𝑖=1

=
女性の総数

サンプルサイズ
=データにおける女性の割合  

 

練習問題 9  

個人 𝑖の点数𝑌𝑖は、次のようになる。  

𝑌𝑖 = 𝜇𝑓 + (𝜇𝑚 − 𝜇𝑓)𝑀𝑖 + 𝑢𝑖 

たとえば、生徒 𝑖が男子ならば (𝑀𝑖 = 1)、  

𝑌𝑖 = 𝜇𝑓 + (𝜇𝑚 − 𝜇𝑓) + 𝑢𝑖 = 𝜇𝑚 + 𝑢𝑖 

となる一方、女子ならば (𝑀𝑖 = 0)、次のようになる。  

𝑌𝑖 = 𝜇𝑓 + 𝑢𝑖 

上式は、次の単回帰モデルとして表せる。  

𝑌𝑖 =  𝛼 +  𝛽𝑀𝑖 + 𝑢𝑖 

ただし、𝛼 = 𝜇𝑓、𝛽 = 𝜇𝑚 − 𝜇𝑓と定義した。この例から、男女の点数差を推定する

ために、女性ダミーか男性ダミーのいずれかを用いればよいとわかる。ただし、

どちらのダミー変数を用いるかで、定数項や係数の解釈が異なる点に注意が必
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要である。  

 

練習問題 10  

数学の点数を見てみよう。係数は 0.422 であり、男性は女性より 0.422 点だ

け高い。ここで、𝛽̂ = 0.422、𝑠𝛽̂ = 0.298であり、𝑡𝛽̂ = 0.422/0.298 = 1.42となる。ただ

し、𝑝値は 10%より大きく、有意水準 10%でも帰無仮説𝐻0: 𝛽 = 0は棄却できない

(つまり、男女の平均点に有意な差があるとは言えない )。定数項は女性の平均

点であり、これは 49.79 点となる。  

次に、理科の点数を見てみよう。係数は 1.258 であり、男性は女性より 1.258

点だけ高い。ここで、𝛽̂ = 1.258、𝑠𝛽̂ = 0.297であり、𝑡𝛽̂ = 1.258/0.297 = 4.23となる。

𝑝値は 1%より小さく、有意水準 1%で帰無仮説𝐻0: 𝛽 = 0は棄却される。定数項は

女性の平均点であり、これは 49.37 点となる。  

例 4-4 では、説明変数を女性ダミーとしている一方、この問題では、説明変

数を男性ダミーとしている。これらの推定結果を比較すると、推定結果は本質

的に同じとなっていることがわかるだろう。ただし、定数項や係数の解釈は変

わる点に注意が必要である。  

 

練習問題 11  

𝐹𝑖の標本平均は 𝐹̄ = ∑ 𝐹𝑖
𝑛
𝑖=1 /𝑛 = 𝑛1/𝑛となる (女性は計 𝑛1人いるため、∑ 𝐹𝑖

𝑛
𝑖=1 = 𝑛1

となる )。このため、偏差は、  

𝐹𝑖 − 𝐹̄ = {
1 −

𝑛1
𝑛
=
𝑛2
𝑛

if   𝐹𝑖 = 1

0 −
𝑛1
𝑛
= −

𝑛1
𝑛

if   𝐹𝑖 = 0
 

となる (式展開では、 𝑛2 = 𝑛 − 𝑛1を用いた )。したがって、偏差 2 乗和は、  

∑(𝐹𝑖 − 𝐹̄)
2

𝑛

𝑖=1

=∑(𝐹𝑖 − 𝐹̄)
2

𝑛1

𝑖=1

+ ∑ (𝐹𝑖 − 𝐹̄)
2

𝑛

𝑖=𝑛1+1

 

                   = 𝑛1 (
𝑛2
𝑛
)
2

+ 𝑛2 (
𝑛1
𝑛
)
2

 

=
𝑛1𝑛2
𝑛2

(𝑛1 + 𝑛2) =
𝑛1𝑛2
𝑛

 

となる (式展開では、 𝑛 = 𝑛1 + 𝑛2を用いた）。  
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2 章で学習したとおり、説明変数𝑋の係数𝛽の OLS 推定量 𝛽̂は、  

𝛽̂ =
∑ (𝑋𝑖 − 𝑋̄)(𝑌𝑖 − 𝑌̄)
𝑛
𝑖=1

∑ (𝑋𝑖 − 𝑋̄)
2𝑛

𝑖=1

=
∑ (𝑋𝑖 − 𝑋̄)
𝑛
𝑖=1 𝑌𝑖
∑ (𝑋𝑖 − 𝑋̄)

2𝑛
𝑖=1  

となる。2 番目の等号は、次式を用いた。  

∑(𝑋𝑖 − 𝑋̄)(𝑌𝑖 − 𝑌̄)

𝑛

𝑖=1

=∑(𝑋𝑖 − 𝑋̄)𝑌𝑖

𝑛

𝑖=1

− 𝑌̄∑(𝑋𝑖 − 𝑋̄)

𝑛

𝑖=1⏟      

偏差の和は 0

=∑(𝑋𝑖 − 𝑋̄)𝑌𝑖

𝑛

𝑖=1

 

OLS 推定量 𝛽̂の式に、𝑋𝑖 = 𝐹𝑖と 𝑋̄ = 𝐹̄を代入すると、次のようになる。  

𝛽̂ =
∑ (𝐹𝑖 − 𝐹̄)𝑌𝑖
𝑛
𝑖=1

∑ (𝐹𝑖 − 𝐹̄)
2𝑛

𝑖=1

 

                                    =
∑ (𝐹𝑖 − 𝐹̄)𝑌𝑖
𝑛1
𝑖=1 + ∑ (𝐹𝑖 − 𝐹̄)𝑌𝑖

𝑛
𝑖=𝑛1+1

∑ (𝐹𝑖 − 𝐹̄)2
𝑛
𝑖=1

 

ここで、𝐹𝑖 = 1なら𝐹𝑖 − 𝐹̄ =
𝑛2

𝑛
、𝐹𝑖 = 0なら𝐹𝑖 − 𝐹̄ = −

𝑛1

𝑛
となること、また、∑ (𝐹𝑖 −

𝑛
𝑖=1

𝐹̄)2 =
𝑛1𝑛2

𝑛
となることに注意すると、上式右辺は次のようになる。  

                                  

𝑛2
𝑛
∑ 𝑌𝑖
𝑛1
𝑖=1 −

𝑛1
𝑛
∑ 𝑌𝑖
𝑛
𝑖=𝑛1+1

𝑛1𝑛2
𝑛

=
1

𝑛1
∑𝑌𝑖

𝑛1

𝑖=1

−
1

𝑛2
∑ 𝑌𝑖 =

𝑛

𝑖=𝑛1+1

𝑌̄𝑓 − 𝑌̄𝑚 

最後の等式は、𝑌̄𝑓は女性の標本平均、𝑌̄𝑚は男性の標本平均であること、つまり、

以下の関係式を用いた。  

𝑌̄𝑓 =
1

𝑛1
∑𝑌𝑖

𝑛1

𝑖=1

    𝑌̄𝑚 =
1

𝑛2
∑ 𝑌𝑖

𝑛

𝑖=𝑛1+1
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第 5 章の答え  

練習問題 1  

5.3.1 節で学習したとおり、被説明変数を𝑌𝑖、説明変数を𝑋𝑖とした単回帰分析

では、𝑋𝑖の係数 𝛽̂1の期待値は、  

𝐸[𝛽̂1]   =   𝛽1 + 𝛽2   
𝑠𝑋𝑊

𝑠𝑋
2

⏟    

欠落変数バイアス

 

となる。ここで、𝛽2 > 0、 𝑠𝑋𝑊 < 0であるから、欠落変数バイアスは負となる。  

𝛽2   
𝑠𝑋𝑊

𝑠𝑋
2 < 0 

これは、𝐸[𝛽̂1]は真の値𝛽1より小さいことを意味する。  

𝐸[𝛽̂1]  <   𝛽1 

まとめると、生まれつきの能力𝑊𝑖を除くことで、職業訓練ダミー𝑋𝑖の係数 (職業

訓練の効果 )は低めに推定されてしまう。  

 

練習問題 2  

ここで、𝛽2 < 0、𝑠𝑋𝑊 > 0であるから、欠落変数バイアスは負となる (𝛽2   
𝑠𝑋𝑊

𝑠𝑋
2 < 0)。  

これは、𝐸[𝛽̂1]は真の値𝛽1より小さいことを意味する (𝐸[𝛽̂1]  <   𝛽1)。つまり、移民

の割合を除くことで、クラスの人数 𝑋𝑖の係数は低めに推定される。これは単回

帰分析のほうが、重回帰分析よりも係数が小さくなる (クラスの人数を減らすこ

との効果が大きくなる )ことを意味する。  

 

練習問題 3  

双子の差をとると、  

𝑌𝑖
兄
− 𝑌𝑖

弟
= (𝛼 + 𝛽1𝑋𝑖

兄
+ 𝛽2𝑊𝑖

兄
+ 𝑢𝑖

兄
) − (𝛼 + 𝛽1𝑋𝑖

弟
+ 𝛽2𝑊𝑖

弟
+ 𝑢𝑖

弟
) 

  = 𝛽1 (𝑋𝑖
兄
− 𝑋𝑖

弟
) + 𝛽2 (𝑊𝑖

兄
−𝑊𝑖

弟
) + (𝑢𝑖

兄
− 𝑢𝑖

弟
) 

= 𝛽1(𝑋𝑖
兄
− 𝑋𝑖

弟
) + (𝑢𝑖

兄
− 𝑢𝑖

弟
) 

となる。式展開では、𝑊𝑖
兄
−𝑊𝑖

弟
= 0とした。ここで、 𝑌𝑖 = 𝑌𝑖

兄
− 𝑌𝑖

弟
、𝑋𝑖 = 𝑋𝑖

兄
−

𝑋𝑖
弟
、𝑢𝑖 = 𝑢𝑖

兄
− 𝑢𝑖

弟
と定義すれば、上式は通常の単回帰分析によって推定でき
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る。つまり、双子のデータを用いる利点は、双子の差をとることで、生まれつ

きの能力の要因を取り除くことが可能となる点にある。  

現実問題として、双子であれば教育年数にあまり違いはない可能性がある。

つまり、教育年数の差𝑋𝑖 = 𝑋𝑖
兄
− 𝑋𝑖

弟
はほぼ 0 の値をとり、説明変数の変動が非

常に小さくなる。これでは、推定結果は不安定となる。3.3.3 節では、説明変数

の変動が大きいほど、OLS 推定量の分散が小さくなることを説明している (図 3-

4(a)参照 )。  

 

練習問題 4  

 5.6 節をもとに答えをまとめる。決定係数𝑅2は、  

𝑅2 = 1 −
∑ 𝑢̂𝑖

2𝑛
𝑖=1

∑ (𝑌𝑖 − 𝑌̄)2
𝑛
𝑖=1

 

と定義され、説明変数𝑋𝑖の数𝐾が増えるほど、その値が 1 に近づくという性質が

ある。これに対して、自由度調整済み決定係数は  

𝑅̄2 = 1 −
𝑛 − 1

𝑛 − 𝐾 − 1⏟      

調整項

∑ 𝑢̂𝑖
2𝑛

𝑖=1

∑ (𝑌𝑖 − 𝑌̄)2
𝑛
𝑖=1

 

と定義される。自由度調整済み決定係数では、調整項
𝑛−1

𝑛−𝐾−1
を含めることで、説

明変数を含めることに罰則を課している。つまり、自由度調整済み決定係数で

は、悪い説明変数を含めると、逆に、その値が下がることになる。  

 

練習問題 5  

都道府県の転入超過数とは、転入者数から転出者数を引いた値となる。つまり、 

転入超過数  = 転入者数  －  転出者数  

という関係がある。これは恒等式であり、そもそも推定する意味はない。  

 

練習問題 6  

残差 2 乗和は、𝑋2 = 10𝑋1に注意すると、次のようになる。  

∑𝑢̃𝑖
2

𝑛

𝑖=1

=∑(𝑌𝑖 − 𝛼̃ − 𝛽1𝑋1𝑖 − 𝛽2𝑋2𝑖)
2

𝑛

𝑖=1

=∑(𝑌𝑖 − 𝛼̃ − (𝛽1 + 10𝛽̃2)𝑋1𝑖)
2

𝑛

𝑖=1

 

これを各パラメータ ( 𝛼̃, 𝛽1,  𝛽2)で偏微分して 0 と置くと 3 本の式が得られる。  
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①   𝜕 ∑ 𝑢̃𝑖
2

𝜕𝛼̃
=∑

𝜕𝑢̃𝑖
2

𝜕𝑢̃𝑖

𝜕𝑢̃𝑖
𝜕𝛼̃

=∑2𝑢̃𝑖(−1) = −2∑(𝑌𝑖 − 𝛼̃ − (𝛽1 + 10𝛽2)𝑋1𝑖) = 0  

②   𝜕

𝜕𝛽1
∑𝑢̃𝑖

2 =∑
𝜕𝑢̃𝑖

2

𝜕𝑢̃𝑖

𝜕𝑢̃𝑖

𝜕𝛽1
=∑2𝑢̃𝑖(−𝑋1𝑖) = −2∑(𝑌𝑖 − 𝛼̃ − (𝛽̃1 + 10𝛽2)𝑋1𝑖)𝑋1𝑖 = 0  

 

③   𝜕

𝜕𝛽2
∑𝑢̃𝑖

2 =∑
𝜕𝑢̃𝑖

2

𝜕𝑢̃𝑖

𝜕𝑢̃𝑖

𝜕𝛽2
=∑2𝑢̃𝑖(−10𝑋1𝑖) = −20∑(𝑌𝑖 − 𝛼̃ − (𝛽1 + 10𝛽̃2)𝑋1𝑖)𝑋1𝑖 = 0  

②式と③式は、本質的に同じ式となる。これは②式の両辺を－ 2 で割る、③

式の両辺を－20 で割ると、次式となることから明らかである。  

∑(𝑌𝑖 − 𝛼̃ − (𝛽1 + 10𝛽̃2)𝑋1𝑖)𝑋1𝑖 = 0 

以上から、正規方程式は 2 本の独立な式だけとなる。  

∑(𝑌𝑖 − 𝛼̃ − (𝛽1 + 10𝛽2)𝑋1𝑖) = 0 

∑(𝑌𝑖 − 𝛼̃ − (𝛽1 + 10𝛽̃2)𝑋1𝑖)𝑋1𝑖 = 0 

独立な式は 2 本、パラメータは 3 つあるため、OLS 推定量を求めることはで

きない。OLS 推定量を導出するためには、独立な式がパラメータの数と同じだ

け必要である。  

 

練習問題 7  

残差 2 乗和は次のようになる。  

∑𝑢̃𝑖
2

𝑛

𝑖=1

=∑(𝑌𝑖 − 𝛼̃ − 𝛽1𝑋1𝑖 − 𝛽2𝑋2𝑖)
2

𝑛

𝑖=1

 

これを各パラメータ ( 𝛼̃, 𝛽1,  𝛽2)で偏微分して 0 と置くと 3 本の式が得られる。  

①   𝜕 ∑ 𝑢̃𝑖
2

𝜕𝛼̃
=∑

𝜕𝑢̃𝑖
2

𝜕𝑢̃𝑖

𝜕𝑢̃𝑖
𝜕𝛼̃

=∑2𝑢̃𝑖(−1) = −2∑(𝑌𝑖 − 𝛼̃ − 𝛽1𝑋1𝑖 − 𝛽2𝑋2𝑖) = 0  

②   𝜕

𝜕𝛽1
∑𝑢̃𝑖

2 =∑
𝜕𝑢̃𝑖

2

𝜕𝑢̃𝑖

𝜕𝑢̃𝑖

𝜕𝛽1
=∑2𝑢̃𝑖(−𝑋1𝑖) = −2∑(𝑌𝑖 − 𝛼̃ − 𝛽1𝑋1𝑖 − 𝛽2𝑋2𝑖)𝑋1𝑖 = 0  

 

③   𝜕

𝜕𝛽2
∑𝑢̃𝑖

2 =∑
𝜕𝑢̃𝑖

2

𝜕𝑢̃𝑖

𝜕𝑢̃𝑖

𝜕𝛽2
=∑2𝑢̃𝑖(−𝑋2𝑖) = −2∑(𝑌𝑖 − 𝛼̃ − 𝛽1𝑋1𝑖 − 𝛽2𝑋2𝑖)𝑋2𝑖 = 0  
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3 本の式は独立に見えるが、これは誤りである。②式と③式を足すと、  

−2∑(𝑌𝑖 − 𝛼̃ − 𝛽1𝑋1𝑖 − 𝛽2𝑋2𝑖)𝑋1𝑖 − 2∑(𝑌𝑖 − 𝛼̃ − 𝛽1𝑋1𝑖 − 𝛽2𝑋2𝑖)𝑋2𝑖 = 0 

となる。ここで左辺をまとめると、  

−2∑(𝑌𝑖 − 𝛼̃ − 𝛽1𝑋1𝑖 − 𝛽2𝑋2𝑖)(𝑋1𝑖 +𝑋2𝑖) = −2∑(𝑌𝑖 − 𝛼̃ − 𝛽1𝑋1𝑖 − 𝛽2𝑋2𝑖) 

となる (式展開では、𝑋1 + 𝑋2 = 1を用いた )。つまり、②式+③式は、①式であり、  

独立な式は 2 本だけとわかる。独立な式は 2 本 (②式と③式 )、パラメータは 3

つ (𝛼̃, 𝛽1, 𝛽2)あるため、OLS 推定量を求めることはできない。  

 

練習問題 8  

残差 2 乗和∑ 𝑢̃𝑖
2𝑛

𝑖=1 = ∑ (𝑌𝑖 − 𝛼̃ − 𝛽1𝑋1𝑖 − 𝛽2𝑋2𝑖)
2𝑛

𝑖=1 を 𝛼̃で偏微分して 0 と置くと、  

−2∑(𝑌𝑖 − 𝛼̂ − 𝛽̂1𝑋1𝑖 − 𝛽̂2𝑋2𝑖)

𝑛

𝑖=1

= 0 

となり、両辺を−2で割ると  

∑(𝑌𝑖 − 𝛼̂ − 𝛽̂1𝑋1𝑖 − 𝛽̂2𝑋2𝑖)

𝑛

𝑖=1

= 0 

となる。上式を満たす 𝛼̃、𝛽1、𝛽2は最小 2 乗推定量なので、「^(ハット )」を付け

た。この式を展開すると、  

∑𝑌𝑖

𝑛

𝑖=1

− 𝑛𝛼̂ − 𝛽̂1∑𝑋1𝑖

𝑛

𝑖=1

− 𝛽̂2∑𝑋2𝑖

𝑛

𝑖=1

= 0 

となり、さらに両辺を 𝑛で割って、 𝛼̂について解くと次式が得られる。  

𝛼̂ = 𝑌̄ − 𝛽̂1𝑋̄1 − 𝛽̂2𝑋̄2 

次に、残差 2 乗和∑ 𝑢̃𝑖
2𝑛

𝑖=1 = ∑ (𝑌𝑖 − 𝛼̃ − 𝛽1𝑋1𝑖 − 𝛽2𝑋2𝑖)
2𝑛

𝑖=1 を𝛽1で偏微分して 0 と置

くと、  

−2∑(𝑌𝑖 − 𝛼̂ − 𝛽̂1𝑋1𝑖 − 𝛽̂2𝑋2𝑖)

𝑛

𝑖=1

𝑋1𝑖 = 0 

となり、さらに両辺を−2で割ると、  

∑(𝑌𝑖 − 𝛼̂ − 𝛽̂1𝑋1𝑖 − 𝛽̂2𝑋2𝑖)

𝑛

𝑖=1

𝑋1𝑖 = 0 

となる。ここで、 𝛼̂ = 𝑌̄ − 𝛽̂1𝑋̄1 − 𝛽̂2𝑋̄2を上式に代入すると、下式となる。  
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∑(𝑌𝑖 − (𝑌̄ − 𝛽̂1𝑋̄1 − 𝛽̂2𝑋̄2) − 𝛽̂1𝑋1𝑖 − 𝛽̂2𝑋2𝑖)

𝑛

𝑖=1

𝑋1𝑖 

=∑((𝑌𝑖 − 𝑌̄) − 𝛽̂1(𝑋1𝑖 − 𝑋̄1) − 𝛽̂2(𝑋2𝑖 − 𝑋̄2))

𝑛

𝑖=1

𝑋1𝑖
 

    =∑(𝑌𝑖 − 𝑌̄)𝑋1𝑖

𝑛

𝑖=1

− 𝛽̂1∑(𝑋1𝑖 − 𝑋̄1)𝑋1𝑖

𝑛

𝑖=1

− 𝛽̂2∑(𝑋2𝑖 − 𝑋̄2)𝑋1𝑖

𝑛

𝑖=1

= 0 

偏差の和は 0 から、上式は次のように書き換えられる 8。  

∑(𝑌𝑖 − 𝑌̄)(𝑋1𝑖 −

𝑛

𝑖=1

𝑋̄1) − 𝛽̂1∑(𝑋1𝑖 − 𝑋̄1)(𝑋1𝑖 − 𝑋̄1)

𝑛

𝑖=1

− 𝛽̂2∑(𝑋2𝑖 − 𝑋̄2)(𝑋1𝑖 − 𝑋̄1)

𝑛

𝑖=1

= 0

 

ここで、𝑋1𝑖と𝑋2𝑖の標本共分散は 0 ならば、上式の左辺第 3 項は 0 となる

(∑ (𝑋2𝑖 − 𝑋̄2)(𝑋1𝑖 − 𝑋̄1)
𝑛
𝑖=1 = 0)。よって、上式は、  

∑(𝑌𝑖 − 𝑌̄)(𝑋1𝑖 −

𝑛

𝑖=1

𝑋̄1) − 𝛽̂1∑(𝑋1𝑖 − 𝑋̄1)
2

𝑛

𝑖=1

= 0 

となり、これを 𝛽̂1について解けば次式が得られる。  

𝛽̂1 =
∑ (𝑋1𝑖 − 𝑋̄1)(𝑌𝑖 − 𝑌̄)
𝑛
𝑖=1

∑ (𝑋1𝑖 − 𝑋̄1)2
𝑛
𝑖=1

 

以上より、重回帰分析における OLS 推定量 𝛽̂1は、𝑌𝑖を𝑋1𝑖だけで単回帰したと

きの OLS 推定量の式と同じである。つまり、説明変数間の相関が 0 であるな

ら、単回帰分析であっても欠落変数バイアスが生じないことがわかる。  

 

練習問題 9  

被説明変数を所得𝑌𝑖とし、説明変数を教育年数𝑋𝑖と職種𝑊𝑖とした、次の重回帰

モデルを考える。  

𝑌𝑖 = 𝛼 + 𝛽1𝑋𝑖 + 𝛽2𝑊𝑖 + 𝑢𝑖 ①   

ここで、教育年数𝑋𝑖の係数𝛽1は、「職種𝑊𝑖を一定とし、教育年数𝑋𝑖が 1 年増えた

 

8偏差の和は 0（ ∑ (𝑋1𝑖 − 𝑋̄1) = 0、 ∑ (𝑋2𝑖 − 𝑋̄2) = 0
𝑛
𝑖=1

𝑛
𝑖=1 ）であるから、以下の式が成立する。  

 ∑ (𝑋1𝑖 − 𝑋̄1)𝑋1𝑖
𝑛
𝑖=1 = ∑ (𝑋1𝑖 − 𝑋̄1)𝑋1𝑖

𝑛
𝑖=1 − ∑ (𝑋1𝑖 − 𝑋̄1)𝑋̄1

𝑛
𝑖=1 = ∑ (𝑋1𝑖 − 𝑋̄1)(𝑋1𝑖

𝑛
𝑖=1 − 𝑋̄1)  

 ∑ (𝑋2𝑖 − 𝑋̄2)𝑋1𝑖
𝑛
𝑖=1 = ∑ (𝑋2𝑖 − 𝑋̄2)𝑋1𝑖

𝑛
𝑖=1 − ∑ (𝑋2𝑖 − 𝑋̄2)𝑋̄1

𝑛
𝑖=1 = ∑ (𝑋1𝑖 − 𝑋̄1)(𝑋2𝑖

𝑛
𝑖=1 − 𝑋̄2) 

式展開では、 ∑ (𝑋1𝑖 − 𝑋̄1)𝑋̄1 = 𝑋̄1
𝑛
𝑖=1 ∑ (𝑋1𝑖 − 𝑋̄1) = 𝑋̄1 × 0

𝑛
𝑖=1 = 0、 ∑ (𝑋2𝑖 − 𝑋̄2)𝑋̄1

𝑛
𝑖=1 = 𝑋̄1∑ (𝑋2𝑖 − 𝑋̄2)

𝑛
𝑖=1 = 0を用いた。 
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とき、所得𝑌𝑖がいくら変化するか」を示している。こうした教育の効果に関心が

あるなら、この推定をしてもよいだろう。  

 ここで、職種は教育年数に依存して、次のように決まるとする。  

𝑊𝑖 = 𝜃0 + 𝜃1𝑋𝑖 + 𝑒𝑖 ②   

この式を、所得𝑌𝑖の式に代入すると、  

𝑌𝑖 = 𝛼 + 𝛽1𝑋𝑖 + 𝛽2(𝜃0 + 𝜃1𝑋𝑖 + 𝑒𝑖) + 𝑢𝑖 

     = (𝛼 + 𝛽2𝜃0)⏟      
=𝛿0

+ (𝛽1 + 𝛽2𝜃1)⏟        
=𝛿1

𝑋𝑖 + (𝑢𝑖 + 𝛽2𝑒𝑖)⏟      
=𝜀𝑖

 

となり、次の単回帰モデルが得られる。  

𝑌𝑖 = 𝛿0 + 𝛿1𝑋𝑖 + 𝜀𝑖 ③   

ただし、𝛿0 =  𝛼 + 𝛽2𝜃0、𝛿1 = 𝛽1 + 𝛽2𝜃1、𝜀𝑖 = 𝑢𝑖 + 𝛽2𝑒𝑖とした。③式は、①式と②式を

統合したモデルとなっている。また、教育年数 𝑋𝑖は確率変数ではないため、𝑋𝑖は

𝜀𝑖 = 𝑢𝑖 + 𝛽2𝑒𝑖と無相関になる 9。つまり、単回帰モデルを推定しても、欠落変数バ

イアスは生じない。ここで、教育年数の係数 𝛿1は、次のようになる。  

𝛿1 = 𝛽1⏟

直接的効果

+ 𝛽2𝜃1⏟

間接的効果

 

つまり、係数𝛽1は教育年数の「直接的効果」、𝛽2𝜃1は教育年数が職種に影響を与

えることから生じる「間接的効果」を合わせたものとなる。  

 

練習問題 14 

(a) 勤続年数=年齢－教育年数－6 と定義される 10。教育年数は、小卒なら 6 年、

中卒なら 9 年、高卒なら 12 年、大卒なら 16 年となる。たとえば、40 歳大卒

なら、勤続年数は 18 年 (=40－ 16－6)である。勤続年数 =年齢－教育年数－6 か

ら、－6－年齢+教育年数－勤続年数=0 となり、多重共線性が成立する。  

(b) ダミー変数は 0 から 1 の値をとるので、 2 乗しても値がかわらない (0 の 2

 
9 ここで、 𝑢𝑖と 𝑒𝑖は誤差項であり、期待値はそれぞれ 0 となる。このため、 𝜀𝑖の期待値も次のとお

り 0 となる。  

𝐸[𝜀𝑖] = 𝐸[𝑢𝑖 + 𝛽2𝑒𝑖] = 𝐸[𝑢𝑖] + 𝛽2𝐸[𝑒𝑖] = 0 + 𝛽2 × 0 = 0 

𝑋𝑖は確率変数ではないことに注意すると、 𝑋𝑖と 𝜀𝑖との共分散は次のとおり 0 となる。  

𝐶𝑜𝑣(𝑋𝑖 , 𝜀𝑖) = 𝐸[(𝑋𝑖 − 𝑋̅)𝜀𝑖] = (𝑋𝑖 − 𝑋̅)𝐸[𝜀𝑖] = 0 

10 勤続年数がデータとして利用できない場合、こうした計算式を用いることになる。かりに勤続

年数が正確にわかるなら、この計算式が成立しないこともあるだろう。たとえば、大学入学前に

浪人していれば、この式は成立しなくなり、多重共線性の問題も生じない。  
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乗は 0 であり、1 の 2 乗は 1 である )。つまり、  𝐷𝑖 = 𝐷𝑖
2であり、多重共線性が

生じる。  

 

(c) 𝑋1𝑖 = 0であるから、 𝑐1以外をすべて 0 としても (𝑐1 ≠ 0、 𝑐0 = 𝑐2 = ⋯ = 𝑐𝐾 = 0)、 

𝑐0 + 𝑐1𝑋1𝑖 + 𝑐2𝑋2𝑖 +⋯+ 𝑐𝐾𝑋𝐾𝑖 = 0 

が成立する。ここで、 𝑐1 ≠ 0であるから、多重共線性が成立している。  

 

(d)この場合、 𝑐0 = −1、 𝑐1 = 1、 𝑐2 = ⋯ = 𝑐𝐾 = 0と設定すれば、次式が成立する。  

𝑐0 + 𝑐1𝑋1𝑖 + 𝑐2𝑋2𝑖 +⋯+ 𝑐𝐾𝑋𝐾𝑖 = 0 

 (c)(d)といった状況は、データのサブサンプルを考えるときに生じやすい。た

とえば、職業別の男女賃金格差に関心があり、データを収集したとしよう。こ

のデータには男女のデータが含まれているが、歯科衛生士だけをデータから取

り出した場合、男性の人数はかなり少なくなる (歯科衛生士の多くは女性 )。偶

然、男性が含まれないなら、女性ダミーは 1 だけになる。  

 

(e)  多重共線性とは、 𝑐0 + 𝑐1𝑋1𝑖 + 𝑐2𝑋2𝑖 +⋯+ 𝑐𝐾𝑋𝐾𝑖 = 0を満たす 𝑐0、 𝑐1、…、 𝑐𝐾が

存在することである (ただし、 𝑐0 = 𝑐1 = ⋯ = 𝑐𝐾 = 0ではない )。 𝑖 = 1,2,… , 𝑛なので、

これは𝑛本の式として表せる。  

𝑐0 + 𝑐1𝑋11 + 𝑐2𝑋21 +⋯+ 𝑐𝑛𝑋𝐾1 = 0 

𝑐0 + 𝑐1𝑋12 + 𝑐2𝑋22 +⋯+ 𝑐𝑛𝑋𝐾2 = 0 

….  

𝑐0 + 𝑐1𝑋1𝑛 + 𝑐2𝑋2𝑛 +⋯+ 𝑐𝑛𝑋𝐾𝑛 = 0 

もし 𝑛 ≤ 𝐾であれば、 𝑛本の独立な式から、𝐾 + 1個のパラメータ (𝑐0、 𝑐1、…、 𝑐𝐾)

を求めることができる (独立な式の数 𝑛より未知のパラメータの数の方が多いな

ら、これらの式を満たすようにパラメータを解くことができる )11。  

 
11  なぜ 𝑛 = 𝐾 + 1のとき (つまり、 𝑛 − 1 = 𝐾)、多重共線性は生じないのだろうか。たしかに、 𝑛 = 𝐾 + 1

なら、独立な式の数とパラメータの数が一致しており、 𝑛本の独立な式から 𝐾 + 1個のパラメータを

求めることができる。しかし、この解の組み合わせは 1 通りであり、これは 𝑐0 = 𝑐1 = ⋯ = 𝑐𝐾 = 0にな

る。これに対し、 𝑛 ≤ 𝐾なら、解の組み合わせは無数にあり、 𝑐0 = 𝑐1 = ⋯ = 𝑐𝐾 = 0ではない解が存在す

る。たとえば、 𝑛 = 2、 𝐾 = 1としよう。このとき、 𝑐0 + 𝑐1𝑋11 = 0、 𝑐0 + 𝑐1𝑋12 = 0を満たす 𝑐0、 𝑐1は、 𝑐0 =

𝑐1 = 0だけである。 𝑐1𝑋11 = −𝑐0、 𝑐1𝑋12 = −𝑐0から、 𝑐1𝑋11 = 𝑐1𝑋12となる (つまり、 𝑐1(𝑋11 −𝑋12) = 0)。そし

て、 𝑋11 ≠ 𝑋12から 𝑐1 = 0とわかる。また、 𝑐1 = 0なら 𝑐0 = 0となる。  
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 本書では扱わないが、 𝑛 ≤ 𝐾とした状況は発生しうる。こうした状況では、

Ridge、 Lasso、主成分分析 (principal component analysis)などの手法が有効

である。これらの手法に関心のある読者は、『 Introduction to Econometrics』

（巻末参考文献 [7]）の 14 章 Big Data、 17 章の動学因子 (Dynamic Factor)モ

デルを読むことをおすすめする (翻訳版は 2 版なので、これらの内容を含まな

い )。  

 

練習問題 15 

説明変数は 3 つあり、  

𝑌𝑖 = 𝛼 + 𝛽1𝑋𝑖 + 𝛽2𝑊1𝑖 + 𝛽3𝑊2𝑖 + 𝑢𝑖 

として表せる。しかし、𝑊1𝑖、𝑊2𝑖を含めない単回帰モデル  

𝑌𝑖 = 𝛼 + 𝛽1𝑋𝑖 + 𝑢𝑖
∗ 

を推定したとする。ただし、 𝑢𝑖
∗ = 𝛽2𝑊1𝑖 + 𝛽3𝑊2𝑖 + 𝑢𝑖である。  

 

(a)  単回帰モデル (𝑌𝑖 = 𝛼 + 𝛽1𝑋𝑖 + 𝑢𝑖
∗)において、 𝛽̂1の確率的表現は  

𝛽̂1 = 𝛽1 +
∑ (𝑋𝑖 − 𝑋̄)
𝑛
𝑖=1 𝑢𝑖

∗

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

 

となる (3.3.1 節参照 )。上式に 𝑢𝑖
∗ = 𝛽2𝑊1𝑖 + 𝛽3𝑊2𝑖 + 𝑢𝑖を代入すると、  

                           𝛽̂1 = 𝛽1 +
∑ (𝑋𝑖 − 𝑋̄)(𝛽2𝑊1𝑖 + 𝛽3𝑊2𝑖 + 𝑢𝑖)
𝑛
𝑖=1

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

= 𝛽1 + 𝛽2
∑ (𝑋𝑖 − 𝑋̄)𝑊1𝑖
𝑛
𝑖=1

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

+ 𝛽3
∑ (𝑋𝑖 − 𝑋̄)𝑊2𝑖
𝑛
𝑖=1

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

+
∑ (𝑋𝑖 − 𝑋̄)𝑢𝑖
𝑛
𝑖=1

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

 

ここで、右辺第 2 項の分子は、次のように書き換えられる。  

∑(𝑋𝑖 − 𝑋̄)𝑊1𝑖

𝑛

𝑖=1

=∑(𝑋𝑖 − 𝑋̄)𝑊1𝑖

𝑛

𝑖=1

− 𝑊̄1∑(𝑋𝑖 − 𝑋̄)

𝑛

𝑖=1⏟      
=0

=∑(𝑋𝑖 − 𝑋̄)(𝑊1𝑖 − 𝑊̄1)

𝑛

𝑖=1

 

第 3 項の分子も同様に書き換えると、 𝛽̂1は次のようになる。  

𝛽1 + 𝛽2

1
𝑛 − 1

∑ (𝑋𝑖 − 𝑋̄)(𝑊1𝑖 − 𝑊̄1)
𝑛
𝑖=1

1
𝑛 − 1

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

+ 𝛽3

1
𝑛 − 1

∑ (𝑋𝑖 − 𝑋̄)(𝑊2𝑖 − 𝑊̄2)
𝑛
𝑖=1

1
𝑛 − 1

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

+
∑ (𝑋𝑖 − 𝑋̄)𝑢𝑖
𝑛
𝑖=1

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1
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= 𝛽1 + 𝛽2   
𝑠𝑋𝑊1
𝑠𝑋
2 + 𝛽3   

𝑠𝑋𝑊2
𝑠𝑋
2 +

∑ (𝑋𝑖 − 𝑋̄)𝑢𝑖
𝑛
𝑖=1

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

 

式展開では、右辺第 2 項、第 3 項の分子と分母を 𝑛 − 1で割っている。  

𝑋𝑖、𝑊1𝑖、𝑊2𝑖は確率変数ではないため、𝑠𝑋𝑊1、𝑠𝑋𝑊2、𝑠𝑋
2も確率変数ではない。よ

って、期待値をとると、  

𝐸[𝛽̂1] = 𝛽1 + 𝛽2   
𝑠𝑋𝑊1
𝑠𝑋
2 + 𝛽3   

𝑠𝑋𝑊2
𝑠𝑋
2 +

∑ (𝑋𝑖 − 𝑋̄)𝐸[𝑢𝑖]
𝑛
𝑖=1

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

 

= 𝛽1 + 𝛽2   
𝑠𝑋𝑊1
𝑠𝑋
2 + 𝛽3   

𝑠𝑋𝑊2
𝑠𝑋
2

⏟            

欠落変数バイアス

 

となり、これは𝛽1とは異なる (式展開では、𝐸[𝑢𝑖] = 0を用いた )。欠落変数バイア

スは、次のようになる。  

𝛽2   
𝑠𝑋𝑊1
𝑠𝑋
2 + 𝛽3   

𝑠𝑋𝑊2
𝑠𝑋
2  

  

(b) ここで、𝛽2と 𝑠𝑋𝑊1が同じ符号なら、𝛽2   
𝑠𝑋𝑊1
𝑠𝑋
2 > 0となる。しかし、𝛽3   

𝑠𝑋𝑊2
𝑠𝑋
2 が負に

なる可能性もあるため、 𝐸[𝛽̂1]  >   𝛽1なのか、𝐸[𝛽̂1]  <  𝛽1なのかはわからない。偶

然、𝛽2   
𝑠𝑋𝑊1
𝑠𝑋
2 + 𝛽3   

𝑠𝑋𝑊2
𝑠𝑋
2 = 0なら、バイアスは 0 となる。なお、かりに 𝛽2と 𝑠𝑋𝑊1が同

じ符号であり、同様に、𝛽3と 𝑠𝑋𝑊2も同じ符号であるなら、𝐸[𝛽̂1] > 𝛽1となるといえ

る。以上から、欠落変数が複数あるとき、バイアスの方向は、教科書で述べた

ほどは単純ではないことが理解できる。  

 

練習問題 16  

5.8.1 節では、完全な多重共線性は、任意の定数 𝑐0, 𝑐1, … , 𝑐𝐾を用いて、  

𝑐0 + 𝑐1𝑋1 +⋯+ 𝑐𝑗𝑋𝑗 +⋯+ 𝑐𝐾𝑋𝐾 = 0 

と表せることであると定義した。上式は𝑋0を用いると、次のように表現できる

(𝑋0は常に 1 となる )。  

𝑐0𝑋0 + 𝑐1𝑋1 +⋯+ 𝑐𝑗𝑋𝑗 +⋯+ 𝑐𝐾𝑋𝐾 = 0 

ここで、任意の定数 𝑐0, 𝑐1, … , 𝑐𝐾のいずれかは 0 ではない。仮に 𝑐𝑗 ≠ 0とし、 𝑐𝑗で上

式の両辺を割ると、次のようになる。  
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𝑐0
𝑐𝑗
𝑋0 +

𝑐1
𝑐𝑗
𝑋1 +⋯+ 𝑋𝑗 +⋯+

𝑐𝐾
𝑐𝑗
𝑋𝐾 = 0 

これを𝑋𝑗について解くと、  

𝑋𝑗 = −
𝑐0
𝑐𝑗
𝑋0 −

𝑐1
𝑐𝑗
𝑋1 −⋯−

𝑐𝐾
𝑐𝑗
𝑋𝐾 

𝑋𝑗 = 𝑐0
∗𝑋0 + 𝑐1

∗𝑋1 +⋯+ 𝑐𝐾
∗𝑋𝐾 

となる (ただし、 𝑐𝑖
∗ = −𝑐𝑖/𝑐𝑗と定義した )。以上から、𝑋𝑗は、𝑋𝑗以外の説明変数の

線形関数となることがわかる。  

 

練習問題 17  

仮定により、新薬は血圧を下げることで症状を緩和させる (これは間接経路

になる )。それ以外にも、血圧を経由しない直接的な効果があるかもしれない

(これは直接経路になる )。しかし、投与後に測定した血圧を説明変数に含める

と、新薬ダミーの係数は直接経路による効果だけとなり、新薬の中間経路が新

薬の効果から除外される。  

 

                 

 

 

 

 

 

 

 仮に、新薬の投与前に測定した血圧の情報があったとしよう。投与前の血圧

が、症状と関係している可能性は否定できない (下図参照 )。また、投与前に測

定した血圧は、新薬の影響を受けていないため、説明変数として含めるべき変

数である。つまり、被説明変数を症状とし、説明変数は新薬ダミー (投与した

ら 1、そうでないと 0)と血圧 (投与前 )とするのが適当である。ここで血圧は投

与前であることに注意してほしい。  

 

新薬𝑋𝑖 

症状𝑌𝑖 

投与後の血圧

𝑊2𝑖 

中間経路  

直接経路  
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自分の関心のあるデータを分析する際は、上図のような変数間の相互関係を

考えることをお勧めする。こうした作業をすることで、悪いコントロールを避

けることができるだろう。  

  

新薬𝑋𝑖 

症状𝑌𝑖 

投与後の血圧

𝑊2𝑖 

中間経路  

直接経路  投与前の血圧  
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第 6 章の答え  

練習問題 1   

 ここで推定式は次のようになる。  

𝑌̂𝑖 = 20 − 5𝑋1𝑖 + 10𝑋2𝑖 + 5𝑋1𝑖𝑋2𝑖 

ここで、𝑋1𝑖は女性ダミー、𝑋2𝑖は大卒ダミーである。  

(a)  高卒男性なら、𝑋1𝑖 = 𝑋2𝑖 = 0となるため、交差項𝑋1𝑖𝑋2𝑖も 0 となる。よって、高

卒男性の所得は 𝑌̂𝑖 = 20万円である。高卒女性なら、𝑋1𝑖 = 1、𝑋2𝑖 = 0となるため、

交差項𝑋1𝑖𝑋2𝑖は 0 となる。よって、高卒女性の所得は 𝑌̂𝑖 = 20 − 5 = 15である。

以上より、  

高卒男性の所得 −高卒女性の所得 = 20 − 15 = 5 

(b)  大卒男性なら、𝑋1𝑖 = 0、𝑋2𝑖 = 1となるため、交差項𝑋1𝑖𝑋2𝑖は 0 となる。よって、

大卒男性の所得は 𝑌̂𝑖 = 20 + 10 = 30である。大卒女性なら、𝑋1𝑖 = 1、𝑋2𝑖 = 1とな

るため、交差項𝑋1𝑖𝑋2𝑖は 1 となる。よって、大卒女性の所得は 𝑌̂𝑖 = 20 − 5 + 10 +

5 = 30である。  

大卒男性の所得 −大卒女性の所得 = 30 − 30 = 0 

 

練習問題 2  

5.7.3 節では、決定係数は被説明変数を変えると異なる意味を持つため、その

値の相互比較には意味がないことを学習した。本問題では、 2 つのモデルは異

なる被説明変数であるため、決定係数による相互比較はできない。この場合、

経済理論や t 値などを参考にしながら、定式化を決めることになる。  

 

練習問題 3  

下図では、図 6-1 を再掲載している。実線は  

𝑌𝑡̂ = 53.04 − 2.127𝑋1𝑡 + 0.064𝑋1𝑡
2  

であり、これをみると、約 17 度で電力需要が最小になっていることがわかる。 

正確な気温を求めるため、  

𝑌𝑡̂ = 53.04 − 2.127𝑋1𝑡 + 0.064𝑋1𝑡
2  

を気温𝑋1𝑡で偏微分して 0 と置く (最小化問題の求め方は、巻末付録 B の B.3 節

参照 )。  
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𝜕(53.04 − 2.127𝑋1𝑡 + 0.064𝑋1𝑡
2 )

𝜕𝑋1𝑡
= −2.127 + 2 × 0.064𝑋1𝑡 = 0 

これを気温𝑋1𝑡について解くと、電力需要を最も低くする気温が得られる。  

𝑋1𝑡 =
2.127

2 × 0.064
= 16.617 

 

 

練習問題 4  

 線形回帰モデルに変換できるのは (b)のみである。 (b)では、𝑋2𝑖 = 𝑋𝑖
2、𝑋3𝑖 = 𝑋𝑖

3

と定義すれば、線形回帰モデルになる。  

(a)式はパラメータに関して線形ではなく、また、対数をとっても線形に変換

できない。  

(c)式は、誤差項が和の形で含まれており、対数をとっても線形にならない。

仮にモデルを積の形に変更すれば、  

𝑄𝑖 = 𝐴𝐾𝑖
𝛽1𝐿𝑖

𝛽2𝑢𝑖
∗ 

両辺の対数をとることで、線形回帰モデルに変換できる。  

ln(𝑄𝑖)⏟  
=𝑌𝑖

= ln(𝐴)⏟  
=𝛼

+ 𝛽1 ln (𝐾𝑖)⏟  
=𝑋1𝑖

+ 𝛽2 ln (𝐿𝑖)⏟  
=𝑋2𝑖

+ ln (𝑢𝑖
∗)⏟  

=𝑢𝑖

 

 

練習問題 5  

(a)  制約𝛽1 = 2𝛽2を書き換えた𝛽2 = 𝛽1/2を代入すると、  
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𝑌𝑖 = 𝛼 + 𝛽1𝑋1𝑖 +
𝛽1
2
𝑋2𝑖 + 𝑢𝑖 

= 𝛼 + 𝛽1 (𝑋1𝑖 +
𝑋2𝑖
2
)

⏟      
=𝑋𝑖

+ 𝑢𝑖 

となる。ここで、説明変数𝑋𝑖を  

𝑋𝑖 = 𝑋1𝑖 +
𝑋2𝑖
2

 

と定義して、新しいモデルを  

𝑌𝑖 = 𝛼 + 𝛽1𝑋𝑖 + 𝑢𝑖 

とすれば、制約 (𝛽2 = 𝛽1/2)を課した推定ができる。  

 

(b)  制約𝛼 + 𝛽1 + 𝛽2 = 1を書き換えた𝛽2 = 1 −  𝛼 − 𝛽1をモデルに代入すると、  

𝑌𝑖 = 𝛼 + 𝛽1𝑋1𝑖 + (1 −  𝛼 − 𝛽1)𝑋2𝑖 + 𝑢𝑖 

となる。これを書き換えると、  

𝑌𝑖 −𝑋2𝑖 = 𝛼(1 − 𝑋2𝑖) + 𝛽1(𝑋1𝑖 − 𝑋2𝑖) + 𝑢𝑖 

となる。ここで、被説明変数を 𝑌𝑖 − 𝑋2𝑖とし、説明変数を (1 − 𝑋2𝑖)と (𝑋1𝑖 − 𝑋2𝑖)とす  

れば、𝛼と𝛽1を推定できる 12。  

 

練習問題 6  

(a)  𝑋が 1%変化すると、𝑌は𝛽 × 0.01単位分変化する  

(b)  𝑋が 1%変化すると、𝑌は𝛽%分変化する  

(c)  𝑋が 1 単位変化すると、𝑌は 100 × 𝛽%分変化する  

詳細は 6.3 節と補足を参照されたい。  

 

練習問題 7  

AIC の値は 𝑝 = 3で最小となるため、 𝑝̂ = 3となる。  

 

 
12 モデル 𝑌𝑖 − 𝑋2𝑖 = 𝛼(1 − 𝑋2𝑖) + 𝛽1(𝑋1𝑖 − 𝑋2𝑖) + 𝑢𝑖では、説明変数は (1 − 𝑋2𝑖)と (𝑋1𝑖 − 𝑋2𝑖))であり、これらの係

数は 𝛼と 𝛽1となる。このモデルに定数項は存在しないこと。つまり、モデルを推定する際、定数項が

ない回帰モデルとして、推定する必要がある (3 章練習問題 12 では、定数項がない回帰モデルの推

定方法が書かれているので参考にしてほしい )。  
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練習問題 8  

教科書の式展開では、  

ln (1 +
𝑋 ′ − 𝑋

𝑋
) ≈

𝑋 ′ − 𝑋

𝑋
 

という関係を用いたが、これは変化率 (𝑋′ − 𝑋)/𝑋が小さいときのみ成立する。こ

こで、変化率 (𝑋′ − 𝑋)/𝑋は 50%と大きいため、  

ln (1 +
𝑋 ′ − 𝑋

𝑋
) = ln(1.5) = 0.4054 

となり、上記は 0.5 と大きく異なる。  

 近似を使わないで、変化量 𝑌′ − 𝑌を評価しよう。単純化のため、𝑢 = 0とすると、  

𝑌′ − 𝑌 = (𝛼 + 𝛽 ln(𝑋 ′)) − (𝛼 + 𝛽 ln(𝑋)) = 𝛽 (ln(𝑋′) − ln(𝑋)) = 𝛽ln(1 +
𝑋 ′ − 𝑋

𝑋
) 

となる。ここで、  (𝑋′ − 𝑋)/𝑋 = 0.5とすると、  

𝑌′ − 𝑌 = 𝛽ln(1.5) = 𝛽 × 0.4054 

となり、𝑌は𝛽 × 0.4054だけ変化するといえる ( ln(1.5) = 0.4054)。この例からも明ら

かなとおり、変化率が大きいときは、近似関係が使えない。  

 

練習問題 9  

単純化のため、𝑢 = 0とする。このとき、モデルは ln(𝑌) = 𝛼 + 𝛽𝑋となり、  

𝑌 = 𝑒𝛼+𝛽𝑋 

を意味している。つまり、𝑋が𝑋 ′に変化すると、𝑌の変化率は、  

𝑌′ − 𝑌

𝑌
=
𝑒𝛼+𝛽𝑋

′
− 𝑒𝛼+𝛽𝑋

𝑒𝛼+𝛽𝑋
= 𝑒𝛽(𝑋

′−𝑋) − 1 

となる。𝑋の 1 単位の変化なら、 𝑌の変化率は次のようになる。  

𝑌′ − 𝑌

𝑌
= 𝑒𝛽(𝑋

′−𝑋) − 1 = 𝑒𝛽 − 1 

 

練習問題 10  

ラグの長さを 𝑝 = 3とすると、分布ラグモデルは、  

𝑌𝑡 = 𝛼 + 𝛽0𝑋𝑡 + 𝛽1𝑋𝑡−1 + 𝛽2𝑋𝑡−2 + 𝛽3𝑋𝑡−3 + 𝑢𝑡 
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となる。ここで、右辺に 𝛽0(𝑋𝑡−1 − 𝑋𝑡−1)を足すと、  

𝑌𝑡 = 𝛼 + 𝛽0(𝑋𝑡 − 𝑋𝑡−1) + (𝛽0 + 𝛽1)𝑋𝑡−1 + 𝛽2𝑋𝑡−2 + 𝛽3𝑋𝑡−3 + 𝑢𝑡 

となる (ここで𝛽0(𝑋𝑡−1 − 𝑋𝑡−1) = 0であり、 0 を足しても等号関係は変わらない )。

さらに、右辺に (𝛽0 + 𝛽1)(𝑋𝑡−2 − 𝑋𝑡−2)を足すと、  

𝑌𝑡 = 𝛼 + 𝛽0(𝑋𝑡 − 𝑋𝑡−1) + (𝛽0 + 𝛽1)(𝑋𝑡−1 − 𝑋𝑡−2) + (𝛽0 + 𝛽1 + 𝛽2)𝑋𝑡−2 + 𝛽3𝑋𝑡−3 + 𝑢𝑡 

となる。最後に、右辺に (𝛽0 + 𝛽1 + 𝛽2)(𝑋𝑡−3 − 𝑋𝑡−3)を足すと、  

𝑌𝑡 = 𝛼 + 𝛽0(𝑋𝑡 − 𝑋𝑡−1) + (𝛽0 + 𝛽1)(𝑋𝑡−1 − 𝑋𝑡−2) + (𝛽0 + 𝛽1 + 𝛽2)(𝑋𝑡−2 − 𝑋𝑡−3)

+ (𝛽0 + 𝛽1 + 𝛽2 + 𝛽3)𝑋𝑡−3 + 𝑢𝑡 

となる。ここで、  

Δ𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1、Δ𝑋𝑡−1 = 𝑋𝑡−1 − 𝑋𝑡−2、Δ𝑋𝑡−2 = 𝑋𝑡−2 − 𝑋𝑡−3 

𝜃0 = 𝛽0,   𝜃1 = 𝛽0 + 𝛽1,    𝜃2 = 𝛽0 + 𝛽1 + 𝛽2,   𝜃3 = 𝛽0 + 𝛽1 + 𝛽2 + 𝛽3 

と定義すれば、上式は次のようになる。  

𝑌𝑡 = 𝛼 + 𝜃0Δ𝑋𝑡 + 𝜃1Δ𝑋𝑡−1 + 𝜃2Δ𝑋𝑡−2 + 𝜃3𝑋𝑡−3 + 𝑢𝑡 

変形したモデルを OLS 推定し、 𝜃ℎの推定値と標準誤差を求めれば、累積動学

乗数の仮説検定や 95%信頼区間の計算が可能となる。横軸を h とし、縦軸を  𝜃ℎ

として図示すれば、 h が変わると累積動学乗数がどのように変化したのかを視

覚的に示すことができる。  

 

練習問題 11  

被説明変数は𝑌𝑖
∗ = 𝑐𝑌𝑌𝑖、説明変数は𝑋𝑖

∗ = 𝑐𝑋𝑋𝑖に変換する。元モデルは次のよう

になる。  

𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 + 𝑢𝑖 

6.6 節で確認した通り、上式の両辺に 𝑐𝑌を掛けると、  

𝑐𝑌𝑌𝑖 = 𝑐𝑌𝛼 + (
𝑐𝑌
𝑐𝑋
𝛽) 𝑐𝑋𝑋𝑖 + 𝑐𝑌𝑢𝑖 

となるため、𝛼∗ = 𝑐𝑌𝛼、𝛽∗ =
𝑐𝑌

𝑐𝑋
𝛽、𝑢𝑖

∗ = 𝑐𝑌𝑢𝑖と定義すると、  

𝑌𝑖
∗ = 𝛼∗ + 𝛽∗𝑋𝑖

∗ + 𝑢𝑖
∗ 

と表現できる。ここで、𝑢𝑖
∗の分散を𝜎∗2と表記すると、𝑢𝑖

∗ = 𝑐𝑌𝑢𝑖より、次のように

なる。  

𝜎∗2 = 𝐸[𝑢𝑖
∗2] = 𝐸[(𝑐𝑌𝑢𝑖)

2] = 𝑐𝑌
2 𝐸[𝑢𝑖

2] = 𝑐𝑌
2𝜎2 
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以下では、スケール変更しても、t 統計量の値は全く影響を受けないことを示

す。まず、OLS 推定量 𝛽̂∗は、次のように書き換えられる。  

𝛽̂∗ =
∑ (𝑋𝑖

∗ − 𝑋̄∗)(𝑌𝑖
∗ − 𝑌̄∗)𝑛

𝑖=1

∑ (𝑋𝑖
∗ − 𝑋̄∗)2𝑛

𝑖=1

 

=
∑ (𝑐𝑋𝑋𝑖 − 𝑐𝑋𝑋̄)(𝑐𝑌𝑌𝑖 − 𝑐𝑌𝑌̄)
𝑛
𝑖=1

∑ (𝑐𝑋𝑋𝑖 − 𝑐𝑋𝑋̄)
2𝑛

𝑖=1

 

=
𝑐𝑋𝑐𝑌

𝑐𝑋
2

∑ (𝑋𝑖 − 𝑋̄)(𝑌𝑖 − 𝑌̄)
𝑛
𝑖=1

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1⏟              

=𝛽̂

=
𝑐𝑌
𝑐𝑋
𝛽̂ 

次に、OLS 推定量 𝛽̂∗の分散は  

𝑠𝛽̂∗
2 =

𝜎∗2

∑ (𝑋𝑖
∗ − 𝑋̄∗)2𝑛

𝑖=1

 

となる。上式に𝜎∗2 = 𝑐𝑌
2𝜎2、𝑋𝑖

∗ = 𝑐𝑋𝑋𝑖、また、  

𝑋̄∗ =
∑ 𝑋𝑖

∗𝑛
𝑖=1

𝑛
=
∑ 𝑐𝑋𝑋𝑖
𝑛
𝑖=1

𝑛
= 𝑐𝑋

∑ 𝑋𝑖
𝑛
𝑖=1

𝑛
= 𝑐𝑋𝑋̄ 

を代入すると、  

𝑠𝛽̂∗
2 =

𝜎∗2

∑ (𝑋𝑖
∗ − 𝑋̄∗)2𝑛

𝑖=1

=
𝑐𝑌
2𝜎2

∑ (𝑐𝑋𝑋𝑖 − 𝑐𝑋𝑋̄)2
𝑛
𝑖=1

=
𝑐𝑌
2

𝑐𝑋
2

𝜎2

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

 

となる。以上から、 t 統計量は次のようになる。  

𝛽̂∗ − 𝛽∗

√𝑠𝛽̂∗
2

=

𝑐𝑌
𝑐𝑋
𝛽̂ −

𝑐𝑌
𝑐𝑋
𝛽

√
𝑐𝑌
2

𝑐𝑋
2

𝜎2

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

=

𝑐𝑌
𝑐𝑋
(𝛽̂ − 𝛽)

𝑐𝑌
𝑐𝑋
√

𝜎2

∑ (𝑋𝑖 − 𝑋̄)
2𝑛

𝑖=1

=
𝛽̂ − 𝛽

√
𝜎2

∑ (𝑋𝑖 − 𝑋̄)
2𝑛

𝑖=1

=
𝛽̂ − 𝛽

√𝑠𝛽̂
2

 

スケール変更をしても、 t 統計量は影響を受けないことが確認できた。  

 

練習問題 12  

(a)  対数の性質から、 𝑌𝑖
∗ = 𝑐𝑌𝑌𝑖と𝑋𝑖

∗ = 𝑐𝑋𝑋𝑖の対数は、  

ln(𝑌𝑖
∗) = ln(𝑐𝑌) + ln(𝑌𝑖)、 ln(𝑋𝑖

∗) = ln(𝑐𝑋) + ln (𝑋𝑖) 

となる。対数対数モデルである  

ln (𝑌𝑖) =  𝛼 + 𝛽ln (𝑋𝑖) + 𝑢𝑖 

の両辺に ln(𝑐𝑌)を足して、右辺に𝛽(ln (𝑐𝑋) − ln (𝑐𝑋))を足すと、  

ln(𝑐𝑌) + ln(𝑌𝑖) = 𝛼 + ln(𝑐𝑌) + 𝛽(ln (𝑐𝑋) − ln (𝑐𝑋)) + 𝛽 ln(𝑋𝑖) + 𝑢𝑖 
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= (𝛼 + ln(𝑐𝑌) − 𝛽ln (𝑐𝑋)) + 𝛽(ln (𝑐𝑋) + ln(𝑋𝑖)) + 𝑢𝑖 

となる (𝛽(ln (𝑐𝑋) − ln (𝑐𝑋)) = 0であるため、右辺に足しても等号関係は変わらない )。

ここで、  

ln(𝑌𝑖
∗) = ln(𝑐𝑌) + ln(𝑌𝑖)、 ln(𝑋𝑖

∗) = ln(𝑐𝑋) + ln (𝑋𝑖) 

という関係に注意すると、上式は次のように書き換えることができる。  

ln(𝑌𝑖
∗) = (𝛼 + ln(𝑐𝑌) − 𝛽ln (𝑐𝑋)) + 𝛽 ln(𝑋𝑖

∗) + 𝑢𝑖 

また、𝛼∗ =  𝛼 + ln(𝑐𝑌) − 𝛽ln (𝑐𝑋)と定義すると、次のようになる。  

ln(𝑌𝑖
∗) =𝛼∗ + 𝛽 ln(𝑋𝑖

∗) + 𝑢𝑖 

以上から、こうしたスケール変更では、説明変数の係数は影響を受けていな

いが、定数項は変化したことがわかる。  

 

(b)  線形対数モデルである  

𝑌𝑖 =  𝛼 + 𝛽ln (𝑋𝑖) + 𝑢𝑖 

の右辺に𝛽(ln (𝑐𝑋) − ln (𝑐𝑋))を足すと、  

𝑌𝑖 =  𝛼 + 𝛽(ln (𝑐𝑋) − ln (𝑐𝑋)) + 𝛽ln (𝑋𝑖) + 𝑢𝑖 

     =  (𝛼 − 𝛽ln (𝑐𝑋)) + 𝛽(ln (𝑐𝑋) + ln(𝑋𝑖)) + 𝑢𝑖 

となり、さらに 𝑐𝑌を両辺に掛けると、  

𝑐𝑌𝑌𝑖 = 𝑐𝑦(𝛼 − 𝛽ln (𝑐𝑥)) + 𝑐𝑦𝛽(ln (𝑐𝑥) + ln(𝑋𝑖)) + 𝑐𝑦𝑢𝑖 

となる。ここで、𝑋𝑖
∗ = 𝑐𝑋𝑋𝑖の対数は、ln(𝑋𝑖

∗) = ln(𝑐𝑋) + ln (𝑋𝑖)となることに注意する

と、上式は、次のよう表現できる。  

𝑌𝑖
∗ = 𝛼∗ + 𝛽∗ln (𝑋𝑖

∗) + 𝑢𝑖
∗ 

ただし、𝛼∗ = 𝑐𝑌(𝛼 − 𝛽ln (𝑐𝑋))、𝛽∗ = 𝑐𝑌𝛽、𝑢𝑖
∗ = 𝑐𝑌𝑢𝑖とした。  

以上から、こうしたスケール変更によって、定数項と係数はともに変化した

ことがわかる。  

 

(c)  対数線形モデルである  

ln (𝑌𝑖) =  𝛼 + 𝛽𝑋𝑖 + 𝑢𝑖 

の両辺に ln(𝑐𝑦)を足してから展開すると、  

ln(𝑐𝑌) + ln(𝑌𝑖) =  𝛼 + ln(𝑐𝑌) + 𝛽𝑋𝑖 + 𝑢𝑖 
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= 𝛼 + ln(𝑐𝑌) +
𝛽

𝑐𝑋
𝑐𝑋𝑋𝑖 + 𝑢𝑖 

となる。ここで、𝑌𝑖
∗ = 𝑐𝑌𝑌𝑖、𝑋𝑖

∗ = 𝑐𝑋𝑋𝑖であることに注意すると、上式は次のよう

に表現できる ( ln(𝑌𝑖
∗) = ln(𝑐𝑌) + ln(𝑌𝑖)に注意 )。  

ln (𝑌𝑖
∗) =  𝛼∗ + 𝛽∗𝑋𝑖

∗ + 𝑢𝑖 

ただし、𝛼∗ = 𝛼 + ln(𝑐𝑌)、𝛽∗ =
𝛽

𝑐𝑋
とした。  

 以上より、こうしたスケール変更によって、定数項と係数はともに変化した

ことになる。  

 

練習問題 1513  

(a)  これは大まかには正しい記述だが、厳密には、正確ではない。この点を  

議論していく。対数の平均は、次のように表現できる。  

1

𝑛
∑ ln (𝑌𝑖)

𝑛

𝑖=1
= ln ((𝑌1 × 𝑌2 ×…× 𝑌𝑛)

1/𝑛) 

つまり、対数の平均は、 𝑌𝑖の幾何平均の対数となる。  

 男性の所得を𝑋𝑖とし、女性の所得を 𝑍𝑖としよう (男性は計𝑛1人、女性は計 𝑛2人い

るとする )。このとき、男性の対数平均から女性の対数平均を引くと、次のよう

に展開できる。  

1

𝑛1
∑ ln (𝑋𝑖)

𝑛1

𝑖=1
−
1

𝑛2
∑ ln (𝑍𝑖)

𝑛2

𝑖=1
= ln((𝑋1 × 𝑋2 ×…× 𝑋𝑛1)

1
𝑛1) − ln ((𝑍1 × 𝑍2 ×…× 𝑍𝑛2)

1
𝑛2) 

 = ln(
(𝑋1 × 𝑋2 ×…× 𝑋𝑛1)

1
𝑛1

(𝑍1 × 𝑍2 ×…× 𝑍𝑛2)
1
𝑛2

) 

                                           = ln(1 +
(𝑋1 × 𝑋2 ×…× 𝑋𝑛1)

1
𝑛1 − (𝑍1 × 𝑍2 ×…× 𝑍𝑛2)

1
𝑛2

(𝑍1 × 𝑍2 ×…× 𝑍𝑛2)
1
𝑛2

) 

 
13 本問題は Hansen『 Econometr ics』を参考に作成した。  
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                           ≈
(𝑋1 × 𝑋2 ×…× 𝑋𝑛1)

1
𝑛1 − (𝑍1 × 𝑍2 ×…× 𝑍𝑛2)

1
𝑛2

(𝑍1 × 𝑍2 ×…× 𝑍𝑛2)
1
𝑛2

 

最後の近似は、𝜀が小さいとき、ln (1 + 𝜀) ≈  𝜀となることを用いた (巻末付録 A.3.2

節参照 )。  

 この例では、対数平均の差は 0.3(=6.2－5.9)であることから、男性所得は女性

所得より幾何平均で 30%高いといえる。男性の所得は女性より平均で 30%と高

いといって誤りではないが、厳密には、平均は幾何平均であることを覚えてい

てほしい。  

(b)  対数の平均を次のように定義する。  

ln (𝑌)̅̅ ̅̅ ̅̅ ̅̅ =
1

𝑛
∑ ln (𝑌𝑖)

𝑛

𝑖=1
 

OLS 推定量 𝛼̂の公式から (P32 参照 )、  

ln (𝑌)̅̅ ̅̅ ̅̅ ̅̅ = 𝛼̂ + 𝛽̂𝑋̄ 

という関係が成立する。ここで、 𝑋̄が 1 年増えると、 ln (𝑌)̅̅ ̅̅ ̅̅ ̅̅は ln (𝑌)̅̅ ̅̅ ̅̅ ̅′ に変化する。 

ln (𝑌)̅̅ ̅̅ ̅̅ ̅′ = 𝛼̂ + 𝛽̂(𝑋̄ + 1) 

よって、 ln (𝑌)̅̅ ̅̅ ̅̅ ̅̅から ln (𝑌)̅̅ ̅̅ ̅̅ ̅′  の変化は 𝛽̂となる。  

ln (𝑌)̅̅ ̅̅ ̅̅ ̅′  − ln(𝑌)̅̅ ̅̅ ̅̅ = 𝛽̂ 

 この結果から、教育年数が 1 年増えると、所得は幾何平均でみて 10%増える

といえる。教育年数が 1 年増えると、所得は平均 10%増えるといって間違いで

はないが、厳密には、平均は幾何平均であることを覚えておいてほしい。  

 

練習問題 16 

(a)  これが正しいことは、𝑌𝑖 = 𝑒
𝛼+𝛽𝑋𝑖𝑒𝑢𝑖の対数をとれば明らかである。  

(b) 一般的には、 𝐸[𝑒𝑢𝑖] = 1とはならない (𝐸[𝑒𝑢𝑖] ≠ 𝑒𝐸[𝑢𝑖] = 𝑒0 = 1)。たとえば、 𝑢𝑖が

𝑁(0, 𝜎2)なら、 𝐸[𝑒𝑢𝑖] = 𝑒𝜎
2/2となる 14。 𝜎2 = 0なら 𝑒𝜎

2/2 = 1となるが、一般的には、

𝜎2 > 0から 𝑒𝜎
2/2 > 1となる (下のボックスを参照 )。これは次の関係式が成立する

 
14 『入門  実践する統計学』のサポートウェブサイトにある追加資料「積率母関数と中心極限定

理」の例 2 では、 𝑋～ N (𝜇,  𝜎2)なら 𝐸[𝑒𝑡𝑋] = 𝑒𝜇𝑡+
𝜎2𝑡2

2 を証明している。ここで、 𝑡 = 1、 𝜇 = 0とすると、

𝐸[𝑒𝑋] = 𝑒
𝜎2

2 となる。  
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ことを意味する。  

𝐸[𝑌𝑖] > 𝑒
𝛼+𝛽𝑋𝑖 

この結果から、 𝐸[𝑒𝑢𝑖]を無視すると、期待値 𝐸[𝑌𝑖]を過小評価することがわかる。 

 

𝑬[𝒆𝒖] > 𝟏となる理由  

 下図では、𝑢が -3 から+3 までの区間について、 𝑒𝑢を図示している。ここ

で、u が -2 もしくは+2 を確率 1/2 でとる確率変数とする。このとき、𝑒−2は

点 a、𝑒2は点 b となる。2 点を直線でつなげた中点が𝐸[𝑒𝑢]である (期待値は取

りうる値に確率で加重平均をとったものであることに注意してほしい )。こ

れは 𝑒𝐸[𝑢] = 𝑒0 = 1よりも明らかに大きな値となる。なお、𝐸[𝑒𝑢]は u の変動が

大きくなるほど大きな値となる。これは、u が -3 もしくは+3 を確率 1/2 で

とる確率変数としたときを考えるとわかりやすい 15。  

図  𝒆𝒖とその期待値  

 

 

(c) ここでは 4 つの方法を挙げたい (ここでは誤差項の分散は一定、つまり、

均一分散を仮定している )。    

第 1 の方法は、 𝑒𝛼+𝛽𝑋𝑖として計算する方法である。この方法では、𝐸[𝑒𝑢𝑖]を考

慮していないため、𝑌𝑖を過小推定することになる。しかし、これは最も簡単な方

 
15 ここでは u は 2 点しかとらないとしたが、ジェンセンの不等式 (Jensen ’s inequali ty )を用い

て、どのような確率変数であっても 𝐸[𝑒𝑢]は 1 以上になることを示すことができる。ジェンセンの

不等式は、 Bruce  Hansen の「 Probabi li ty  and Stat istics for  Economists」を参照してくださ

い。  
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法となる。  

第 2 の方法は、𝜎2の推定量 𝑠2 =
1

𝑛−2
∑ 𝑢̂𝑖

2𝑛
𝑖=1 を計算し、 𝑒𝑠

2/2として推定する方法

である。残差を 𝑢̂𝑖 = ln(𝑌𝑖) − 𝛼̂ − 𝛽̂𝑋𝑖とし、それを用いて 𝑠2ひいては 𝑒𝑠
2/2を求める。

これは 𝑢𝑖が𝑁(0, 𝜎2)なら良い方法であるが、正規分布の仮定が誤っていたら問題

となる。  

 第 3 の方法は、スミアリング推定量 (smearing estimate)と呼ばれる方法であ

る。残差 𝑢̂𝑖 = ln(𝑌𝑖) − 𝛼̂ − 𝛽̂𝑋𝑖を計算し、𝐸[𝑒𝑢𝑖]を 𝑒𝑢̂𝑖の平均として推定する。  

1

𝑛
∑𝑒𝑢̂𝑖

𝑛

𝑖=1

 

これは誤差項 𝑢𝑖の分布が正規分布でなかったとしても、一致性を満たした推定

方法となる。  

 第 4 の方法は、定数項がないとした回帰分析を用いる方法である (定数項なし

の回帰分析は 3 章練習問題 12 参照 )。𝑚𝑖 = 𝑒
𝛼+𝛽𝑋𝑖と定義すると、  

𝑌𝑖 = 𝑒
𝛼+𝛽𝑋𝑖𝑒𝑢𝑖 = 𝑚𝑖𝑒

𝑢𝑖 

と表現できる。そして、 𝐸[𝑒𝑢𝑖] = 𝜃と定義すると、期待値は次のように表現でき

る。  

𝐸[𝑌𝑖] = 𝑚𝑖𝐸[𝑒
𝑢𝑖] = 𝜃𝑚𝑖 

この結果から、被説明変数 𝑌𝑖とし説明変数𝑚𝑖とした OLS 推定 (定数項がない )を

すれば、𝜃が推定できる。ただし、𝑚𝑖が未知であるため、対数線形モデルからパ

ラメータを推定し、それらを用いて 𝑚̂𝑖 = 𝑒
𝛼̂+𝛽̂𝑋𝑖を計算する。そして、被説明変数

𝑌𝑖とし説明変数 𝑚̂𝑖とした OLS 推定 (定数項なし )をすれば 𝜃が求められる。  

𝜃 =
∑ 𝑚̂𝑖𝑌𝑖
𝑛
𝑖=1

∑ 𝑚̂𝑖
2𝑛

𝑖=1

 

 第 1 の方法は、期待値を過小推定することになるが、最も簡単な方法ではあ

る。第 2 の方法は、正規分布の仮定に依存しており、あまり良い方法とはいえ

ない。第 3 もしくは第 4 の方法は分布の仮定が不要となる。なお、第 4 の方法

では、𝐸[𝑒𝑢𝑖]は 1 より小さな値として推定されることがあり、その場合、第 3 の

方法を用いるとよい。  

 最後に、この問題で指摘した内容は対数対数モデルにも当てはまる。つまり、

モデルが ln (𝑌𝑖) =  𝛼 + 𝛽ln (𝑋𝑖) + 𝑢𝑖から 𝑌𝑖 = 𝑒
𝛼𝑋𝑖

𝛽
𝑒𝑢𝑖となり、期待値は次のようにな
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る。  

𝐸[𝑌𝑖] = 𝑒
𝛼𝑋𝑖

𝛽
𝐸[𝑒𝑢𝑖] 

ここで𝐸[𝑒𝑢𝑖] > 1となるため、対数対数モデルを OLS 推定し残差を求めて、そこ

から𝐸[𝑒𝑢𝑖]を推定する必要がある。その方法は、対数線形モデルと同じである。 

 

練習問題 17  

(a)  この式は、そのままでは、パラメータに関して線形なモデルに変形はできな

い。両辺の対数をとると、  

ln (Trade𝑖𝑗) = ln(𝐴
𝐺𝐷𝑃𝑖

𝛽1𝐺𝐷𝑃𝑗
𝛽2

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗
𝛽3

+ 𝑢𝑖𝑗) 

 となるが、右辺を線形化することはできない。右辺を線形化できるのは誤差

項𝑢𝑖𝑗 = 0のときだけである。一般に、重力モデルは平均的に成立している式で

あり、誤差項が 0 と仮定はできない。  

本当のモデルは、次のように展開できる。  

Trade𝑖𝑗 = 𝐴
𝐺𝐷𝑃𝑖

𝛽1𝐺𝐷𝑃𝑗
𝛽2

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗
𝛽3

+ 𝑢𝑖𝑗 

                                        = 𝐴
𝐺𝐷𝑃𝑖

𝛽1𝐺𝐷𝑃𝑗
𝛽2

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗
𝛽3
(1 +

1

𝐴

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗
𝛽3

𝐺𝐷𝑃𝑖
𝛽1𝐺𝐷𝑃𝑗

𝛽2
𝑢𝑖𝑗) 

=  𝐴
𝐺𝐷𝑃𝑖

𝛽1𝐺𝐷𝑃𝑗
𝛽2

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗
𝛽3
𝜂𝑖𝑗 

両辺の対数をとると、対数対数モデルが得られる。  

 

(b)  誤差項 ln (𝜂𝑖𝑗)は、説明変数 (両国の GDP や距離 )に依存しているため、説明変

数と誤差項は相関する。8.3 節で説明するが、これは内生性 (説明変数と誤差
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項が相関する )といわれる現象であり、OLS 推定にバイアスを生じさせる 1617。 

(c)  貿易額は 0 をとることが多く、その場合、貿易額の対数である ln (Trade𝑖𝑗)が

定義できない (0 の対数をとれないことは 6 章補足を参照 )。このとき、貿易

額の対数は欠損値として扱われ、データから除外される。貿易額が 0 をとる

のは、両国間で貿易が存在しないケース、貿易額が小さすぎて 0 に丸められ

たケースが該当する。貿易額が 0 となるのは、貿易額が小さな国で頻繁に生

じる現象であり、これらの国を除くとセレクションバイアスが生じる可能性

がある。  

 

貿易の重力モデルの推定に関心がある読者は、サポートウェブサイトの追加

資料「貿易の重力モデル」、「カウントデータ」を参照してほしい。なお、重力

モデルは、ポアソン回帰を用いるため、カウントデータの推定方法を理解する

必要がある。  

 

 

16 特殊ケースでは内生性が生じないことを説明する。これは誤差項が  

𝑢𝑖𝑗 =  𝐴
𝐺𝐷𝑃𝑖

𝛽1𝐺𝐷𝑃𝑗
𝛽2

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗
𝛽3
𝑣𝑖𝑗  

とし、𝑣𝑖𝑗が説明変数と独立な場合になる。このとき、𝜂𝑖𝑗 = (1 + 𝑣𝑖𝑗)となり、説明変数と ln (𝜂𝑖𝑗)は無相関

になる。しかし、これは特殊なケースであり、一般には成立しない。  

17 仮に真のモデルが  

Trade𝑖𝑗 = 𝐴
𝐺𝐷𝑃𝑖

𝛽1𝐺𝐷𝑃𝑗
𝛽2

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗
𝛽3
𝑢𝑖𝑗 

であり、 𝑢𝑖𝑗が説明変数と独立なら、両辺の対数をとった線形モデルを OLS 推定しても問題がない。

誤差項の置き方は、一見すると小さな問題にみえるが、推定結果に大きな違いを生じさせる。  
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第 7 章の答え  

練習問題 1  

 7.1.2 節で述べた通り、個別の t 検定で結合仮説を検定すると有意水準を適切

に設定することが困難となる。このため、 F 検定を用いて同時検定をすること

が望ましい。  

 

練習問題 2  

(a)  帰無仮説𝐻0と対立仮説𝐻1は、それぞれ次のように設定すればよい。  

𝐻0: 𝛽2 = 0、𝛽3 = 0 

𝐻1: 帰無仮説𝐻0は誤り  

ここで、除外制約の数は計 𝑞 = 2となる。  

 

(b)  帰無仮説𝐻0が正しいもとで、モデルは次のようになる。  

𝑌 = 𝛼 + 𝛽1𝑋1 + 𝑢 

 

(c)  𝑛 = 50、𝐾 = 3、𝑞 = 2、 𝑆𝑆𝑅0 = 150、 𝑆𝑆𝑅1 = 100を F 統計量の式に代入すると、 

F 値は次のようになる。  

𝐹 =
(𝑆𝑆𝑅0 − 𝑆𝑆𝑅1)/𝑞

𝑆𝑆𝑅1/(𝑛 − 𝐾 − 1)
=

(150 − 100)/2

100/(50 − 3 − 1)
= 23 × 0.5 = 11.5 

帰無仮説𝐻0が正しいもとで、F 統計量は F 分布 (自由度 2、46)に従う。このと

き、有意水準 5%の臨界値は、Excel で「 =FINV(0.05,2,46)」と入力すれば 3.199582

と分かる。F 値は 11.5 であり、これは臨界値 3.199582 を上回るため、帰無仮説

𝐻0は棄却される。つまり、「説明変数𝑋2と𝑋3に説明力がない」とはいえない。  

 

練習問題 3  

様々な原因が考えられるが、ここでは 1 つの可能性を考える。下図の実線は、

𝑋と 𝑌の真の関係を表している。前半期間と後半期間とも、𝑋の係数は負である

が (𝛽 < 0、𝛽′ < 0)、後半期間において定数項は小さくなっている (𝛼′ < 𝛼)。このと

き、パラメータに生じた構造変化を考慮しないで、すべてのデータをまとめて

推定すると、回帰直線は点線のようになり、回帰直線の傾きは正となる。  
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この例から、構造変化を考慮しないでモデルを推定してしまうと、推定結果

にバイアスを生じさせることが理解できる。  

 

練習問題 4  

男女のモデルを統合した次式を考える。  

𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 + 𝜃0𝐹𝑖 + 𝜃1𝐹𝑖𝑋𝑖 + 𝑢𝑖 

ここで、𝐹𝑖は女性ダミーであり、パラメータ 𝜃0と 𝜃1は次のように定義される。  

𝜃0 = 𝛼
′ − 𝛼、 𝜃1 = 𝛽

′ − 𝛽 

たとえば、 𝑖が男性なら𝐹𝑖 = 𝐹𝑖𝑋𝑖 = 0となるので、男性のモデルは、  

𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 + 𝑢𝑖 

となる。 𝑖が女性なら𝐹𝑖 = 1、𝐹𝑖𝑋𝑖 = 𝑋𝑖となるので、女性のモデルは、  

𝑌𝑖 = 𝛼
′ + 𝛽′𝑋𝑖 + 𝑢𝑖 

となる。ここで、帰無仮説と対立仮説を次のように設定し F 検定をすれば、男

女でパラメータが同じであるかを検証できる。  

𝐻0: 𝜃0 = 0, 𝜃1 = 0 

𝐻1: 𝐻0は誤りである  

練習問題 5  

対立仮説𝐻1が正しいとしたモデルでは、残差 2 乗和は 𝑆𝑆𝑅1 = ∑ 𝑢̂1𝑖
2𝑛

𝑖=1 となる。

また、決定係数𝑅1
2は、次のようになる。  

𝑅1
2 = 1 −

𝑆𝑆𝑅1
∑ (𝑌𝑖 − 𝑌̄)2
𝑛
𝑖=1

 

後半期間：𝑌𝑡 = 𝛼
′ + 𝛽′𝑋𝑡 + 𝑢𝑡 

前半期間：𝑌𝑡 = 𝛼 + 𝛽𝑋𝑡 + 𝑢𝑡 

𝑋 

𝑌 

回帰直線  
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つまり、残差 2 乗和 𝑆𝑆𝑅1は、決定係数𝑅1
2を用いて、次のように表現できる。  

𝑆𝑆𝑅1 = (1 − 𝑅1
2) ∑(𝑌𝑖 − 𝑌̄)

2

𝑛

𝑖=1

 

同様に、帰無仮説𝐻0が正しいとしたモデルからの残差 2 乗和は次のようになる。 

𝑆𝑆𝑅0 = (1 − 𝑅0
2) ∑(𝑌𝑖 − 𝑌̄)

2

𝑛

𝑖=1

 

これらを F 統計量の式に代入すると、次のようになる。  

𝐹 =
(𝑆𝑆𝑅0 − 𝑆𝑆𝑅1)/𝑞

𝑆𝑆𝑅1/(𝑛 − 𝐾 − 1)
=
((1 − 𝑅0

2) − (1 − 𝑅1
2)) ∑ (𝑌𝑖 − 𝑌̄)

2𝑛
𝑖=1 /𝑞

(1 − 𝑅1
2) ∑ (𝑌𝑖 − 𝑌̄)2

𝑛
𝑖=1 /(𝑛 − 𝐾 − 1)

=
(𝑅1

2 − 𝑅0
2)/𝑞

(1 − 𝑅1
2)/(𝑛 − 𝐾 − 1)

 

つまり、対立仮説𝐻1が正しいとしたモデルからの決定係数 𝑅1
2が、帰無仮説𝐻0が

正しいとしたモデルからの決定係数 𝑅0
2より高くなると、F 統計量の値は大きく

なる。  

 

練習問題 6  

帰無仮説𝐻0が正しいなら、モデルは、次のようになる。  

𝑌𝑖 = 𝛼 + 𝑢𝑖 

このとき、OLS 推定量は 𝛼̂ = 𝑌̅となるため、残差は 𝑢̂0𝑖 = 𝑌𝑖 − 𝛼̂ = 𝑌𝑖 − 𝑌̅となる (2 章

の練習問題 7 参照 )。つまり、残差 2 乗和 𝑆𝑆𝑅0は、𝑌𝑖の偏差 2 乗和となる。  

𝑆𝑆𝑅0 =∑𝑢̂0𝑖
2

𝑛

𝑖=1

=∑(𝑌𝑖 − 𝑌̄)
2

𝑛

𝑖=1

 

このとき、決定係数𝑅0
2は、次のようになる。  

𝑅0
2 = 1 −

𝑆𝑆𝑅0
∑ (𝑌𝑖 − 𝑌̄)2
𝑛
𝑖=1

= 1 −
∑ (𝑌𝑖 − 𝑌̄)

2𝑛
𝑖=1

∑ (𝑌𝑖 − 𝑌̄)2
𝑛
𝑖=1

= 0 

練習問題 6 の結果に、𝑅0
2 = 0を代入すると、次のようになる。  

𝐹 =
𝑅1
2/𝐾

(1 − 𝑅1
2)/(𝑛 − 𝐾 − 1)

 

この式から、𝑅1
2が 1 に近づくと、𝐹値が∞に発散することがわかる。つまり、対

立仮説𝐻1におけるモデルを推定し、説明変数の当てはまりが良ければ、帰無仮

説𝐻0を棄却できる。   
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練習問題 7  

 𝑇 = 200である場合、構造変化点の候補の始期 (𝑇𝑚𝑖𝑛)と終期 (𝑇𝑚𝑎𝑥)は、  

𝑇𝑚𝑖𝑛 = 0.15 × 200 = 30 

𝑇𝑚𝑎𝑥 = (1 − 0.15) × 200 = 170 

となる。したがって、構造変化点の候補 𝑇𝐵は次のとおりである。  

30、 31、 32、…、 168、 169、 170  

 𝑇 = 1000である場合、構造変化点の候補の始期 (𝑇𝑚𝑖𝑛)と終期 (𝑇𝑚𝑎𝑥)は、  

𝑇𝑚𝑖𝑛 = 0.15 × 1000 = 150 

𝑇𝑚𝑎𝑥 = (1 − 0.15) × 1000 = 850 

となる。したがって、構造変化点の候補 𝑇𝐵は次のとおりである。  

150、 151、 152、…、 848、 849、 850  

練習問題 8  

説明変数が 2 個の場合、定数項を含めると排除制約の数は 𝑞 = 3となる。よっ

て、臨界値は有意水準 10%なら 4.09、5%なら 4.71、1%なら 6.02 である。sup  F  

= 4.50 は、有意水準 10%の臨界値 4.09 を上回るため、有意水準 10%で帰無仮説

は棄却される。つまり、パラメータに構造変化がない、とはいえない。  

 

練習問題 9  

統計学で学習する加法定理では、事象 𝐴または𝐵が生じる確率𝑃{𝐴 ∪ 𝐵}は、  

𝑃{𝐴 ∪ 𝐵} = 𝑃{𝐴} + 𝑃{𝐵} − 𝑃{𝐴 ∩ 𝐵} 

となる。つまり、事象 A または B が生じる確率は、A の確率と B の確率を足

したのち、A と B が同時に生じる確率 (𝑃{𝐴 ∩ 𝐵})を引いたものとなる。  

 下図は、ベン図を用いてこれらの事象を図式化している。長方形□で囲ま

れた領域内は標本空間であり、それぞれ〇で囲まれた領域は事象 A と B とな

る。事象 A と B が重なる部分は A⋂B である。図をみると、𝑃{𝐴 ∪ 𝐵}を求めるた

めに、𝑃{𝐴}と𝑃{𝐵}の和を求めると、A と B の共通部分 (𝑃{𝐴 ∩ 𝐵})が 2 回分も含ま

れてしまうので、その和から余分な 1 回分 (𝑃{𝐴 ∩ 𝐵})を引く必要があると理解

できる。これが加法定理である。確率の公理を用いた加法定理の証明は、藪友

良「入門  実践する統計学」 (東洋経済新報社、 2012 年 )の 4 章補足を参照され

たい。  
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練習問題 10  

構造変化点を𝑇𝐵とした F 統計量𝐹(𝑇𝐵)は、次のように表現できる。  

𝐹(𝑇𝐵) =
(𝑆𝑆𝑅0 − 𝑆𝑆𝑅1)/(𝐾 + 1)

𝑆𝑆𝑅1/(𝑇 − 2(𝐾 + 1))
=
𝑇 − 2(𝐾 + 1)

𝐾 + 1
(
𝑆𝑆𝑅0
𝑆𝑆𝑅1

− 1) 
 

ここでは、𝐹(𝑇𝐵)の構成要素において、構造変化点𝑇𝐵に依存しているのは残差 2

乗和 𝑆𝑆𝑅1のみであることを示す。  

まず、残差 2 乗和 𝑆𝑆𝑅0は、帰無仮説𝐻0(構造変化なし )が正しい前提で、(7)式、

つまり、下式を推定することで得られる。  

𝑌𝑡 = 𝛼 + 𝛽1𝑋1𝑡+. . . +𝛽𝐾𝑋𝐾𝑡 + 𝑢𝑡 

このため、残差 2 乗和 𝑆𝑆𝑅0は、どの𝑇𝐵を用いても同じ値となる。  

次に、残差 2 乗和 𝑆𝑆𝑅1は、対立仮説𝐻1(構造変化あり )が正しい前提で、(6)式、

つまり、下式を推定することで得られる。  

𝑌𝑡 = 𝛼 + 𝛽1𝑋1,𝑡 +⋯+ 𝛽𝐾𝑋𝐾,𝑡 + 𝜃0𝐷𝑡 + 𝜃1𝐷𝑡𝑋1,𝑡+. . . +𝜃𝐾𝐷𝑡𝑋𝐾,𝑡 + 𝑢𝑡 

𝐷𝑡は時点 𝑡が前半期間 (1、 2、…、𝑇𝐵)ならば 0 をとり、後半期間 (𝑇𝐵 + 1、𝑇𝐵 + 2、

…、𝑇)ならば 1 をとる。𝐷𝑡は𝑇𝐵の選択によって値が変わるため、残差 2 乗和 𝑆𝑆𝑅1

も𝑇𝐵の選択によって値が変わる。  

 以上から、𝐹(𝑇𝐵)の構成要素のうち、𝑇𝐵に依存しているのは残差 2 乗和 𝑆𝑆𝑅1の

みである。残差 2 乗和 𝑆𝑆𝑅1が小さいほど𝐹(𝑇𝐵)が大きくなることに注意すると、

𝐹(𝑇𝐵)を最大にする𝑇𝐵とは、(6)式の残差 2 乗和 𝑆𝑆𝑅1を最小にする𝑇𝐵に他ならない。 
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第 8 章の答え  

練習問題 1  

均一分散は現実には成立しないことが多く、不均一分散が現実的仮定である。 

 

練習問題 2  

無作為抽出した横断面データでは、ランダムになっているため、誤差項は相  

互に無相関となる。  

 

練習問題 3  

時系列データでは、誤差項は相互に関係している。これは、何らかのイベン

トが発生すると、それは現在だけでなく、将来にも影響することが多いためで

ある。  

 

練習問題 4  

説明変数𝑋𝑖と誤差項 𝑢𝑖に相関がないとき、つまり、𝐶𝑜𝑣(𝑋𝑖 , 𝑢𝑖) = 0であれば、説

明変数には外生性がある、という。これに対し、説明変数𝑋𝑖と誤差項𝑢𝑖に相関が

あるとき、つまり、𝐶𝑜𝑣(𝑋𝑖 , 𝑢𝑖) ≠ 0であれば、説明変数には内生性がある、という。  

 

練習問題 5   

 説明変数に内生性があると、OLS 推定量は不偏性だけでなく、一致性も持た

ない。つまり、サンプルサイズが大きくなっても、バイアスは消えない。  

 

練習問題 6  

下図において、実線が真の𝑋と𝑌の関係 (𝛼 + 𝛽𝑋)を表し、点線が推定された回帰

直線 (𝛼̂ + 𝛽̂𝑋)を表す。ただし、係数𝛽は正 (𝛽 > 0)とし、実線 (𝛼 + 𝛽𝑋)は右上がりの

関係となる。また、説明変数𝑋𝑖と誤差項 𝑢𝑖に負の相関がある (𝐶𝑜𝑣(𝑋𝑖 , 𝑢𝑖) < 0)。  

説明変数𝑋𝑖と誤差項 𝑢𝑖に負の相関があるため、説明変数𝑋𝑖が小さな値だと、誤

差項𝑢𝑖は大きな値となり、𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 + 𝑢𝑖という関係から実線 (𝛼 + 𝛽𝑋)の上でデー

タが観察されやすくなる。逆に、説明変数𝑋𝑖が大きな値だと、誤差項 𝑢𝑖は小さな

値となり (つまり、負の値 )、𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 + 𝑢𝑖という関係から実線 (𝛼 + 𝛽𝑋)より下で
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データが観察されやすくなる。したがって、回帰直線は点線のようになり、OLS

推定量 𝛽̂は負のバイアスを持つ。  

図  内生性とバイアスの関係  

             

 

 

  

 

 

 

練習問題 7  

推定量𝛽∗の確率的表現は、次のようになる。  

𝛽∗ =
𝑌2 − 𝑌1
𝑋2 − 𝑋1

=
(𝛼 + 𝛽𝑋2 + 𝑢2) − (𝛼 + 𝛽𝑋1 + 𝑢1)

𝑋2 − 𝑋1
 

=
𝛽(𝑋2 − 𝑋1) + (𝑢2 − 𝑢1)

𝑋2 − 𝑋1
= 𝛽 +

𝑢2 − 𝑢1
𝑋2 −𝑋1

 

まず、確率的表現の期待値をとると、  

𝐸[𝛽∗] = 𝐸 [𝛽 +
𝑢2 − 𝑢1
𝑋2 − 𝑋1

] = 𝛽 +
𝐸[𝑢2] − 𝐸[𝑢1]

𝑋2 − 𝑋1
= 𝛽 

となり、不偏性を満たすことが確認できる (誤差項は標準的仮定を満たすため、

𝐸[𝑢1] = 𝐸[𝑢2] = 0とした )。  

次に、推定量の分散は、  

𝐸 [(
𝑌2 − 𝑌1
𝑋2 − 𝑋1

− 𝛽)
2

] = 𝐸 [(
𝑢2 − 𝑢1
𝑋2 −𝑋1

)
2

] =
𝐸[(𝑢2 − 𝑢1)

2]

(𝑋2 − 𝑋1)2
 

=
𝐸[𝑢1

2] + 𝐸[𝑢2
2] − 2𝐸[𝑢1𝑢2]

(𝑋2 − 𝑋1)2
=

2𝜎2

(𝑋2 − 𝑋1)2
 

となる (誤差項は標準的仮定を満たすため、𝐸[𝑢1
2] = 𝐸[𝑢2

2] = 𝜎2、𝐸[𝑢1𝑢2] = 0とした )。

ここで、分散の分母は (𝑋2 − 𝑋1)
2であり、𝑋1と𝑋2が互いに離れているほど、分散は

小さくなることがわかる。  

 

𝛼 + 𝛽𝑋 

𝛼̂ + 𝛽̂𝑋 

𝑋 

𝑌 
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練習問題 81  

(a)  平均 2 乗誤差 (MSE)は、次のように分解できる。  

                                                  𝑀𝑆𝐸 = 𝐸 [(𝜃 − 𝜃)
2
] 

= 𝐸 [((𝜃 − E[𝜃]) + (E[𝜃] − 𝜃))
2
] 

                                                          = 𝐸 [(𝜃 − E[𝜃])
2
] + (E[𝜃] − 𝜃)

2
+ 2(E[𝜃] − 𝜃)𝐸[(𝜃 − E[𝜃])] 

    =  𝐸 [(𝜃 − E[𝜃])
2
] + (E[𝜃] − 𝜃)

2
 

式展開では、 (E[𝜃] − 𝜃)は固定した値なので期待値の外に出せること、 𝐸[(𝜃 −

E[𝜃])] = E[𝜃] − E[𝜃] = 0であることを用いた。  

上式の右辺第 1 項は推定量の分散𝑉(𝜃) = 𝐸 [(𝜃 − E[𝜃])
2
]となる。右辺第 2 項は、

推定量のバイアス𝐵𝑖𝑎𝑠(𝜃) = E[𝜃] − 𝜃の 2 乗となる。以上から、MSE は次のように

表現できる。  

𝑀𝑆𝐸 = 𝐸 [(𝜃 − 𝜃)
2
] = 𝑉(𝜃) + 𝐵𝑖𝑎𝑠(𝜃)2 

一般に、「MSE が小さいほど良い推定量である」と判断される。MSE が小さい

推定量とは、推定量の分散 𝑉(𝜃)が小さく、推定量のバイアス𝐵𝑖𝑎𝑠(𝜃)も小さい推

定となる。  

MSE の理解を深めるため、下図では、 2 種類の推定量を示している。 (a)の

推定量は不偏性を満たしているが、推定量の分散は大きくなっている。これに

対して、 (b)の推定量はバイアスはあるが、推定量の分散は小さくなってい

る。MSE でみると、 (b)のほうが小さくなるため、 (b)がより望ましい推定量と

判断される。  

図： 2 つの推定量の比較  

(a)バイアスなし、分散は大きい   （ b）バイアスあり、分散は小さい  

 

 

 

 

 
1 なお、藪友良『入門  実践する統計学』 (東洋経済新報社、 2012 年 )の 7 章では、推定量が不偏

性を満たしている場合、推定量が有効とは推定量の分散が小さいこととした。本問題では、推定

量が不偏性を満たしていない可能性を考慮した有効性の一般的な定義を示している。  

 
 

θ  θ  
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本書では扱わないが、リッジ推定量はバイアスを持っているが、推定量の分

散は小さいため、MSE の小さい推定量の 1 つとして知られている。  

                           

(b) 𝜃が不偏推定量であるとしよう。このとき、  

E[𝜃] = 𝜃 

であるため、バイアスは  

𝐵𝑖𝑎𝑠(𝜃) = E[𝜃] − 𝜃 = 0 

となる。このため、MSE は、推定量の分散𝑉(𝜃)と一致する。  

𝑀𝑆𝐸 = 𝐸 [(𝜃 − 𝜃)
2
] = 𝑉(𝜃) 

つまり、不偏推定量であれば、分散 𝑉(𝜃)が小さい推定量が最も望ましいとい

える (有効な推定量となる )。ガウス=マルコフの定理では、不偏推定量だけを考

えていたため、分散が最小となる OLS 推定量が有効な推定量としていた。  

 

練習問題 9  

𝑌𝑡 = 𝛼 + 𝛽𝑌𝑡−1 + 𝑢𝑡が正しいなら、 𝑌𝑡−1 = 𝛼 + 𝛽𝑌𝑡−2 + 𝑢𝑡−1が成立することになる。

ここで、誤差項𝑢𝑡−1は確率変数なので、 𝑌𝑡−1は確率変数となる。  

 

練習問題 10  

まず、不偏性について考えよう。単回帰分析において、OLS 推定量は次のよう

になる。  

𝛽̂ = 𝛽 +
∑ (𝑋𝑖 − 𝑋̄)𝑢𝑖
𝑛
𝑖=1

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

 

ここで期待値をとると、  

𝐸[𝛽̂] = 𝛽 + 𝐸 [
∑ (𝑋𝑖 − 𝑋̄)𝑢𝑖
𝑛
𝑖=1

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

] 

となる。ここで、𝑋𝑖は確率変数であるため、一般には、  

𝐸 [
∑ (𝑋𝑖 − 𝑋̄)𝑢𝑖
𝑛
𝑖=1

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

] ≠ 0 
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となり、不偏性は成立しない 2。  

説明変数が確率変数であるとき、 𝛽̂に不偏性が成立するためには、外生性

(𝐶𝑜𝑣(𝑋𝑖, 𝑢𝑖) = 0)よりも強い仮定が必要となる。たとえば、説明変数 {𝑋1、𝑋2、 …、

𝑋𝑛}と誤差項 {𝑢1、𝑢2、 …、𝑢𝑛}が互いにすべて独立と仮定しよう。このとき、独立

性の仮定から、  

𝐸 [
∑ (𝑋𝑖 − 𝑋̄)𝑢𝑖
𝑛
𝑖=1

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

] = 𝐸 [
(𝑋1 − 𝑋̄)

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

]𝐸[𝑢1] + ⋯+ 𝐸 [
(𝑋𝑛 − 𝑋̄)

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

]𝐸[𝑢𝑛] = 0 

となる。式展開では、 𝐸[𝑢𝑖] = 0を用いた。この仮定は、全ての 𝑖と 𝑗について

𝐶𝑜𝑣(𝑋𝑖 , 𝑢𝑗) = 0を意味し、かなり強い仮定である。ただし、無作為抽出抽出したデ

ータなら、 𝑢𝑖は𝑋𝑖以外の説明変数と独立なので、これは外生性 (𝐶𝑜𝑣(𝑋𝑖 , 𝑢𝑖) = 0)だ

けを意味し、それほど強い仮定ではない。しかし、時系列データでは、全ての

𝑖と 𝑗について𝐶𝑜𝑣(𝑋𝑖 , 𝑢𝑗) = 0となる状況は考えにくい。以上から、無作為抽出によ

る横断面データでなければ、OLS 推定量は不偏性を満たさない可能性が高い。 

 次に、一致性について考えよう。確率的表現の第 2 項の分子と分母を 𝑛で割る

と、以下の式が得られる。  

𝛽̂ = 𝛽 +

1
𝑛
∑ (𝑋𝑖 − 𝑋̄)𝑢𝑖
𝑛
𝑖=1

1
𝑛
∑ (𝑋𝑖 − 𝑋̄)

2𝑛
𝑖=1

 

ここで、 𝑛が非常に大きいとする。このとき、 𝑋̄は𝐸[𝑋𝑖]に置き換えることができ

る (つまり、(𝑋𝑖 − 𝑋̄)𝑢𝑖は (𝑋𝑖 − 𝐸[𝑋𝑖])𝑢𝑖に置き換えてもよい )。また、𝑋𝑖は外生変数で

あるから𝐶𝑜𝑣(𝑋𝑖 , 𝑢𝑖) = 0であり、𝐸[(𝑋𝑖 − 𝐸[𝑋𝑖])𝑢𝑖]は 0 となる。したがって、第 2 項

目の分子は 0 に収束していく。また、
1

𝑛
∑ (𝑋𝑖 − 𝑋̄)

2𝑛
𝑖=1 は標本分散であることから、

第 2 項目の分母は𝑋𝑖の分散に収束する 3。以上から、 𝑛が大きくなると、 𝛽̂は𝛽に

収束するといえる。なお、平均が期待値に収束するためには、追加条件が必要

となるが、そうした条件に関心がある読者は巻末参考文献 [7][8][9]を参照して

ほしい。  

  

 
2 標準的仮定 1 が満たされるなら、説明変数は非確率変数であり、  

𝐸 [
∑ (𝑋𝑖 − 𝑋̄)𝑢𝑖
𝑛
𝑖=1

∑ (𝑋𝑖 − 𝑋̄)
2𝑛

𝑖=1

] =
∑ (𝑋𝑖 − 𝑋̄)𝐸[𝑢𝑖]
𝑛
𝑖=1

∑ (𝑋𝑖 − 𝑋̄)
2𝑛

𝑖=1

= 0 

となる。式展開では、 𝑋は固定した値なので期待値の外に出せること、また、標準的仮定 3(𝐸[𝑢𝑖] =

0)を用いた。しかし、 𝑋が確率変数なら、こうした式展開はできない。  

3 厳密には 𝑛 − 1で割ったものだが、サンプルサイズ 𝑛が大きいとき、どちらで割っても同じ。  
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第 9 章の答え  

練習問題 1  

被説明変数がダミー変数であるとき、 𝑌𝑖 = 1となる確率 𝑃𝑖は、次のような線形

モデルで表せる。  

𝑃𝑖 = 𝛼 + 𝛽𝑋𝑖 

これが線形確率モデルと言われる理由である (詳しくは例 9-2 参照 )。  

 

練習問題 2  

OLS 推定量は不偏性と一致性を持つ。しかし、ガウス =マルコフの条件が満

たされないため、有効性は満たされない。なお、OLS 推定量 𝛽̂の分散は、  

𝜎𝛽̂
2 =

∑ (𝑋𝑖 − 𝑋̄)
2𝜎𝑖

2𝑛
𝑖=1

(∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1 )

2 

であるため、通常の標準誤差ではなく、ロバスト標準誤差を用いることが必要

である。  

 

練習問題 3  

被説明変数𝑌𝑖は、企業から連絡があれば 1、連絡がなければ 0 となるダミー変

数となり、説明変数𝑋𝑖は、黒人固有の名前なら 1、白人固有の名前なら 0 となる

ダミー変数となる。誤差項としては、個人 𝑖の属性が考えられる。名前はランダ

ムに割り当てられたため、説明変数 𝑋𝑖は個人属性などを表す誤差項と無相関と

なっており、OLS 推定にバイアスは生じない (8.3 節参照 )。  

 

練習問題 4  

 ここで、𝑢𝑖
∗ = √𝑁𝑖𝑢𝑖である。よって、𝑢𝑖

∗の分散は、次のようになる。  

𝐸[𝑢𝑖
∗2] = 𝐸 [(√𝑁𝑖𝑢𝑖)

2
] = 𝑁𝑖𝐸[𝑢𝑖

2] 

また、𝐸[𝑢𝑖
2] =

𝜎2

𝑁𝑖
であるから、次式のように誤差項 𝑢𝑖

∗の分散は𝜎2で一定である。  

𝑁𝑖𝐸[𝑢𝑖
2] = 𝑁𝑖

𝜎2

𝑁𝑖
= 𝜎2 

練習問題 5  

ここで、ℎ𝑖 = 𝑍𝑖であるため、𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 + 𝑢𝑖の両辺に 1/√ℎ𝑖 = 1/√𝑍𝑖を掛けると、  
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𝑌𝑖

√𝑍𝑖⏟
=𝑌𝑖

∗

=  𝛼
1

√𝑍𝑖⏟
=𝑋1𝑖

∗

+  𝛽
𝑋𝑖

√𝑍𝑖⏟
=𝑋2𝑖

∗

+
𝑢𝑖

√𝑍𝑖⏟
=𝑢𝑖

∗

 

となる。新しい誤差項 𝑢𝑖
∗の分散は、  

𝐸[𝑢𝑖
∗2] = 𝐸 [(

𝑢𝑖

√𝑍𝑖
)

2

] =
1

𝑍𝑖
𝐸[𝑢𝑖

2] =
1

𝑍𝑖
𝑐𝑍𝑖 = 𝑐 

となるため、均一分散を満たす。被説明変数を𝑌𝑖
∗、説明変数を𝑋1𝑖

∗、𝑋2𝑖
∗とした OLS

推定をすれば WLS 推定量となる。  

 

練習問題 6  

ここで、ℎ𝑖 = 𝑋𝑖
2であるため、𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 + 𝑢𝑖の両辺に 1/√ℎ𝑖 = 1/|𝑋𝑖|を掛けると、  

𝑌𝑖
|𝑋𝑖|⏟
=𝑌𝑖

∗

=  𝛼
1

|𝑋𝑖|⏟
=𝑋1𝑖

∗

+  𝛽
𝑋𝑖
|𝑋𝑖|⏟
=𝑋2𝑖

∗

+
𝑢𝑖
|𝑋𝑖|⏟
=𝑢𝑖

∗

 

となる (𝑋𝑖は負の値をとる可能性があるため、ここでは絶対値をとっている )。新

しい誤差項𝑢𝑖
∗の分散は、  

𝐸[𝑢𝑖
∗2] = 𝐸 [(

𝑢𝑖
|𝑋𝑖|

)
2

] =
1

𝑋𝑖
2 𝐸[𝑢𝑖

2] =
1

𝑋𝑖
2 𝑐𝑋𝑖

2 = 𝑐 

となるため、均一分散を満たす。被説明変数を𝑌𝑖
∗、説明変数を𝑋1𝑖

∗、𝑋2𝑖
∗とした OLS

推定をすれば WLS 推定量となる。  

  

練習問題 7  

WLS 推定について考えてみよう。仮に 𝜎𝑖が分かっているならば、元の式を 𝜎𝑖

で割ると、  

𝑌𝑖
𝜎𝑖⏟
=𝑌𝑖

∗

=  𝛼
1

𝜎𝑖⏟
=𝑋1𝑖

∗

+  𝛽
𝑋𝑖
𝜎𝑖⏟
=𝑋2𝑖

∗

+
𝑢𝑖
𝜎𝑖⏟
=𝑢𝑖

∗

 

となり、新しい誤差項 𝑢𝑖
∗の分散は、  

𝐸[𝑢𝑖
∗2] = 𝐸 [(

𝑢𝑖
𝜎𝑖
)
2

] =
1

𝜎𝑖
2 𝐸[𝑢𝑖

2] =
1

𝜎𝑖
2 𝜎𝑖

2 = 1 

となるため、均一分散を満たす。現実には、分析者は 𝜎𝑖の値を知らないため、予

測値 𝜎̂𝑖を用いた FWLS を行う。  

まず、𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 + 𝑢𝑖とした OLS 推定によって残差 𝑢̂𝑖を求める。残差 𝑢̂𝑖は誤差
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項 𝑢𝑖の推定量である。ここで、 𝜎𝑖
2 = 𝐸[𝑢𝑖

2] = 𝑐0 + 𝑐1𝑍𝑖から、被説明変数を 𝑢̂𝑖
2とし、

説明変数を𝑍𝑖とした OLS 推定によって、パラメータ (𝑐0、 𝑐1)を推定でき、分散の

予測値 𝜎̂𝑖
2 = 𝑐̂0 + 𝑐̂1𝑍𝑖を求めることができる。次に、元のモデルを予測値 𝜎̂𝑖で割る

ことで、次の式が得られる。  

𝑌𝑖
𝜎̂𝑖⏟
=𝑌𝑖

∗

=  𝛼
1

𝜎̂𝑖⏟
=𝑋1𝑖

∗

+  𝛽
𝑋𝑖
𝜎̂𝑖⏟
=𝑋2𝑖

∗

+
𝑢𝑖
𝜎̂𝑖⏟
=𝑢𝑖

∗

 

サンプルサイズが十分に大きければ、推定量 𝜎̂𝑖は真の値𝜎𝑖となるため、新しい

誤差項𝑢𝑖
∗は𝑢𝑖/𝜎̂𝑖で均一分散を満たす。このため、被説明変数を𝑌𝑖

∗、説明変数を𝑋1𝑖
∗、

𝑋2𝑖
∗とした OLS 推定は、 FWLS 推定量となる。  

 

練習問題 104  

(a)  均一分散のもとで、𝐸[𝑢̂𝑖
2] = 𝜎2(1 − ℎ𝑖𝑖)となる。これを用いると、  

𝐸 [𝑠𝛽̂
2] =

∑ (𝑋𝑖 − 𝑋̄)
2𝐸[𝑢̂𝑖

2]𝑛
𝑖=1

(∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1 )

2 =
𝜎2∑ (𝑋𝑖 − 𝑋̄)

2𝑛
𝑖=1 (1 − ℎ𝑖𝑖)

(∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1 )

2  

=
𝜎2∑ (𝑋𝑖 − 𝑋̄)

2𝑛
𝑖=1

(∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1 )

2 −
𝜎2∑ (𝑋𝑖 − 𝑋̄)

2𝑛
𝑖=1 ℎ𝑖𝑖

(∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1 )

2  

=
𝜎2

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

−
𝜎2∑ (𝑋𝑖 − 𝑋̄)

2𝑛
𝑖=1 ℎ𝑖𝑖

(∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1 )

2  

となる。また、 ℎ𝑖𝑖は正であるから、右辺第 2 項はマイナスであり、次式が成立

する。  

𝐸 [𝑠𝛽̂
2] <

𝜎2

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

 

つまり、均一分散が正しいとき、不均一分散に対して頑健な分散の推定量 𝑠𝛽̂
2は、

真の分散
𝜎2

∑ (𝑋𝑖−𝑋̄)
2𝑛

𝑖=1

を過小評価してしまう。  

(b)   不均一分散に対して頑健な分散の推定量 𝑠𝛽̂
2は、真の分散を過小評価すると  

いう問題がある。Stata では、不均一分散に対して頑健な分散の推定量 𝑠𝛽̂
2に

𝑛

𝑛−2

を掛けることで、分散を少し大きめに推定し、過小評価の問題を軽減している。  

 
4 本問題は Hansen『 Econometr ics』を参考に作成した。  
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𝑛

𝑛−2
という値は、どのように正当化されるのだろうか。これは 𝑠2 =

1

𝑛−2
∑ 𝑢̂𝑖

2𝑛
𝑖=1 の

計算と整合的な調整ともいえる。3.4.1 節で確認したとおり、理想的な𝜎2の推定

量は
1

𝑛
∑ 𝑢𝑖

2𝑛
𝑖=1 である。しかし、誤差項 𝑢𝑖が観察できないため、残差 𝑢̂𝑖で置き換える

ことになる。このとき、
1

𝑛
∑ 𝑢̂𝑖

2𝑛
𝑖=1 ではなく、それに

𝑛

𝑛−2
を掛けた 𝑠2を用いた。  

𝑠2 =
𝑛

𝑛 − 2
(
1

𝑛
∑𝑢̂𝑖

2

𝑛

𝑖=1

) =
1

𝑛 − 2
∑𝑢̂𝑖

2

𝑛

𝑖=1

 

同じ調整を、不均一分散に対して頑健な分散の推定量 𝑠𝛽̂
2に行っているのが、

Stata の調整といえる。なお、重回帰分析では、  

𝑠2 =
𝑛

𝑛 − 𝐾 − 1
(
1

𝑛
∑𝑢̂𝑖

2

𝑛

𝑖=1

) =
1

𝑛 − 𝐾 − 1
∑𝑢̂𝑖

2

𝑛

𝑖=1

 

となるから、不均一分散に対して頑健な分散の推定量に  

𝑛

𝑛 − 𝐾 − 1
 

を掛けることになる。  

では、こうした調整を行うことで、不偏性が満たされるのだろうか。残念な

がら、不偏性が満たされるのは特殊ケースになる。この点を確認しよう。レバ

レッジの平均は、次のようになる。  

1

𝑛
∑ ℎ𝑖𝑖

𝑛

𝑖=1

=
1

𝑛
∑(

1

𝑛
+

(𝑋𝑖 − 𝑋̄)
2

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

) =

𝑛

𝑖=1

2

𝑛
 

ここで、レバレッジ ℎ𝑖𝑖は常に同じ値であるとしよう。レバレッジ ℎ𝑖𝑖は平均 2/𝑛と

同じであるため、 1 − ℎ𝑖𝑖 = 1 − 2/𝑛 = (𝑛 − 2)/𝑛となる。このとき、  

𝐸 [𝑠𝛽̂
2] =

𝜎2∑ (𝑋𝑖 − 𝑋̄)
2𝑛

𝑖=1 (1 − ℎ𝑖𝑖)

(∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1 )

2 =
𝑛 − 2

𝑛

𝜎2∑ (𝑋𝑖 − 𝑋̄)
2𝑛

𝑖=1

(∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1 )

2 =
𝑛 − 2

𝑛

𝜎2

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

 

となる。よって、不均一分散に対して頑健な分散の推定量として、  

𝑉̂𝐻𝐶1 =
𝑛

𝑛 − 2

∑ (𝑋𝑖 − 𝑋̄)
2𝑢̂𝑖

2𝑛
𝑖=1

(∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1 )

2 

を用いれば、不偏性が満たされる。  

以上をまとめると、Stata の 𝑉̂𝐻𝐶1は、𝜎2の推定量 𝑠2と整合的な調整になってい

るが、不偏性が満たされるのは特殊ケースであり、理論的根拠が十分とはいえ

ない 5。  

 
5  Stata では、 reg Y X,  r とすると、 𝑉̂𝐻𝐶1の平方根がロバスト標準誤差として計算される。  
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(c)  標準化残差 𝑢̅𝑖 = (1 − ℎ𝑖𝑖)
−1/2𝑢̂𝑖を使った場合、𝐸[𝑢̅𝑖

2] = 𝜎2が成立する。このため、

𝑉̂𝐻𝐶2の期待値は、  

𝐸 [
∑ (𝑋𝑖 − 𝑋̄)

2𝑢̅𝑖
2𝑛

𝑖=1

(∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1 )

2] =
∑ (𝑋𝑖 − 𝑋̄)

2𝐸[𝑢̅𝑖
2]𝑛

𝑖=1

(∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1 )

2  

=
𝜎2∑ (𝑋𝑖 − 𝑋̄)

2𝑛
𝑖=1

(∑ (𝑋𝑖 − 𝑋̄)
2𝑛

𝑖=1 )
2 =

𝜎2

∑ (𝑋𝑖 − 𝑋̄)
2𝑛

𝑖=1

 

となり、 𝑉̂𝐻𝐶2は不偏性を満たす 6。  

(d)  理論的には、 𝑉̂𝐻𝐶2が優れているが、実証分析では、 𝑉̂𝐻𝐶1がよく用いられてい  

る (教科書でも、𝑉𝐻𝐶1を用いた )。通常、どちらを用いても同じような値になるの

で、どちらを使っても問題はない。しかし、レバレッジ ℎ𝑖𝑖が大きいデータがあ

れば、𝑉̂𝐻𝐶1の方がより小さな値をとる傾向がある。その差が大きいときは、𝑉̂𝐻𝐶2

を用いるほうがよい。なお、サンプルサイズが大きければ、レバレッジ ℎ𝑖𝑖は 0

に収束するため、いずれを用いても同じ結果となる (ℎ𝑖𝑖の定義を思い出してほし

い )。  

自分でデータ分析する際は、𝑉̂𝐻𝐶1と 𝑉̂𝐻𝐶2の両方を計算し、それらの値を比較す

ることが望ましい。両者の差が大きく異なるようなら、レバレッジを計算し、

どの観測値で大きくなっているかを確認しよう。かりにそれが外れ値のような

ものなら、そのデータを除去することも、選択肢の 1 つとして考えられる。た

とえば、小学生のデータを分析したところ、身長が 210cm の生徒がいたとしよ

う。これは入力間違いの可能性があるし、たとえ正しい情報であっても外れ値

と考えられる。  

 

練習問題 117  

単純化のため、𝐷1 = 1、それ以外の𝐷2、𝐷3、…、𝐷𝑛は 0 としよう。  

(a)   説明変数𝐷𝑖の平均は  

𝐷̄ =
1

𝑛
∑𝐷𝑖

𝑛

𝑖=1

=
1

𝑛
 

となる。このため、偏差は、  

 
6 Stata では、 reg Y X,  vce (hc2)とすれば、 𝑉̂𝐻𝐶2の平方根がロバスト標準誤差として計算される。  
7 本問題は Hansen『 Econometr ics』を参考に作成した。  
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𝐷𝑖 − 𝐷̄ = {
1 −

1

𝑛
=
𝑛 − 1

𝑛
if   𝑖 = 1

0 −
1

𝑛
= −

1

𝑛
if   𝑖 > 1

 

となり、偏差 2 乗和は次のようになる。  

∑(𝐷𝑖 − 𝐷̄)
2

𝑛

𝑖=1

= (𝐷1 − 𝐷̄)
2 +∑(𝐷𝑖 − 𝐷̄

𝑛

𝑖=2

)2 

                   = (
𝑛 − 1

𝑛
)
2

+ (𝑛 − 1) (−
1

𝑛
)
2

 

                     =
𝑛 − 1

𝑛2
((𝑛 − 1) + 1) =

𝑛 − 1

𝑛
 

(b) 誤差項は均一分散であるため、 𝛽̂の分散は次のようになる。  

𝑉(𝛽̂) =
𝜎2

∑ (𝐷𝑖 − 𝐷̄)2
𝑛
𝑖=1

=
𝑛

𝑛 − 1
𝜎2 

この場合、係数𝛽を推定するための情報は、𝐷1 = 1だけしか存在せず、サンプル

サイズが大きくなっても分散は 𝜎2となる。つまり、サンプルサイズが大きくな

っても、 𝛽̂の推定精度は改善しないことがわかる 8。  

(c) レバレッジを求めよう。∑ (𝐷𝑖 − 𝐷̄)
2𝑛

𝑖=1 = (𝑛 − 1)/𝑛に注意すると、  

(𝐷𝑖 − 𝐷̄)
2

∑ (𝐷𝑖 − 𝐷̄)2
𝑛
𝑖=1

=

{
 
 

 
 [(𝑛 − 1)/𝑛]

2

(𝑛 − 1)/𝑛
=
𝑛 − 1

𝑛
if   𝑖 = 1

(−1/𝑛)2

(𝑛 − 1)/𝑛
=

1

𝑛(𝑛 − 1)
if   𝑖 > 1

 

となり、レバレッジ ℎ𝑖𝑖は、次のようになる。  

ℎ𝑖𝑖 =

{
 

 
1

𝑛
+
𝑛 − 1

𝑛
= 1 if   𝑖 = 1

1

𝑛
+

1

𝑛(𝑛 − 1)
=

1

𝑛 − 1
if   𝑖 > 1

 

ここで、ℎ11 = 1となり、𝐷1は他のデータに比べて大きく異なることがわかる。こ

れは𝐷1が 1 となり、他の𝐷𝑖は 0 となることから明らかであろう。  

 𝐷𝑖は 𝑖 = 1のとき 1、他では 0 となるから、 𝛽̂は 𝑢̂1を 0 とするように選ばれる

(『入門実践する統計学』 12.4.1 節参照 )。 𝑢̂1 = 0を用いると、 𝑉̂𝐻𝐶1の分子は  

 
8 このケースでは、 𝑛が大きくなると、偏差 2 乗和は 1 に収束している。したがって、標準的仮定

2 は満たされない。これは 𝑛が大きくなっても、 𝛽̂の分散が 0 にならないことを示唆している。  
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∑(𝐷𝑖 − 𝐷̄)
2𝐸[𝑢̂𝑖

2]

𝑛

𝑖=1

=∑(−
1

𝑛
)
2

𝐸[𝑢̂𝑖
2]

𝑛

𝑖=1

=
1

𝑛2
∑𝐸[𝑢̂𝑖

2]

𝑛

𝑖=1

 

となる。また、𝐸[𝑢̂𝑖
2] = (1 − ℎ𝑖𝑖) 𝜎

2であるから、  

∑𝐸[𝑢̂𝑖
2]

𝑛

𝑖=1

=∑(1− ℎ𝑖𝑖)𝜎
2

𝑛

𝑖=1

 

                                   = (1 − 1)𝜎2 +∑(1−
1

𝑛 − 1
)𝜎2

𝑛

𝑖=2

 

= (𝑛 − 2)𝜎2 

となる。これらの結果を用いると、次のように展開できる。  

𝐸[𝑉̂𝐻𝐶1] =
𝑛

𝑛 − 2

∑ (𝐷𝑖 − 𝐷̄)
2𝐸[𝑢̂𝑖

2]𝑛
𝑖=1

(∑ (𝐷𝑖 − 𝐷̄)2
𝑛
𝑖=1 )

2  

                          =
𝑛

𝑛 − 2

1
𝑛2
(𝑛 − 2)𝜎2

(
𝑛 − 1
𝑛 )

2  

            =
𝑛

(𝑛 − 1)2
𝜎2 =

1

𝑛 − 1
(
𝑛

𝑛 − 1
𝜎2) 

この結果から、たとえば、 𝑛 = 101なら、 𝑉̂𝐻𝐶1は真の分散の 100 分の 1 となっ

てしまうことがわかる。これは、本当は有意ではないとき、 𝑉̂𝐻𝐶1を用いること

で、有意であると誤って判断する可能性が高いことを意味している。 1 次的ダ

ミーを用いる場合は、ロバスト標準誤差は、本当の標準誤差を過小評価する問

題があることを念頭に置いておこう。  

これまで∑ 𝐷𝑖
𝑛
𝑖=1 = 𝑛1 = 1としていた。 𝑉̂𝐻𝐶1は真の分散を過小評価する問題は、

𝑛1 = 1とした場合だけでなく、 𝑛1が小さい (1 をとるケースが少ない )、もしくは

𝑛 − 𝑛1が小さい (0 をとるケースが少ない )場合にも生じる。解決策として、 𝑉̂𝐻𝐶1

の代わりに 𝑉̂𝐻𝐶2を用いることが挙げられる (ただし、𝑛1 = 1の場合には、ℎ𝑖𝑖のうち

1 つは 1 となり、標準化残差 𝑢̅𝑖 = (1 − ℎ𝑖𝑖)
−1/2𝑢̂𝑖、ひいては 𝑉̂𝐻𝐶2も計算できない )。 
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第 10 章の答え  

練習問題 1  

時系列データにおいて、誤差項が互いに相関していることを「系列相関があ

る」という。時系列データにおいては、系列相関がある状況が一般的であり、

系列相関がない状況は特殊ケースとなる。  

パネルデータには、時系列データの側面もあるため、系列相関が存在するの

が一般的であり、系列相関がない状況は特殊ケースとなる。たとえば、県別パ

ネルデータで、東京都のデータだけを考えると、これは時系列データとなる。  

 

練習問題 2  

OLS 推定量は不偏性と一致性を持つ。しかし、ガウス =マルコフの条件が満

たされないため、OLS 推定量は有効ではない。また、OLS 推定量 𝛽̂の分散は、  

𝜎𝛽̂
2 =

𝑇 {𝛾0 + 2∑ (1 −
𝑠
𝑇)𝛾𝑠

𝑇−1
𝑠=1 }

{∑ (𝑋𝑡 − 𝑋̄)2
𝑇
𝑡=1 }2

 

となる。ただし、パラメータ 𝛾𝑠は自己共分散であり、データにある系列相関の程

度を表す。このため、通常の標準誤差ではなく、HAC 標準誤差を用いる。  

 

練習問題 3  

ここで 𝑇 = 100なら、 0.75 × 1001/3 = 3.48となり、バンド幅𝑚 = 3が選択される。

つまり、HAC 標準誤差は次のように計算できる。  

√100 ×
{𝛾0̂ + 2∑ (1 −

𝑠
3) 𝛾𝑠̂

2
𝑠=1 }

{∑ (𝑋𝑡 − 𝑋̄)2
𝑇
𝑡=1 }2

= √100 ×
{𝛾0̂ + 2(

2
3𝛾1̂ +

1
3𝛾2̂)}

{∑ (𝑋𝑡 − 𝑋̄)2
𝑇
𝑡=1 }2

 

 

練習問題 4  

ここで 𝑇 = 500なら、 0.75 × 5001/3 = 5.95となり、バンド幅𝑚 = 6が選択される。

つまり、HAC 標準誤差は次のように計算できる。  

√500 ×
{𝛾0̂ + 2∑ (1 −

𝑠
6) 𝛾𝑠̂

5
𝑠=1 }

{∑ (𝑋𝑡 − 𝑋̄)2
𝑇
𝑡=1 }2

= √500 ×
{𝛾0̂ + 2(

5
6𝛾1̂ +

4
6𝛾2̂ +

3
6𝛾3̂ +

2
6𝛾4̂ +

1
6𝛾5̂)}

{∑ (𝑋𝑡 − 𝑋̄)2
𝑇
𝑡=1 }2
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練習問題 5  

ここで𝑌𝑡 =  𝛼 + 𝛽𝑋𝑡 + 𝑢𝑡から、 𝑡 − 1時点と 𝑡 − 2時点では、  

𝑌𝑡−1 =  𝛼 + 𝛽𝑋𝑡−1 + 𝑢𝑡−1 

𝑌𝑡−2 =  𝛼 + 𝛽𝑋𝑡−2 + 𝑢𝑡−2 

が成立する。この関係式を使うと、  

𝑌𝑡 − 𝜌1𝑌𝑡−1 − 𝜌2𝑌𝑡−2 = (𝛼 + 𝛽𝑋𝑡 + 𝑢𝑡) − 𝜌1(𝛼 + 𝛽𝑋𝑡−1 + 𝑢𝑡−1) − 𝜌2(𝛼 + 𝛽𝑋𝑡−2 + 𝑢𝑡−2) 

=  𝛼(1 − 𝜌1 − ρ2) + 𝛽(𝑋𝑡 − ρ1𝑋𝑡−1 − 𝜌2𝑋𝑡−2) + (𝑢𝑡 − 𝜌1𝑢𝑡−1 − 𝜌2𝑢𝑡−2) 

となる。ここで、𝑢𝑡 − 𝜌1𝑢𝑡−1 − 𝜌2𝑢𝑡−2 = 𝜀𝑡であるため、誤差項は標準的仮定を満た

す。コクラン=オーカット法では、第 1 に、𝑌𝑡 =  𝛼 + 𝛽𝑋𝑡 + 𝑢𝑡を OLS 推定し、得ら

れた残差を用いて 𝜌1と 𝜌2を推定する。第 2 に、𝜌̂1と 𝜌̂2を用いて、被説明変数を 𝑌𝑡 −

𝜌̂1𝑌𝑡−1 − 𝜌̂2𝑌𝑡−2とし、説明変数を 1 − 𝜌̂1 − 𝜌̂2、𝑋𝑡 − 𝜌̂1𝑋𝑡−1 − 𝜌̂2𝑋𝑡−2とした定数項なしの

OLS 推定をすれば、パラメータ (𝛼, 𝛽)の推定ができる。  

 

練習問題 6  

 練習問題 5 から、  

𝑌𝑡 − 𝜌1𝑌𝑡−1 − 𝜌2𝑌𝑡−2 =  𝛼(1 − 𝜌1 − ρ2) + 𝛽(𝑋𝑡 − ρ1𝑋𝑡−1 − 𝜌2𝑋𝑡−2) + (𝑢𝑡 − 𝜌1𝑢𝑡−1 − 𝜌2𝑢𝑡−2) 

となるので、上式左辺の ρ1𝑌𝑡−1、 𝜌2𝑌𝑡−2を右辺に移項すると次式となる。  

𝑌𝑡 =  𝛼(1 − 𝜌1 − 𝜌2) + 𝜌1𝑌𝑡−1 + 𝜌2𝑌𝑡−2 + 𝛽𝑋𝑡 − 𝜌1𝛽𝑋𝑡−1 − 𝜌2𝛽𝑋𝑡−2 + (𝑢𝑡 − 𝜌1𝑢𝑡−1 − 𝜌2𝑢𝑡−2) 

ここで、  

𝛼∗ = 𝛼(1 − 𝜌1 − 𝜌2)、  

𝛽1 = 𝜌1、𝛽2 = 𝜌2、𝛽3 = 𝛽、𝛽4 = −𝜌1𝛽、𝛽5 = −𝜌2𝛽 

𝜀𝑡 = 𝑢𝑡 − 𝜌1𝑢𝑡−1 − ρ2𝑢𝑡−2 

と定義すれば、上式は次のようになる。  

𝑌𝑡 = 𝛼
∗ + 𝛽1𝑌𝑡−1 + 𝛽2𝑌𝑡−2 + 𝛽3𝑋𝑡 + 𝛽4𝑋𝑡−1 + 𝛽5𝑋𝑡−2 + 𝜀𝑡  

このとき、誤差項は 𝜀𝑡であり、期待値 0、分散一定、自己共分散は 0 である。  

 

練習問題 7  

(a) 季節調整した系列 𝑌𝑡
′は、  
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𝑌𝑡
′ =

1

4
(𝑌𝑡 + 𝑌𝑡−1 + 𝑌𝑡−2 + 𝑌𝑡−3) 

となる。ここで、上式に、𝑌𝑡 =  𝛼 + 𝛽𝑋𝑡 + 𝑢𝑡、𝑌𝑡−1 =  𝛼 + 𝛽𝑋𝑡−1 + 𝑢𝑡−1、𝑌𝑡−2 =  𝛼 + 𝛽𝑋𝑡−2 +

𝑢𝑡−2、𝑌𝑡−3 =  𝛼 + 𝛽𝑋𝑡−3 + 𝑢𝑡−3を代入すると、次のようになる。  

𝑌𝑡
′ =

1

4
{(𝛼 + 𝛽𝑋𝑡 + 𝑢𝑡) + (𝛼 + 𝛽𝑋𝑡−1 + 𝑢𝑡−1) + (𝛼 + 𝛽𝑋𝑡−2 + 𝑢𝑡−2) + (𝛼 + 𝛽𝑋𝑡−3 + 𝑢𝑡−3)} 

                        = 𝛼 + 𝛽
1

4
(𝑋𝑡 + 𝑋𝑡−1 + 𝑋𝑡−2 +𝑋𝑡−3) +

1

4
(𝑢𝑡 + 𝑢𝑡−1 + 𝑢𝑡−2 + 𝑢𝑡−3) 

                                                         =  𝛼 + 𝛽𝑋𝑡
′ + 𝑢𝑡

′
 

式展開では、以下の関係式を用いた。  

𝑋𝑡
′ =

1

4
(𝑋𝑡 + 𝑋𝑡−1 + 𝑋𝑡−2 + 𝑋𝑡−3)、𝑢𝑡

′ =
1

4
(𝑢𝑡 + 𝑢𝑡−1 + 𝑢𝑡−2 + 𝑢𝑡−3) 

 

(b) 新しい誤差項 𝑢𝑡
′の期待値は、以下で示すとおり、 0 となる。  

𝐸[𝑢𝑡
′] =

1

4
(𝐸[𝑢𝑡] + 𝐸[𝑢𝑡−1] + 𝐸[𝑢𝑡−2] + 𝐸[𝑢𝑡−3]) = 0 

ここで、𝐸[𝑢𝑡] = 𝐸[𝑢𝑡−1] = 𝐸[𝑢𝑡−2] = 𝐸[𝑢𝑡−3] = 0を用いた。  

新しい誤差項𝑢𝑡
′の分散は、標準的仮定 3(誤差項 𝑢𝑡の分散は𝜎2である )と標準的

仮定 4(誤差項𝑢𝑡が相互に無相関である )を用いると、次のようになる。  

𝐸[𝑢𝑡
′2] = 𝐸 [(

1

4
(𝑢𝑡 + 𝑢𝑡−1 + 𝑢𝑡−2 + 𝑢𝑡−3))

2

] =
1

16
(𝐸[𝑢𝑡

2] + 𝐸[𝑢𝑡−1
2 ] + 𝐸[𝑢𝑡−2

2 ] + 𝐸[𝑢𝑡−3
2 ]) 

=
4𝜎2

16
=
𝜎2

4
 

つまり、新しい誤差項 𝑢𝑡
′の分散は、元モデルの誤差項 𝑢𝑡の分散𝜎2の 1/4 になる。 

 

(c) 新しい誤差項 𝑢𝑡
′と 𝑢𝑡−1

′ との自己共分散は、標準的仮定 3 と標準的仮定 4 を用

いると、次のようになる。  

𝐸[𝑢𝑡
′𝑢𝑡−1
′ ] = 𝐸 [(

1

4
(𝑢𝑡 + 𝑢𝑡−1 + 𝑢𝑡−2 + 𝑢𝑡−3))(

1

4
(𝑢𝑡−1 + 𝑢𝑡−2 + 𝑢𝑡−3 + 𝑢𝑡−4))] 
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1

16
(𝐸[𝑢𝑡−1

2 ] + 𝐸[𝑢𝑡−2
2 ] + 𝐸[𝑢𝑡−3

2 ]) =
3𝜎2

16
 

同様に、𝑢𝑡
′と𝑢𝑡−2

′ との自己共分散は、  

𝐸[𝑢𝑡
′𝑢𝑡−2
′ ] = 𝐸 [(

1

4
(𝑢𝑡 + 𝑢𝑡−1 + 𝑢𝑡−2 + 𝑢𝑡−3))(

1

4
(𝑢𝑡−2 + 𝑢𝑡−3 + 𝑢𝑡−4 + 𝑢𝑡−5))] 

=
1

16
(𝐸[𝑢𝑡−2

2 ] + 𝐸[𝑢𝑡−3
2 ]) =

2𝜎2

16
 

となり、𝑢𝑡
′と𝑢𝑡−3

′ との自己共分散は、  

𝐸[𝑢𝑡
′𝑢𝑡−3
′ ] = 𝐸 [(

1

4
(𝑢𝑡 + 𝑢𝑡−1 + 𝑢𝑡−2 + 𝑢𝑡−3))(

1

4
(𝑢𝑡−3 + 𝑢𝑡−4 + 𝑢𝑡−5 + 𝑢𝑡−6))] 

=
1

16
(𝐸[𝑢𝑡−3

2 ]) =
𝜎2

16
 

となる。時差がさらに広がると、自己共分散はすべて 0 となる。  

 

(d) 元のモデルでは、誤差項に系列相関が無かったにも関わらず、季節調整を

行うことで、新しい誤差項には系列相関が生じていることに注意してほしい。

これは季節調整という人為的なデータ調整によって生じた系列相関である。  

 

練習問題 8  

10.2 節で学習したとおり、系列相関があっても、OLS 推定量 𝛽̂は不偏性を満

たしている。このため、OLS 推定量 𝛽̂の一致性を証明するには、サンプルサイズ

𝑇が大きくなると推定量 𝛽̂の分散が 0 に収束することを示せばよい (この点は

3.3.3 節を参照してほしい )。  

系列相関があるとき、OLS 推定量 𝛽̂の分散は次のようになる (10.3.1 節の (3)式

を参照 )。  

𝐸 [(𝛽̂ − 𝛽)
2
] = 𝑇

{𝛾0 + 2∑ (1 −
𝑠
𝑇)𝛾𝑠

𝑇−1
𝑠=1 }

{∑ (𝑋𝑡 − 𝑋̄)2
𝑇
𝑡=1 }2

 

さらに分母と分子を 𝑇2で割ると、推定量 𝛽̂の分散は次式として表せる。  

1
𝑇 {𝛾0 + 2

∑ (1 −
𝑠
𝑇)𝛾𝑠

𝑇−1
𝑠=1 }

{∑ (𝑋𝑡 − 𝑋̄)2
𝑇
𝑡=1 /𝑇}2
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ここで、𝛽̂の分散の分母は、𝑋𝑡の標本分散（∑ (𝑋𝑡 − 𝑋̄)
2𝑇

𝑡=1 /𝑇）の 2 乗であり、ま

た、標本分散はサンプルサイズ 𝑇が大きくなると真の分散に収束する 9。このた

め、 𝛽̂の分散の分母は有限の値となることがわかる。  

次に、𝛽̂の分散の分子の { }内にある 𝛾0 + 2∑ (1 −
𝑠

𝑇
)𝛾𝑠

𝑇−1
𝑠=1 は、有限の値をとると仮

定されている 10。したがって、これを 𝑇で割った分子は、サンプルサイズ 𝑇が大

きくなると、 0 に収束していくことになる。  

以上から、サンプルサイズ 𝑇が大きくなると、推定量 𝛽̂の分散は 0 に収束し、

推定量 𝛽̂は一致性を満たすことがわかる。  

  

練習問題 10  

 (8)式より、 𝑢𝑡 = 𝜌𝑢𝑡−1 + 𝜀𝑡となります。ただし、−1 < 𝜌 < 1、また、 𝜀𝑡は期待値

0(𝐸[𝜀𝑡] = 0)、分散一定 (𝐸[𝜀𝑡
2] = 𝜎2)、系列相関なし (𝐸[𝜀𝑡𝜀𝑠] = 0)とします。  

𝑡 = 1期において、  

𝑢1 = 𝜌𝑢0 + 𝜀1 

となり、上式に𝑢0 = 𝜌𝑢−1 + 𝜀0を代入すると、  

𝑢1 = 𝜌(𝜌𝑢−1 + 𝜀0) + 𝜀1 

       = 𝜌2𝑢−1 + 𝜀1 +  𝜌𝜀0 

となり、さらに𝑢−1 = 𝜌𝑢−2 + 𝜀−1を代入すると、  

𝑢1  = 𝜌
2(𝜌𝑢−2 + 𝜀−1) + 𝜀1 +  𝜌𝜀0 

= 𝜌3𝑢−3 + 𝜀1 +  𝜌𝜀0 + 𝜌
2𝜀−1 

となります。こうした代入を無限回繰り返すと、𝑢1は次のように展開できます。  

𝑢1  = 𝜌
∞𝑢−∞ + 𝜀1 +  𝜌𝜀0 + 𝜌

2𝜀−1 + 𝜌
3𝜀−2 + 𝜌

4𝜀−3 +⋯ 

ここで−1 < 𝜌 < 1であることに注意すると、𝜌∞𝑢−∞ = 0となります。つまり、𝑢1は

次のように表現できます。  

𝑢1  = 𝜀1 +  𝜌𝜀0 + 𝜌
2𝜀−1 + 𝜌

3𝜀−2 + 𝜌
4𝜀−3 +⋯ 

このとき、𝑢1の期待値は、  

 
9 標本分散が真の分散に収束することは、たとえば、藪友良『入門  実践する統計学』 (東洋経済

新報社、 20 12 年 )の 5.3 .1 節の例 1 を参照されたい。  
10  時差 s が大きくなると自己共分散は小さくなる傾向があるため (現在と遠い過去との関係は弱

い )、サンプルサイズ 𝑇が大きいとしても、 𝛾0 + 2∑ (1 −
𝑠

𝑇
) 𝛾𝑠

𝑇−1
𝑠=1 は有限の値になるとする仮定は、あま

り問題がないといえよう。  



74 

 

𝐸[𝑢1] = 𝐸[𝜀1] +  𝜌𝐸[𝜀0] + 𝜌
2𝐸[𝜀−1] + 𝜌

3𝐸[𝜀−2] + 𝜌
4𝐸[𝜀−3] + ⋯ = 0 

となり、分散は、次のように表せます。  

𝑉(𝑢1) = 𝐸[𝑢1
2] =  𝐸[𝜀1

2] + 𝜌2𝐸[𝜀0
2] + 𝜌4𝐸[𝜀−1

2 ] + 𝜌6𝐸[𝜀−2
2 ] + 𝜌8𝐸[𝜀−3

2 ] + ⋯ 

= 𝜎2(1 + 𝜌2 + 𝜌4 + 𝜌6 + 𝜌8 +⋯) 

=
𝜎2

1 − 𝜌2
 

式展開では、無限級数の和の公式を用いました。無限級数の和の公式は、
|𝜃| < 1のとき、次式が成立するとしています 11。  

1 + 𝜃 + 𝜃2 + 𝜃3 +⋯ =
1

1 − 𝜃
 

つまり、 𝜃 = 𝜌2と定義すると、  

1 + 𝜌2 + 𝜌4 + 𝜌6 +⋯ =
1

1 − 𝜌2
 

になるわけです。  

 

 

 

 
11無限級数の和の公式を証明します。まず、 𝑋を次のように定義します。  

𝑋 = 1 + 𝜃 + 𝜃2 + 𝜃3 +⋯+ 𝜃𝑠 
上式両辺に 𝜃を掛けると次式となります。  

𝜃𝑋 = 𝜃 + 𝜃2 + 𝜃3 +⋯+ 𝜃𝑠+1 
このため、 𝑋 −  𝜃𝑋は、次のようになります。  

𝑋 − 𝜃𝑋 = (1 + 𝜃 + 𝜃2 + 𝜃3 +⋯+ 𝜃𝑠) − (𝜃 + 𝜃2 + 𝜃3 +⋯+ 𝜃𝑠+1) = 1 − 𝜃𝑠+1 
さらに両辺を (1 − 𝜃)で割ると、次式となります (上式左辺は 𝑋 − 𝜃𝑋 = (1 − 𝜃)𝑋であることに注意するこ

と )。  

𝑋 =
1 − 𝜃𝑠+1

1 − 𝜃
 

ここで、 𝑠が∞とすると、 |𝜃| < 1から 𝜃𝑠+1 = 0となります。よって、 𝑋 = 1/(1 − 𝜃)が証明できました。  



75 

 

第 11 章の答え  

練習問題 1  

パネルデータは、𝑁は𝑇より大きいことが一般的である。しかし、𝑁より𝑇の

方が大きいケースもある。パネルデータは一般的に年次データであるが、日次

データや秒次データなら 𝑇は大きい。この場合、 𝑇は𝑁よりも大きくなる。  

 

ミクロパネルとマクロパネル  

 パネルデータといったとき、大きくわけて 2 種類のデータがある。ミクロ

パネル (micro panel)は、個人、世帯、企業のパネルデータであり、𝑁は非常

に大きく (1000 を上回ることが多い )、𝑇は小さい傾向がある (2～ 20 程度 )。こ

れに対し、マクロパネル (macro panel)は県、地域、国単位で集計されたデー

タであり、𝑁は小さく (7～ 100 程度 )、𝑇は少し大きい傾向がある (10～ 50 程

度 )。 11 章で分析したパネルデータは、マクロパネルに該当する。例 11-1 は

𝑁 = 64、𝑇 = 20、例 11-3 は𝑁 = 47、𝑇 = 11、例 11-4 は𝑁 = 47、𝑇 = 175である。

例 11-4 は日次であるため、𝑁よりも𝑇が大きくなっている。  

 

練習問題 2  

変量効果は、個別効果が説明変数と無相関である一方、固定効果は、個別効

果が説明変数と相関している点で異なる。通常、個別効果と説明変数は相関し

ているため、変量効果は非現実的である。たとえば、被説明変数𝑌を賃金、𝑋

を教育年数とすると、個別効果として、生まれつきの能力が挙げられる。能力

と教育年数は相関していると考えるのが自然である。  

 

固定効果と変量効果の違い  

 固定効果と変量効果の違いを図で確認してみよう。モデルは𝑌𝑖,𝑡 = 𝛼 +

 𝛽𝑋𝑖,𝑡 + 𝑍𝑖 + 𝑢𝑖,𝑡としよう。単純化のため、𝛽 > 0、𝑢𝑖,𝑡 = 0とし、また、𝑋𝑖,𝑡と𝑍𝑖に

負の相関があるとしよう。  

下図の点線は𝛼 +  𝛽𝑋𝑖,𝑡を、実線は𝛼 +  𝛽𝑋𝑖,𝑡 + 𝑍𝑖、各点は観測値を表してい

る。𝑍𝑖は確率変数であり、その値に応じて実線はシフトしている。下図 (a)は
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変量効果 (𝑋𝑖,𝑡と𝑍𝑖は無相関 )の場合であり、𝑋𝑖,𝑡が大きいとき𝑍𝑖が大きくなる (も

しくは小さくなる )ような傾向はみられない。これに対し、下図 (b)は固定効

果 (仮定から𝑋𝑖,𝑡と𝑍𝑖には負の無相関 )の場合であり、𝑋𝑖,𝑡が大きくなると 𝑍𝑖がマ

イナスの値をとっている。この図から、図 (a)の変量効果なら、プールド

OLS でも一致性はある一方、図 (b)の固定効果なら、一致性は満たされない

ことが理解できる。実際、下図 (b)では、固定効果𝑍𝑖を考慮しないと、係数𝛽

は負の値として推定される。  

(a)変量効果            (b)固定効果  

 

 

 

 

 

 

 

  

 

練習問題 3  

固定効果モデルは、  

𝑌𝑖,𝑡 = 𝛽𝑋𝑖,𝑡 + 𝛼1𝐷1𝑖 + 𝛼2𝐷2𝑖 +⋯+ 𝛼𝑁𝐷𝑁𝑖 + 𝑢𝑖,𝑡 

となる。ここで、帰無仮説と対立仮説を次のように設定して F 検定をする。  

𝐻0: 𝛼1 = 𝛼、𝛼2 = 𝛼、…、𝛼𝑁 = 𝛼   

𝐻1: 帰無仮説𝐻0は誤りである  

仮に帰無仮説𝐻0が採択されたなら、個別効果はないと判断される。これに対し

て、帰無仮説𝐻0が棄却されたなら、個別効果はあると判断される 1。  

 なお、 7.2 節と同じような仮説にしたいのであれば、上式を  

𝑌𝑖,𝑡 = 𝛼1 + 𝛽𝑋𝑖,𝑡 + (𝛼2 − 𝛼1)𝐷2𝑖 +⋯+ (𝛼𝑁 − 𝛼1)𝐷𝑁𝑖 + 𝑢𝑖,𝑡 

 
1 帰無仮説が棄却されても、プールド OLS に問題があるとはいえない。これは、個別効果が存在

しても、説明変数と個別効果が無相関であれば、プールド OLS は一致性を持つためである。ただ

し、個別効果が存在するなら、個別効果が説明変数と相関する可能性を考慮し、固定効果モデル

で推定することが望ましいといえる。  

𝑋𝑖,𝑡 

𝑌𝑖,𝑡 
𝛼 + 𝛽𝑋𝑖,𝑡

𝑋𝑖,𝑡 

𝑌𝑖,𝑡 

𝛼 + 𝛽𝑋𝑖,𝑡 + 𝑍𝑖

𝛼 + 𝛽𝑋𝑖,𝑡
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= 𝛼1 + 𝛽𝑋𝑖,𝑡 + 𝜃2𝐷2𝑖 +⋯+ 𝜃𝑁𝐷𝑁𝑖 + 𝑢𝑖,𝑡 

と表現し (ただし、𝜃2 = 𝛼2 − 𝛼1、…、𝜃𝑁 = 𝛼𝑁 − 𝛼1と定義した )2、仮説は次のよう設

定すればよい。  

𝐻0: 𝜃2 = 0、 𝜃3 = 0、…、 𝜃𝑁 = 0   

𝐻1: 帰無仮説𝐻0は誤りである  

 この仮説検定の結果から何が言えるだろうか。帰無仮説の棄却は、個別効果

が存在し、プールド回帰が不適切であることを意味している。しかし、この検

定からは、個別効果と説明変数が相関しているかは分からないため、変量効果

モデルと個別効果モデルのどちらで推定すべきかわからない。  

 

練習問題 4 

2 時点のデータが利用可能であるため、両時点の差をとることで、  

𝑌𝑖,2 − 𝑌𝑖,1 = (𝛼 + 𝛽𝑋𝑖,2 + 𝛾𝑍𝑖 + 𝑢𝑖,2) − (𝛼 + 𝛽𝑋𝑖,1 + 𝛾𝑍𝑖 + 𝑢𝑖,1) 

=  𝛽(𝑋𝑖,2 − 𝑋𝑖,1) + (𝑢𝑖,2 − 𝑢𝑖,1) 

となる。ここで、観察できない変数 𝑍𝑖は式から消えるため、被説明変数を 𝑌𝑖,2 −

𝑌𝑖,1、説明変数を𝑋𝑖,2 − 𝑋𝑖,1とすれば、通常の OLS で係数𝛽をバイアスなく推定でき

る。  

 

練習問題 5 

固定効果モデルとして、次式を考えよう。  

𝑌𝑖,𝑡 = 𝛽𝑋𝑖,𝑡 + θ𝑊𝑖 + 𝛼1𝐷1𝑖 + 𝛼2𝐷2𝑖 +⋯+ 𝛼𝑁𝐷𝑁𝑖 + 𝑢𝑖,𝑡 

ただし、𝑊𝑖は時間を通じて一定の変数であるため、下添字は 𝑖だけとなる。また、  

θはその係数とする。ここで、𝑊𝑖は、𝑊1、𝑊2、…、𝑊𝑁という値をとるとしよう (つ

まり、 𝑖 = 1なら𝑊𝑖は𝑊1となり、 𝑖 = 2なら𝑊𝑖は𝑊2となる )。  

 上式には、完全な多重共線性が生じるため、推定できないことを確認しよう。

 

2  次式が正しいことを確認しよう。  

𝛽𝑋𝑖,𝑡 + 𝛼1𝐷1𝑖 + 𝛼2𝐷2𝑖 +⋯+ 𝛼𝑁𝐷𝑁𝑖 + 𝑢𝑖,𝑡 = 𝛼1 + 𝛽𝑋𝑖,𝑡 + (𝛼2 − 𝛼1)𝐷2𝑖 +⋯+ (𝛼𝑁 − 𝛼1)𝐷𝑁𝑖 + 𝑢𝑖,𝑡 

まず、 𝑖 = 1なら、 𝐷1𝑖 = 1、 𝐷2𝑖 = 𝐷3𝑖 = ⋯ = 𝐷𝑁𝑖 = 0なので、 𝛽𝑋𝑖,𝑡 + 𝛼1 + 𝑢𝑖,𝑡 = 𝛼1 + 𝛽𝑋𝑖,𝑡 + 𝑢𝑖,𝑡となり、両辺は

等しい。次に、 𝑖 = 2なら、 𝐷2𝑖 = 1、 𝐷1𝑖 = 𝐷3𝑖 = ⋯ = 𝐷𝑁𝑖 = 0なので、 𝛽𝑋𝑖,𝑡 + 𝛼2 + 𝑢𝑖,𝑡 = 𝛼1 + 𝛽𝑋𝑖,𝑡 + (𝛼2 − 𝛼1) +

𝑢𝑖,𝑡となり、やはり両辺は等しい。他の 𝑖についても両辺が等しくなることを確認してほしい。  
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まず、𝑊𝑖を、ダミー変数 (𝐷1𝑖、𝐷2𝑖、 …、𝐷𝑁𝑖)を用いて、次のように表記する。  

𝑊𝑖 = 𝑊1𝐷1𝑖 +𝑊2𝐷2𝑖 +⋯+𝑊𝑁𝐷𝑁𝑖 

次に、右辺の変数をすべて左辺に移項させると、  

𝑊𝑖 −𝑊1𝐷1𝑖 −𝑊2𝐷2𝑖 −⋯−𝑊𝑁𝐷𝑁𝑖 = 0 

となる。ここで、𝑊1、𝑊2、…、𝑊𝑁は定数なので、𝑐0 = 1、𝑐1 = −𝑊1、𝑐2 = −𝑊2、…、

𝑐𝑁 = −𝑊𝑁とすると、  

𝑐0𝑊𝑖 + 𝑐1𝐷1𝑖 + 𝑐2𝐷2𝑖 +⋯+ 𝑐𝑁𝐷𝑁𝑖 = 0 

であり、完全な多重共線性が生じていることがわかる。  

 

統計ソフトで計算される固定効果モデルの定数項は何か？  

 統計ソフトを用いて、固定効果モデルを推定すると、定数項が推定され

る。これはいったい何を表しているのだろうか。  

ここで、固定効果モデルは、  

𝑌𝑖,𝑡 =  𝛼 + 𝛽𝑋𝑖,𝑡 + 𝑍𝑖 + 𝑢𝑖,𝑡 

= 𝛼𝑖 +  𝛽𝑋𝑖,𝑡 + 𝑢𝑖,𝑡 

としており、個体 𝑖ごとに異なる定数項がある (式展開では、𝛼𝑖 =  𝛼 + 𝑍𝑖と定義

している )。直観的には、定数項は𝛼と思われるかもしれないが、これは誤り

である。  

 統計ソフトでは、定数項は次の 2 つの方法で計算される。第 1 の方法で

は、定数項を固定効果の平均としている (つまり、∑ 𝛼̂𝑖
𝑁
𝑖=1 /𝑁として計算され

る )。これは Stata の xtreg コマンドが該当している。  

第 2 の方法では、いずれかの個体 i をベースに設定し、定数項をその固定

効果とするものである。具体的には、個体 i=1 をベースにしてモデルを書き

換えると、次のようになる。  

𝑌𝑖,𝑡 = 𝛼1 + (𝛼𝑖 − 𝛼1) +  𝛽𝑋𝑖,𝑡 + 𝑢𝑖,𝑡 

ここで、定数項は個体 i=1 の固定効果𝛼1となる。通常、最初の個体 i=1 がベ

ースとなるが、これは統計ソフトによって異なるかもしれない。  

自殺者の国際比較 (11 章例 11-1 参照 )を例にしよう。まず、 xtreg suicide 

unemployment,  fe とすると、定数項は固定効果の平均であり、これは 11.05
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と推定される。これに対し、 reg suicide unemployment i .country とすると、定

数項はベース国 (この場合、 albania)の固定効果であり、 2.13 と推定されるこ

とになる (なお、国ダミーの係数は 𝛼𝑖 − 𝛼1を推定したものである )3。通常、ベ

ース国に関心がないだろうから、固定効果の平均の方がまだ実証的な意味は

あるだろう。ただし、そもそも固定効果の平均にも関心がない場合が多くあ

り、定数項を論文中で報告しないことも多い。  

 

練習問題 6 

時間固定効果モデルとして、次式を考えよう。  

𝑌𝑖,𝑡 = 𝛽𝑋𝑖,𝑡 + θ𝑊𝑡 + 𝜆1𝑑1𝑡 + 𝜆2𝑑2𝑡 +⋯+ 𝜆𝑇𝑑𝑇𝑡 + 𝑢𝑖,𝑡 

ただし、𝑊𝑡は個体 𝑖に対して同じ影響を与える変数であるため、下添字は 𝑡だけ

となる。ここで、𝑊𝑡は、𝑊1、𝑊2、…、𝑊𝑇という値をとるとしよう (つまり、𝑡 = 1

なら𝑊𝑡は𝑊1となり、 𝑡 = 2なら𝑊𝑡は𝑊2となる )。  

上式には、完全な多重共線性が生じるため、推定できないことを確認しよう。

まず、𝑊𝑡を、ダミー変数 (𝑑1𝑡、𝑑2𝑡、 …、𝑑𝑇𝑡)を用いて、次のように表記する。  

𝑊𝑡 = 𝑊1𝑑1𝑡 +𝑊2𝑑2𝑡 +⋯+𝑊𝑇𝑑𝑇𝑡 

次に、右辺の変数をすべて左辺に移項させると  

𝑊𝑡 −𝑊1𝑑1𝑡 −𝑊2𝑑2𝑡 −⋯−𝑊𝑇𝑑𝑇𝑡 = 0 

となる。ここで、𝑊1、𝑊2、…、𝑊𝑇は定数であるため、完全な多重共線性が生じ

ていることがわかる。  

 

練習問題 7 

固定効果と時間効果を考慮したモデルは、次のモデルとなる。  

𝑌𝑖,𝑡 = 𝛽𝑋𝑖,𝑡 + 𝛼1𝐷1𝑖 + 𝛼2𝐷2𝑖 +⋯+ 𝛼𝑁𝐷𝑁𝑖 

                   +𝜆1𝑑1𝑡 + 𝜆2𝑑2𝑡 +⋯+ 𝜆𝑇𝑑𝑇𝑡 + 𝑢𝑖,𝑡 

問題 5 から、時間を通じて一定の変数𝑊𝑖は、  

𝑊𝑖 = 𝑊1𝐷1𝑖 +𝑊2𝐷2𝑖 +⋯+𝑊𝑁𝐷𝑁𝑖 

 
3 当然だが、 reg コマンドを用いた推定でも、固定効果の平均は 11.05 になる。これを確

認するため、各国の固定効果 𝛼𝑖を、国ダミーの係数 +2.13(つまり、 𝛼1 + (𝛼𝑖 − 𝛼1))として計算する。

そして、ベース国 (a lb ania )の固定効果 +(国ダミーの係数 +2.13 )をすべて足してから国数 64 で割る

と 11.05 となる。  
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となる。同様に、問題 6 から、個体 𝑖に対して同じ影響を与える変数𝑊𝑡は、  

𝑊𝑡 = 𝑊1𝑑1𝑡 +𝑊2𝑑2𝑡 +⋯+𝑊𝑇𝑑𝑇𝑡 

となる。これらに完全な多重共線性が生じていることは明らかであろう。  

 

練習問題 8 

どちらも同じモデルを考えている。  

𝑌𝑖,𝑡 = 𝛼 + 𝛽𝑋𝑖,𝑡 + 𝑒𝑖,𝑡 

𝑒𝑖,𝑡 = 𝑍𝑖 + 𝑢𝑖,𝑡 

プールド OLS は、通常の OLS 推定である。これに対して、変量効果モデルに

よる推定は、誤差項 𝑒𝑖,𝑡 = 𝑍𝑖 + 𝑢𝑖,𝑡の系列相関を除くため、被説明変数𝑌𝑖,𝑡と説明変

数𝑋𝑖,𝑡に複雑な変換を行ったうえで OLS 推定する (つまり、一般化最小 2 乗推定

となる )。  

変量効果の前提が正しいならば、変量効果推定量は BLUE となるが、プール

ド OLS は不偏性と一致性はあるが BLUE ではない。固定効果の前提が正しい

ならば、変量効果推定量とプールド OLS 推定量はどちらもバイアスを持った推

定量である。  

 

練習問題 12  

(a)  時点 𝑡に関して、𝑌𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑋𝑖,𝑡 + 𝑢𝑖,𝑡の和をとると、  

∑ 𝑌𝑖,𝑠
𝑇

𝑠=1
=∑ (𝛼𝑖 + 𝛽𝑋𝑖,𝑠 + 𝑢𝑖,𝑠)

𝑇

𝑠=1
 

= 𝑇𝛼𝑖 +  𝛽∑ 𝑋𝑖,𝑠
𝑇

𝑠=1
+∑ 𝑢𝑖,𝑠

𝑇

𝑠=1
 

となる。さらに、上式の両辺を𝑇で割ると、  

𝑌̅𝑖 = 𝛼𝑖 + 𝛽𝑋̅𝑖 + 𝑢̅𝑖 

が得られる。このため、 𝑌𝑖,𝑡から平均 𝑌̅𝑖を引くと、  

𝑌𝑖,𝑡 − 𝑌̅𝑖 = (𝛼𝑖 + 𝛽𝑋𝑖,𝑡 + 𝑢𝑖,𝑡) − (𝛼𝑖 + 𝛽𝑋̅𝑖 + 𝑢̅𝑖) 

=  𝛽(𝑋𝑖,𝑡 − 𝑋̅𝑖) + (𝑢𝑖,𝑡 − 𝑢̅𝑖) 
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となり、個別効果が消えていることがわかる。したがって、被説明変数を 𝑌𝑖,𝑡 −

𝑌̅𝑖、説明変数を𝑋𝑖,𝑡 − 𝑋̅𝑖とした OLS 推定によって係数𝛽を推定できる 4。ただし、

定数項を 0 とした OLS 推定となることに注意してほしい (定数項が 0 とした

OLS 推定は練習問題 3.12 を参照されたい )。  

 上式の OLS 推定量は、ダミー変数を用いた固定効果推定量と同じになる  

(この点は本稿の補足で厳密に証明しているので興味がある方は読んでほし

い )。このため、上式の OLS 推定量は、やはり固定効果推定量と呼ばれる。  

  

(b)  強外生性が必要な理由は、 (a)のモデルを考えるとわかりやすい。  

𝑌𝑖,𝑡 − 𝑌̅𝑖 =  𝛽(𝑋𝑖,𝑡 − 𝑋̅𝑖) + (𝑢𝑖,𝑡 − 𝑢̅𝑖) 

ここで、被説明変数は𝑌𝑖,𝑡 − 𝑌̅𝑖、説明変数は𝑋𝑖,𝑡 − 𝑋̅𝑖、誤差項は 𝑢𝑖,𝑡 − 𝑢̅𝑖となる。こ

のとき、外生性は、説明変数と誤差項が無相関である、つまり、  

𝐶𝑜𝑣(𝑋𝑖,𝑡 − 𝑋̅𝑖 , 𝑢𝑖,𝑡 − 𝑢̅𝑖) = 0 

を意味する。これは、𝑋𝑖,𝑡が強外生性の仮定 (全時点 (𝑡、 𝑠)において、𝑋𝑖,𝑡は誤差

項𝑢𝑖,𝑠と無相関となる )を満たすときに成立する 5。  

 この点を理解するため、 𝑇 = 2という状況を考えよう。 𝑡 = 1のとき、  

𝑋𝑖,1 − 𝑋̅𝑖 = 𝑋𝑖,1 −
1

2
(𝑋𝑖,1 +𝑋𝑖,2) =

1

2
(𝑋𝑖,1 − 𝑋𝑖,2) 

となり、同様に、 𝑢𝑖,1 − 𝑢̅𝑖 =
1

2
(𝑢𝑖,1 − 𝑢𝑖,2)となる。したがって、𝐶𝑜𝑣(𝑋𝑖,1 − 𝑋̅𝑖、

𝑢𝑖,1 − 𝑢̅𝑖) = 0と𝐶𝑜𝑣(𝑋𝑖,1 −𝑋𝑖,2, 𝑢𝑖,1 − 𝑢𝑖,2 ) = 0は同じことである。そして、全ての 𝑡、

𝑠に対し𝐶𝑜𝑣(𝑋𝑖,𝑡 , 𝑢𝑖,𝑠) = 0のとき、𝐶𝑜𝑣(𝑋𝑖,1 − 𝑋𝑖,2, 𝑢𝑖,1 − 𝑢𝑖,2 )が 0 となる 6。  

 
4 Stata で計算される within R 2 は、被説明変数を 𝑌𝑖,𝑡 − 𝑌̅𝑖、説明変数を 𝑋𝑖,𝑡 − 𝑋̅𝑖とした推定から得ら

れる決定係数である。こちらは平均の影響を除いたうえで、個体内での 𝑌𝑖,𝑡の変動を 𝑋𝑖,𝑡でどれだけ

説明できるかをみている。実証分析では、within R 2 もしくはダミー変数を含めた固定効果推定か

ら得られる決定係数のいずれかを用いる。なお、ダミー変数を含めた推定では決定係数が高くな

り、within R 2 は低い値となる傾向がある。論文を執筆するときは、どちらの決定係数を用いたか

を明示することが重要である。  
5  説明変数が非確率変数であれば強外生性は成立するが、一般には、説明変数は確率変数ではな

く、この仮定は成立しない可能性がある。  

6 この点をクリアにするため、 𝐶𝑜𝑣(𝑋𝑖,1 − 𝑋𝑖,2, 𝑢𝑖,1 − 𝑢𝑖,2 )を展開してみよう。  
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 𝑇が大きければ、通常の外生性の仮定で十分である。これは 𝑇が大きけれ

ば、 𝑋̅𝑖は𝐸[𝑋𝑖]に、 𝑢̅𝑖は𝐸[𝑢𝑖]に収束するためである。このとき、 𝐶𝑜𝑣(𝑋𝑖,𝑡 − 𝑋̅𝑖 , 𝑢𝑖,𝑡 −

𝑢̅𝑖)は𝐶𝑜𝑣(𝑋𝑖,𝑡 − 𝐸[𝑋𝑖], 𝑢𝑖,𝑡 − 𝐸[𝑢𝑖])で置き換えられ、  

𝐶𝑜𝑣(𝑋𝑖,𝑡 − 𝐸[𝑋𝑖], 𝑢𝑖,𝑡 − 𝐸[𝑢𝑖]) = 𝐸[(𝑋𝑖,𝑡 − 𝐸[𝑋𝑖])( 𝑢𝑖,𝑡 − 𝐸[𝑢𝑖])] 

となる (これはまさに𝐶𝑜𝑣(𝑋𝑖,𝑡 , 𝑢𝑖,𝑡)となる )。残念ながら、パネル分析では、𝑁が

大きい一方、𝑇が小さいことが一般的である (11.1.1 節参照 )。つまり、 𝑋̅𝑖は𝐸[𝑋𝑖]

に、 𝑢̅𝑖は𝐸[𝑢𝑖]に収束しない。このため、パネル分析では、強外生性の仮定が重

要となる。たとえば、教科書の例 11-1 は𝑇 = 20、例 11-3 は𝑇 = 11、例 11-4 は

𝑇 = 175である。例 11-4 では𝑇が大きいが、例 11-3 では𝑇が大きいとはいえな

い。  

 強外生性は強い仮定であり、これが満たされない状況は多い。そうした状況

として、①説明変数の 1 つに被説明変数のラグ 𝑌𝑖,𝑡−1があるケース、②𝑌から𝑋へ

のフィードバックがあるケース、が挙げられる。  

まず、①説明変数の 1 つに被説明変数のラグ𝑌𝑖,𝑡−1があるケースである。この

とき、モデルは  

𝑌𝑖,𝑡 = 𝛼𝑖 + 𝛽1𝑌𝑖,𝑡−1 + 𝛽2𝑋𝑖,𝑡 + 𝑢𝑖,𝑡 

となり、説明変数𝑌𝑖,𝑡−1は、 1 時点前の𝑢𝑖,𝑡−1と相関している (1 期前は𝑌𝑖,𝑡−1 = 𝛼𝑖 +

𝛽1𝑌𝑖,𝑡−2 + 𝛽2𝑋𝑖,𝑡−1 + 𝑢𝑖,𝑡−1から、𝑌𝑖,𝑡−1と𝑢𝑖,𝑡−1は相関する )。このように、被説明変数

のラグを入れるときは、強外生性の仮定がみたされない 7。  

次に、②𝑌から𝑋へのフィードバックがあるケースである。ここで、𝑌𝑖,𝑡が変

化すると、しばらく経過してから将来の𝑋𝑖,𝑠が変化するとしよう。このとき、

𝑢𝑖,𝑡が𝑌𝑖,𝑡に、ひいては𝑋𝑖,𝑠に影響を与えるため、 𝑢𝑖,𝑡と𝑋𝑖,𝑠が相関し、強外生性の仮

定が満たされない。たとえば、例 11-4 では、𝑋は緊急事態ダミー、 𝑌は自粛率

 

𝐸[(𝑋𝑖,1 −𝑋𝑖,2 − 𝐸[𝑋𝑖,1 − 𝑋𝑖,2])(𝑢𝑖,1 − 𝑢𝑖,2 − 𝐸[𝑢𝑖,1 − 𝑢𝑖,2])]

= 𝐸 [((𝑋𝑖,1 − 𝐸[𝑋𝑖,1]) − (𝑋𝑖,2 − 𝐸[𝑋𝑖,2])) ((𝑢𝑖,1 − 𝐸[𝑢𝑖,1]) − (𝑢𝑖,2 − 𝐸[𝑢𝑖,2]))]

= 𝐸[(𝑋𝑖,1 − 𝐸[𝑋𝑖,1])(𝑢𝑖,1 − 𝐸[𝑢𝑖,1])] + 𝐸[(𝑋𝑖,1 − 𝐸[𝑋𝑖,1])(𝑢𝑖,2 − 𝐸[𝑢𝑖,2])]

+ 𝐸[(𝑋𝑖,2 − 𝐸[𝑋𝑖,2])(𝑢𝑖,1 − 𝐸[𝑢𝑖,1])] + 𝐸[(𝑋𝑖,2 − 𝐸[𝑋𝑖,2])(𝑢𝑖,2 − 𝐸[𝑢𝑖,2])] 

これが 0 となるのは、すべての 𝑠や 𝑡に対し、 𝐸[(𝑋𝑖,𝑡 − 𝐸[𝑋𝑖,𝑡])(𝑢𝑖,𝑠 − 𝐸[𝑢𝑖,𝑠])] = 0のときである。  
7 こうしたモデルは、動学パネルデータモデルと呼ばれる。このとき、操作変数を用いた推定が

提案されている。  
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とした。自粛率が下がってくると、緊急事態宣言が発令されやすくなる可能性

がある。このため、強外生性の仮定は満たされないだろう (なお、この例では

𝑇 = 175と大きく、外生性の仮定だけでも十分と考えられる )。  

パネルデータは、個別要因を考慮し、内生性の問題を軽減する有用な手法で

はあるが、𝑇が小さいケースでは、強外生性の仮定が必要となることを覚えて

おいてほしい。  

 

将来的に追加する予定の練習問題 (興味があれば解いてください )  

13.  ★時間固定効果モデル 𝑌𝑖,𝑡 = 𝜆𝑡 + 𝛽𝑋𝑖,𝑡 + 𝑢𝑖,𝑡を考える。このとき、 𝑌𝑖,𝑡 − 𝑌̅𝑡 =

 𝛽(𝑋𝑖,𝑡 − 𝑋̅𝑡) + (𝑢𝑖,𝑡 − 𝑢̅𝑡)を示せ。𝑌̅𝑡、𝑋̅𝑡、𝑢̅𝑡は時点 𝑡での平均となる (𝑌̅𝑡 =
1

𝑁
∑ 𝑌𝑖,𝑡
𝑁
𝑖=1 、 𝑋̅𝑡 =

1

𝑁
∑ 𝑋𝑖,𝑡
𝑁
𝑖=1 、 𝑢̅𝑡 =

1

𝑁
∑ 𝑢𝑖,𝑡
𝑁
𝑖=1 )。これは被説明変数を𝑌𝑖,𝑡 − 𝑌̅𝑡、説明変数を𝑋𝑖,𝑡 − 𝑋̅𝑡とした

OLS 推定によって係数𝛽を推定できることを意味する。  

 

14.  ★  固定効果と時間効果を考慮したモデル𝑌𝑖,𝑡 = 𝛼𝑖 + 𝜆𝑡 + 𝛽𝑋𝑖,𝑡 + 𝑢𝑖,𝑡を考える。

𝑌̅、 𝑋̅、 𝑢̅は全てのデータを用いた平均となる (𝑌̅ =
1

𝑁𝑇
∑ ∑ 𝑌𝑖,𝑠

𝑁
𝑖=1

𝑇
𝑠=1 、 𝑋̅ =

1

𝑁𝑇
∑ ∑ 𝑋𝑖,𝑠

𝑁
𝑖=1

𝑇
𝑠=1 、 𝑢̅ =

1

𝑁𝑇
∑ ∑ 𝑢𝑖,𝑠

𝑁
𝑖=1

𝑇
𝑠=1 )。このとき、𝑌𝑖,𝑡 − 𝑌̅𝑖 − 𝑌̅𝑡 + 𝑌̅ =  𝛽(𝑋𝑖,𝑡 − 𝑋̅𝑖 − 𝑋̅𝑡 +

𝑋̅) + (𝑢𝑖,𝑡 − 𝑢̅𝑖 − 𝑢̅𝑡 + 𝑢̅)を示せ。これは被説明変数を 𝑌𝑖,𝑡 − 𝑌̅𝑖 − 𝑌̅𝑡 + 𝑌̅、説明変数を

𝑋𝑖,𝑡 − 𝑋̅𝑖 − 𝑋̅𝑡 + 𝑋̅とした OLS 推定によって係数𝛽を推定できることを意味する。  

 

練習問題 13 の答え  

時点 𝑡での総和は次のようになる。  

∑ 𝑌𝑖,𝑡
𝑁

𝑖=1
=∑ (𝜆𝑡 + 𝛽𝑋𝑖,𝑡 + 𝑢𝑖,𝑡)

𝑁

𝑖=1
 

= 𝑁𝜆𝑡 +  𝛽∑ 𝑋𝑖,𝑡
𝑁

𝑖=1
+∑ 𝑢𝑖,𝑡

𝑁

𝑖=1
 

上式の両辺を𝑁で割ると、  

𝑌̅𝑡 = 𝜆𝑡 + 𝛽𝑋̅𝑡 + 𝑢̅𝑡 

が得られる。このため、 𝑌𝑖,𝑡から時点 𝑡の平均 𝑌̅𝑡を引くと、  

𝑌𝑖,𝑡 − 𝑌̅𝑡 = (𝜆𝑡 + 𝛽𝑋𝑖,𝑡 + 𝑢𝑖,𝑡) − (𝜆𝑡 + 𝛽𝑋̅𝑡 + 𝑢̅𝑡) 

=  𝛽(𝑋𝑖,𝑡 − 𝑋̅𝑡) + (𝑢𝑖,𝑡 − 𝑢̅𝑡) 
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となり、時間効果が消えている。したがって、被説明変数を 𝑌𝑖,𝑡 − 𝑌̅𝑡、説明変数

を𝑋𝑖,𝑡 − 𝑋̅𝑡とした OLS 推定によって係数𝛽を推定できる。  

 

練習問題 14 の答え  

ここで 𝑌̅𝑖と 𝑌̅𝑡を計算してみよう。  

𝑌̅𝑖 =
1

𝑇
∑ 𝑌𝑖,𝑠

𝑇

𝑠=1
=
1

𝑇
∑ (𝛼𝑖 + 𝜆𝑠 + 𝛽𝑋𝑖,𝑠 + 𝑢𝑖,𝑠)

𝑇

𝑠=1
= 𝛼𝑖 + 𝜆̅ +  𝛽𝑋̅𝑖 + 𝑢̅𝑖 

𝑌̅𝑡 =
1

𝑁
∑ 𝑌𝑖,𝑡

𝑁

𝑖=1
=
1

𝑁
∑ (𝛼𝑖 + 𝜆𝑡 + 𝛽𝑋𝑖,𝑡 + 𝑢𝑖,𝑡)

𝑁

𝑖=1
= 𝛼̅ + 𝜆𝑡 +  𝛽𝑋̅𝑡 + 𝑢̅𝑡 

ただし、 𝛼̅ =
1

𝑁
∑ 𝛼𝑖
𝑁
𝑖=1 、 𝜆̅ =

1

𝑇
∑ 𝜆𝑠
𝑇
𝑠=1 と定義される。同様に、全データを用いた平

均は次のようになる。  

𝑌̅ =
1

𝑁𝑇
∑∑𝑌𝑖,𝑠

𝑁

𝑖=1

𝑇

𝑠=1

=
1

𝑇
∑(

1

𝑁
∑𝑌𝑖,𝑠

𝑁

𝑖=1

)

𝑇

𝑡=1

=
1

𝑇
∑𝑌̅𝑠

𝑇

𝑠=1

 

=
1

𝑇
∑(𝛼̅ + 𝜆𝑠 +  𝛽𝑋̅𝑠 + 𝑢̅𝑠)

𝑇

𝑠=1

 

= 𝛼̅ + 𝜆̅ + 𝛽𝑋̅ + 𝑢̅ 

以上の結果から、𝑌𝑖,𝑡 − 𝑌̅𝑖 − 𝑌̅𝑡 + 𝑌̅とした変形をすると、次のようになる。  

𝑌𝑖,𝑡 − 𝑌̅𝑖 − 𝑌̅𝑡 + 𝑌̅ = (𝛼𝑖 + 𝜆𝑡 + 𝛽𝑋𝑖,𝑡 + 𝑢𝑖,𝑡) − (𝛼𝑖 + 𝜆̅ +  𝛽𝑋̅𝑖 + 𝑢̅𝑖) − (𝛼̅ + 𝜆𝑡 +  𝛽𝑋̅𝑡 + 𝑢̅𝑡) 

+(𝛼̅ + 𝜆̅ + 𝛽𝑋̅ + 𝑢̅) 

=  𝛽(𝑋𝑖,𝑡 − 𝑋̅𝑖 − 𝑋̅𝑡 + 𝑋̅) + (𝑢𝑖,𝑡 − 𝑢̅𝑖 − 𝑢̅𝑡 + 𝑢̅) 

ここで、固定効果と時間効果が消えているのがわかる。したがって、被説明変

数を𝑌𝑖,𝑡 − 𝑌̅𝑖 − 𝑌̅𝑡 + 𝑌̅、説明変数を𝑌𝑖,𝑡 − 𝑌̅𝑖 − 𝑌̅𝑡 + 𝑌̅とした OLS 推定によって係数 𝛽を

推定できる。  

 

補足：固定効果モデルの 2 つの推定方法  

 教科書 11.3 節で学習したとおり、固定効果モデルは、𝑁個のダミー変数

(𝐷1𝑖 , 𝐷2𝑖 , … , 𝐷𝑁𝑖)を含めることで、  

𝑌𝑖,𝑡 = 𝛽𝑋𝑖,𝑡 + 𝛼1𝐷1𝑖 + 𝛼2𝐷2𝑖 +⋯+ 𝛼𝑁𝐷𝑁𝑖 + 𝑢𝑖,𝑡 

となり、この式を推定することで係数 𝛽の固定効果推定量が得られる。ここ

で、𝐷1𝑖は個体が 𝑖 = 1の場合に 1 となるダミー変数となる。  
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固定効果推定量は、次のモデルの OLS 推定でも得られる。  

𝑌𝑖,𝑡 − 𝑌̅𝑖 =  𝛽(𝑋𝑖,𝑡 − 𝑋̅𝑖) + (𝑢𝑖,𝑡 − 𝑢̅𝑖) 

ただし、 𝑌̅𝑖、 𝑋̅𝑖、 𝑢̅𝑖はそれぞれの時間平均であり、次のように定義される。  

𝑌̅𝑖 =
1

𝑇
∑ 𝑌𝑖,𝑠
𝑇
𝑠=1 、 𝑋̅𝑖 =

1

𝑇
∑ 𝑋𝑖,𝑠
𝑇
𝑠=1 、 𝑢̅𝑖 =

1

𝑇
∑ 𝑢𝑖,𝑠
𝑇
𝑠=1  

[証明 ]  

この点が正しいことを確認しよう。 FWL 定理より、ダミー変数を用いた係

数𝛽の推定は、次の 3 段階にわけて行うことができる 8。  

①  𝑋𝑖,𝑡を被説明変数とし、𝑋𝑖,𝑡以外の説明変数 (𝐷1𝑖、𝐷2𝑖、 …、𝐷𝑁𝑖)で OLS 推定し、

残差 𝑢̂𝑋𝑖,𝑡を求める。  

②  𝑌𝑖,𝑡を被説明変数とし、𝑋𝑖,𝑡以外の説明変数 (𝐷1𝑖、𝐷2𝑖、 …、𝐷𝑁𝑖)で OLS 推定し、

残差 𝑢̂𝑌𝑖,𝑡を求める。  

③被説明変数を 𝑢̂𝑌𝑖,𝑡とし、説明変数を 𝑢̂𝑋𝑖,𝑡として OLS 推定し、係数 𝛽̂を求める。  

単純化のため、𝑁 = 2という状況を考える。①では、モデルは𝑋𝑖,𝑡 = 𝛾1𝐷1𝑖 +

𝛾2𝐷2𝑖 + 𝑢𝑋𝑖,𝑡であり、パラメータ 𝛾1、 𝛾2は、次の残差 2 乗和を最小にするように

決定される。  

∑(𝑋1,𝑡 − 𝛾1𝐷1𝑖 − 𝛾2𝐷2𝑖)
2

𝑇

𝑡=1⏟                  
個体 𝑖=1の残差 2 乗和

+∑(𝑋2,𝑡 − 𝛾1𝐷1𝑖 − 𝛾2𝐷2𝑖)
2

𝑇

𝑡=1⏟                  
個体 𝑖=2の残差 2 乗和

=∑(𝑋1,𝑡 − 𝛾1)
2

𝑇

𝑡=1

+∑(𝑋2,𝑡 − 𝛾2)
2

𝑇

𝑡=1

 

式展開では、𝐷1𝑖は個体が 𝑖 = 1の場合に 1 となるダミー変数、同様に、𝐷2𝑖は

個体が 𝑖 = 2の場合に 1 となるダミー変数となることを用いた。ここで、

∑ (𝑋1,𝑡 − 𝛾1)
2𝑇

𝑡=1 が最小化されるのは、 𝛾̂1 = 𝑋̅1 =
1

𝑇
∑ 𝑋1,𝑠
𝑇
𝑠=1 のときである (2 章の練習

問題 7 参照 )。同様に、 𝛾̂2 = 𝑋̅2 =
1

𝑇
∑ 𝑋2,𝑠
𝑇
𝑠=1 となる。以上から、残差は次のように

表せる。  

𝑢̂𝑋𝑖,𝑡 = 𝑋𝑖,𝑡 − 𝛾̂1𝐷1𝑖 − 𝛾̂2𝐷2𝑖 = 𝑋𝑖,𝑡 − 𝑋̅𝑖 

式展開では、 𝑖 = 1なら𝐷1𝑖 = 1、 𝛾̂1 = 𝑋̅1、𝐷2𝑖 = 0となり、 𝑖 = 2なら𝐷2𝑖 = 1、 𝛾̂2 =

𝑋̅2、𝐷1𝑖 = 0となることを用いた。   

 
8 FWL 定理は、サポートウェブサイトの資料『 FWL 定理と重回帰分析』を参照されたい。  
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同様の議論によって、②では 𝑢̂𝑌𝑖,𝑡 = 𝑌𝑖,𝑡 − 𝑌̅𝑖を示すことができる。③では、被

説明変数を 𝑢̂𝑌𝑖,𝑡 = 𝑌𝑖,𝑡 − 𝑌̅𝑖とし、説明変数を 𝑢̂𝑋𝑖,𝑡 = 𝑋𝑖,𝑡 − 𝑋̅𝑖として係数𝛽を推定すれ

ばよい。これはモデル  

𝑌𝑖,𝑡 − 𝑌̅𝑖 =  𝛽(𝑋𝑖,𝑡 − 𝑋̅𝑖) + (𝑢𝑖,𝑡 − 𝑢̅𝑖) 

を OLS 推定することを意味している。以上から、 2 つのモデル  

𝑌𝑖,𝑡 = 𝛽𝑋𝑖,𝑡 + 𝛼1𝐷1𝑖 + 𝛼2𝐷2𝑖 +⋯+ 𝛼𝑁𝐷𝑁𝑖 + 𝑢𝑖,𝑡 

𝑌𝑖,𝑡 − 𝑌̅𝑖 =  𝛽(𝑋𝑖,𝑡 − 𝑋̅𝑖) + (𝑢𝑖,𝑡 − 𝑢̅𝑖) 

のどちらを推定しても、係数 𝛽は同じになることが確認された。  
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第 12 章の答え  

練習問題 1  

(a)  限界効果は、年齢の係数 0.032 である。つまり、 1 年歳をとると約 3%だけ

結婚確率は上がる。  

(b)  結婚確率は、 30 歳と 45 歳において、それぞれ次のようになる。  

𝑃̂{𝑌𝑖 = 1} = −0.5 + 0.032 × 30 = 0.46 

       𝑃̂{𝑌𝑖 = 1} = −0.5 + 0.032 × 45 = 0.94 

(c)  年齢𝑋𝑖が十分に大きい、もしくは十分に小さいと、確率 𝑃{𝑌𝑖 = 1}は 1 より大

きい、もしくは 0 より小さくなる。たとえば、年齢が 50 歳なら、次のよう

に確率は 100%を超える。  

𝑃{𝑌𝑖 = 1}̂ = −0.5 + 0.032 × 50 = 1.1 

 

練習問題 2  

最終学歴が大卒なら、𝑋2𝑖 = 1、𝑋3𝑖 = 0となる。よって、大卒の 30 歳と 45 歳の

結婚確率は、それぞれ次のようになる。  

𝑃̂{𝑌𝑖 = 1} = 𝐹(−3.5 + 0.1 × 30 + 0.3 × 1 + 0.6 × 0) = 0.42 

𝑃̂{𝑌𝑖 = 1} = 𝐹(−3.5 + 0.1 × 45 + 0.3 × 1 + 0.6 × 0) = 0.90 

Excel では、「=NORM.S.DIST(-3.5+0.1*30+0.3*1+0.6*0,TRUE) 」と入力す

れば、確率を 0.42 と計算できる。  

 

練習問題 3  

モデルのパラメータ (𝛼∗、𝛽∗、𝑐、𝜎2)を用いると、次のようになる (導出は 12 章補

足参照 )。  

𝛼 =
𝛼∗ − 𝑐

𝜎
 𝛽 =

𝛽∗

𝜎
 

 

練習問題 4  

𝛼̂𝑀𝐿、 𝛽̂𝑀𝐿は最尤推定量としよう。このとき、どのような 𝛼̃、𝛽に対しても、  

𝑃(𝛼̃、𝛽) ≤ 𝑃(𝛼̂𝑀𝐿、 𝛽̂𝑀𝐿) 

が成立する。ただし、 𝑃(𝛼̃、𝛽)は、パラメータが 𝛼̃、𝛽としたときの尤度 (同時確
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率 )とする。対数は単調増加する関数であるため 9、どのような 𝛼̃、𝛽に対しても、

次式が成立する。  

ln (𝑃(𝛼̃、𝛽)) ≤ ln (𝑃(𝛼̂𝑀𝐿、 𝛽̂𝑀𝐿)) 

以上から、尤度を最大にする最尤推定量 (𝛼̂𝑀𝐿、 𝛽̂𝑀𝐿)は、対数尤度を最大にする

推定量となる。  

 

練習問題 5  

説明変数を増やすと当てはまりは改善するため、次の式が成立する。  

𝑃0
𝑚𝑎𝑥 ≤ 𝑃𝑚𝑎𝑥 ≤ 1 

上式の対数をとると、次の関係式が得られる (1 の対数は 0 となることに注意 )。  

ln (𝑃0
𝑚𝑎𝑥) ≤ ln (𝑃𝑚𝑎𝑥) ≤ 0 

さらに、両辺を ln (𝑃0
𝑚𝑎𝑥)で割ると、次の関係式が得らえる ( ln (𝑃0

𝑚𝑎𝑥)は負の値であ

るため、不等号は逆になることに注意 )。  

1 ≥
ln( 𝑃𝑚𝑎𝑥)

ln( 𝑃0
𝑚𝑎𝑥)

≥ 0 

この関係式から、疑似決定係数は 0 以上 1 以下となる。  

1 −
ln( 𝑃𝑚𝑎𝑥)

ln( 𝑃0
𝑚𝑎𝑥)

 

 

練習問題 6  

𝑌𝑖 = 𝑦𝑖となるときの確率密度関数 𝑓{𝑌𝑖 = 𝑦𝑖}は、次のようになる。  

𝑓{𝑌𝑖 = 𝑦𝑖} = 𝑓{𝛼 + 𝛽 𝑋𝑖+𝑢𝑖 = 𝑦𝑖} 

= 𝑓{𝑢𝑖 = 𝑦𝑖 − 𝛼 − 𝛽 𝑋𝑖} 

=
1

√2𝜋𝜎2
𝑒
−
(𝑦𝑖−𝛼−𝛽 𝑋𝑖)

2

2𝜎2  

= (2𝜋)−
1
2(𝜎2)−

1
2𝑒
−
(𝑦𝑖−𝛼−𝛽 𝑋𝑖)

2

2𝜎2  

誤差項𝑢𝑖は互いに独立であるから、 𝑌𝑖も互いに独立となる。よって、尤度は  

𝐿 = 𝑓{𝑌1 = 𝑦1, … , 𝑌𝑛 = 𝑦𝑛} =  𝑓{𝑌1 = 𝑦1} × …× 𝑓{𝑌𝑛 = 𝑦𝑛} 

 
9 対数は単調増加関数であるため、 𝑃1 ≤ 𝑃2であれば ln (𝑃1) ≤ ln (𝑃2)となり、逆に、 ln (𝑃1) ≤ ln (𝑃2)であ

れば 𝑃1 ≤ 𝑃2となる。  
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= (2𝜋)−
1
2(𝜎2)−

1
2𝑒
−
(𝑦1−𝛼−𝛽 𝑋1)

2

2𝜎2 ×……× (2𝜋)−
1
2(𝜎2)−

1
2𝑒
−
(𝑦𝑛−𝛼−𝛽 𝑋𝑛)

2

2𝜎2  

= (2𝜋)−
𝑛
2(𝜎2)−

𝑛
2𝑒
−
1
2𝜎2

∑ (𝑦𝑖−𝛼−𝛽 𝑋𝑖)
2𝑛

𝑖=1  

となる。尤度関数は積の形になっており、最大化問題を解くのが困難である。

このため、対数尤度関数を用いて、最大化問題を解く。  

尤度の両辺について対数をとると、対数尤度が得られる。  

𝑙𝑛 𝑓 {𝑌1 = 𝑦1, . . . , 𝑌𝑛 = 𝑦𝑛} = −
𝑛

2
𝑙𝑛( 2𝜋) −

𝑛

2
𝑙𝑛( 𝜎2) −

1

2𝜎2
∑(𝑦𝑖 − 𝛼 − 𝛽 𝑋𝑖)

2

𝑛

𝑖=1

 

ここで、𝛼と𝛽は、右辺第 3 項だけにあるので、（第 3 項に－ 1 が掛けられている

ことに注意すると）対数尤度関数の最大化は、残差 2 乗和∑ (𝑦𝑖 − 𝛼 − 𝛽 𝑋𝑖)
2𝑛

𝑖=1 の最

小化と同じである。つまり、残差 2 乗和を最小化する OLS 推定量が、対数尤度

関数を最大化する最尤推定量となる。従って最尤推定量は、次式となる。  

𝛼̂𝑀𝐿 = 𝛼̂ = 𝑌̄ − 𝛽̂𝑋̄ 

𝛽̂𝑀𝐿 = 𝛽̂ =
∑ (𝑌𝑖 − 𝑌̄)(𝑋𝑖 − 𝑋̄)
𝑛
𝑖=1

∑ (𝑋𝑖 − 𝑋̄)2
𝑛
𝑖=1

 

次に、 𝜎2の最尤推定量を求めよう。これは対数尤度を最大にする 𝜎2であるた

め、対数尤度を𝜎2で偏微分してから 0 と置くことで求める。偏微分して 0 とお

くと、次の式となる 10。  

𝜕𝑙𝑛 𝑓 {𝑌1 = 𝑦1, . . . , 𝑌𝑛 = 𝑦𝑛}

𝜕𝜎2
= −

𝑛

2𝜎̂𝑀𝐿
2 +

1

2𝜎̂𝑀𝐿
4 ∑(𝑦𝑖 − 𝛼̂𝑀𝐿 − 𝛽̂𝑀𝐿 𝑋𝑖)

2

𝑛

𝑖=1

= 0 

この式の解は最尤推定量のため、下添字に ML を付けた。上式の両辺に 2𝜎̂𝑀𝐿
2  

を掛けてから整理すると、最尤推定量が得られる 11。  

 
1 0  計算は少し難しいため、丁寧に記述しよう。 𝜎2で偏微分すると、  

𝜕𝑙𝑛 𝑓 {𝑌1 = 𝑦1, . . . , 𝑌𝑛 = 𝑦𝑛}

𝜕𝜎2
= −

𝑛

2
{
𝜕 𝑙𝑛( 𝜎2)

𝜕𝜎2
} −

1

2
{
𝜕1/𝜎2

𝜕𝜎2
}∑(𝑦𝑖 − 𝛼 − 𝛽 𝑋𝑖)

2

𝑛

𝑖=1

 

となる。ここで、対数の微分の公式から、  

𝜕 𝑙𝑛( 𝜎2)

𝜕𝜎2
=
1

𝜎2
 

となる (サポートウェブサイトの補足資料「ネイピア数と自然対数の微分」を参照 )。また、 1/𝜎2 =

(𝜎2)−1であるから、  

𝜕(1/𝜎2)

𝜕𝜎2
=
𝜕(𝜎2)−1

𝜕𝜎2
= −(𝜎2)−2 = −

1

𝜎4
 

となる。以上から、先の式は次のとおりとなる。  

𝜕𝑙𝑛 𝑓 {𝑌1 = 𝑦1, . . . , 𝑌𝑛 = 𝑦𝑛}

𝜕𝜎2
= −

𝑛

2𝜎2
+

1

2𝜎4
∑(𝑦𝑖 − 𝛼 − 𝛽 𝑋𝑖)

2

𝑛

𝑖=1

 

1 1  なお、最尤推定量 𝜎̂𝑀𝐿
2 は、残差 2 乗和を 𝑛で割った値である。 3 章補足で確認したとおり、 𝜎2の不

偏推定量は、残差 2 乗和を 𝑛 − 2で割った値であるため、最尤推定量 𝜎̂𝑀𝐿
2 は不偏推定量ではない。サン

プルサイズが大きいと、 𝑛で割っても、 𝑛 − 2で割ってもほぼ同じであるため、最尤推定量 𝜎̂𝑀𝐿
2 は一致
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𝜎̂𝑀𝐿
2 =

1

𝑛
∑(𝑦𝑖 − 𝛼̂𝑀𝐿 − 𝛽̂𝑀𝐿 𝑋𝑖)

2

𝑛

𝑖=1

 

練習問題 7  

補足証明で確認したとおり、  

𝑃{𝑌𝑖 = 1} = 𝑃{𝑢𝑖 < 𝛼 + 𝛽𝑋𝑖} 

であるから、𝛽 = 0とすると、  

𝑃{𝑌𝑖 = 1} = 𝑃{𝑢𝑖 < 𝛼} 

となる。ここで、𝐹(𝛼)は定数であるため、𝐹(𝛼) = 𝑝と表記しよう。確率の合計は

1 であるため、𝑌𝑖が 1 となる確率は 𝑝であれば、 0 となる確率は 1 − 𝑝となる。ま

とめると、次のようになる。  

𝑃{𝑌𝑖 = 𝑦𝑖} = 𝑝
𝑦𝑖(1 − 𝑝)1−𝑦𝑖 

このとき、尤度は、  

𝑃{𝑌1 = 𝑦1, 𝑌2 = 𝑦2, … , 𝑌𝑛 = 𝑦𝑛} = 𝑃{𝑌1 = 𝑦1}𝑃{𝑌2 = 𝑦2}…𝑃{𝑌𝑛 = 𝑦𝑛} 

= 𝑝𝑦1(1 − 𝑝)1−𝑦1𝑝𝑦2(1 − 𝑝)1−𝑦2…𝑝𝑦𝑛(1 − 𝑝)1−𝑦𝑛 

= 𝑝∑𝑦𝑖(1 − 𝑝)𝑛−∑𝑦𝑖 

となる。これを 𝑝に関して微分して 0 と置くことで、  

∑𝑦𝑖 𝑝̂𝑀𝐿
∑𝑦𝑖−1(1 − 𝑝̂𝑀𝐿)

𝑛−∑𝑦𝑖 − (𝑛 −∑𝑦𝑖) 𝑝̂𝑀𝐿
∑𝑦𝑖(1 − 𝑝̂𝑀𝐿)

𝑛−∑𝑦𝑖−1 = 0 

となる。さらに両辺を 𝑝̂𝑀𝐿
∑𝑦𝑖−1(1 − 𝑝̂𝑀𝐿)

𝑛−∑𝑦𝑖−1で割ると、  

∑𝑦𝑖 (1 − 𝑝̂𝑀𝐿) − (𝑛 −∑𝑦𝑖)𝑝̂𝑀𝐿 = 0 

となる。これを整理すると、  

∑𝑦𝑖 − 𝑛𝑝̂𝑀𝐿 = 0 

となるから、 𝑝̂𝑀𝐿について解くと、  

𝑝̂𝑀𝐿 =
∑𝑦𝑖
𝑛
= 𝑦̄ 

となる。したがって、尤度関数に 𝑝̂𝑀𝐿 = 𝑦̄を代入することで、最大尤度 𝑃0
𝑚𝑎𝑥が次

のようなる。  

𝑃0
𝑚𝑎𝑥 = 𝑃{𝑌1 = 𝑦1, 𝑌2 = 𝑦2, . . . , 𝑌𝑛 = 𝑦𝑛} = 𝑦̄

∑𝑦𝑖(1 − 𝑦̄)𝑛−∑𝑦𝑖 

 

 
推定量となる。まとめると、最尤推定量は一致推定量だが、不偏推定量ではないといえる。  
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練習問題 8  

(a) 投票率𝑃𝑖は質的データではなく、連続的な値をとる量的データである。しか

し、投票率は割合を表しているため、 0 以上 1 以下となる必要がある。線形モ

デルを考えると、投票率𝑃𝑖の予測値は 0 を下回る、また、1 を上回る可能性があ

る。これが線形モデルの問題である。  

(b) 投票率𝑃𝑖は 0 から 1 までの値をとるため、𝑃𝑖/(1 − 𝑃𝑖)は 0 から＋∞までの値

をとる。さらに対数をとると、ln (𝑃𝑖/(1 − 𝑃𝑖))は－∞から＋∞の値をとる。したが

って、ロジット変換した推定式、つまり、  

ln (
𝑃𝑖

1 − 𝑃𝑖
) = 𝛼 + 𝛽𝑋𝑖 + 𝑢𝑖 

では、投票率𝑃𝑖が 0 以上 1 以下という制約を考慮したうえで推定がされている。

この点を確認してみよう。まず、上式は次式を意味している (下式の対数をと  

ると上式になることから明らかだろう )。  

𝑃𝑖
1 − 𝑃𝑖

= 𝑒𝛼+𝛽𝑋𝑖+𝑢𝑖   

これを𝑃𝑖について解くと、  

𝑃𝑖 =
𝑒𝛼+𝛽𝑋𝑖+𝑢𝑖  

1 + 𝑒α+β𝑋𝑖+𝑢𝑖
 

となり、さらに分母と分子に 𝑒−(α+β𝑋𝑖+𝑢𝑖)を掛けると、  

𝑃𝑖 =
1

1 + 𝑒−(𝛼+𝛽𝑋𝑖+𝑢𝑖)
 

となる。ここで、 𝑒−(α+β𝑋𝑖+𝑢𝑖)は 0 以上である。 𝑒−(α+β𝑋𝑖+𝑢𝑖)が 0 なら𝑃𝑖 = 1となり、

𝑒−(α+β𝑋𝑖+𝑢𝑖)が大きくなると𝑃𝑖は 0 に近づく。  

(c）𝑃𝑖 = 0もしくは 1 になると、 ln (𝑃𝑖/(1 − 𝑃𝑖))は定義できない。ただし、実際の

投票率が 0%や 100%という状況はありえないため、問題とはならない。  

 

練習問題 11  

初期値を 𝛽0とし、尤度関数を 𝛽で微分すると、傾きは正となっており、 𝛽を𝛽0か

ら増加させることで尤度が増加する (下図参照 )。これを続けていくと、𝛽0
∗で微分

の傾きは 0 となり、ここでストップすることになる。しかし、この図から、明
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らかなように、𝛽0
∗は尤度関数を最大化していない。これは局所的最大化 (locally  

maximum)といわれる問題である。  

 

   尤度  

 

 

 

 

 

                    

 これは様々な初期値を試すことで解決できる。たとえば、初期値を 𝛽1とし、

尤度関数を微分すると、傾きは負となっており、𝛽を𝛽1から減少させることで尤

度は増加する (下図参照 )。これを続けると、𝛽1
∗で微分の傾きは 0 となり、ここで

ストップすることになる。𝛽0
∗の尤度と、𝛽1

∗の尤度を比較し、より大きい方の尤度

が選ばれることになる。これすれば、尤度を最大にする 𝛽1
∗を求めることができ

る。ここでは初期値を 2 つしか試していないが、実際の分析では、初期値とし

ていろいろな組み合わせを試すことが必要である。なお、プロビットやロジッ

トでは、尤度のピークは 1 つしかないので、こうした問題は生じないことが知

られている。  

尤度  

 

 

 

 

 

 

  

𝛽 

𝛽0 𝛽0
∗ 

𝛽 

𝛽1 𝛽1
∗ 
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第 13 章の答え  

練習問題 1  

𝛽 > 0としよう。下図 (a)では、真の関係 (𝛼 + 𝛽𝑋)を実線、回帰直線 (当てはまりの

良い線 )を点線で表した。このとき、測定誤差 𝑒𝑖が大きくなると、説明変数𝑋𝑖は

大きくなる一方、誤差項 𝑢𝑖 = 𝑢𝑖
∗ − 𝛽𝑒𝑖は小さくなる。つまり、𝑋𝑖と𝑢𝑖に負の相関が

生じる。𝑋𝑖と𝑢𝑖に負の相関があるため、𝑋𝑖が大きいと、𝑢𝑖は小さく (負の値をとる )

なり、観測点は実線の下で観察される。逆に、 𝑋𝑖が小さいと、 𝑢𝑖は大きく (正の

値をとる )なり、観測点は実線の上で観察される。このため、回帰直線は傾きが

ゆるやかになる傾向がある (サンプルサイズが大きいときでも、 𝛽の推定量は負

のバイアスを持つ )。  

逆に、𝛽 < 0としよう (下図 (b)参照 )。このとき、測定誤差 𝑒𝑖が大きくなると、説

明変数𝑋𝑖と誤差項𝑢𝑖 = 𝑢𝑖
∗ − 𝛽𝑒𝑖はともに大きくなる。つまり、𝑋𝑖と𝑢𝑖に正の相関が

ある。ここで𝑋𝑖と𝑢𝑖に正の相関があるため、𝑋𝑖が大きいと、𝑢𝑖は大きく (正の値を

とる )なり、観測点は実線の上で観察される。逆に、 𝑋𝑖が小さいと、 𝑢𝑖は小さく

(負の値をとる )なり、観測点は実線の下で観察される。このため、サンプルサイ

ズが大きいときでも、 𝛽の推定量は正のバイアスを持つ。  

これまでの結果をまとめると、サンプルサイズが大きいときでも、𝛽 > 0なら

負のバイアス (𝛽̂ <  𝛽)、𝛽 < 0なら正のバイアス (𝛽̂ >  𝛽)であり、係数は 0 方向へバ

イアスがあるといえる。  

図：内生性とバイアスの関係  

(a)  𝜷 > 𝟎の場合             (b)𝜷 < 𝟎 の場合  

             

 

 

  

 

 

 なお、図をみると、内生性があると、OLS 推定では係数 𝛽̂だけでなく、定数

項 𝛼̂にもバイアスが生じていることがわかる。この結果は重回帰分析において

も当てはまる。つまり、説明変数のうち 1 つでも内生性があれば、OLS 推定

𝛼 + 𝛽𝑋 

𝛼 + 𝛽𝑋 

𝛼̂ + 𝛽̂𝑋 
𝛼̂ + 𝛽̂𝑋 
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では、すべての係数や定数項にバイアスが生じるといえる。大事な点なので覚

えておいて欲しい。  

 

練習問題 2  

𝑌𝑖 = 𝑌𝑖
∗ + 𝑒𝑖を書き換えると、 𝑌𝑖

∗ = 𝑌𝑖 − 𝑒𝑖となる。これを、𝑌𝑖
∗ = 𝛼 + 𝛽𝑋𝑖 + 𝑢𝑖

∗の式

に代入すると、  

𝑌𝑖 − 𝑒𝑖 = 𝛼 + 𝛽𝑋𝑖 + 𝑢𝑖
∗

 

となり、さらに書き換えると、  

𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 + (𝑢𝑖
∗ + 𝑒𝑖) 

となる。新しい誤差項を 𝑢𝑖 = 𝑢𝑖
∗ + 𝑒𝑖と定義すると、𝑌𝑖と𝑋𝑖には次の関係がある。  

𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 + 𝑢𝑖 

仮定から、説明変数𝑋𝑖は、𝑢𝑖
∗や 𝑒𝑖と無相関である。したがって、𝑋𝑖は新しい誤差

項𝑢𝑖 = 𝑢𝑖
∗ + 𝑒𝑖と無相関であり、内生性の問題は生じない 12。よって、OLS 推定量

を用いても、サンプルサイズが大きいなら、係数𝛽の推定にバイアスは生じない。 

 

練習問題 3  

このモデルを次のように書き換える。  

𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 + 𝑢𝑖
∗ 

𝑢𝑖
∗ = γ𝑊𝑖 + 𝑢𝑖 

ただし、𝑋𝑖は内生変数であり、元の式における誤差項 𝑢𝑖と相関している。  

(𝑎) 𝑍𝑖と𝑊𝑖が無相関ならば、操作変数𝑍𝑖と誤差項 𝑢𝑖
∗ = γ𝑊𝑖 + 𝑢𝑖は無相関となり、欠

落変数がある状況であっても、𝑍𝑖は「操作変数の条件② (操作変数の外生性 )  」

を満たす。よって、サンプルサイズが大きいなら 2SLS にバイアスは生じない。  

(𝑏)  𝑍𝑖と𝑊𝑖が相関するならば、操作変数 𝑍𝑖と誤差項 𝑢𝑖
∗ = γ𝑊𝑖 + 𝑢𝑖は相関するため、

欠落変数がある状況では、𝑍𝑖は「操作変数の条件② (操作変数の外生性 ) 」を満

たさない。このため、サンプルサイズが大きくても、2SLS にバイアスが生じる

ことになる。  

 

 
12 仮に測定誤差 𝑒𝑖が説明変数 𝑋𝑖と相関していれば、OLS 推定量は一致性を持たない。通常、この

練習問題と同様、測定誤差 𝑒𝑖は説明変数と無相関と仮定される。  
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練習問題 4  

第 1 段階では、次の式を推定する。  

𝑋𝑖 = 𝛾0 + 𝛾1𝑍1𝑖 + 𝛾2𝑍2𝑖 + 𝛾3𝑊1𝑖 + 𝛾4𝑊2𝑖 + 𝑒𝑖 

操作変数の条件①は、仮説を次のようにした F 検定によって確認できる。  

          𝐻0: 𝛾1 = 0, 𝛾2 = 0 

𝐻1: 帰無仮説𝐻0が誤りである  

F 値が 10 を下回ると操作変数の条件①が満たされない可能性がある。  

 

練習問題 5  

操作変数としては、ルームメートがランダムに決まっていることを利用すれ

ばよい。たとえば、操作変数 𝑍𝑖を、ルームメートがゲーム機を持ち込んだら 1、

持ち込まなかったら 0 となるダミー変数としよう 13。部屋の割り振りはランダ

ムであるため、操作変数 𝑍𝑖は誤差項𝑢𝑖と無相関となる。また、ゲーム機が持ち込

まれると勉強時間は減るため、𝑍𝑖と𝑋𝑖は相関するだろう。  

 

練習問題 6  

(a) 誤差項は 𝑢𝑡 = 𝜌𝑢𝑡−1 + 𝜀𝑡となるため、 𝑢𝑡−1が変化すると 𝑢𝑡が変化する。また、

𝑡 − 1期には、次の関係があるため、𝑢𝑡−1が変化すると𝑌𝑡−1も変化する。  

𝑌𝑡−1 = 𝛼 + 𝛽𝑌𝑡−2 + γ𝑊𝑡−1 + 𝑢𝑡−1 

以上から、𝑢𝑡と𝑌𝑡−1は相関しており、内生性の問題が生じる。  

(b) 𝑡 − 1期には、𝑌𝑡−1 = 𝛼 + 𝛽𝑌𝑡−2 + γ𝑊𝑡−1 + 𝑢𝑡−1が成立するため、  

𝑌𝑡 −  𝜌𝑌𝑡−1 = (𝛼 + 𝛽𝑌𝑡−1 + γ𝑊𝑡 + 𝑢𝑡) − 𝜌(𝛼 + 𝛽𝑌𝑡−2 + γ𝑊𝑡−1 + 𝑢𝑡−1) 

=  𝛼(1 − 𝜌) +  𝛽𝑌𝑡−1 − 𝜌𝛽𝑌𝑡−2 + γ𝑊𝑡 − 𝜌γ𝑊𝑡−1 + (𝑢𝑡 − 𝜌𝑢𝑡−1) 

となる。ここで、 𝜀𝑡 = 𝑢𝑡 − 𝜌𝑢𝑡−1であり、左辺の 𝜌𝑌𝑡−1を右辺に移項させると、  

𝑌𝑡 =  𝛼(1 − 𝜌) + (𝜌 + 𝛽)𝑌𝑡−1 − 𝜌𝛽𝑌𝑡−2 + γ𝑊𝑡 − 𝜌γ𝑊𝑡−1 + 𝜀𝑡 

となる。右辺にある説明変数は 𝑌𝑡−1、𝑌𝑡−2、𝑊𝑡、𝑊𝑡−1であり、モデルは  

𝑌𝑡 = 𝛼
∗ + 𝛽1𝑌𝑡−1 + 𝛽2𝑌𝑡−2 + 𝛽3𝑊𝑡 + 𝛽4𝑊𝑡−1 + 𝜀𝑡  

 
13 この操作変数に関心がある方は、以下の論文を参照されたい。 St ineb ri ckner,  Ra lph  

St in eb rickn er  and  Todd  R.  S t i nebr ickne r.  (2008 )“The  Cau sa l  E ffec t  o f  Study ing  on  Acad emic  

Pe r fo rmance ,”  Th e  B .E .  Jou rn al  o f  Econo mic  Ana ly s is  and  Pol icy ,  8 (1 )  (Fron t ie r s ) ,  Art ic le  14 ,  1 -53 .  
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と表せる。ただし、パラメータは次のように定義される。  

𝛼∗ =  𝛼(1 − 𝜌)、𝛽1 =  𝜌 + 𝛽、𝛽2 = −𝜌𝛽、𝛽3 = γ、𝛽4 = −𝜌γ 

ここで、誤差項は 𝜀𝑡~𝑖. 𝑖. 𝑑. 𝑁(0, 𝜎
2)であるから、誤差項 𝜀𝑡は全ての説明変数と無相

関になる。  

 

練習問題 7  

2SLS の第 1 段階では、被説明変数を𝑋とし、説明変数を 𝑍とした OLS 推定を

する。そして、𝑋の予測値を 𝑋̂𝑖 = 𝛾̂0 + 𝛾̂1𝑍𝑖とする。ただし、𝛾̂1は、次のようになる

(2.3.1 節参照 )。  

𝛾̂1 =
∑ (𝑍𝑖 − 𝑍̅)(𝑋𝑖 − 𝑋̅)
𝑛
𝑖=1

∑ (𝑍𝑖 − 𝑍̅)2
𝑛
𝑖=1

 

2SLS の第 2 段階では、被説明変数を 𝑌𝑖とし説明変数を 𝑋̂𝑖とした OLS 推定する

ことで、係数 β を推定する。このとき、 2SLS 推定量 𝛽̂2𝑆𝐿𝑆は次のようになる。  

𝛽̂2𝑆𝐿𝑆 =
∑ (𝑋̂𝑖 − 𝑋̅̂)(𝑌𝑖 − 𝑌̅)
𝑛
𝑖=1

∑ (𝑋̂𝑖 − 𝑋̅̂)2
𝑛
𝑖=1

 

ただし、 𝑋̅̂は、 𝑋̂𝑖 = 𝛾̂0 + 𝛾̂1𝑍𝑖の標本平均、つまり、  

𝑋̅̂ =
1

𝑛
∑𝑋̂𝑖

𝑛

𝑖=1

=
1

𝑛
∑(𝛾̂0 + 𝛾̂1𝑍𝑖)

𝑛

𝑖=1

= 𝛾̂0 + 𝛾̂1𝑍̅ 

となる。よって、偏差 𝑋̂𝑖 − 𝑋̅̂は次のようになる。  

𝑋̂𝑖 − 𝑋̅̂ = (𝛾̂0 + 𝛾̂1𝑍𝑖) − (𝛾̂0 + 𝛾̂1𝑍̅) = 𝛾̂1(𝑍𝑖 − 𝑍̅) 

ここで、 𝛽̂2𝑆𝐿𝑆の式に、 𝑋̂𝑖 − 𝑋̅̂ = 𝛾̂1(𝑍𝑖 − 𝑍̅)を代入すると、次のようになる。  

𝛽̂2𝑆𝐿𝑆 =
∑ (𝑋̂𝑖 − 𝑋̅̂)(𝑌𝑖 − 𝑌̅)
𝑛
𝑖=1

∑ (𝑋̂𝑖 − 𝑋̅̂)
2

𝑛
𝑖=1

=
∑ 𝛾̂1(𝑍𝑖 − 𝑍̅)(𝑌𝑖 − 𝑌̅)
𝑛
𝑖=1

∑ 𝛾̂1
2(𝑍𝑖 − 𝑍̅)2

𝑛
𝑖=1

=
1

𝛾̂1

∑ (𝑍𝑖 − 𝑍̅)(𝑌𝑖 − 𝑌̅)
𝑛
𝑖=1

∑ (𝑍𝑖 − 𝑍̅)2
𝑛
𝑖=1

 

さらに、 𝛾̂1 = ∑ (𝑍𝑖 − 𝑍̅)(𝑋𝑖 − 𝑋̅)
𝑛
𝑖=1 /∑ (𝑍𝑖 − 𝑍̅)

2𝑛
𝑖=1 を代入すると、  

𝛽̂2𝑆𝐿𝑆 = {
∑ (𝑍𝑖 − 𝑍̅)

2𝑛
𝑖=1

∑ (𝑍𝑖 − 𝑍̅)(𝑋𝑖 − 𝑋̅)
𝑛
𝑖=1

}
∑ (𝑍𝑖 − 𝑍̅)(𝑌𝑖 − 𝑌̅)
𝑛
𝑖=1

∑ (𝑍𝑖 − 𝑍̅)2
𝑛
𝑖=1

=
∑ (𝑍𝑖 − 𝑍̅)(𝑌𝑖 − 𝑌̅)
𝑛
𝑖=1

∑ (𝑍𝑖 − 𝑍̅)(𝑋𝑖 − 𝑋̅)
𝑛
𝑖=1

 

 最後に、偏差の和が 0という性質 (∑ (𝑌𝑖 − 𝑌̅)
𝑛
𝑖=1 = 0、 ∑ (𝑋𝑖 − 𝑋̅)

𝑛
𝑖=1 = 0)を用いると、

2SLS 推定量 𝛽̂2𝑆𝐿𝑆は、次のようになる。  

𝛽̂2𝑆𝐿𝑆 =
∑ (𝑍𝑖 − 𝑍̅)(𝑌𝑖 − 𝑌̅)
𝑛
𝑖=1

∑ (𝑍𝑖 − 𝑍̅)(𝑋𝑖 − 𝑋̅)
𝑛
𝑖=1

=
∑ 𝑍𝑖(𝑌𝑖 − 𝑌̅)
𝑛
𝑖=1 − 𝑍̅∑ (𝑌𝑖 − 𝑌̅)

𝑛
𝑖=1

∑ 𝑍𝑖(𝑋𝑖 − 𝑋̅)
𝑛
𝑖=1 − 𝑍̅∑ (𝑋𝑖 − 𝑋̅)

𝑛
𝑖=1

=
∑ 𝑍𝑖(𝑌𝑖 − 𝑌̅)
𝑛
𝑖=1

∑ 𝑍𝑖(𝑋𝑖 − 𝑋̅)
𝑛
𝑖=1
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練習問題 8  

練習問題 7 の結果から、 2SLS 推定量 𝛽̂2𝑆𝐿𝑆は、  

𝛽̂2𝑆𝐿𝑆 =
∑ 𝑍𝑖(𝑌𝑖 − 𝑌̅)
𝑛
𝑖=1

∑ 𝑍𝑖(𝑋𝑖 − 𝑋̅)
𝑛
𝑖=1

 

となる。ここでは、分子と分母の別表現を、それぞれ求める。  

分子の別表現 : 分子は、次のように表現できる  

∑𝑍𝑖(𝑌𝑖 − 𝑌̅)

𝑛

𝑖=1

= (1 −
𝑛1
𝑛
) 𝑛1(𝑌̅1 − 𝑌̅0) 

ただし、 𝑌̅1は 𝑍𝑖 = 1のときの 𝑌の平均、 𝑌̅0は 𝑍𝑖 = 0のときの 𝑌の平均となる。  

𝑌̅1 =
1

𝑛1
∑𝑌𝑖

𝑛1

𝑖=1

 𝑌̅0 =
1

𝑛 − 𝑛1
∑ 𝑌𝑖

𝑛

𝑖=𝑛1+1

 

 

[証明 ] この別表現が正しいことを確認しよう。分子は、  

∑𝑍𝑖(𝑌𝑖 − 𝑌̅)

𝑛

𝑖=1

=∑𝑍𝑖(𝑌𝑖 − 𝑌̅)

𝑛1

𝑖=1

+ ∑ 𝑍𝑖(𝑌𝑖 − 𝑌̅)

𝑛

𝑖=𝑛1+1⏟          
=0

=∑(𝑌𝑖 − 𝑌̅)

𝑛1

𝑖=1

 

となる。式展開では、𝑖 = 1,2,… , 𝑛1なら𝑍𝑖 = 1、𝑖 = 𝑛1 + 1, 𝑛1 + 2,… , 𝑛なら𝑍𝑖 = 0となる

ことを用いた。さらに右辺は次のようになる。  

∑(𝑌𝑖 − 𝑌̅)

𝑛1

𝑖=1

=∑𝑌𝑖

𝑛1

𝑖=1

− 𝑛1𝑌̅ = 𝑛1𝑌̅1 − 𝑛1𝑌̅ 

ここで、標本平均 𝑌̅は次のように分解できる。  

𝑌̅ =
1

𝑛
(∑𝑌𝑖

𝑛1

𝑖=1

+ ∑ 𝑌𝑖

𝑛

𝑖=𝑛1+1

) =
1

𝑛
(𝑛1𝑌̅1 + (𝑛 − 𝑛1)𝑌̅0) 

この式を、∑ (𝑌𝑖 − 𝑌̅)
𝑛1
𝑖=1 = 𝑛1𝑌̅1 − 𝑛1𝑌̅の式に代入すると、  

∑(𝑌𝑖 − 𝑌̅)

𝑛1

𝑖=1

= 𝑛1𝑌̅1 − 𝑛1 {
1

𝑛
(𝑛1𝑌̅1 + (𝑛 − 𝑛1)𝑌̅0)} 

= 𝑛1𝑌̅1 −
𝑛1
𝑛
𝑛1𝑌̅1 − (1 −

𝑛1
𝑛
)𝑛1𝑌̅0 

= (1 −
𝑛1
𝑛
) 𝑛1𝑌̅1 − (1 −

𝑛1
𝑛
)𝑛1𝑌̅0 

= (1 −
𝑛1
𝑛
)𝑛1(𝑌̅1 − 𝑌̅0) 
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分母の別表現：分母は、次のように表現できる。  

∑𝑍𝑖(𝑋𝑖 − 𝑋̅)

𝑛

𝑖=1

= (1 −
𝑛1
𝑛
) 𝑛1(𝑋̅1 − 𝑋̅0) 

ただし、 𝑋̅1は 𝑍𝑖 = 1のときの 𝑋の平均、 𝑋̅0は 𝑍𝑖 = 0のときの 𝑋の平均とする。  

𝑋̅1 =
1

𝑛1
∑𝑋𝑖

𝑛1

𝑖=1

 𝑋̅0 =
1

𝑛 − 𝑛1
∑ 𝑋𝑖

𝑛

𝑖=𝑛1+1

 

 

[証明 ] この別表現が正しいことを確認しよう。分母は、  

∑𝑍𝑖(𝑋𝑖 − 𝑋̅)

𝑛

𝑖=1

=∑𝑍𝑖(𝑋𝑖 − 𝑋̅)

𝑛1

𝑖=1

+ ∑ 𝑍𝑖(𝑋𝑖 − 𝑋̅)

𝑛

𝑖=𝑛1+1⏟          
=0

=∑(𝑋𝑖 − 𝑋̅)

𝑛1

𝑖=1

 

となる。さらに右辺は、  

∑(𝑋𝑖 − 𝑋̅)

𝑛1

𝑖=1

= 𝑛1𝑋̅1 − 𝑛1𝑋̅ 

となり、これに  

𝑋̅ =
1

𝑛
(𝑛1𝑋̅1 + (𝑛 − 𝑛1)𝑋̅0) 

を代入すると、分母は次のようになる。  

∑(𝑋𝑖 − 𝑋̅)

𝑛1

𝑖=1

= 𝑛1𝑋̅1 − 𝑛1 {
1

𝑛
(𝑛1𝑋̅1 + (𝑛 − 𝑛1)𝑋̅0)} 

= (1 −
𝑛1
𝑛
) 𝑛1(𝑋̅1 − 𝑋̅0) 

 

分子と分母の別表現を代入する :   

𝛽̂2𝑆𝐿𝑆 =
∑ 𝑍𝑖(𝑌𝑖 − 𝑌̅)
𝑛
𝑖=1

∑ 𝑍𝑖(𝑋𝑖 − 𝑋̅)
𝑛
𝑖=1

=
(1 −

𝑛1
𝑛
) 𝑛1(𝑌̅1 − 𝑌̅0)

(1 −
𝑛1
𝑛
) 𝑛1(𝑋̅1 − 𝑋̅0)

=
𝑌̅1 − 𝑌̅0

𝑋̅1 − 𝑋̅0
 

上式の意味を考えよう。まず、 𝑋̅0は𝑍𝑖 = 0のときの𝑋の平均、 𝑋̅1は𝑍𝑖 = 1のとき

の𝑋の平均であるため、分母は「 𝑍が 0 から 1 に変化したとき、𝑋の平均がどれ

ぐらい変化したか」を表す。同様に、分子は、「 𝑍が 0 から 1 に変化したとき、

𝑌の平均がどれぐらい変化したか」を表す。まとめると、 2SLS 推定量 𝛽̂2𝑆𝐿𝑆は次

のように解釈できる。  



99 

 

𝛽̂2𝑆𝐿𝑆 =
𝑍が変化したときの𝑌の平均の変化

𝑍が変化したときの𝑋の平均の変化
 

練習問題 11  

13.6 節では、次のモデルを考えている。  

𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 + 𝑢𝑖 

𝑋𝑖 = 𝛾0 + 𝛾1𝑍𝑖 + 𝑒𝑖 

ただし、誤差項 𝑢𝑖は、操作変数の条件②によって 𝛾0 + 𝛾1𝑍𝑖とは無相関だが、 𝑒𝑖と

は相関している。  

第 1 段階では、𝑋𝑖 = 𝛾0 + 𝛾1𝑍𝑖 + 𝑒𝑖を推定し、予測値 𝑋̂𝑖 = 𝛾̂0 + 𝛾̂1𝑍𝑖を計算する。OLS

推定量 ( 𝛾̂0、𝛾̂1)は、内生変数𝑋𝑖を用いて計算されており、𝑋𝑖の誤差項 𝑒𝑖の関数とな

る。この点は、OLS 推定量の確率的表現からも理解できる。  

𝛾̂1 = 𝛾1 +
∑ (𝑍𝑖 − 𝑍̅)𝑒𝑖
𝑛
𝑖=1

∑ (𝑍𝑖 − 𝑍̅)2
𝑛
𝑖=1

 

したがって、 𝑋̂𝑖 = 𝛾̂0 + 𝛾̂1𝑍𝑖は 𝑒𝑖と相関しており、ひいては誤差項 𝑢𝑖とも相関する

(つまり、 𝑋̂𝑖は外生変数ではない )。ただし、サンプルサイズが大きいなら、 𝛾̂0、

𝛾̂1は 𝛾0、 𝛾1に収束するため、予測値は 𝛾0 + 𝛾1𝑍𝑖となり、 𝑒𝑖の関数とはならない。  

 この問題を解決する方法として、サンプルを 2 分割 (データ A、データ B)す

ることが考えられる。まず、データ A を用いて第 1 段階の推定をし、OLS 推定

量 ( 𝛾̂0、 𝛾̂1)を求める。次に、データ A で得られた 𝛾̂0、 𝛾̂1を用いて、データ B の予

測値 𝑋̂𝑖 = 𝛾̂0 + 𝛾̂1𝑍𝑖を計算し、被説明変数を𝑌𝑖、説明変数を 𝑋̂𝑖とした OLS 推定を行

う。ポイントは、データ A から 𝛾̂0、 𝛾̂1を計算しているため、これらはデータ B

の 𝑒𝑖とは無相関となる点にある。この手法は split-sample IV(SSIV)と呼ばれる。

ただし、この方法では、サンプルが半分しか用いられておらず、効率的な推定

ができない。また、どのように分割するかで推定結果も異なってしまう。  

SSIV を発展させた手法として、 jackknife instrumental variables estimator があ

る。この方法を簡単に説明しよう。まず、 1 番目のデータだけを除いたサンプ

ル (𝑋2、𝑋3、 , … , 𝑋𝑛、𝑍2、𝑍3、 , … , 𝑍𝑛)で第 1 段階目の推定を行い、OLS 推定量 ( 𝛾̂0
′、

𝛾̂1
′)、そして予測値 𝑋̂1 = 𝛾̂0

′ + 𝛾̂1
′𝑍1を求める。𝑋̂1の計算に𝑋1は用いられていないため、

𝑒1の関数とはならない。次に、2 番目のデータを除いたサンプル (𝑋1、𝑋3、 , … , 𝑋𝑛、

𝑍1、𝑍3、 , … , 𝑍𝑛)で第 1 段階目の推定を行い、OLS 推定量 ( 𝛾̂0
′、 𝛾̂1

′)、そして予測値
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𝑋̂2 = 𝛾̂0
′ + 𝛾̂1

′𝑍2を求める。同じことを、すべての i に行うことで、予測値 𝑋̂𝑖が計算

できる。これを用いて、2 段階最小 2 乗法を行えばよい。興味がある方は、Bruce 

Hansen の『Econometrics』を参照されたい (巻末参考文献 D 参照 )。  

 

練習問題 12 

OLS 推定量は、説明変数に内生性がなければ一致性は満たされる一方、内生

性があれば一致性は満たされない。これに対し、2SLS 推定量は、内生性の有無

に関係なく一致性を満たす。教科書では、OLS 推定量と 2SLS 推定量の結果を

比較することで、OLS 推定量に、どれぐらいのバイアスが生じているかを確認

した (例 13-2、例 13-3 参照 )。これは 2 つの推定結果の差が小さければ、内生性

は生じていない可能性を示唆しているためである。これは 11 章で学習したハ

ウスマン検定の考え方に似ている。  

この検定では、仮説を次のように設定する。  

帰無仮説𝐻0：説明変数に内生性が存在しない  

対立仮説𝐻1：説明変数に内生性が存在する  

帰無仮説が正しいとき、OLS 推定量と 2SLS 推定量の差は 0 に近い値をとる。 

OLS推定量 − 2SLS推定量 ≈ 0 

しかし、対立仮説が正しいとき、この差は 0 から乖離する。したがって、この

差が十分に大きいとき、帰無仮説は棄却される。こうした検定は、開発者の名

前をとって、Durbin-Wu-Hausman 検定、Wu-Hausman 検定とも呼ばれる。  

同じ検定を、コントロール関数を用いて行うこともできる。モデルは次式と

しよう。  

𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 + 𝑢𝑖 

𝑋𝑖 = 𝛾0 + 𝛾1𝑍𝑖 + 𝑒𝑖 

操作変数の条件②によって、 𝑍𝑖は𝑢𝑖と無相関となる。内生性の有無は、 𝑢𝑖と 𝑒𝑖が

相関しているかで判断される。𝑢𝑖と 𝑒𝑖が相関したら (関係式𝑋𝑖 = 𝛾0 + 𝛾1𝑍𝑖 + 𝑒𝑖から )、

𝑢𝑖と𝑋𝑖も相関する (内生性あり )。  

ここで𝑢𝑖を、𝑋𝑖と相関する部分、相関しない部分に分解しよう。  

𝑢𝑖 = 𝜃𝑒𝑖 + 𝜀𝑖 

ただし、𝜃 = 𝐸[𝑢𝑖𝑒𝑖]/𝐸[𝑒𝑖
2]とする。𝑋𝑖と相関する部分は 𝜃𝑒𝑖、相関しない部分は 𝜀𝑖に
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なる。ここで、𝜃 ≠ 0なら内生性あり、𝜃 = 0なら内生性なしとなる。なお、𝑒𝑖と 𝜀𝑖

は無相関である。これは 𝜃 = 𝐸[𝑢𝑖𝑒𝑖]/𝐸[𝑒𝑖
2]に注意すると、   

𝐸[𝑒𝑖𝜀𝑖] = 𝐸[𝑒𝑖(𝑢𝑖 − 𝜃𝑒𝑖)] = 𝐸[𝑢𝑖𝑒𝑖] − 𝜃𝐸[𝑒𝑖
2] = 0 

と確認できる。  

コントロール関数は、 𝑌𝑖の式に𝑢𝑖 = 𝜃𝑒𝑖 + 𝜀𝑖を代入することで、  

𝑌𝑖 =  𝛼 + 𝛽𝑋𝑖 + 𝜃𝑒𝑖 + 𝜀𝑖 

と定義される。ここで、𝑒𝑖と 𝜀𝑖は無相関であり、𝑋𝑖と 𝜀𝑖も無相関である (𝜀𝑖は、𝑋𝑖と

相関しない部分である )。ただし、𝑒𝑖は観察できないため、𝑋𝑖 = 𝛾0 + 𝛾1𝑍𝑖 + 𝑒𝑖を OLS

推定して得られた残差 𝑒̂𝑖を用いる。つまり、被説明変数を𝑌𝑖とし、説明変数を 𝑋𝑖

と 𝑒̂𝑖とした OLS 推定によって、パラメータをバイアスなく推定できる。内生性

の有無は、  

 帰無仮説𝐻0:  𝜃 = 0(内生性なし ) 

対立仮説𝐻1: 𝜃 ≠ 0(内生性あり ) 

とした検定によって確認できる 14。  

 

練習問題 13 

固定効果モデルは、説明変数と個別効果の相関を許容したが、時間を通じて

一定の変数はすべて個別効果に含まれ、その係数が推定できない問題がある。

これに対し、変量効果モデルは、説明変数と個別効果は無相関と仮定している

が、時間を通じて一定の変数の係数が推定できるという利点がある。時間を通

じて一定の変数に関心があるとき、固定効果モデルを用いることができない一

方、変量効果モデルは非現実的な仮定を課しているため、その使用には問題が

ある。この練習問題では、個別効果を考慮しながら、時間を通じて一定の変数

の係数を推定する方法を学習する (これはハウスマン=テイラー法の単純なケー

スになる )。  

11.2 節の (3)式では、𝑌𝑖,𝑡 = 𝛼 + 𝛽𝑋𝑖,𝑡 + 𝑍𝑖 + 𝑢𝑖,𝑡とした。これに時間を通じて一定

の変数𝑊𝑖を加えると、練習問題で与えられた式となる。  

𝑌𝑖,𝑡 = 𝛼 + 𝛽𝑋𝑖,𝑡 + 𝜃𝑊𝑖 + 𝑍𝑖 + 𝑢𝑖,𝑡 

 
1414 Stata は reg X Z,  r とし predict u,  res idual とする。そして reg Y X u,  r とし test u とす

る。  
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モデルの誤差項は、 𝑍𝑖 + 𝑢𝑖,𝑡となる。説明変数 (𝑋𝑖,𝑡、𝑊𝑖)は𝑢𝑖,𝑡と無相関である。ま

た、個別効果を構成する 𝑍𝑖は、固定効果と変量効果の間をとるものとする。具

体的には、𝑍𝑖は𝑋𝑖,𝑡と相関するが、 𝑍𝑖は𝑊𝑖とは無相関とする。  

 これらの仮定より、𝑊𝑖は外生変数であるが、𝑋𝑖,𝑡は内生変数となる。まず、𝑋𝑖,𝑡

は 𝑍𝑖と相関しているため、𝑋𝑖,𝑡から 𝑍𝑖と相関している部分をすべて取り除く。具

体的には、被説明変数を𝑋𝑖,𝑡とし、説明変数を𝑁個のダミー変数 (𝐷1𝑖 , 𝐷2𝑖, … , 𝐷𝑁𝑖)と

した OLS 推定を行う (ダミー変数は 11.3.1 節参照 )。得られた残差 𝑋̇𝑖,𝑡は、𝑋𝑖,𝑡と相

関しているが、(個別要因が取り除かれているため )𝑍𝑖とは無相関となる。よって、

操作変数を残差 𝑋̇𝑖,𝑡とした 2 段階最小 2 乗法を行うことで、パラメータ (𝛽と 𝜃)を

推定することができる 15。  

 なお、ハウスマン=テイラー法の一般的なモデルはより複雑である。  

𝑌𝑖,𝑡 = 𝛼 + 𝛽1𝑋1𝑖,𝑡 + 𝛽2𝑋2𝑖,𝑡 + 𝜃1𝑊1𝑖 + 𝜃2𝑊2𝑖 + 𝑍𝑖 + 𝑢𝑖,𝑡 

ここで、𝑋1𝑖,𝑡と𝑊1𝑖は𝑍𝑖と無相関だが、𝑋2𝑖,𝑡と𝑊2𝑖は𝑍𝑖と相関すると仮定する (すべて

𝑢𝑖,𝑡とは無相関である )。誤差項が𝑍𝑖 + 𝑢𝑖,𝑡なら、𝑋2𝑖,𝑡と𝑊2𝑖は内生変数となる 16。  

まず、𝑋2𝑖,𝑡は𝑍𝑖と相関しているため、𝑋2𝑖,𝑡から𝑍𝑖と相関している部分をすべて取

り除く。具体的には、被説明変数を 𝑋2𝑖,𝑡とし、説明変数を𝑁個のダミー変数とし

た OLS 推定を行う。得られた残差 𝑋̇2𝑖,𝑡は、𝑋2𝑖,𝑡と相関しているが、 (個別要因が

取り除かれているため )𝑍𝑖とは無相関となる。また、𝑋1𝑖,𝑡の時間平均をとる ( 𝑋̅1𝑖 =

1

𝑇
∑ 𝑋1𝑖,𝑠
𝑇
𝑠=1  )。𝑋1𝑖,𝑡は 𝑍𝑖と無相関であるため、 𝑋̅1𝑖もまた 𝑍𝑖と無相関になる。 𝑋̅1𝑖は𝑊2𝑖

と相関しているなら、操作変数として用いることができる。操作変数を 𝑋̇2𝑖,𝑡、𝑋̅1𝑖

とした 2SLS 推定を行うことで一致性を持った推定量が得られる 17。  

 

練習問題 14 

モデルは𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 + 𝑢𝑖であり、操作変数は𝑍𝑖とする。練習問題 7 から、  

 
15 Sta ta なら、 𝑋̇𝑖,𝑡を計算してから 2SLS を行うことになる。 𝑋̇𝑖,𝑡は、 egen  x mean  =  mean (x ) ,  by (id )と

する ( id とは、 i の番号を表す変数に当たる )。そして、 gen  xdot  =  x -x mean とすればよい。そして、  

次のようにすればよい。 xd ot を操作変数として、 iv reg を使って推定すればよい。  

16 練習問題は、 𝑋1𝑖,𝑡と𝑊2𝑖がないケースに該当していた。  
17 Sta ta では、コマンド xth tay lor を用いることでハウスマン =テイラー推定ができる。具体的に

は、 xth tay lo r  Y X1 X2 W1 W2,  endog (X2 W2 ) r とすればよい。 endog の ( )には、内生変数を入れたら

よい。なお、 xth tay lor では、X の 1 つは外生変数、W の 1 つは外生変数でないと実行できない。

したがって、練習問題のような推定は、 xt reg を使って推定することになる。  



103 

 

𝛽̂2𝑆𝐿𝑆 =
∑ (𝑍𝑖 − 𝑍̅)(𝑌𝑖 − 𝑌̅)
𝑛
𝑖=1

∑ (𝑍𝑖 − 𝑍̅)(𝑋𝑖 − 𝑋̅)
𝑛
𝑖=1

 

である。ここで分子は、次のようになる。  

∑(𝑍𝑖 − 𝑍̅)(𝑌𝑖 − 𝑌̅)

𝑛

𝑖=1

=∑(𝑍𝑖 − 𝑍̅)𝑌𝑖

𝑛

𝑖=1

− 𝑌̅∑(𝑍𝑖 − 𝑍̅)

𝑛

𝑖=1

=∑(𝑍𝑖 − 𝑍̅)𝑌𝑖

𝑛

𝑖=1

 

式展開では、偏差の和は 0 となることを用いた (∑ (𝑍𝑖 − 𝑍̅)
𝑛
𝑖=1 = 0)。𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 + 𝑢𝑖

を用いると、  

𝛽̂2𝑆𝐿𝑆 =
∑ (𝑍𝑖 − 𝑍̅)𝑌𝑖
𝑛
𝑖=1

∑ (𝑍𝑖 − 𝑍̅)(𝑋𝑖 − 𝑋̅)
𝑛
𝑖=1

=
∑ (𝑍𝑖 − 𝑍̅)(𝛼 + 𝛽𝑋𝑖 + 𝑢𝑖)
𝑛
𝑖=1

∑ (𝑍𝑖 − 𝑍̅)(𝑋𝑖 − 𝑋̅)
𝑛
𝑖=1

 

=
𝛼∑ (𝑍𝑖 − 𝑍̅)

𝑛
𝑖=1

∑ (𝑍𝑖 − 𝑍̅)(𝑋𝑖 − 𝑋̅)
𝑛
𝑖=1

+ 𝛽
∑ (𝑍𝑖 − 𝑍̅)𝑋𝑖
𝑛
𝑖=1

∑ (𝑍𝑖 − 𝑍̅)(𝑋𝑖 − 𝑋̅)
𝑛
𝑖=1

+
∑ (𝑍𝑖 − 𝑍̅)𝑢𝑖
𝑛
𝑖=1

∑ (𝑍𝑖 − 𝑍̅)(𝑋𝑖 − 𝑋̅)
𝑛
𝑖=1

 

ここで、偏差の和は 0 から、第 1 項目は 0、第 2 項目の分子は  

∑(𝑍𝑖 − 𝑍̅)(𝑋𝑖 − 𝑋̅)

𝑛

𝑖=1

=∑(𝑍𝑖 − 𝑍̅)𝑋𝑖

𝑛

𝑖=1

− 𝑋̅∑(𝑍𝑖 − 𝑍̅)

𝑛

𝑖=1

=∑(𝑍𝑖 − 𝑍̅)𝑋𝑖

𝑛

𝑖=1

 

となる。これらを代入すると、次式が得られる。  

𝛽̂2𝑆𝐿𝑆 = 𝛽 +
∑ (𝑍𝑖 − 𝑍̅)𝑢𝑖
𝑛
𝑖=1

∑ (𝑍𝑖 − 𝑍̅)(𝑋𝑖 − 𝑋̅)
𝑛
𝑖=1

 

(b)(a)で得られた式の第 2 項目の分子と分母を 𝑛 − 1で割ると、  

𝛽̂2𝑆𝐿𝑆 = 𝛽 +

1
𝑛 − 1

∑ (𝑍𝑖 − 𝑍̅)𝑢𝑖
𝑛
𝑖=1

1
𝑛 − 1

∑ (𝑍𝑖 − 𝑍̅)(𝑋𝑖 − 𝑋̅)
𝑛
𝑖=1

 

となる。ここで 𝑛が大きくなると、標本共分散は共分散に収束するため、 2SLS

推定量は、次のようになる。  

𝛽 +
𝐶𝑜𝑣(𝑍𝑖 , 𝑢𝑖)

𝐶𝑜𝑣(𝑍𝑖 , 𝑋𝑖)
 

ここで、第 2 項目の分母は、操作変数の条件① (関連性 :  Cov(𝑍𝑖 , 𝑋𝑖) ≠ 0)から 0 で

はない。また、分子は、操作変数の条件② (外生性 :  Cov(𝑍𝑖 , 𝑢𝑖) = 0)から 0 となる。

以上から、2SLS 推定量は𝛽に収束する。  

なお、 (a)で得られた式の期待値をとると、  

𝛽̂2𝑆𝐿𝑆 = 𝛽 + 𝐸 [
∑ (𝑍𝑖 − 𝑍̅)𝑢𝑖
𝑛
𝑖=1

∑ (𝑍𝑖 − 𝑍̅)(𝑋𝑖 − 𝑋̅)
𝑛
𝑖=1

] 
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となるが、第 2 項は一般に 0 とはならないので、 2SLS 推定量は不偏性を満た

さない。第 2 項が 0 となるためには、操作変数の条件①②よりも強い仮定が必

要となる。こうした条件に関心がある読者は、巻末参考文献 D の [7][8][9]を参

照されたい。  

 

練習問題 15 

教科書では、係数は全ての i に対して、同じ値をとると仮定してきた。しか

し、 i の属性によって、係数は異なる可能性がある。たとえば、健康状態が𝑌𝑖、

薬の投与量を𝑋𝑖としたとき、薬の効果𝛽𝑖は個人属性によって異なるだろう。これ

は抗がん剤治療で治癒する人もいれば治癒しない人もいることから理解できる。 

(a)  説明変数𝑋𝑖がランダムに決定されているため、説明変数は個人属性とは独  

立になる。係数𝛽𝑖や誤差項 𝑢𝑖は個人属性によって異なるため、説明変数は、係数

や誤差項と独立な変数になる。  

2.3.2 節から、OLS 推定量は、次のように表現できる。  

1
𝑛 − 1

∑ (𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)
𝑛
𝑖=1

1
𝑛 − 1

∑ (𝑋𝑖 − 𝑋̅)2
𝑛
𝑖=1

 

ここで分子は標本共分散、分母は標本分散である。  

サンプルサイズ n が大きくなると、標本平均が期待値に収束するように、標

本分散は分散に、標本共分散は共分散に収束していく。このため、 n が大きく

なると、OLS 推定量は次のようになる。  

𝐶𝑜𝑣(𝑌𝑖 , 𝑋𝑖)

𝑉𝑎𝑟(𝑋𝑖)
=
𝐶𝑜𝑣(𝛼 + 𝛽𝑖𝑋𝑖 + 𝑢𝑖 , 𝑋𝑖)

𝑉𝑎𝑟(𝑋𝑖)
 

                  =
𝐸[𝛽𝑖]𝑉𝑎𝑟(𝑋𝑖)

𝑉𝑎𝑟(𝑋𝑖)
 = 𝐸[𝛽𝑖] 

式展開では、𝑋𝑖は係数𝛽𝑖とは独立であるため、  

𝐶𝑜𝑣(𝛼 + 𝛽𝑖𝑋𝑖 + 𝑢𝑖 , 𝑋𝑖) = 𝐸[𝛽𝑖]𝑉𝑎𝑟(𝑋𝑖) 
となることを用いた 18。  

 
18 式展開が難しいので、詳しくみていこう。 𝐶𝑜𝑣(𝛼 + 𝛽𝑖𝑋𝑖 + 𝑢𝑖 , 𝑋𝑖)は、その定義により、  

𝐸[(𝛼 + 𝛽𝑖𝑋𝑖 + 𝑢𝑖 − 𝐸[𝛼 + 𝛽𝑖𝑋𝑖 + 𝑢𝑖])(𝑋𝑖 − 𝐸[𝑋𝑖])] = 𝐸[(𝛽𝑖𝑋𝑖 − 𝐸[𝛽𝑖𝑋𝑖] + 𝑢𝑖)(𝑋𝑖 − 𝐸[𝑋𝑖])] 
となる。ここで、 𝑋𝑖は 𝑢𝑖と無相関であることから 𝐸[𝑢𝑖(𝑋𝑖 − 𝐸[𝑋𝑖])] = 0となり、上式の右辺は次のよう

に書ける。  

𝐸[(𝛽𝑖𝑋𝑖 − 𝐸[𝛽𝑖𝑋𝑖])(𝑋𝑖 − 𝐸[𝑋𝑖])] 
上式をさらに展開すると、  

𝐸[𝛽𝑖𝑋𝑖(𝑋𝑖 − 𝐸[𝑋𝑖])] − 𝐸[𝛽𝑖𝑋𝑖]𝐸[(𝑋𝑖 − 𝐸[𝑋𝑖])] =  𝐸[𝛽𝑖𝑋𝑖(𝑋𝑖 − 𝐸[𝑋𝑖])] 

        =  𝐸[𝛽𝑖]𝐸[𝑋𝑖(𝑋𝑖 − 𝐸[𝑋𝑖])] 
       = 𝐸[𝛽𝑖]𝑉𝑎𝑟(𝑋𝑖) 

となる。 1 行目の展開では 𝐸[(𝑋𝑖 − 𝐸[𝑋𝑖])] = 0となること、 2 行目の展開では 𝑋𝑖と 𝛽𝑖が独立であること、

3 行目の展開では 𝑉𝑎𝑟(𝑋𝑖) = 𝐸[𝑋𝑖(𝑋𝑖 − 𝐸[𝑋𝑖])]を用いた。  
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OLS 推定量が𝐸[𝛽𝑖]となることの意味を考えてみよう。確率変数 𝛽𝑖には、 𝑛 通

りの可能性があり、それぞれ 1/𝑛の確率で生じるとしよう。このとき、  

𝐸[𝛽𝑖] =
1

𝑛
∑𝛽𝑖

𝑛

𝑖=1

 

となり、𝐸[𝛽𝑖]は、𝛽𝑖の平均効果として解釈できる。たとえば、係数𝛽𝑖が薬の効果

であれば、𝐸[𝛽𝑖]は薬の平均効果と解釈できる。  

(b)  練習問題 7 から、 2SLS 推定量は、次のように表現できる。  

𝛽̂2𝑆𝐿𝑆 =

1
𝑛 − 1

∑ (𝑍𝑖 − 𝑍̅)(𝑌𝑖 − 𝑌̅)
𝑛
𝑖=1

1
𝑛 − 1

∑ (𝑍𝑖 − 𝑍̅)(𝑋𝑖 − 𝑋̅)
𝑛
𝑖=1

 

サンプルサイズ n が大きくなると、標本平均が期待値に収束するように、標本

分散は分散に、標本共分散は共分散に収束していく。このため、 n が大きくな

ると、2SLS 推定量は次のようになる。  

𝐶𝑜𝑣(𝑍𝑖 , 𝑌𝑖)

𝐶𝑜𝑣(𝑍𝑖 , 𝑋𝑖)
 

 まず、分母を考えよう。𝐶𝑜𝑣(𝑍𝑖 , 𝑋𝑖)は、その定義より、  

𝐸[(𝑍𝑖 − 𝐸[𝑍𝑖])( 𝑋𝑖 − 𝐸[ 𝑋𝑖])] = 𝐸[(𝑍𝑖 − 𝐸[𝑍𝑖]) 𝑋𝑖] 

=  𝐸[(𝑍𝑖 − 𝐸[𝑍𝑖])(𝛾0 + 𝛾𝑖𝑍𝑖 + 𝑒𝑖)] 

           =  𝐸[𝛾𝑖𝑍𝑖(𝑍𝑖 − 𝐸[𝑍𝑖])] + 𝐸[(𝑍𝑖 − 𝐸[𝑍𝑖])𝑒𝑖] 

ここで𝑍𝑖は 𝑒𝑖と独立であり、𝐸[(𝑍𝑖 − 𝐸[𝑍𝑖])𝑒𝑖] = 𝐸[(𝑍𝑖 − 𝐸[𝑍𝑖])]𝐸[𝑒𝑖] = 0となる。また、

𝑍𝑖は 𝛾𝑖と独立であり、  

𝐸[𝛾𝑖𝑍𝑖(𝑍𝑖 − 𝐸[𝑍𝑖])] = 𝐸[𝛾𝑖]𝐸[𝑍𝑖(𝑍𝑖 − 𝐸[𝑍𝑖])] = 𝐸[𝛾𝑖]𝑉𝑎𝑟(𝑍𝑖) 

となる。以上から、 𝐶𝑜𝑣(𝑍𝑖 , 𝑋𝑖) =  𝐸[𝛾𝑖]𝑉𝑎𝑟(𝑍𝑖)となる。  

 次に、分子を考えよう。𝑌𝑖の式に、𝑋𝑖 = 𝛾0 + 𝛾𝑖𝑍𝑖 + 𝑒𝑖を代入すると、  

𝑌𝑖 = 𝛼 + 𝛽𝑖(𝛾0 + 𝛾𝑖𝑍𝑖 + 𝑒𝑖) + 𝑢𝑖 

  = 𝛼 + 𝛾0𝛽𝑖 + 𝛾𝑖𝛽𝑖𝑍𝑖 + 𝑢𝑖 + 𝛽𝑖𝑒𝑖 

となる。𝐶𝑜𝑣(𝑍𝑖 , 𝑌𝑖)は、その定義より、  

𝐸[(𝑍𝑖 − 𝐸[𝑍𝑖])( 𝑌𝑖 − 𝐸[ 𝑌𝑖])] = 𝐸[(𝑍𝑖 − 𝐸[𝑍𝑖]) 𝑌𝑖] 

=  𝐸[(𝑍𝑖 − 𝐸[𝑍𝑖])(𝛼 + 𝛾0𝛽𝑖 + 𝛾𝑖𝛽𝑖𝑍𝑖 + 𝑢𝑖 + 𝛽𝑖𝑒𝑖)] 

                            =  𝛾0𝐸[(𝑍𝑖 − 𝐸[𝑍𝑖])𝛽𝑖] +  𝐸[(𝑍𝑖 − 𝐸[𝑍𝑖])𝛾𝑖𝛽𝑖𝑍𝑖] +  𝐸[(𝑍𝑖 − 𝐸[𝑍𝑖])𝑢𝑖]

+ 𝐸[(𝑍𝑖 − 𝐸[𝑍𝑖])𝛽𝑖𝑒𝑖] 
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となる。𝑍𝑖は、𝛽𝑖、𝛾𝑖、𝑢𝑖、𝑒𝑖と独立であるため、右辺第 2 項以外はすべて 0 とな

る。これは次の式から明らかである。  

𝐸[(𝑍𝑖 − 𝐸[𝑍𝑖])𝛽𝑖] = 𝐸[𝑍𝑖 − 𝐸[𝑍𝑖]]𝐸[𝛽𝑖] = 0 

𝐸[(𝑍𝑖 − 𝐸[𝑍𝑖])𝑢𝑖] = 𝐸[𝑍𝑖 − 𝐸[𝑍𝑖]]𝐸[𝑢𝑖] = 0 

𝐸[(𝑍𝑖 − 𝐸[𝑍𝑖])𝛽𝑖𝑒𝑖] = 𝐸[𝑍𝑖 − 𝐸[𝑍𝑖]]𝐸[𝛽𝑖𝑒𝑖] = 0 

右辺 2 項は、  

𝐸[(𝑍𝑖 − 𝐸[𝑍𝑖])𝛾𝑖𝛽𝑖𝑍𝑖] = 𝐸[𝛾𝑖𝛽𝑖]𝐸[𝑍𝑖(𝑍𝑖 − 𝐸[𝑍𝑖])] = 𝐸[𝛾𝑖𝛽𝑖]𝑉𝑎𝑟(𝑍𝑖) 

となる。以上から、𝐶𝑜𝑣(𝑍𝑖 , 𝑌𝑖) =  𝐸[𝛾𝑖𝛽𝑖]𝑉𝑎𝑟(𝑍𝑖)となる。  

 これらの結果をまとめると、 n が大きくなると、2SLS 推定量は  

𝐶𝑜𝑣(𝑍𝑖 , 𝑌𝑖)

𝐶𝑜𝑣(𝑍𝑖 , 𝑋𝑖)
=
𝐸[𝛾𝑖𝛽𝑖]𝑉𝑎𝑟(𝑍𝑖)

𝐸[𝛾𝑖]𝑉𝑎𝑟(𝑍𝑖)
=
𝐸[𝛾𝑖𝛽𝑖]

𝐸[𝛾𝑖]
 

となる。この式の意味を考えてみよう。ここで、 𝛾𝑖と𝛽𝑖には 𝑛通りの可能性があ

り、それぞれ 1/𝑛の確率で生じるとしよう。このとき、 𝐸[𝛾𝑖] =
1

𝑛
∑ 𝛾𝑖
𝑛
𝑖=1 = 𝛾̅、  

𝐸[𝛾𝑖𝛽𝑖] =
1

𝑛
∑𝛾𝑖𝛽𝑖

𝑛

𝑖=1

 

となる。したがって、 𝛽̂2𝑆𝐿𝑆は次式となる。  

𝐸[𝛾𝑖𝛽𝑖]

𝐸[𝛾𝑖]
=∑

𝛾𝑖
𝑛𝛾̅
𝛽𝑖

𝑛

𝑖=1

 

これは、加重 𝛾𝑖/𝑛𝛾̅を用いた係数 𝛽𝑖の加重平均となる。加重は、操作変数に対す

る反応度 𝛾𝑖が大きいほど大きい。つまり、 𝛽̂2𝑆𝐿𝑆は、遵守者 (操作変数に対して強

く反応する人 )に対する平均効果ともいえる。  

たとえば、学習時間𝑋𝑖が成績𝑌𝑖に与える効果𝛽𝑖が知りたいとする (練習問題 5 参

照 )。操作変数𝑍𝑖は、ルームメートがゲーム機を持ち込んだら 1、持ち込まなか

ったら 0 となるダミー変数である。学生の半数は、勤勉でゲーム機によって学

習時間は変化せず (𝛾𝑖 = 𝛾1 = 0)、また、学習効果𝛽1は高いとしよう (𝛽𝑖 = 𝛽1 > 0)。残

り半数は、勤勉ではなくゲーム機によって学習時間は減少し (𝛾𝑖 = 𝛾2 < 0)、学習

効果𝛽2は低いとする (𝛽𝑖 = 𝛽2 < 𝛽1)。このとき、平均効果は、𝐸[𝛽𝑖] =
1

2
(𝛽1 + 𝛽2)とな

る。これに対し、𝐸[𝛾𝑖] =
1

2
(𝛾1 + 𝛾2) =

𝛾2

2
、𝐸[𝛾𝑖𝛽𝑖] =

1

2
(𝛽1𝛾1 + 𝛽2𝛾2) =

𝛽2𝛾2

2
から、

𝐸[𝛾𝑖𝛽𝑖]

𝐸[𝛾𝑖]
= 𝛽2

となる。ここで、2SLS 推定量は、ゲーム機によって影響を受ける学生の学習効

果𝛽2になっており、学習の平均効果
1

2
(𝛽1 + 𝛽2)を過小評価している (つまり、

𝐸[𝛾𝑖𝛽𝑖]

𝐸[𝛾𝑖]
<
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𝐸[𝛽𝑖])。  

(c) 2SLS 推定量が平均効果になっている状況を考えよう。これは条件①②③の

いずれかを満たした状況となる。  

条件①は、効果の異質性がない状況である (𝛽𝑖 = 𝛽)。ここで、𝛽𝑖は固定した値𝛽

をとるため、次式が成立する。  

𝐸[𝛾𝑖𝛽𝑖]

𝐸[𝛾𝑖]
=
𝐸[𝛾𝑖]𝛽

𝐸[𝛾𝑖]
= 𝛽 

また、𝐸[𝛽𝑖] = 𝛽であるから、𝐸[𝛾𝑖𝛽𝑖]/𝐸[𝛾𝑖] =  𝐸[𝛽𝑖]となる。  

 条件②は、操作変数に対する𝑋𝑖の反応度 𝛾𝑖が一定となる状況である (𝛾𝑖 = 𝛾)。𝛾𝑖

は固定した値 𝛾をとるため、次式が成立する。  

𝐸[𝛾𝑖𝛽𝑖]

𝐸[𝛾𝑖]
=
𝛾𝐸[𝛽𝑖]

𝛾
= 𝐸[𝛽𝑖] 

つまり、 𝛾𝑖に異質性がなければ、𝐸[𝛾𝑖𝛽𝑖]/𝐸[𝛾𝑖] =  𝐸[𝛽𝑖]となる。  

 条件③は、反応度 𝛾𝑖と係数𝛽𝑖が無相関となる状況である (𝐶𝑜𝑣(𝛾𝑖 , 𝛽𝑖) = 0)。つまり、

反応度 𝛾𝑖が高いとき、係数𝛽𝑖が高いとか低いとかいう傾向がないとする。共分散

𝐶𝑜𝑣(𝛾𝑖 , 𝛽𝑖)は、  

𝐸[(𝛾𝑖 − 𝐸[𝛾𝑖])(𝛽𝑖 − 𝐸[𝛽𝑖])] = 𝐸[𝛾𝑖𝛽𝑖] − 𝐸[𝛾𝑖]𝐸[𝛽𝑖] 

であり、これが 0 であるから、𝐸[𝛾𝑖𝛽𝑖] = 𝐸[𝛾𝑖]𝐸[𝛽𝑖]となる。よって、  

𝐸[𝛾𝑖𝛽𝑖]

𝐸[𝛾𝑖]
=
𝐸[𝛾𝑖]𝐸[𝛽𝑖]

𝐸[𝛾𝑖]
= 𝐸[𝛽𝑖] 

となる。つまり、反応度 𝛾𝑖と係数𝛽𝑖が無相関なら、𝐸[𝛾𝑖𝛽𝑖]/𝐸[𝛾𝑖] =  𝐸[𝛽𝑖]となる。  

教科書では、「操作変数を追加したり、変更したりしたとき、推定結果が大き

く変わるようであれば、どちらかの (もしくは両方の )操作変数が、操作変数の

条件を満たしていない可能性があります」とした。しかし、効果の異質性があ

るとき、これは必ずしも正しくない。つまり、条件①②③のいずれも満たされ

ないなら、 𝛽̂2𝑆𝐿𝑆は遵守者に対する平均効果となっており、これは操作変数の選

択によって、 𝛽̂2𝑆𝐿𝑆の値が変化する可能性を示唆している 19。  

 

 
19 こうした状況では、かりに操作変数の条件が満たされていても、過剰識別検定は帰無仮説を棄

却することに注意したい。  
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練習問題 16  

(a)  強外生性を満たさないため、このモデルは固定効果モデルとして推定す

るのは不適当である。強外生性を満たさない点は、 1 期前はモデルが  

𝑌𝑖,𝑡−1 = 𝛼 + 𝛽𝑌𝑖,𝑡−2 + 𝑍𝑖 + 𝑢𝑖,𝑡−1 

となるから、𝑌𝑖,𝑡−1と𝑢𝑖,𝑡−1は相関していることを確認できる。  

(b)  𝑌𝑖,𝑡 − 𝑌𝑖,𝑡−1 = (𝛼 + 𝛽𝑌𝑖,𝑡−1 + 𝑍𝑖 + 𝑢𝑖,𝑡) − (𝛼 + 𝛽𝑌𝑖,𝑡−2 + 𝑍𝑖 + 𝑢𝑖,𝑡−1) 

=  𝛽(𝑌𝑖,𝑡−1 − 𝑌𝑖,𝑡−2) + (𝑢𝑖,𝑡 − 𝑢𝑖,𝑡−1) 

  つまり、前期との差をとることで個別要因を消すことができる。  

(c)  ここで、𝑌𝑖,𝑡−2は𝑌𝑖,𝑡−1 − 𝑌𝑖,𝑡−2と相関する一方、 𝑢𝑖,𝑡 − 𝑢𝑖,𝑡−1とは無相関である。

この点は、誤差項に系列相関はないため、  

𝑌𝑖,𝑡−2 = 𝛼 + 𝛽𝑌𝑖,𝑡−3 + 𝑍𝑖 + 𝑢𝑖,𝑡−2 

と𝑢𝑖,𝑡 − 𝑢𝑖,𝑡−1は全くの無関係であることがわかる。よって、𝑌𝑖,𝑡−2は、𝑌𝑖,𝑡−1 −

𝑌𝑖,𝑡−2の操作変数として用いることができる。 2SLS 推定によって、一致性

のある推定結果が得られる。  

操作変数は𝑌𝑖,𝑡−2としたが、𝑌𝑖,𝑡−3、𝑌𝑖,𝑡−4、…もまた操作変数の候補とな

る。このため、実証分析では、𝑌𝑖,𝑡−2だけでなく、𝑌𝑖,𝑡−2、𝑌𝑖,𝑡−3、…、𝑌𝑖,𝑡−𝑝を

用いて、 2SLS 推定を行うことになる。弱操作変数の問題が生じるため、

𝑝はあまり大きくないことが望ましい (たとえば、 3～ 5 などが推奨され

る )。  
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14 章の答え  

練習問題 1  

(a) 仮に苗字が出身地に関する情報を含んでいるならば、ランダムな割り当て

になっていない可能性がある。たとえば、沖縄などは特有の名前が多く、これ

が内的妥当性に疑義を生じさせる可能性はある。  

(b) 講師への陳情によって当初の割り当てが遵守されなかったケースであり、

最終的な割り当てがランダムになっていない。このため、これでは内的妥当性

は低くなる 1。たとえば、講師に陳情をするような人はやる気があると考えるな

らば、プログラムの効果を高く評価してしまう。  

 

練習問題 2  

DID 分析において、対照群は平行トレンドの仮定を満たしていなければいけ

ない。  

 

練習問題 3  

モデルは次のとおりである。  

𝑌𝑖,𝑡 = 𝛼 + 𝛼2𝐷𝑖 + 𝜃2𝑇𝑖𝑚𝑒𝑡 + 𝛽𝑋𝑖,𝑡 + 𝑢𝑖𝑡 

𝑇𝑖𝑚𝑒𝑡は 2 期 (介入後 )なら 1 となるダミー変数、𝑋𝑖,𝑡は交差項𝐷𝑖 × 𝑇𝑖𝑚𝑒𝑡となる。  

2 時点の差∆𝑌𝑖,2 = 𝑌𝑖,2 − 𝑌𝑖,1は、次のようになる。  

∆𝑌𝑖,2 = 𝑌𝑖,2 − 𝑌𝑖,1 = (𝛼 + 𝛼2𝐷𝑖 + 𝜃2 + 𝛽𝑋𝑖,2 + 𝑢𝑖,2) − (𝛼 + 𝛼2𝐷𝑖 + 𝑢𝑖,1) 

= 𝜃2 + 𝛽𝑋𝑖,2 + ∆𝑢𝑖,2 

ただし、∆𝑢𝑖,2 = 𝑢𝑖,2 − 𝑢𝑖,1とする。つまり、被説明変数を 𝑌𝑖,2 − 𝑌𝑖,1、説明変数を𝑋𝑖,2と

して推定すれば、処置効果 𝛽を推定できる。  

 

練習問題 4  

最低賃金の例で必要な変数は、店舗 𝑖 が NJ に属するなら 1 となるダミー変数

 
1 当初の割り当て結果は、実際の割り当て結果の良い操作変数となる。たとえば、 𝑍𝑖はプログラム

に割り当てられたら 1 となるダミー変数とし、 𝐷𝑖は、実際にプログラムに参加したら 1 となるダミ

ー変数としよう (陳情などがあるため、 𝑍𝑖と 𝐷𝑖は必ずしも一致しない )。当初の割当はランダムであ

るから 𝑍𝑖は外生変数 (個人の属性などと無関係 )となる一方、当初の割り当てが遵守されるケースも

多いため 𝑍𝑖と 𝐷𝑖は相関する。このため、 𝑍𝑖は 𝐷𝑖の良い操作変数となる。  
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𝑁𝐽𝑖、2 期 (介入後 )なら 1 となるダミー変数 𝑇𝑖𝑚𝑒𝑡、交差項𝑋𝑖,𝑡 = 𝐷𝑖 × 𝑇𝑖𝑚𝑒𝑡と、これ

らはパネルデータでなく、反復横断面データであっても定義できる変数となる。

したがって、反復横断面データでも、DID 分析は可能となる。ただし、反復横

断面データでは、店舗ごとの固定効果を考慮することはできない。  

 

練習問題 5  

T 大学合格者のうち最低点での合格者、最低点より 1 点低い不合格者の所得

を比較することで、T 大学に合格したことの効果を調べることができる。  

合格者 (最低点で合格した受験者 )と不合格者 (最低点から 1 点低い点数で不合

格となった受験者 )は本質的に同じ集団と考えられる。この場合、合格か不合格

かはランダムに生じていると見なすことができ、合否は受験者の属性などとは

無相関となっている。したがって、両集団の所得の平均を比較すれば、T 大学

に合格したことの効果を推定できるだろう。  

 

練習問題 6  

 13 章の練習問題 8 では、操作変数𝑍𝑖がダミー変数の場合、2 段階最小 2 乗推定

量 (2SLS)は、次のワルド推定量として表現できることを示した。  

𝛽̂2𝑆𝐿𝑆 =
𝑌̅1 − 𝑌̅0

𝑋̅1 − 𝑋̅0
 

ただし、𝑌̅1は𝑍𝑖 = 1のときの𝑌の標本平均、𝑌̅0は𝑍𝑖 = 0のときの𝑌の標本平均である

(同様に、 𝑋̅1と 𝑋̅0は定義される )。  

ここで操作変数𝑍は、割当変数𝑊が閾値 𝑐以上なら 1 となるダミー変数である

ため、2SLS 推定量はワルド推定量となる。このとき、分子 𝑌̅1 − 𝑌̅0は、閾値前後

での𝑌の平均の変化となる (𝑌̅1は閾値以上の𝑌の平均、𝑌̅0は閾値未満での𝑌の平均で

ある )。同様に、分母 𝑋̅1 − 𝑋̅0は、閾値前後での𝑋の平均の変化となる。ここで、𝑋

は処置が割り当てられたら 1 となるダミー変数であるため、その平均は処置割

合 (いわば処置確率 )となる。つまり、閾値前後のデータを用いた 2SLS 推定量は  

𝛽̂2𝑆𝐿𝑆 =
閾値前後での𝑌の平均の変化

閾値前後での処置確率の変化
 

となることが確認できる。  
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 以下は、ファジーな RDD に関心がある方への補足となる。一般には、割当変

数𝑊が𝑌に影響を与えると考えられる。ここで、割当変数が 3 乗まで影響すると

考えるなら、回帰モデルは次のようになる。  

𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 + 𝜃1𝑊𝑖 + 𝜃2𝑊𝑖
2 + 𝜃3𝑊𝑖

3 + 𝛾1𝑊𝑖𝑋𝑖 + 𝛾2𝑊𝑖
2𝑋𝑖 + 𝛾3𝑊𝑖

3𝑋𝑖 + 𝑢𝑖 

ここで、𝑋𝑖は内生変数なので、交差項 (𝑊𝑖𝑋𝑖、𝑊𝑖
2𝑋𝑖、𝑊𝑖

3𝑋𝑖)も内生変数となる。操

作変数𝑍は、割当変数𝑊が閾値 𝑐以上なら 1 となるダミー変数である。操作変数

は𝑍だけでなく、交差項 (𝑍𝑋、𝑍𝑋2、𝑍𝑋3)も操作変数となる。閾値前と後 (𝑐 − ℎから

𝑐 + ℎまでの区間 )のデータを用いて、このモデルを 2SLS で推定すれば処置効果

が推定できる。  
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第 15 章の答え  

練習問題 1  

GDP 成長率𝑌𝑡は、次のように決まる。   

𝑌𝑡 = 𝑎0 + 𝑎1𝑋𝑡 + 𝑎2𝑋𝑡−1 + 𝑢𝑡 

ここで、金利の式は、 𝑡期と 𝑡 − 1期において、それぞれ  

𝑋𝑡 = 𝑏0 + 𝑏1𝑌𝑡−1 

𝑋𝑡−1 = 𝑏0 + 𝑏1𝑌𝑡−2 

となる。これらを GDP の式に代入すると、  

𝑌𝑡 = 𝑎0 + 𝑎1(𝑏0 + 𝑏1𝑌𝑡−1) + 𝑎2(𝑏0 + 𝑏1𝑌𝑡−2) + 𝑢𝑡 

= (𝑎0 + 𝑎1𝑏0 + 𝑎2𝑏0)⏟            
=𝑐0

+ 𝑎1𝑏1⏟
=𝑐1

𝑌𝑡−1 + 𝑎2𝑏1⏟
=𝑐2

𝑌𝑡−2 + 𝑢𝑡 

となる。ここで、パラメータを  

𝑐0 = 𝑎0 + 𝑎1𝑏0 + 𝑎2𝑏0、 𝑐1 = 𝑎1𝑏1、 𝑐2 = 𝑎2𝑏1 

と定義すると、GDP が次の AR(2)モデルであることを意味する。  

𝑌𝑡 = 𝑐0 + 𝑐1𝑌𝑡−1 + 𝑐2𝑌𝑡−2 + 𝑢𝑡 

 

練習問題 2  

ここで、𝑌𝑡は定常とする。モデルの両辺の期待値をとると、  

𝐸[𝑌𝑡] = 𝑎0 + 𝑎1𝐸[𝑌𝑡−1] + 𝑎2𝐸[𝑌𝑡−2] + ⋯+ 𝑎𝑝𝐸[𝑌𝑡−𝑝] + E[𝑢𝑡] 

となる。ここで、E[𝑢𝑡] = 0、定常性から𝐸[𝑌𝑡] =  𝐸[𝑌𝑡−1] =  𝐸[𝑌𝑡−2] = ⋯ =  𝐸[𝑌𝑡−𝑝]に注

意すると、次のようになる。  

𝐸[𝑌𝑡] = 𝑎0 + 𝑎1𝐸[𝑌𝑡] + 𝑎2𝐸[𝑌𝑡] + ⋯+ 𝑎𝑝𝐸[𝑌𝑡] 

これを、𝐸[𝑌𝑡]について解くと、  

𝐸[𝑌𝑡] =
𝑎0

1 − 𝑎1 − 𝑎2 −⋯− 𝑎𝑝
 

 

練習問題 3   

AR(1)モデルのインパルス応答関数は、任意の sについて、  

𝑎1
𝑠 

となる (導出は 15.2.2 節参照 )。  



 

113 

 

半減期は「ショックの影響が半減するまでに要する期間」と定義される 2。  

1 単位のショックの影響が半減するのに要する期間は、  

𝑎1
𝑠 = 0.5 

となる 𝑠であるから、上式の 𝑠が半減期となる。上式の対数をとると、  

𝑠 × ln (𝑎1) = ln (0.5) 

となり、これを 𝑠について解けば、半減期が、次のように求められる。  

𝑠 =
ln (0.5)

ln (𝑎1)
 

たとえば、 𝑎1 = 0.85の場合、半減期は次のように 4.26 期となる。  

𝑠 =
ln (0.5)

ln (0.85)
= 4.26 

練習問題 4  

日次データであれば、東京市場と NY 市場との間にある時差を用いて、除外

制約が正当化できる。しかし、月次データであれば、そうした時差に意味はな

い。  

むしろ、NY 市場は世界最大の市場であること、東京市場はアジアで有力な

市場に過ぎないことを考えると、ダウ平均株価が外生的とした方がよいだろ

う。つまり、ダウ平均株価の変化率 (%)を𝑌𝑡、日経平均株価の変化率 (%)を𝑋𝑡と

し、ダウ平均𝑌𝑡は同月の日経平均𝑋𝑡から影響を受けないとする (𝑏10 = 0)。  

ただし、日経平均から同月のダウ平均への影響は弱いとしても 0 であること

(𝑏10 = 0)を正当化するのは難しいだろう。個人的には、月次データでは、除外

制約を正当化するのは難しいと思う。  

 

練習問題 5  

構造 VAR は、次のようになる。  

𝑌𝑡 = 𝑎11𝑌𝑡−1 + 𝑏10𝑋𝑡 + 𝑏11𝑋𝑡−1 + 𝜀𝑌𝑡 

𝑋𝑡 = 𝑎20𝑌𝑡 + 𝑎21𝑌𝑡−1 + 𝑏21𝑋𝑡−1 + 𝜀𝑋𝑡 

 
2 半減期は、放射能の測定でも用いられる。東京都観光局のウェブサイトによると、「放射性物質

は、壊変（崩壊）を繰り返し、最終的に安定した物質へ変化すると放射線を放出しなくなりま

す。壊変によって始めの放射性物質の数が半分になるまでの時間を半減期といい、放射能は、時

間がたつにつれて弱まっていきます」とあります。  
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ここで、 𝜀𝑌𝑡、 𝜀𝑋𝑡は構造ショックとなる。  

𝑋𝑡の式を、𝑌𝑡の式に代入すると、  

𝑌𝑡 = 𝑎11𝑌𝑡−1 + 𝑏10(𝑎20𝑌𝑡 + 𝑎21𝑌𝑡−1 + 𝑏21𝑋𝑡−1 + 𝜀𝑋𝑡) + 𝑏11𝑋𝑡−1 + 𝜀𝑌𝑡 

となる。これを整理すると  

(1 − 𝑏10𝑎20)𝑌𝑡 = (𝑎11 + 𝑏10𝑎21)𝑌𝑡−1 + (𝑏10𝑏21 + 𝑏11)𝑋𝑡−1 + 𝑏10𝜀𝑋𝑡 + 𝜀𝑌𝑡 

となり、両辺を (1 − 𝑏10𝑎20)で割ると、  

𝑌𝑡 =
𝑎11 + 𝑏10𝑎21
1 − 𝑏10𝑎20

𝑌𝑡−1 +
𝑏10𝑏21 + 𝑏11
1 − 𝑏10𝑎20

𝑋𝑡−1 +
𝑏10𝜀𝑋𝑡 + 𝜀𝑌𝑡
1 − 𝑏10𝑎20

 

となる。これは誘導型の VAR である。誘導型の誤差項 𝑢𝑌𝑡は次のようになる。  

𝑢𝑌𝑡 =
𝑏10𝜀𝑋𝑡 + 𝜀𝑌𝑡
1 − 𝑏10𝑎20

=
𝑏10

1 − 𝑏10𝑎20
𝜀𝑋𝑡 +

1

1 − 𝑏10𝑎20
𝜀𝑌𝑡 

次に、𝑌𝑡の式を、𝑋𝑡の式に代入すると、同様の計算により、  

𝑋𝑡 = 𝑎20(𝑎11𝑌𝑡−1 + 𝑏10𝑋𝑡 + 𝑏11𝑋𝑡−1 + 𝜀𝑌𝑡) + 𝑎21𝑌𝑡−1 + 𝑏21𝑋𝑡−1 + 𝜀𝑋𝑡 

となり、整理すると、  

𝑋𝑡 =
𝑎20𝑎11 + 𝑎21
1 − 𝑏10𝑎20

𝑌𝑡−1 +
𝑎20𝑏11 + 𝑏21
1 − 𝑏10𝑎20

𝑋𝑡−1 +
𝑎20𝜀𝑌𝑡 + 𝜀𝑋𝑡
1 − 𝑏10𝑎20

 

となる。これは誘導型の VAR であり、誘導型の誤差項 𝑢𝑋𝑡は次のようになる。  

𝑢𝑋𝑡 =
𝑎20𝜀𝑌𝑡 + 𝜀𝑋𝑡
1 − 𝑏10𝑎20

=
𝑎20

1 − 𝑏10𝑎20
𝜀𝑌𝑡 +

1

1 − 𝑏10𝑎20
𝜀𝑋𝑡 

誘導型の誤差項 (𝑢𝑌𝑡 , 𝑢𝑋𝑡)は、構造ショック (𝜀𝑌𝑡、 𝜀𝑋𝑡)の線形関数であり、それ

自体が何を意味しているか分からないという問題がある 3。  

説明変数として、変数のラグから構成される VAR は誘導 VAR と呼ばれる。

予測においては、個々の誤差項の解釈に興味はないため、誘導 VAR を用いて

問題はない。しかし、経済的解釈に関心があるならば、構造 VAR を用いるこ

とになり、構造ショックを識別するための何らかの仮定が必要となる。  

 

 
3 そもそも、構造型が真のモデルであるの対して、誘導型とは、ラグだけに依存するように構造

型を書き換えたモデルとなる。このため、構造ショックが真のショックであり、誘導型の誤差項

は、モデルを書き換えたことから生じた構造ショックの線形関数に過ぎない。誘導型の誤差項に

経済的な意味はないことに注意してほしい。仮に政府支出の増加の影響を見たいなら、構造ショ

ックが 1 単位増加した状況を考えるべきなのである。  
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練習問題 8  

季節性を考慮するため、月次データならラグ次数を 12 とするのは妥当な選

択に思われる (四半期データなら 4 とする )。しかしこの場合、サンプルサイズ

よりパラメータ数が多く、このモデルを推定できない。  

サンプルサイズは 240(=12 か月×20 年 )となる。5 変量の VAR(𝑝)モデルは、1

本の式に 1 + 5𝑝個のパラメータがあり、式は計 5 本あるので、パラメータ数は

5 × (1 + 5𝑝)となる。 𝑝 = 12の場合、パラメータ数は 305(=5×(1+5×12))となり、

サンプルサイズよりパラメータ数が多くなってしまう (5 章の練習問題 14(e)で

は、サンプルサイズよりパラメータ数が多いと多重共線性が生じることを指摘

している )。  

 

練習問題 9  

排除制約 (𝑏10 = 𝑐10 = 𝑐20 = 0)のもとで、構造 VAR は次のようになる。  

𝑌𝑡 = 𝜇1 + 𝑎11𝑌𝑡−1 + 𝑏11𝑋𝑡−1 + 𝑐11𝑍𝑡−1 + 𝜀𝑌𝑡 

𝑋𝑡 = 𝜇2 + 𝑎20𝑌𝑡 + 𝑎21𝑌𝑡−1 + 𝑏21𝑋𝑡−1 + 𝑐21𝑍𝑡−1 + 𝜀𝑋𝑡 

𝑍𝑡 = 𝜇3 + 𝑎30𝑌𝑡 + 𝑎31𝑌𝑡−1 + 𝑏30𝑋𝑡 + 𝑏31𝑋𝑡−1 + 𝑐31𝑍𝑡−1 + 𝜀𝑍𝑡 

1 番目の式は誘導型となる（説明変数がラグだけである )。このため、𝑢𝑌𝑡 = 𝜀𝑌𝑡と

なる。この式を 2 番目の式に代入すると、  

𝑋𝑡 = 𝜇2 + 𝑎20(𝜇1 + 𝑎11𝑌𝑡−1 + 𝑏11𝑋𝑡−1 + 𝑐11𝑍𝑡−1 + 𝜀𝑌𝑡) + 𝑎21𝑌𝑡−1 + 𝑏21𝑋𝑡−1 + 𝑐21𝑍𝑡−1 + 𝜀𝑋𝑡 

= 𝜇2 + 𝑎20𝜇1 + (𝑎20𝑎11 + 𝑎21)𝑌𝑡−1 + (𝑎20𝑏11 + 𝑏21)𝑋𝑡−1 + (𝑎20𝑐11 + 𝑐21)𝑍𝑡−1 + 𝑎20𝜀𝑌𝑡 + 𝜀𝑋𝑡 

となるため、𝑢𝑋𝑡 = 𝑎20𝜀𝑌𝑡 + 𝜀𝑋𝑡と分かる。最後に、𝑌𝑡と𝑋𝑡の式を、𝑍𝑡の式に代入す

ると、𝑢𝑍𝑡 = 𝑎30𝜀𝑌𝑡 + 𝑏30𝜀𝑋𝑡 + 𝜀𝑍𝑡とわかる (式展開が面倒なので省略した )。  

 

練習問題 10  

実証分析では、最後の変数 Z を短期金利にすることが多い。これは中央銀行

が物価と経済状況を考慮したうえで、金融政策を決定しているためである。た

とえば、日本銀行では、金融政策決定会合が年 8 回開催されており、四半期デ

ータなら当期の GDP とインフレ率の変化に十分に反応できるだろう。  

残りの変数の順番については判断が難しい。ただし、高頻度データであれば、

投資は事前に決定されており、短期金利が変化しても投資額は変化しないと考



 

116 

 

えられる。よって、短期金利は実質 GDP やインフレ率に影響を与えないので、

排除制約のうち 𝑐10 = 𝑐20 = 0が満たされる。四半期データが十分に高頻度かどう

かは微妙だが、ここでは仮定が満たされると仮定しよう  (なお、年次データで

は、この仮定は満たされない )。  

残りの変数の順番を考えよう。排除制約 (𝑏10 = 𝑐10 = 𝑐20 = 0 )のもとで、誘導型

ショックは構造ショックを用いて次のように表せる (練習問題 8 参照 )。  

 𝑢𝑌𝑡 = 𝜀𝑌𝑡  

 𝑢𝑋𝑡 = 𝑎20𝜀𝑌𝑡 + 𝜀𝑋𝑡  

 𝑢𝑍𝑡 = 𝑎30𝜀𝑌𝑡 + 𝑏30𝜀𝑋𝑡 + 𝜀𝑍𝑡  

金利 Z の構造ショック 𝜀𝑍𝑡は政策ショックと解釈される。マクロ経済学で学習

する総需要総供給分析では、実質 GDP と物価は、総供給曲線と総需要曲線の交

点で決定される。このため、構造ショック (𝜀𝑌𝑡、 𝜀𝑋𝑡)は、それぞれ供給ショック

と需要ショックと考えられる。供給ショックは総供給曲線をシフトさせるショ

ック、需要ショックは総需要曲線をシフトさせるショックである。ここで 3 つ

の可能性がある 4。  

第 1 の可能性  1 番目の変数 Y を実質 GDP 成長率、2 番目の変数 X をインフ

レ率とする。これは総供給曲線が垂直なケースに該当する (下図 (a)参照 )。この

とき、𝜀𝑌𝑡は供給ショック、𝜀𝑋𝑡は需要ショックとなる。供給ショック 𝜀𝑌𝑡は総供給

曲線をシフトさせ、実質 GDP とインフレ率を変化させる。これに対し、需要シ

ョック 𝜀𝑋𝑡は、総需要曲線をシフトさせ、インフレ率だけを変化させる。  

第 2 の可能性  1 番目の変数 Y をインフレ率、2 番目の変数 X を実質 GDP と

する。これは総供給曲線が水平なケースに該当する (下図 (b)参照 )。供給ショッ

ク 𝜀𝑌𝑡は実質 GDP とインフレ率を変化させるが、需要ショック 𝜀𝑋𝑡は実質 GDP だ

けを変化させる。  

 

 

 

 

 
4  ここでの記述は付録 D の [14]をもとに作成した。  
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図  総需要曲線と総供給曲線  

(a)  総供給曲線が垂直            (b) 総供給曲線が水平  

物価                                                    物価  

 

 

 

 

 

 

             実 質 GDP                                     

実質 GDP  

 

(c)総供給曲線が右上がり  

物価   

 

 

 

 

 

実質 GDP  

 

第 3 の可能性  総供給曲線が右上がりの傾きをもっているとき、需要ショッ

クと供給ショックは、インフレ率と実質 GDP の両方に影響を与える (下図 (c)参

照 )。このため、実質 GDP とインフレ率の順番をどのようにしても、排除制約

は不適当になる (𝑏10 ≠ 0)。ただし、金利 Z は短期的には、インフレ率と実質

GDP に影響しないため、 𝑐10 = 𝑐20 = 0は成立する。このとき、政策ショック 𝜀𝑍𝑡

のインパルス応答関数は推定できるが、他の構造ショックのインパルス応答関

数は推定できないことになる 5。  

 
5  𝑐10 = 𝑐20 = 0のもとで、構造 VAR は次のように表現できる (ただし、 𝑏10 ≠ 0とする )。  

𝑌𝑡 = 𝜇1 + 𝑎11𝑌𝑡−1 + 𝑏10𝑋𝑡 + 𝑏11𝑋𝑡−1 + 𝑐11𝑍𝑡−1 + 𝜀𝑌𝑡 

総需要曲線  

総供給曲線  総需要曲線  

総供給曲線  

総需要曲線  

総供給曲線  
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練習問題 11  

Kilian(2009)では、1973 年 3 月から 2007 年 12 月までの月次データを用いて、

原油の需要ショックと供給ショックが原油価格に与える影響を推定している 6。

この論文では、 𝑌𝑡は世界原油生産量の変化率 (%)、𝑋𝑡は世界経済活動指数、 𝑍𝑡は

実質原油価格としている。また、構造ショック (𝜀𝑌𝑡、 𝜀𝑋𝑡、 𝜀𝑍𝑡)は 3 つあり、それ

ぞれ原油供給ショック、総需要ショック、原油需要ショックと呼んでいる。総

需要ショックは経済活動の高まりから生じる原油需要、原油需要ショックは原

油供給の将来不安から予備的動機として生じる原油需要である。  

変数の順番として、世界原油生産量の変化率 (%)、世界経済活動指数、実質原

油価格とした理由を考えよう。  

1 番目の変数は世界原油生産量である。原油生産量は事前の需要見込みから

決定されており、世界経済活動指数や実質原油価格が上がっても、生産量は当

月内では反応できない。これは原油市場の供給曲線が短期的には垂直であるこ

とを意味し、生産量は供給ショックだけの影響を受ける。よって、 𝜀𝑌𝑡は供給シ

ョックと解釈できる。なお、この仮定は月次データなら正当化されるが、四半

期データなら成立しないことに注意してほしい。  

2 番目の変数としては、世界経済活動指標が適当だろう。世界経済活動の変

化は遅いため、原油価格の変化は世界経済活動に当月内では影響しないと考え

 

𝑋𝑡 = 𝜇2 + 𝑎20𝑌𝑡 + 𝑎21𝑌𝑡−1 + 𝑏21𝑋𝑡−1 + 𝑐21𝑍𝑡−1 + 𝜀𝑋𝑡 

𝑍𝑡 = 𝜇3 + 𝑎30𝑌𝑡 + 𝑎31𝑌𝑡−1 + 𝑏30𝑋𝑡 + 𝑏31𝑋𝑡−1 + 𝑐31𝑍𝑡−1 + 𝜀𝑍𝑡 

ここで、 𝑍𝑡の式は内生性が生じないため、この構造型の式の OLS 推定は一致性を持つ (𝜀𝑍𝑡が変化す

ると 𝑍𝑡が変化するが、𝑌𝑡と 𝑋𝑡は変化しないことに注意してほしい )。よって、その残差は構造ショック

𝜀𝑍𝑡となる。構造ショックが推定できるため、それがインフレ率、実質 GDP 成長率、短期金利に与え

る効果が推定できる。なお、 1 番目と 2 番目の構造型は推定できないが、次の誘導型なら内生性の

問題はなく、 OLS 推定は一致性を持つ。  

𝑌𝑡 = 𝑎11𝑌𝑡−1 + 𝑏11𝑋𝑡−1 + 𝑐11𝑍𝑡−1 + 𝑢𝑌𝑡 

𝑋𝑡 = 𝑎21𝑌𝑡−1 + 𝑏21𝑋𝑡−1 + 𝑐21𝑍𝑡−1 + 𝑢𝑋𝑡 

構造型の式から、 𝜀𝑍𝑡が 1 単位変化すると、 𝑍𝑡が 1 単位変化する。同時点では、 𝜀𝑍𝑡からインフレ率や

実質 GDP に影響しないため、 𝑌𝑡や 𝑋𝑡は変化しない。そして、誘導型の式から、 𝑍𝑡が 1 単位変化する

と、 𝑌𝑡+1と 𝑋𝑡+1がどれぐらい変化するかわかる。これを繰り返していけば、インパルス応答関数が推

定できる。  
6  Ki l ian ,  L .  (2009 ) Not  Al l  Oi l  P r ice  Sho cks  Are  Al ik e :  Di sen tangl ing  Demand and  Supply  Sho cks  in  the  

Crud e  Oi l  Market ,  Amer ican  Econo mic  Review  99 (3 ) ,  1053 -1069 .  
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られる 7。なお、𝜀𝑋𝑡は世界経済活動指標の構造ショックであり、総需要ショック

と解釈できる。  

3 番目の変数は、実質原油価格である。実質原油価格は、供給ショックと総

需要ショックから影響を受ける。また、実質原油価格の構造ショック 𝜀𝑍𝑡は、原

油需要ショックと解釈できる。原油需要ショックは、原油供給の将来不安など

から予備的動機として原油需要が増大するようなショックとなる。  

サポートウェブサイトにあるデータ (oil2.csv)を用いて、Kilian(2009)の実証

結果を再現してみよう。まず、ラグ次数を 3 として、3 変量 VAR を推定した

(AIC は 3、BIC は 2 を選択したので長い次数である 3 を用いた )。  

下図では、供給ショック、総需要ショック、原油需要ショックの 1 標準誤差

の増加が原油価格に与える影響をみている (図を見やすくするため、供給ショッ

クだけ 1 標準誤差の減少とした )。下図 (a)をみると、供給ショックは原油価格

にほとんど影響を与えていない。これに対し、下図 (b)をみると、総需要ショッ

クは、当初はあまり原油価格に影響を与えないが、その影響は徐々に大きくな

っている。最後に、下図 (c)をみると、原油需要ショックは、原油価格を大きく

上昇させるが、その影響は徐々に低下している。  

図  構造ショックに対する原油価格の反応  

(a)供給ショック     (b) 総需要ショック        (c) 原油ショック  

 

この結果から、原油価格の急激な変動は、供給ショックや総需要ショックで

はなく、将来不安から生じる原油需要ショックが大きな原因になっていること

がわかる。  

 
7 当月内で用いられる原油はすでに取引が終わっており、その月内の経済活動には影響しないと

いうことも言えるだろう。  
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第 16 章の答え  

練習問題 1  

DF 検定は AR(1)に基づいた単位根検定、ADF 検定は DF 検定を AR(𝑝)の場合

(𝑝 > 1)に拡張した単位根検定となる。ラグ次数を 1 とする根拠はないため、AIC、

BIC、MAIC などでラグ次数を選択し、それに基づいて ADF 検定を行うことに

なる。ただし、単位根検定では、MAIC が最も望ましい情報量規準とされる。  

実証分析で DF 検定を行うのは、情報量規準などで 𝑝 = 1が選択されたときで

ある。ただし、その場合であっても、論文などでは DF 検定ではなく、ADF 検

定と表記することが多い。  

 

練習問題 2  

「見せかけの回帰」は、回帰分析において、トレンドが考慮されていないこ

とから生じる問題となる。まず、ADF 検定や DF-GLS 検定などの単位根検定を

行って、データ系列に単位根が存在するか否かを確認する。  

データ系列に単位根が存在するならば、トレンドは確率トレンドであり、変

数の階差をとってから分析することによって、「見せかけの回帰」の問題が解決

できる。これに対して、データ系列に単位根が存在しないならば、トレンドは

確定トレンドであり、説明変数にトレンド変数 𝑡を加えることによって問題が解

決できる。  

 

練習問題 3  

AR(4)モデルとして、  

𝑌𝑡 = 𝑎1𝑌𝑡−1 + 𝑎2𝑌𝑡−2 + 𝑎3𝑌𝑡−3 + 𝑎4𝑌𝑡−4 + 𝑢𝑡 

を考える。まず、右辺に (𝑎4𝑌𝑡−3 − 𝑎4𝑌𝑡−3)を加えると (0 を加えても等式は同じ )   

𝑌𝑡 = 𝑎1𝑌𝑡−1 + 𝑎2𝑌𝑡−2 + (𝑎3 + 𝑎4)𝑌𝑡−3 − 𝑎4(𝑌𝑡−3 − 𝑌𝑡−4) + 𝑢𝑡  

= 𝑎1𝑌𝑡−1 + 𝑎2𝑌𝑡−2 + (𝑎3 + 𝑎4)𝑌𝑡−3 − 𝑎4Δ𝑌𝑡−3 + 𝑢𝑡  

となる (ただし、Δ𝑌𝑡−3 = 𝑌𝑡−3 − 𝑌𝑡−4)。さらに右辺に ((𝑎3 + 𝑎4)𝑌𝑡−2 − (𝑎3 + 𝑎4)𝑌𝑡−2)を加

えると、次のようになる (ただし、Δ𝑌𝑡−2 = 𝑌𝑡−2 − 𝑌𝑡−3)。  

𝑌𝑡 = 𝑎1𝑌𝑡−1 + (𝑎2 + 𝑎3 + 𝑎4)𝑌𝑡−2 − (𝑎3 + 𝑎4)(𝑌𝑡−2 − 𝑌𝑡−3) − 𝑎4Δ𝑌𝑡−3 + 𝑢𝑡 

= 𝑎1𝑌𝑡−1 + (𝑎2 + 𝑎3 + 𝑎4)𝑌𝑡−2 − (𝑎3 + 𝑎4)Δ𝑌𝑡−2 − 𝑎4Δ𝑌𝑡−3 + 𝑢𝑡  
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さらに右辺に  ((𝑎2 + 𝑎3 + 𝑎4)𝑌𝑡−1 − (𝑎2 + 𝑎3 + 𝑎4)𝑌𝑡−1)を加えると、  

𝑌𝑡 = (𝑎1 + 𝑎2 + 𝑎3 + 𝑎4)𝑌𝑡−1 − (𝑎2 + 𝑎3 + 𝑎4)(𝑌𝑡−1 − 𝑌𝑡−2) − (𝑎3 + 𝑎4)Δ𝑌𝑡−2 − 𝑎4Δ𝑌𝑡−3 + 𝑢𝑡 

= (𝑎1 + 𝑎2 + 𝑎3 + 𝑎4)𝑌𝑡−1 − (𝑎2 + 𝑎3 + 𝑎4)Δ𝑌𝑡−1 − (𝑎3 + 𝑎4)Δ𝑌𝑡−2 − 𝑎4Δ𝑌𝑡−3 + 𝑢𝑡  

となる。最後に、両辺から𝑌𝑡−1を引くと、  

Δ𝑌𝑡 = (𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 − 1)𝑌𝑡−1 − (𝑎2 + 𝑎3 + 𝑎4)Δ𝑌𝑡−1 − (𝑎3 + 𝑎4)Δ𝑌𝑡−2 − 𝑎4Δ𝑌𝑡−3 + 𝑢𝑡  

が得られる。ここで  

𝜌 = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 − 1、  

𝜌1 = −(𝑎2 + 𝑎3 + 𝑎4)、 𝜌2 = −(𝑎3 + 𝑎4)、  𝜌3 = −𝑎4 

と定義すれば証明は終わり。つまり、帰無仮説𝐻0: 𝜌 = 0は、  

𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 − 1 = 0 

を検定していることになる (つまり、 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 = 1)。   

 

練習問題 4  

ここで、t は月次での時点となるので、𝑦𝑡と 𝑦𝑡−12との間の関係式を求める。𝑡 −

1期に 𝑦𝑡−1 = 𝑎1𝑦𝑡−2 + 𝑢𝑡−1が成立するので、  

𝑦𝑡 = 𝑎1𝑦𝑡−1 + 𝑢𝑡 = 𝑎1(𝑎1𝑦𝑡−2 + 𝑢𝑡−1) + 𝑢𝑡 

= 𝑎1
2𝑦𝑡−2 + 𝑢𝑡 + 𝑎1𝑢𝑡−1 

となる。さらに 𝑦𝑡−2 = 𝑎1𝑦𝑡−3 + 𝑢𝑡−2を代入すると  

𝑦𝑡 = 𝑎1
3𝑦𝑡−3 + 𝑢𝑡 + 𝑎1𝑢𝑡−1 + 𝑎1

2𝑢𝑡−2 

となる。これを繰り返すことで  

𝑦𝑡 = 𝑎1
12𝑦𝑡−12 + 𝑢𝑡 + 𝑎1𝑢𝑡−1 + 𝑎1

2𝑢𝑡−2 +⋯+ 𝑎1
11𝑢𝑡−11 

となる。つまり、月次の係数 𝑎1を 12 乗したものが年次の係数になる。  

月次の係数 𝑎1 = 0.95であれば、年次の係数は 0.9512 = 0.54と小さくなる。単位根

検定では、高頻度のデータを用いてサンプルサイズを大きくするのではなく、

サンプル期間を延長することが重要となる。購買力平価の実証研究では、100 年

を超えるサンプル期間を用いた研究がおこなわれている。  

ただし、サンプル期間を長くとると、構造変化が生じる可能性が高くなるこ

とに注意が必要である。また、日本であれば、第 2 次世界大戦の前後では経済

体制が大きく異なり、これらを同一データとして扱ってよいかという問題もあ

るだろう。こうした問題を回避するため、パネルデータを用いた単位根検定も
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開発されている。詳しくは、ウォルター・エンダース『実証のための計量時系

列分析』 (有斐閣、新谷元嗣・藪友良訳 )を参照されたい。  

 

練習問題 5  

モデル𝑌𝑡 = 𝑌𝑡−1 + 𝑢𝑡に𝑌𝑡−1 = 𝑌𝑡−2 + 𝑢𝑡−1を代入すると、  

𝑌𝑡 = (𝑌𝑡−2 + 𝑢𝑡−1) + 𝑢𝑡 

となる。さらに、𝑌𝑡−2 = 𝑌𝑡−3 + 𝑢𝑡−2を代入すると、  

𝑌𝑡 = (𝑌𝑡−3 + 𝑢𝑡−2) + 𝑢𝑡 + 𝑢𝑡−1 

さらに、𝑌𝑡−3 = 𝑌𝑡−4 + 𝑢𝑡−3を代入すると、  

𝑌𝑡 = (𝑌𝑡−4 + 𝑢𝑡−3) + 𝑢𝑡 + 𝑢𝑡−1 + 𝑢𝑡−2 

となる。こうした代入を繰り返すと、  

𝑌𝑡 = 𝑌0 + 𝑢𝑡 + 𝑢𝑡−1 + 𝑢𝑡−2 +⋯+ 𝑢2 + 𝑢1 

が得られる。これはまさに 𝑌𝑡 = 𝑌0 + ∑ 𝑢𝑖
𝑡
𝑖=1 である。  

 これが非定常であることを確認してみよう。特殊ケースとして、 𝑌0 = 0、

𝐸[𝑢𝑖] = 0、𝐸[𝑢𝑖
2] = 𝜎2、𝐸[𝑢𝑖𝑢𝑗] = 0としよう。このとき、  

𝐸[𝑌𝑡] = E [∑𝑢𝑖

𝑡

𝑖=1

] =∑𝐸[𝑢𝑖]

𝑡

𝑖=1

= 0 

𝑉(𝑌𝑡) = V(∑𝑢𝑖

𝑡

𝑖=1

) =∑𝐸[𝑢𝑖
2]

𝑡

𝑖=1

= 𝜎2𝑡 

となる。期待値は 0 であるが、分散は 𝑡とともに増加するため、非定常である

ことがわかる。  

 


