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Abstract

The aim of this paper is a model-theoretic study of the linear set theory.
Following the standard practice in intuitionistic and quantum set theories,
we define a set to be a function from its members to non-standard truth
values. In our case, the truth values are facts in a phase space as defined
by Girard. We will construct the universe V P from the phase space P and
verify a number of set-theoretic principles which are linear logic versions
of the ZF axioms.

1 Introduction

In this paper, we will extend the Boolean-valued model for classical set theory
[4, 7] to linear logic. This is in analogy to the locale (Heyting))-valued model for
intuitionistic set theory [1], and, Takeuti and Titani’s ortholattice-valued model
for quantum set theory [6]. The general idea is as follows. Given a propositional
logic and its algebraic model, we can regard an element of the algebra as a
(non-standard) truth value. Then we can extend the notion of characteristic
functions, or sets, so that their range becomes the set of the extended truth
values.

In the case of linear logic, such an underlying set of truth values is given by
the set of facts in a phase space as defined by Girard [3]. It is worth noting the
similarity of the set of facts with the ortholattice in quantum logic. In short,
the ortholattice is the lattice of closed subspaces of a Hilbert space ordered by
inclusion. To each Hilbert space corresponds a physical system. Each vector in
the space represents a state that a physical system can assume and each closed
subspace represents a observable property of the physical system. Duals are
defined by the orthogonality in the Hilbert space. Then, the correspondence is:

• phase space/Hilbert space

• facts/closed subspaces
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• phase/vector

In fact, this is not at all surprising since Girard clearly modeled his phase
spaces on Hilbert spaces. The point stating the similarity explicitly is to give
the reader some assurance that the approach taken in quantum set theory can
be transferred to linear set theory, at least to some extent.

2 Preliminary

In this section, we review phase space semantics for linear logic and the con-
struction of Boolean-valued models.

Definition 2.1. A phase space is a quadruple P = (P, 1, ·, ⊥) where

• (P, 1, ·) is a commutative monoid

• ⊥ ⊂ P .

We will abbreviate p · q by pq.

Definition 2.2. Given a subset A of P, the dual of A, denoted A⊥, is defined
by A⊥ = {p ∈ P | (∀q ∈ A) pq ∈ ⊥}.
Definition 2.3. A subset A of P is a fact if A = A⊥⊥. We denote the set of
facts in P by FACTP .

Definition 2.4. A fact A is valid if 1 ∈ A.

Proposition 2.5. Facts are closed under arbitrary intersection.

Proof. First of all, A ⊂ A⊥⊥. So. we only need to show the other direction.
Let {Fi}i∈I be a family of facts and A =

⋂
Fi. Suppose p ∈ A⊥⊥. We want to

show p ∈ F⊥⊥
i for all i ∈ I. Let q ∈ F⊥

i . Take any r ∈ A. Then r ∈ Fi. So,
qr ∈ ⊥. Therefore, q ∈ A⊥. Hence, pq ∈ ⊥. That is to say, p ∈ F⊥⊥

i .

Proposition 2.6. Given a subset A of P, the set A⊥⊥ is the smallest fact
containing A.

Proof. First, we show A⊥ = A⊥⊥⊥. One direction is trivial. So let p ∈ A⊥⊥⊥.
Take any q ∈ A. Then, q ∈ A⊥⊥. So, pq ∈ ⊥. Then A⊥⊥⊥⊥ = A⊥⊥. Hence
A⊥⊥ is a fact.

Now suppose A ⊂ B and B is a fact. Let p ∈ B⊥ and take any q ∈ A.
Then q ∈ B so that pq ∈ ⊥. Hence B⊥ ⊂ A⊥. Then, by the same argument,
A⊥⊥ ⊂ B⊥⊥ = B.

Definition 2.7. We define multiplicative operations on the set of facts in P as
follows:

• F �G = (FG)⊥⊥

• FOG = (F⊥G⊥)⊥
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• F −◦G = (FG⊥)⊥

where F and G are facts in P and FG = {pq | p ∈ F and q ∈ G}.
Definition 2.8. We define additive operations on the set of facts in P as fol-
lows:

• FNG = F ∩G
• F ⊕G = (F ∪G)⊥⊥

Definition 2.9. We define constants in the set of facts in P as follows:

• 1 = ⊥⊥

• > = ∅⊥

• 0 = >⊥

Note that ⊥ and all other constants are facts in P.

Now we define semantics for the multiplicative-additive fragment of linear
logic (MALL).

Definition 2.10. A phase structure for MALL is a phase space with a function
which assigns a fact to each propositional letter. The interpretation of a sentence
is a fact assigned to the sentence by extending the function inductively.

Definition 2.11. A sentence is valid if the identity 1 is in its interpretation.
A sentence is a linear tautology if it is valid in any phase structure.

Proposition 2.12. MALL is sound and complete with respect to the validity
in phase structure.

For the proof of the proposition, we refer the reader to Girard’s original
paper [3].

The phase semantics can be easily extended to predicate logic. We simply
interpret quantifications as infinitary additive conjunction

⋂
Fi and and disjunc-

tion (
⋃
Fi)⊥⊥. For exponentials, we need to extend the phase space.

Definition 2.13. A topolinear space is a phase space paired with the set F of
the closed facts such that:

(i) F is closed under arbitrary intersection (additive conjunction)

(ii) F is closed under finite multiplicative disjunction

(iii) ⊥ is the smallest fact in F
(iv) For all A ∈ F , AOA = A.

The linear negations of closed facts are called open facts.
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Definition 2.14. We define the exponential operations on the set of facts as
follows:

• !F = the greatest open fact included in F

• ?F = the smallest closed fact containing F

where the order is with respect to set inclusion.

There is a new simplified version of the definition of exponentials in the
phase space. For our present purpose, however, the above definition suffices.

Proposition 2.15. Linear logic is sound and complete with respect to the va-
lidity in the topolinear spaces.

The following propositions are useful.

Proposition 2.16. Let F and G be facts in P. Then, 1 ∈ F −◦G if and only
if F ⊂ G.

Proof. First, assume 1 ∈ F −◦G = (F ·G⊥)⊥. Then {1} · (FG⊥) = FG⊥ ∈ ⊥.
Hence F ⊂ G⊥⊥ = G. Secondly, assume F ⊂ G. Then G⊥ ⊂ F⊥ so that
FG⊥ ⊂ FF⊥ ⊂ ⊥. Hence, {1} · (FG⊥) ⊂ ⊥. Therefore 1 ∈ (FG⊥)⊥ =
F −◦G.

Proposition 2.17. Let Fi and G be facts. Then (
⋃
Fi)⊥⊥�G = (

⋃
Fi�G)⊥⊥.

Proof. First, let p ∈ FiG. Then p = qr for some q ∈ Fi ⊂ (
⋃
Fi)⊥⊥ and

r ∈ G. Hence qr ∈ (
⋃
Fi)⊥⊥�G. By the proposition 2.6, we can conclude that

(
⋃
Fi �G)⊥⊥ ⊂ (

⋃
Fi)⊥⊥ �G.

Secondly, we show (
⋃
Fi)⊥⊥ ·G ⊂ (

⋃
Fi�G)⊥⊥. Let p ∈ G and q ∈ (

⋃
Fi�

G)⊥. Let r ∈ Fi for some i. Then rp ∈ ⋃
Fi �G so that pqr ∈ ⊥. Therefore

pq ∈ (
⋃
Fi)⊥. Hence (

⋃
Fi)⊥⊥ ·G · {q} ⊂ ⊥, i.e., (

⋃
Fi)⊥⊥ ·G ⊂ (

⋃
Fi�G)⊥⊥.

Therefore (
⋃
Fi)⊥⊥ �G ⊂ (

⋃
Fi �G)⊥⊥.

Proposition 2.18. Let F,G and H be facts. Then (F�G)�H = (F ·G·H)⊥⊥.

Proof. First, FGH ⊂ (F � G) · H ⊂ (F � G) �H . Hence (FGH)⊥⊥ ⊂ (F �
G)�H .

On the other hand, let p ∈ H and q ∈ (FGH)⊥. Take any r ∈ FG.
Then pqr ∈ ⊥ and pq ∈ (FG)⊥. Hence, (F � G) · G · {q} ⊂ ⊥. Therefore
q ∈ ((F �G) ·G)⊥. From this, it follows that (F �G)�H ⊂ (FGH)⊥⊥.

Proposition 2.19. Let Fi be facts. Then (
⋂
F⊥

i )⊥ = (
⋃
Fi)⊥⊥.

Proof. It suffices to show that
⋂
F⊥

i = (
⋃
Fi)⊥. Let p ∈ ⋂

F⊥
i and q ∈ Fi

for some i. Then pq ∈ ⊥. Hence p ∈ (
⋃
Fi)⊥. For the other direction, let

p ∈ (
⋃
Fi)⊥ and q ∈ Fi ⊂

⋃
Fi. Then pq ∈ ⊥. So p ∈ F⊥

i . Hence p ∈ ⋂
F⊥

i .

We now turn our attention to Boolean-valued models. Let B be a complete
Boolean algebra. We first define the B-valued universe V B.
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Definition 2.20. We define V B
α and V B by the transfinite induction on ordinals

α as follows:

• V B
0 = ∅

• V B
α+1 = {u | u is a function with dom(u) ⊂ V B

a and ran(u) = B}
• V B

λ =
⋃

α<λ V
B
α where λ is a limit ordinal.

• V B =
⋃

α∈ON V B
α .

Next we define the interpretation of “atomic propositions”. Note that we
can assign the rank ρ(u) to each u ∈ V B by defining:

ρ(u) = the least α such that u ∈ V B
α+1.

Definition 2.21. For u, v ∈ V B, we define Ju = vK, Ju ⊂ vK and Ju ∈ vK by
transfinite induction on (ρ(u), ρ(v)) as follows:

• Ju ∈ vK =
∨

x∈dom(v)(v(x) ∧ Jx = uK)

• Ju ⊂ vK =
∧

x∈dom(u)(u(x) → Jx ∈ vK) where a→ b = ¬a ∨ b
• Ju = vK = Ju ⊂ vK ∧ Jv ⊂ uK

The idea behind the above definition is the following translation:

• u ∈ v ⇐⇒ (∃x ∈ v)(x = u)

• u ⊂ v ⇐⇒ (∀x ∈ u)(x ∈ v)

• u = v ⇐⇒ u ⊂ v and v ⊂ u

Notice that universal and existential quantifications are interpreted as infinitary
conjunction (meet) and disjunction (join) respectively.

Proposition 2.22. For every u, v ∈ V B,

(i) Ju = uK = 1

(ii) Ju = vK = Jv = uK

(iii) Ju = vK ∧ Jv = wK ≤ Ju = wK

(iv) Ju ∈ vK ∧ Jw = uK ∧ Jt = vK ≤ Jw ∈ tK

The proof is by the induction on ranks. Now we extend this assignment to
every sentence.

Definition 2.23. For every formula ϕ(x1, . . . , xn), we define the Boolean value
of ϕ

Jϕ(u1, . . . , un)K (u1, . . . , un ∈ V B)

as follows:
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(a) If ϕ is an atomic formula, the assignment is as we defined above

(b) If ϕ is a negation, conjunction, etc.,

J¬ψ(u1, . . . , un)K = ¬Jψ(u1, . . . , un)K
Jψ ∧ χ(u1, . . . , un)K = Jψ(u1, . . . , un)K ∧ Jχ(u1, . . . , un)K
Jψ ∨ χ(u1, . . . , un)K = Jψ(u1, . . . , un)K ∨ Jχ(u1, . . . , un)K
Jψ → χ(u1, . . . , un)K = Jψ(u1, . . . , un)K→ Jχ(u1, . . . , un)K
Jψ ↔ χ(u1, . . . , un)K = Jψ → χ(u1, . . . , un)K ∧ Jχ→ ψ(u1, . . . , un)K

(c) If ϕ is ∃xψ or ∀xψ

J∃xψ(x, u1, . . . , unK =
∨

v∈V B
Jψ(v, u1, . . . , unK

J∀xψ(x, u1, . . . , unK =
∧

v∈V B
Jψ(v, u1, . . . , unK

Definition 2.24. A sentence ϕ is valid in V B if JϕK = 1.

Proposition 2.25. Every axiom of ZFC is valid in V B.

3 The Phase-valued Model V P

We now define our first model V P . The construction is essentially the same as
that of V B except that we will use the set of facts in a phase space instead of
the boolean algebra.

Definition 3.1. We define V P
α and V P by the transfinite induction on ordinals

α as follows:

• V P
0 = ∅

• V P
α+1 = {u | u is a function with dom(u) ⊂ V P

a and ran(u) = FACTP}
• V P

λ =
⋃

α<λ V
P
α where λ is a limit ordinal.

• V P =
⋃

α∈ON V P
α .

Proposition 3.2. V P
β ⊂ V P

α for β < α.

Proof. The proof is by transfinite induction on α. Assume that V P
γ ⊂ V P

β holds
for any γ < β with β < α. If α is a limit ordinal, then the proposition holds
by the definition. Suppose that α = α′ + 1. Let ρ(f) = β with β < α. Then
β is a successor β′ + 1 and dom(f) ⊂ V P

β′ . Then β′ < α′ and V P
β′ ⊂ V P

α′ by the
inductive hypothesis. Hence f ∈ V P

α .

Definition 3.3. For u, v ∈ V P , we define Ju = vK, Ju ⊂ vK and Ju ∈ vK by
transfinite induction on (ρ(u), ρ(v)) as follows:
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• Ju ∈ vK = (
⋃

x∈dom(v) v(x)� Jx = uK)⊥⊥

• Ju ⊂ vK =
⋂

x∈dom(u)(u(x) −◦ Jx ∈ vK)

• Ju = vK = !Ju ⊂ vK � !Jv ⊂ uK

Proposition 3.4. For every u, v ∈ V P ,

(i) 1 ∈ u(x) −◦ Jx ∈ uK for all x ∈ dom(u)

(ii) 1 ∈ Ju = uK

(iii) 1 ∈ Ju = vK−◦ Jv = uK

Proof. We prove (i) and (ii) together by the simultaneous induction on ranks.

(i) It suffices to show that for all x ∈ dom(u),

u(x) · Jx ∈ uK⊥ ⊂ ⊥.

By the inductive hypothesis, 1 ∈ Jx = xK. Then u(x) = u(x) ·{1} ⊂ (u(x) ·
{1})⊥⊥ ⊂ ⋃

y∈dom(u)(u(y) · Jx = yK)⊥⊥. Hence u(x) · Jx ∈ uK⊥ = u(x) ·
(
⋃

y∈dom(u) u(y)�Jx = yK)⊥⊥⊥ = u(x) · (⋃y∈dom(u) u(y)�Jx = yK)⊥ ⊂ ⊥.

(ii) It suffices to show 1 ∈ !Ju ⊂ uK. Now Ju ⊂ uK =
⋂

x∈dom(u)(u(x)−◦Jx ∈ uK).
By (i), we have u(x) · Jx ∈ uK⊥ ⊂ ⊥ for all x ∈ dom(u) so that 1 = ⊥⊥ ⊂⋂

x∈dom(u)(u(x) −◦ Jx ∈ uK). Since ⊥ is the smallest closed fact, 1 is the
greatest open fact. Hence 1 = !Ju ⊂ uK and clearly 1 ∈ 1.

(iii) We need to show that 1 ∈ (Ju = vK · Jv = uK⊥)⊥. Now

1 ∈ (Ju = vK · Jv = uK⊥)⊥ ⇐⇒ Ju = vK · Jv = uK⊥ ⊂ ⊥ .

Since Ju = vK = !Ju ⊂ vK � !Jv ⊂ uK = !Jv ⊂ uK � !Ju ⊂ vK = Jv = uK, we
have Ju = vK · Jv = uK⊥ = Ju = vK · Ju = vK⊥ ⊂ ⊥.

Proposition 3.5. For every u, v, w ∈ V P ,

(i) 1 ∈ Ju = vK � Jv = wK−◦ Ju = wK

(ii) 1 ∈ Ju ∈ vK � Ju = wK−◦ Jw ∈ vK

(iii) 1 ∈ Ju ∈ vK � Jv = wK−◦ Ju ∈ wK

Proof. The proof is by the simultaneous induction on the canonical ordering [4]
of (ρ(u), ρ(v), ρ(w)).
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(i) First we show Ju ⊂ vK � Jv = wK ⊂ Ju ⊂ wK. Now

Ju ⊂ vK � Jv = wK = (
⋂

x∈dom(u)

(u(x) · Jx ∈ vK⊥)⊥)� Jv = wK

= ((
⋂

x∈dom(u)

(u(x) · Jx ∈ vK⊥)⊥) · Jv = wK)⊥⊥

Let p ∈ ⋂
x∈dom(u)(u(x) · Jx ∈ vK⊥)⊥. Then for all x ∈ dom(u), s ∈ u(x)

and s′ ∈ Jx ∈ vK⊥, we have pss′ ∈ ⊥ so that ps ∈ Jx ∈ vK⊥⊥ = Jx ∈ vK.

Now we show that for any q ∈ Jv = wK, we have pq ∈ ⋂
x∈dom(u)(u(x) ·

Jx ∈ wK⊥)⊥. Fix y ∈ dom(u) and let r ∈ u(y) · Jy ∈ wK⊥. Then r = tt′

where t ∈ u(y) and t′ ∈ Jy ∈ wK⊥. Then pt ∈ Jy ∈ vK. By the inductive
hypothesis, Jy ∈ vK · Jv = wK ⊂ Jy ∈ vK � Jv = wK ⊂ Jy ∈ wK. Hence ptq ∈
Jy ∈ wK. Therefore pqr = ptqt′ ∈ ⊥.

Similarly, we can show Jw ⊂ vK � Ju = vK ⊂ Jw ⊂ uK.

Next we show Ju = vK � Jv = wK ⊂ Ju = wK. Note that !A ⊂ A since !A is
the greatest open fact included in A. Also for any open fact A, we have
A�A = A since closed facts are idempotent with respect to multiplicative
disjunction. Then

Ju = vK � Jv = wK = !Ju ⊂ vK � !Jv ⊂ uK � !Jv ⊂ wK � !Jw ⊂ vK

= !Ju ⊂ vK � !Ju ⊂ vK � !Jv ⊂ uK

�!Jw ⊂ vK � !Jv ⊂ wK � !Jw ⊂ vK

= !Ju ⊂ vK � Jw = vK � !Jw ⊂ vK � Ju = vK

Now !Ju ⊂ vK � Jw = vK ⊂ Ju ⊂ vK � Jw = vK ⊂ Ju ⊂ wK. Since open
sets are closed under finite multiplicative conjunction, !Ju ⊂ vK � Jw = vK
is open. Therefore, we have !Ju ⊂ vK � Jw = vK ⊂ !Ju ⊂ wK. Similarly,
!Jw ⊂ vK � Ju = vK ⊂ !Jw ⊂ uK. Hence,Ju = vK � Jv = wK ⊂ Ju = wK.

(ii) We want to show Ju ∈ vK � Ju = wK ⊂ Jw ∈ vK. Now

Ju ∈ vK � Ju = wK = ((
⋃

x∈dom(v)

(v(x) · Jx = uK)⊥⊥)⊥⊥ · Ju = wK)⊥⊥

= (
⋃

x∈dom(v)

(v(x) · Jx = uK · Ju = wK)⊥⊥)⊥⊥

By the inductive hypothesis,

Jx = uK · Ju = wK ⊂ Jx = uK � Ju = wK ⊂ Jx = wK.

Hence Ju ∈ vK � Jv = wK ⊂ (
⋃

x∈dom(v)(v(x) · Jx = wK)⊥⊥)⊥⊥ = Jw ∈ vK.
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(iii) We want to show Ju ∈ vK � Jv = wK ⊂ Ju ∈ wK. We know

Ju ∈ vK � Jv = wK = ((
⋃

x∈dom(v)

(v(x) · Jx = uK)⊥⊥)⊥⊥ · Jv = wK)⊥⊥

= (
⋃

x∈dom(v)

(v(x) · !Jv ⊂ wK · !Jw ⊂ vK · Jx = uK)⊥⊥)⊥⊥

Now fix y ∈ dom(v). We have

v(y) · !Jv ⊂ wK ⊂ v(y) · Jv ⊂ wK

= v(y) · (
⋂

x∈dom(v)

v(x) −◦ Jx ∈ wK)

Note that this is a subset of Jy ∈ wK. Let q ∈ ⋂
x∈dom(v)(v(x)·Jx ∈ wK⊥)⊥.

Then for any r ∈ v(y) and s ∈ Jy ∈ wK⊥, we have qrs ∈ ⊥ so that
qr ∈ Jy ∈ wK⊥⊥ = Jy ∈ wK. Hence v(y) · Jv ⊂ wK ⊂ Jy ∈ wK.

Therefore it suffices to show

Jy ∈ wK · !Jw ⊂ vK · Jy = uK ⊂ (
⋃

z∈dom(w)

(w(z) · Jz = uK)⊥⊥)⊥⊥.

By the inductive hypothesis, Jz = yK · Jy = uK ⊂ Jz = yK � Jy = uK ⊂
Jz = uK for all z ∈ dom(w). Then

Jy ∈ wK · Jy = uK = (
⋃

z∈dom(w)

(w(z) · Jz = yK)⊥⊥)⊥⊥ · Jy = uK

⊂ (
⋃

z∈dom(w)

(w(z) · Jz = yK · Jy = uK)⊥⊥)⊥⊥

⊂ (
⋃

z∈dom(w)

(w(z) · Jz = uK)⊥⊥)⊥⊥

= Ju ∈ wK

Now we show that for any open set C, if A ⊂ B, then A ·C ⊂ B. Assume
A ⊂ B. Then A ·B⊥ ⊂ ⊥. Then A ·C ·B⊥ ⊂ ⊥ ·C. So we want to show
⊥ ·C ⊂ ⊥. Let p ∈ ⊥ and q ∈ C = D⊥ where D is closed. Then for any
r ∈ D, we have qr ∈ ⊥. In particular, p ∈ ⊥ ⊂ D so that pq ∈ ⊥. Hence
Jy ∈ wK · !Jw ⊂ vK · Jy = uK ⊂ (

⋃
z∈dom(w)(w(z) · Jz = uK)⊥⊥)⊥⊥.

Definition 3.6. For every formula ϕ(x1, . . . , xn), we define the phase value of
ϕ

Jϕ(u1, . . . , un)K (u1, . . . , un ∈ V P)

as follows:
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(a) If ϕ is an atomic formula, the assignment is as we defined above

(b) If ϕ is a linear negation, multiplicative conjunction, etc.,

Jψ(u1, . . . , u
⊥
n )K = Jψ(u1, . . . , un)K⊥

Jψ � χ(u1, . . . , unK = (Jψ(u1, . . . , un)K · Jχ(u1, . . . , un)K)⊥⊥

JψOχ(u1, . . . , unK = (Jψ(u1, . . . , un)K⊥ · Jχ(u1, . . . , un)K⊥)⊥

Jψ −◦ χ(u1, . . . , un)K = (Jψ(u1, . . . , un)K · Jχ(u1, . . . , un)K⊥)⊥

JψNχ(u1, . . . , unK = Jψ(u1, . . . , un)K ∩ Jχ(u1, . . . , un)K
Jψ ⊕ χ(u1, . . . , unK = (Jψ(u1, . . . , un)K ∪ Jχ(u1, . . . , un)K)⊥⊥

(c) If ϕ is ∃xψ or ∀xψ,

J∃xψ(x, u1, . . . , un)K = (
⋃

v∈V B
Jψ(v, u1, . . . , un)K)⊥⊥

J∀xψ(x, u1, . . . , un)K =
⋂

v∈V B
Jψ(v, u1, . . . , un)K

(d) If ϕ is !ψ or ?ψ,

J!ψ(u1, . . . , un)K = !Jψ(u1, . . . , un)K
J?ψ(u1, . . . , un)K = ?Jψ(u1, . . . , un)K

Proposition 3.7. 1 ∈ Ju = vK � Jφ(u)K−◦ Jφ(v)K for any formula φ.

Proof. The proof is by induction on the construction of φ, using that Ju = vK is
an open fact.

We now start checking the validity of the basic set-theoretical principles.

Proposition 3.8. (a) J(∃y ∈ x)φ(y)K = (
⋃

y∈dom(x)(x(y)� Jφ(y)K))⊥⊥

(b) J(∀y ∈ x)φ(y)K =
⋂

y∈dom(x)(x(y) −◦ Jφ(y)K)

Proof. (a)

J(∃y ∈ x)φ(y)K = J∃y(y ∈ x� φ(y)K

= (
⋃

y∈V P

Jy ∈ x� φ(y)K)⊥⊥

= (
⋃

y∈V P

(Jy ∈ xK � Jφ(y)K))⊥⊥

= (
⋃

y∈V P

[(
⋃

z∈dom(x)

(x(z)� Jy = zK))⊥⊥ � Jφ(y)K])⊥⊥

⊂ (
⋃

y∈V P

[(
⋃

z∈dom(x)

(x(z)� Jy = zK � Jφ(y)K))⊥⊥])⊥⊥

⊂ (
⋃

z∈dom(x)

(x(z)� Jφ(z)K))⊥⊥
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Also,

(
⋃

y∈dom(x)

(x(y)� Jφ(y)K))⊥⊥ ⊂ (
⋃

y∈dom(x)

(Jy ∈ xK � Jφ(y)K))⊥⊥

⊂ (
⋃

y∈V P

(Jy ∈ xK � Jφ(y)K))⊥⊥

= J∃y(y ∈ x� φ(y)K

(b) The proof is the proposition 2.19 and (a).

Now, we verify a number of formulas which are the linear logic counterparts
of the ZF axioms.

Theorem 3.9. The following formulas are valid in V P .

(Empty Set): ∃Y ∀x(x ∈ Y )⊥

(Extensionality):
∀X∀Y (!∀u(u ∈ X −◦ u ∈ Y )� !∀u(u ∈ Y −◦ u ∈ X) −◦X = Y )

(Pair): ∀u∀v∃a∀x(x = u⊕ x = v −◦ x ∈ a)

(Union): ∀X∃Y ∀u(∃z(z ∈ X � u ∈ z) −◦ u ∈ Y )

(Separation):
∀X∃Y (! ∀u(u ∈ Y −◦ u ∈ X � φ(u))� ! ∀u(u ∈ X � φ(u) −◦ u ∈ Y ))

(Collection): ∀u(∀x ∈ u∃yφ(x, y) −◦ ∃v∀x ∈ u∃y ∈ vφ(x, y))

(Infinity): ∃Y (! ∅P ∈ Y � ! ∀x(x ∈ Y −◦ x ∪ {x} ∈ Y ))

Proof.

(Empty Set): Let Y ∈ V P be such that dom(Y ) = ∅. Then, for any x ∈ V P ,
we have

⋃
v∈dom(Y )(Y (v)� Jx = vK) = ∅. Then

(
⋃

v∈dom(Y )

(Y (v)� Jx = vK))⊥ = > = P

Hence, J(x ∈ Y )⊥K = P and J∀x(x ∈ Y )⊥K = P . Obviously, 1 ∈ P .

(Extensionality): By the definition, JX = Y K = !JX ⊂ Y K� !JY ⊂ XK. Then,
the axiom holds by the proposition 3.8.

(Pair): Let a ∈ V P be such that dom(a) = {u, v} and 1 ∈ a(u) = a(v). Then,
1 ∈ Ju ∈ aK and 1 ∈ Jv ∈ aK. Now for any x ∈ V P , we have Jx = uK �
Ju ∈ aK ⊂ Jx ∈ aK so that Jx = uK ⊂ Jx ∈ aK. Similarly, Jx = vK ⊂ Jx ∈ aK.
Hence Jx = u⊕ x = vK = (Jx = uK ∪ Jx = vK)⊥⊥ ⊂ Jx ∈ aK⊥⊥ = Jx ∈ aK.
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(Union): Let Y ∈ V P be such that dom(Y ) =
⋃{dom(z) | z ∈ dom(X)}

and Y (u) = (
⋃

z∈{z|u∈dom(z) and z∈dom(X)}X(z)� z(u))⊥⊥. Then for any
z ∈ dom(X) and u ∈ dom(z), we have X(z)� z(u) ⊂ Y (u) ⊂ Ju ∈ Y K so
that X(z) ⊂ z(u)−◦Ju ∈ Y K. Hence, X(z) ⊂ J∀w(w ∈ z −◦ w ∈ Y )K. This
means that 1 ∈ J∀z(z ∈ X −◦ ∀w(w ∈ z −◦ w ∈ Y ))K, which is equivalent
to the validity of the axiom.

(Separation): Let Y ∈ V P be such that dom(Y ) = dom(X) and Y (u) =
X(u)�Jϕ(u)K for all u ∈ dom(Y ). Then Y (u) ⊂ Ju ∈ X � ϕ(u)K for all u ∈
dom(Y ) so that 1 ∈ J∀u(u ∈ Y −◦ u ∈ X � ϕ(u))K. Also, X(u)�Jϕ(u)K ⊂
Y (u) ⊂ Ju ∈ Y K for all u ∈ dom(X) so that X(u) ⊂ Jϕ(u)K−◦ Ju ∈ Y K. So
1 ∈ J∀u(u ∈ X −◦ (ϕ(u) −◦ u ∈ Y ))K = J∀u(u ∈ X � ϕ(u) −◦ u ∈ Y )K.

(Collection): Given x ∈ V P , let

Fx = {s | s is a fact in P and ∃y ∈ V P (Jϕ(x, y)K = s)}

Then Fx is a set and ∀s ∈ Fx∃α∃y(Jϕ(x, y)K = s and ρ(y) = α). Hence by
the Collection principle in ZF,

∃v∀s ∈ Fx∃α ∈ v∃y(Jϕ(x, y)K = s and ρ(y) = α)

Let αx =
⋃{α | α ∈ v and α ∈ Ord}. Then

∀s ∈ Fx∃α ∈ αx∃y(Jϕ(x, y)K = s and ρ(y) = α)

That is to say,

Fx = {s | s is a fact in P and ∃y ∈ V P
αx

(Jϕ(x, y)K = s)}

Hence
⋃

y∈V P Jϕ(x, y)K =
⋃

y∈V P
αx
Jϕ(x, y)K. We let β =

⋃{αx | x ∈
dom(u)}. Then

J∀x ∈ u∃yϕ(x, y)K =
⋂

x∈dom(u)

(u(x) −◦ (
⋃

y∈V P
Jϕ(x, y)K)⊥⊥)

=
⋂

x∈dom(u)

(u(x) −◦ (
⋃

y∈V P
αx

Jϕ(x, y)K)⊥⊥)

⊂
⋂

x∈dom(u)

(u(x) −◦ (
⋃

y∈V P
β

Jϕ(x, y)K)⊥⊥)

Now let v ∈ V P be such that dom(v) = V P
β and 1 ∈ v(t) for all t ∈ dom(v).

Then

(
⋃

y∈V P
β

Jϕ(x, y)K)⊥⊥ ⊂ (
⋃

y∈dom(v)

(v(y)� Jϕ(x, y)K))⊥⊥

= J∃y ∈ v(ϕ(x, y))K
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Hence
⋂

x∈dom(u)

(u(x)−◦(
⋃

y∈V P
β

Jϕ(x, y)K)⊥⊥) ⊂
⋂

x∈dom(u)

(u(x)−◦J∃y ∈ v(ϕ(x, y))K).

(Infinity): We denote the phase-valued set obtained in (Empty Set) by ∅P .
Similarly {x, {x}} and x ∪ {x} denote the phase-valued sets obtained by
(Pair) and (Union) for now. Define Y ∈ V P in such a way that

• ∅P ∈ dom(Y )

• If x ∈ dom(Y ), then x ∪ {x} ∈ dom(Y )

• 1 ∈ Y (∅P)

• Y (x) ⊂ Y (x ∪ {x}) for all x ∈ dom(Y )

Notice that if ρ(x) = α, then ρ({x}) = α + 1 and ρ({x, {x}}) = α + 2.
Also, ρ(x ∪ {x}) = ρ(

⋃{x, {x}}) ≤ ρ({x, {x}}). Hence, given ∅P ∈ V P
α ,

we can have Y ∈ V P
α+ω . Therefore, Y ∈ V P .

Since 1 ∈ Y (∅P) ⊂ J∅P ∈ Y K, it suffices to show

1 ∈ J∀x(x ∈ Y −◦ x ∪ {x} ∈ Y )K

=
⋂

x∈dom(Y )

(Y (x) −◦ (
⋃

z∈dom(Y )

(Y (z)� Jz = x ∪ {x}K))⊥⊥)

Now for any x ∈ dom(Y ),

Y (x) ⊂ Y (x ∪ {x})
⊂ Y (x ∪ {x})� Jx ∪ {x} = x ∪ {x}K
⊂

⋃

z∈dom(Y )

(Y (z)� Jz = x ∪ {x}K)

⊂ (
⋃

z∈dom(Y )

(Y (z)� Jz = x ∪ {x}K))⊥⊥

4 Relating to the Heyting-valued models

Let’s begin with the following observation, which is what is behind the Girard’s
second translation [3] of intuitionistic predicate logic into linear predicate logic:

A∗ = !A for A atomic

(A ∧B)∗ = A∗ �B∗ (A ∨B)∗ = A∗ �B∗

(A ⊃ B)∗ = ! (A∗ −◦B∗) 0∗ = 0

(∀xA)∗ = !∀xA∗ (∃xA)∗ = ∃xA∗
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Proposition 4.1. Let O be the set of all open facts in P. Then O is a locale.

Proof. The order is given by the set-inclusion. The arbitrary join
∨
Fi is defined

as (
⋃
Fi)⊥⊥ which is open by the proposition 2.19 and the definition of closed

facts. The binary meet of F and G is F � G. This is confirmed by F � G =
!F � !G = ! (F ∩G). Furthermore the arbitrary join and binary meet commute
by the proposition 2.17.

Then we can obtain the Heyting-valued universe V O as the subuniverse by
restricting the truth values to open facts in the construction of V P as follows:

Definition 4.2. We define V O
α and V O by the transfinite induction on ordinals

α as follows:

• V O
0 = ∅

• V O
α+1 = {u | u is a function with dom(u) ⊂ V O

a and ran(u) = O}
• V O

λ =
⋃

α<λ V
O
α where λ is a limit ordinal.

• V O =
⋃

α∈ON V O
α .

Definition 4.3. A phase-valued set u ∈ V P is static if u ∈ V O.

Proposition 4.4. Let u ∈ V P be static. Then Jx ∈ uK is open for all x ∈ V P .

Proof. Jx ∈ uK = (
⋃

z∈dom(u)(u(z) � Jx = zK))⊥⊥. Since open facts are closed
under finite multiplicative conjunction, Jx = zK is open. Furthermore, open facts
are closed under infinitary additive disjunction. Hence, Jx ∈ uK is open.

We introduce the restricted quantifications over V O:

• J∃v∗φ(v, u1, . . . , un)K =
⋃

v∈V OJφ(v, u1, . . . , un)K

• J∀v∗φ(v, u1, . . . , un)K =
⋂

v∈V OJφ(v, u1, . . . , un)K

The proposition 3.8 holds with those restricted quantifiers as well. The proofs
are exactly the same.

For the counterparts of the power set axiom and H. Friedman’s ε-induction
[2, 5], it seems that we need to use those restricted quantifiers.

Theorem 4.5. The following formulas are valid in V P .

(Static Set): ∀x∗∀y (y ∈ x−◦ ! (y ∈ x))

(Static Power Set): ∀u∗∃v∗∀x∗(! ∀y(y ∈ x−◦ y ∈ u) −◦ x ∈ v))

(Static ε-induction): !∀x∗((∀y (y ∈ x−◦ φ(y)) −◦ φ(x)) −◦ ∀x∗φ(x)
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Proof.

(Static Set): This follows from the proposition 4.4.

(Static Power Set): Let v ∈ V O be such that

dom(v) = {f | f is static with dom(f) = dom(u)}
and 1 ∈ v(x) for all x ∈ dom(v). We want to show 1 ∈ J∀x∗(!x ⊂ u−◦ x ∈ v)K.
For this, we define x′ ∈ dom(v) for each x ∈ V O which satisfies:

J!∀y(y ∈ x−◦ y ∈ u)K = !Jx ⊂ uK ⊂ Jx′ = xK

Given such an x′, the validity of the formula immediately follows since
1 ∈ Jx′ ∈ vK and !Jx ⊂ uK ⊂ Jx′ = xK ⊂ Jx′ = xK � Jx′ ∈ vK ⊂ Jx ∈ vK for
all x ∈ V O.

The definition is as follows. Given x ∈ V O, let x′ ∈ V O be such that
dom(x′) = dom(u) and x′(y) = Jy ∈ xK for all y ∈ dom(x′). Clearly,
x′ ∈ dom(v). Now for any y ∈ V P ,

Jy ∈ x′K = (
⋃

z∈dom(u)

x′(z)� Jz = yK)⊥⊥

= (
⋃

z∈dom(u)

Jz ∈ xK � Jz = yK)⊥⊥

⊂ Jy ∈ xK

Hence 1 ∈ J∀y(y ∈ x′ ⊂ y ∈ x)K. Next for any y ∈ V P ,

Jy ∈ u� y ∈ xK = (
⋃

z∈dom(u)

(u(z)� Jz = yK � Jy ∈ xK))⊥⊥

⊂ (
⋃

z∈dom(u)

(Jz = yK � Jz ∈ xK))⊥⊥ since u(z) is open

= (
⋃

z∈dom(u)

(Jz = yK � x′(z)))⊥⊥

= Jy ∈ x′K

Then for any y ∈ V P ,

Jy ∈ xK � J∀y(y ∈ x−◦ y ∈ u)K ⊂ Jy ∈ xK � Jy ∈ xK � Jx ⊂ uK since x ∈ V O

⊂ Jy ∈ xK � Jy ∈ uK

⊂ Jy ∈ x′K

Hence J∀y(y ∈ x−◦ y ∈ u)K ⊂ J∀y(y ∈ x−◦ y ∈ x′)K. Then we have

J!∀y(y ∈ x−◦ y ∈ u)K ⊂ J!∀y(y ∈ x−◦ y ∈ x′)K
⊂ !Jx ⊂ x′K � !Jx′ ⊂ xK

= Jx = x′K
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(Static ε-induction): We show by the transfinite induction on the rank of
u ∈ V O that

J! ∀x∗((∀y (y ∈ x−◦ φ(y∗)) −◦ φ(x))K ⊂ Jφ(u)K

Note that we have

J! ∀x∗((∀y (y ∈ x−◦ φ(y)) −◦ φ(x))K ⊂ (
⋂

y∈dom(u)

(u(y)−◦ Jφ(y)K))−◦ Jφ(u)K

For any y ∈ dom(u) ⊂ V O, the inductive hypothesis yields

J! ∀x∗((∀y (y ∈ x−◦ φ(y)) −◦ φ(x))K ⊂ Jφ(y)K
⊂ u(y) −◦ Jφ(y)K

since u is static and u(y) is open. Hence

J! ∀x∗((∀y (y ∈ x−◦ φ(y)) −◦ φ(x))K ⊂
⋂

y∈dom(u)

(u(y) −◦ Jφ(y)K)

The conclusion follows since J! ∀x∗((∀y (y ∈ x−◦ φ(y)) −◦ φ(x))K is open.

They are special consequences of the more general principle.

Proposition 4.6. For the static u and v, our definition of Ju ∈ vK and Ju = vK
in V P yield the same open facts as the Heyting-valued interpretations in V O.

Proof. Since the meet in O is the tensor in P and the supremum coincides in
both of them, it suffices to confirm that !Ju ⊂ vK in the phase-valued model is
the same as Ju ⊂ vK in the Heyting-valued model for u, v ∈ V O.

Note that the infimum of open facts Fi in O is given by !
⋂
Fi. Furthermore

!
⋂
Fi = !

⋂
!Fi holds. Hence we only need to show that !(u(x)−◦ Jx ∈ uK) in P

is indeed u(x) → Jx ∈ uK in O.
Now F � !(F −◦G) ⊂ G holds for any facts F and G. Suppose F �H ⊂ G

for open facts F , G and H . Then H ⊂ F −◦ G and H ⊂ !(F −◦G) since H is
open. By the uniqueness of F → G, we can conclude that !(F −◦G) = (F → G).

Then the formulas in the intuitionistic set theory evaluated in V O retain the
same interpretations under the Girard’s second translation with all the quanti-
fiers modified to the restricted ones. Furthermore, if the quantifiers are bounded,
then there is no need to restrict them due to the proposition 3.8. We hope to
explore this point in more detail in the sequel of this paper.

16



References

[1] M.P. Fourman and D. Scott. ”Sheaves and logic.” Application of Sheaves,
Springer Lecture Notes in Mathematics 753, 1979, 302-401.

[2] H. Friedman. ”The consistency of classical set theory relative to a set theory
with intuitionistic logic.” The Journal of Symbolic Logic 38, 1973, 315-319.

[3] J.Y. Girard. “Linear logic.” Theoretical Computer Science 50, 1987, 1-102.

[4] T.J. Jech. Set Theory, Academic Press, New York, 1978.
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