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Abstract

In this paper, we give a model for a naive set theory based on the MALL
fragment of linear logic, using the coherence space semantics and the
Scott-style style inverse limit construction. The main idea is to introduce
an ordering in the set M of coherence spaces, with respect to which M
becomes a cpo and all the logical operations are continuous. We are then
able to construct the universe of M-valued sets by solving a certain domain
equation.

1 Introduction

In this paper, we study the semantics of a naive set theory based on the mul-
tiplicative and additive fragment of linear logic. One of the reasons to consider
such a system is that the set theoretical paradoxes do not hold in the absence
of contraction. This phenomenon was known to early combinatory logicians
such as Curry and Fitch in the 1930’s [3], and Grishin proved the consistency
of the naive set theory in affine logic in 1974 [8, 9]. Later, similar systems have
been studied by White [19, 20] and Komori [12], and the author formulated the
system LZF in full linear logic, which was proved to be a conservative extension
of the standard Zermelo-Fraenkel set theory in classical logic [15, 16]. Recently,
Girard considered a naive set theory in the framework of light linear logic [6].

The above mentioned works are, however, mostly syntactic. In fact, such
a set theory behaves really well in terms of proof theory. For example, the
cut-elimination or normalization for a system without the exponentials can be
proved by the induction on ω, which is in sharp contrast with the classical or
intuitionistic set theory [11]. The system can be always conservatively extended
with fixpoints [6]. Furthermore, one can explicitly construct fixpoints and show
that all the totally recursive functions are numeralwise representable, within the
system with reasonable equality and paring [17].

On the other hand, the semantics for such a system has not been sufficiently
developed. Komori gave a model of type-free combinatory logic in terms of
Kripke semantics of affine logic [12, 13], but it is very difficult to construct
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except as the term model. The author studied a phase-space valued model,
which is in analogue to Boolean-valued models and Heyting-Valued models, but
it does not yield a model for a naive set theory [15]. The lack of a good semantics
tends to make a system less convincing and appealing to many people. This
paper tries to address the problem by constructing a reasonable model for a
naive set theory based on linear logic.

Our strategy for the construction of the model is as follows. As it is always
the case with the set theory based on a non-standard logic, sets are interpreted
as functions from sets to truth values. In Boolean-valued models and Heyting-
valued models, however, such functions are constructed step by step so that the
the domain of a function of level α+ 1 is the partial universe Vα of the sets up
to the level α. In short, the entire universe forms a cumulative hierarchy. In our
case, the domain of each such function needs to be the entire universe because
of the principle of the unrestricted comprehension.

Let V be our universe and M the set of truth values. For any formula A(x),
one can always construct the term {x : A(x)}. Then, it is most desirable to
interpret the term {x : A(x)} as an element of �{x : A(x)}�η of V , on the one
hand, and as the function a �→ �A(x)�η[x�→a] from V to M , on the other, where
a ∈ V and η is an assignment. In other words, the universe V needs to be
isomorphic to the function space [V →M ].

The setting is all too familiar to anyone who knows the model theory of
untyped λ-calculus, and one can expect to apply the Scott-style method to
the construction of V [18]. For this to be worked out, however, the set M of
truth values should be a cpo under a certain ordering and the function space
[V → M ] be the set of all continuous functions. Furthermore, the latter needs
to be closed under the logical operations of linear logic so that one can interpret
complex formulas inductively. In particular, we require that if the function
a �→ �A(x)�η[x�→a] for A(x) is continuous, so be the function a �→ �A(x)⊥�η[x�→a]

for the linear negation A(x)⊥. This causes some problem with the choice of M
and the ordering. For example, if we take M to be a quantale and use its native
ordering, then M is certainly a cpo, since it is a complete lattice. The linear
negation on M is, however, not continuous, since it is not monotone after all.

Hence it is necessary to find a good M and a good ordering on M , with
respect to which M becomes a cpo and all the logical operations of linear logic
are continuous functions on M . In this paper, we choose a set of coherence
spaces as M and introduce the ordering by the subspace relation among them.
We then solve the domain equation V ∼= [V → M ] by the Scott-style inverse
limit construction to yield the universe V of a naive set theory based on MALL
fragment of linear logic. The coherence spaces are invented by Berry [1] and
used by Girard for the semantics of the second-order λ-calculus [4], and they are
supposed to be the original source and semantics of linear logic [5, 7]. Hence, the
author believes that our choice is legitimate enough to assure the reasonableness
of our model.
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2 Preliminaries

We briefly review the basics of coherence spaces and complete partial orders
(cpo’s). For more thorough exposition, we refer the reader to the textbooks [7]
and [1, 10, 14].

Definition 2.1. A coherence space is a set (of sets) A which satisfies:

1. the downward closure; if a ∈ A and a′ ⊆ a, then a′ ∈ A,
2. the binary completeness; if S ∈ A and ∀a1, a2 ∈ S (a1 ∪ a2 ∈ A), then⋃

S ∈ A.
The elements of |A| = ⋃A are called tokens. The coherence space A can

be identified with the graph (|A|, �
�), where �

� is a reflexive and symmetric
relation. The latter is given by the coherence relation modulo A:

α�
�α′ (mod A) iff {α, α′} ∈ A.

On the other hand, the graph (|A|, �
� ) defines the coherence space A as the set

of its complete subgraphs. The coherence relation modulo A is often denoted
α�

�Aα
′ as well.

In the category of coherence spaces, the standard morphisms are stable func-
tions. We refer the reader to Girard’s textbook [7] for their definition. Impor-
tantly, the stable functions F from A to B can be described in terms of their
traces Tr(F ), which are the set of pairs (a, β) with finite a ∈ A and β ∈ |B| such
that a is the minimal element satisfying β ∈ F (a). The set of all such traces
then becomes a coherence space.

We are, however, interested in a model of linear logic. The stable function F
is linear if the first element of pairs (a, β) in its trace Tr(F ) is a singleton {α}.
One can then simply replace the singleton {α} by the element α ∈ |A| and use
the result, called the linear traces TrlinF , for describing the linear function F .

The set of all linear functions from A to B allows a particularly pleasant
characterization. For the elements of A, we define the incoherence relation
α 
 α′ (mod A) by

α 
 α′ (mod A) iff ¬(α�
�Aα

′) or α = α′

where the condition α = α′ assures the reflexivity.

Fact 2.2. The set of linear traces of all linear functions from A to B is the
coherence space A−◦ B defined by

1. the set of tokens; |A −◦ B| = |A| × |B|,
2. the coherence relation; (α, β)�

�(α′, β′) (mod A−◦ B) iff
• if α�

�Aα
′ then β�

�Bβ, and

• if β 
B β′ then α 
A α′.
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The incoherence relation itself yields the linear negation A⊥ of a coherence
space A. Furthermore the tensor product A�B of two coherence spaces A and
B can be defined pairwise.

Definition 2.3. The linear negation A⊥ of A is the coherence space defined by

1. |A⊥| = |A|,
2. α�

�α′ (mod A⊥) iff α 
A α′.

Definition 2.4. The tensor product A �A of A and B is the coherence space
defined by

1. |A� B| = |A| × |B|,
2. (α, β)�

� (α′, β′) (mod A� B) iff α�
�Aα

′ and β�
�Bβ

′.

The category of coherence spaces and linear functions is a �-autonomous
category with the (−)⊥ as the dualizer and the singleton coherence space as the
tensor unit. In addition, the Cartesian products A1�A2 and coproducts A�B
are given by |A1�A2| = |A1 �A2| = |A1|+ |A2| = {1} × |A1| ∪ {2} × |A2| and

• (i, α)�
�(i, α′) (mod A1�A2) and (mod A1 �A2) iff α�

�Ai
α′ for i = 1, 2,

• (1, α)�
�(2, β′) (mod A1�A2) and (1, α) 
 (2, β) (mod A1 � A2) for all

α ∈ A1 and β ∈ A2.

The de Morgan duality holds between the Cartesian products and coproducts,
and they give the interpretations of the additive operations in linear logic.

Next let D = (D,�) be a partially ordered set. A subset X ⊆ D is directed if
X is non-empty and for any two elements x, y in X there exists another element
z ∈ X such that x � z and y � z. The poset D is a complete partial order (cpo)
if

• there is a least element ⊥ ∈ D, and

• for every directed subset X ⊆ D, the supremum
⊔
X exists.

In the category of cpo’s, the morphisms are continuous functions which can be
defined as

• the function f : D → D′ is continuous iff f(
⊔
X) =

⊔
x∈X f(x) for all

directed X ⊆ D.

This category is denoted CPO. The function space [D → D′] is a cpo with
the pointwise ordering and so is the cartesian product D×E with the pairwise
ordering. Furthermore CPO is Cartesian closed.
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3 The category Coh(T)

We use the coherence spaces as truth values of linear logic. The collection of
all coherence spaces is, however, a proper class, which is not suitable for our
construction. Hence we only consider the coherence spaces whose sets of tokens
are subsets of a fixed non-empty set T . Furthermore we require T to be closed
under pairing so that the set of all such coherence spaces is closed under the
operations of linear logic. Note that T can be always constructed as the closure
of an arbitrary non-empty set under the pairing operation.

Definition 3.1. The category of coherence spaces generated by T , denoted
Coh(T), consists of

1. the set C(T ) of all coherence spaces A with |A| ⊆ T as objects,

2. the set of all linear functions from A to B with A,B ∈ C(T ) as morphisms.

Proposition 3.2. Coh(T) is closed under the tensor product, linear negation
and Cartesian product.

We introduce a new ordering on the set C(T ) of coherence spaces by the
subspace relation, under which C(T ) becomes a cpo.

Definition 3.3. The coherence space A = (|A|, �
�A) is a subspace of another

coherence space B = (|B|, �
�B) if

1. |A| ⊆ |B|, and
2. �

�A = �
�B¯A, i.e.

�
�A is the restriction of �

�B with respect to |A|.
This relation is denoted A � B.

It can be easily checked that � is a partial order on C(T ), Furthermore
∅ ∈ C(T ) is the bottom. In fact, C(T ) is a cpo under this ordering.

Lemma 3.4. (C(T ),�) is a cpo.

Proof. Let S ⊆ C(T ) be directed. Define
⊔S = (|⊔S|, �

� ) by |⊔S| = ⋃
A∈S |A|

and �
� =

⋃
A∈S

�
�A. Each �

�A is reflexive and symmetric and so is �
� . Hence⊔S is a coherence space.⊔S is an upper bound of S. Let A ∈ S. Then |A| ⊆ |⊔S| and �
�A ⊆ �

� .
Suppose α�

�α′ and α, α′ ∈ A. Then α�
�Bα

′ for some B ∈ S. Since S is directed,
one can find C such that A � C and B � C. Then α�

�Cα
′ and α, α′ ∈ |A|, i.e.

α�
�C¯Aα

′. Hence α�
�Aα

′.
Furthermore

⊔S is the least upper bound. Suppose A � C for all A ∈ S.
Then |⊔S| =

⋃|A| ⊆ |C|. Similarly �
� =

⋃
�
�A ⊆ �

�C . Let α�
� Cα

′ and
α, α′ ∈ |⊔S|. Then α ∈ A1 and α′ ∈ A2 for some A1,A2 ∈ S. Let B ∈ S be
such that A1 � B and A2 � B. Then α�

�C¯Bα
′, and α�

�Bα
′. Hence α�

�α′.

The linear negation, tensor product and Cartesian product can be regarded as
the operations on this cpo. In addition they are continuous.
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Proposition 3.5. The operation of linear negation A �→ A⊥ is monotone.

Proof. Suppose A � B. Then |A⊥| = |A| ⊆ |B| = |B⊥|. Let α�
�A⊥α′. Then

α 
A α′. Note that if α = α′, then α�
�B⊥α′ trivially holds because of the

reflexivity. Hence we may assume α �= α′. Then ¬(α�
�Aα

′) and α, α′ ∈ |A|. If
α�

�Bα
′, then α�

�B¯Aα
′ i.e. α�

�Aα
′, This is a contradiction. Hence ¬(α�

�Bα
′)

and α, α′ ∈ |B|. Therefore α 
B α′, i.e. α�
�B⊥α′. On the other hand, let

α�
�B⊥α′ and α, α′ ∈ |A⊥|. We may assume α �= α′. Then ¬(α�

�Bα
′). Hence

¬(α�
�Aα

′). Therefore α 
A α′, i.e. α�
�A⊥α′.

Lemma 3.6. The operation of linear negation A �→ A⊥ is continuous.

Proof. Let S ⊆ C(T ) be directed. Then {A⊥ : A ∈ S} is also directed and
⊔

A∈S A⊥ =
⋃

A∈S |A| = |⊔S| = |(⊔S)⊥|. Let α�
� A⊥α′. Then α, α′ ∈ |A|

and α�
�A⊥α′ for some A ∈ S. We may assume α �= α′. Then ¬(α�

�Aα
′).

Suppose α�
�Bα

′ for some B ∈ S. Then one can find C ∈ S such that A � C and
B � C. Then α�

�Cα
′ and α�

�C¯Aα
′, i.e. α�

�Aα
′. This is a contradiction. Hence

¬(α�
�Bα

′) for all B ∈ S. In other words, ¬(α�
� Sα

′) i.e. α�
� ( S)⊥α

′. On the
other hand, let α�

� ( S)⊥α
′. We may assume α �= α′. Then α, α′ ∈ A for some

A ∈ S and ¬(α�
�Bα

′) for all B ∈ S. Hence α�
�A⊥α′ and α�

� A⊥α′.

Proposition 3.7. The operation of tensor product (A,B) �→ A�B is a mono-
tone function from C(T )× C(T ) to C(T ).

Proof. Let (A,B) �C(T )×C(T ) (A′,B′). Then A � A′ and B � B′. Hence
|A� B| = |A| × |B| ⊆ |A′| × |B′| = |A′ � B′|. Let (α, β)�

�A�B(α
′, β′). Then

α�
�Aα

′ and β �
�Bβ

′. Hence α�
�A′α′ and β�

�B′β′, i.e. (α, β)�
�A′�B′(α′, β′). On

the other hand, let (α, β)�
�A′�B′(α′, β′) and (α, β), (α′, β′) ∈ |A� B|. Then

α�
�A′¯Aα

′ and β �
�B′¯Bβ

′. Hence α�
�Aα

′ and β�
�Bβ

′, i.e. (α, β)�
�A�B(α

′, β′)

Lemma 3.8. The operation of tensor product (A,B) �→ A� B is a continuous
function from C(T )× C(T ) to C(T ).

Proof. Let S ⊆ C(T ) × C(T ) be directed. Then {A � B : (A,B) ∈ S} is also
directed. Let S1 = {A : ∃Y (A,Y) ∈ S} and S2 = {B : ∃X (X ,B) ∈ S}. Then⊔S = (

⊔S1,
⊔S2) and |⊔(A,B)∈S A� B| = ⋃

(A,B)∈S |A| × |B| ⊆ ⋃
A∈S1

|A| ×
⋃

B∈S2
|B| = |⊔S1 �

⊔S2|. On the other hand, suppose (α, β) ∈ |⊔S1 �
⊔S2|.

Then α ∈ |C| and β ∈ |D| for some C ∈ S1 and D ∈ S2. Since S is directed, one
can find (C′,D′) ∈ S such that C � C′ and D � D′. Hence (α, β) ∈ |C′| × |D′| =
|C′ �D′| ⊆ |⊔(A,B)∈S A� B|.

Suppose (α, β)�
� A�B(α

′, β′). Then (α, β)�
�C�D(α

′, β′) for some (C,D) ∈
S. Hence α�

�Cα
′ and β�

�Dβ
′. Therefore α�

� S1
α′ and β�

� S2
β′, i.e.

(α, β)�
� S1� S2

(α′, β′).

On the other hand, suppose (α, β)�
� S1� S2

(α′, β′). Then α�
�Cα

′ and β�
�Dβ

′

for some C ∈ S1 and D ∈ S2. Let (C′,D′) ∈ S be such that C � C′ and D � D′,
Then (α, β)�

�C′�D′(α′, β′), Hence (α, β)�
� A�B(α

′, β′).
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Since the par A�B can be defined by the de Morgan duality as (A⊥ � B⊥)⊥,
all the multiplicative operations of linear logic are continuous with respect to
our ordering. Besides, the additive operations are continuous as well. By the
de Morgan duality, it suffices to confirm this for the Cartesian product.

Proposition 3.9. The operation of Cartesian product (A,B) �→ A�B is a
monotone function from C(T )× C(T ) to C(T ).

Proof. Let (A,B) �C(T )×C(T ) (A′,B′). Then A � A′ and B � B′. Hence
|A�B| = |A|+ |B| ⊆ |A′|+ |B′| = |A′�B′|. For α ∈ |A| and β ∈ |B|, the injec-
tions (1, α) and (2, β) are always related in both A�B and A′�B′. Furthermore

(1, α)�
�A�B(1, α

′) iff α�
�Aα

′

iff α�
�A′¯Aα

′

iff (1, α)�
�A′�B′¯A�B(1, α

′)

and similarly for (2, β) and (2, β′).

Lemma 3.10. The operation of Cartesian product (A,B) �→ A�B is a contin-
uous function from C(T )× C(T ) to C(T ),

Proof. Let S ⊆ C(T ) be directed. Then {A�B : (A,B) ∈ S} is also di-
rected. Let S1 and S2 be defined as before. Then |⊔S1�

⊔S2| =
⋃

A∈S1
|A| +⋃

B∈S2
|B| = ⋃

(A,B)∈S |A|+ |B| = |⊔(A,B)∈S A�B|.
Let α ∈ |S1| and β ∈ |S2|. Then α ∈ |C| and β ∈ |D| for some C ∈ S1 and

D ∈ S2. Let (C′,D′) ∈ S such that C � C′ andD � D′. Then (1, α)�
�C′�D′(2, β),

i.e. (1, α)�
� A�B(2, β). Clearly (1, α)�

� S1� S2
(2, β). Next let α, α′ ∈ |S1|.

Then

(1, α)�
� S1� S2

(1, α′) iff α�
� S1

α′

iff α�
�Cα

′ for some C ∈ S1

iff (1, α)�
�C�D(1, α

′) for some (C,D) ∈ S
iff (1, α)�

� A�B(1, α
′)

and similarly for β, β′ ∈ |S2|.
Note that the ordering A � B naturally induces a linear function from A to

B with the linear trace {(α, α) : α ∈ |A|}. This is the ordinary inclusion map of
A into B. The existence of inclusion map, however, does not necessarily yield
A � B since α�

�Bβ may hold even when α is not related to β in A.

4 The construction of the universe V

The universe V of C(T )-valued sets is constructed by the Scott style inverse
limit construction as the fixpoint V ∼= [V → C(T )]. Since this is a simplified
version of the well-known D∞ construction, we only give a brief sketch of it.
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The set [D → E] of all continuous functions from a cpo D to a cpo E is a
cpo by the pointwise ordering, i.e.

f �[D→E] g iff f(x) �E g(x) for all x ∈ D

for f, g ∈ [D → E]. The pair of continuous functions f : D → E and g :
E → D is called an embedding-projection pair from D to E iff p ◦ e = IdD and
e◦p �E→E IdE . Our construction is carried out in the category CPOe of cpo’s
and embedding-projection pairs. We define the operation F by

• F (D) = [D → C(T )],

• F (e, p) is the embedding-projection pair of f �→ f ◦ p and g �→ g ◦ e with
f ∈ [D → C(T )] and g ∈ [E → C(T )].

Then F is a covariant functor on this category.
Let � be the cpo which consists of a singleton set. Then � is an initial

object of CPOe. In particular, there is a morphism (e0, p0) from � to F (�).
Let Fn(�) and (en, pn) be the results of F applied to � and (e0, p0) for n times,
respectively. We then consider the diagram:

� (e0,p0)−−−−→ F 1(�)
(e1,p1)−−−−→ F 2(�)

(e2,p2)−−−−→ · · ·Fn(�)
(en,pn)−−−−→ Fn+1(�) · · ·

Our fixpoint will be a colimit ΣF of this diagram. Let Πn∈ωF
n(�) be the set-

theoretical product of Fn(�) and a be one of its elements. The n-th projection
of a is simply denoted an. The object ΣF is then defined by

• ΣF = {a ∈ Πn∈ωF
n(�) : an = pn(an+1) for all n ∈ ω}

• a �ΣF b iff an �F n(
) bn for all n ∈ ω.

ΣF is a colimit of the diagram in CPOe with the embedding-projection pairs
(ηn, πn) from Fn(�) to ΣF given by

• πn is the set-theoretical projection, i.e. πn(a) = an,

• ηn(x) is the element a ∈ ΣF such that an = x and am+1 = em(am) for all
m ≥ n.

Furthermore the colimit ΣF is preserved under F , i.e. its image F (ΣF ) is a
colimit of the diagram:

F 1(�)
(e1,p1)−−−−→ F 2(�)

(e2,p2)−−−−→ · · ·Fn+1(�)
(en+1,pn+1)−−−−−−−−→ Fn+2(�) · · ·

Clearly ΣF itself is a colimit of this second diagram as well. Hence ΣF is
isomorphic to F (ΣF ), i.e. the object ΣF is the required fixpoint V ∼= [V →
C(T )].
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5 The interpretation of linear set terms in V

The naive set theory we consider is based on the multiplicative-additive fragment
(MALL) of linear logic. It is enhanced with the set abstraction but without
quantifiers. The terms and formulas are defined inductively:

1. the variables x, y, z, · · · are terms;

2. the constants 1, ⊥, � and 0 are (atomic) formulas;

3. if s and t are terms, then s ∈ t and s /∈ t are (atomic) formulas;

4. if A is a formula and v is a variable, then {v : A} is a term;

5. if A and B be are formulas, so are A � B, A�B, A�B and A � B.

The free and bound variables in formulas are defined as usual. The linear
negations A⊥ of formulas A are given by the standard de Morgan duality in
addition with

• (s ∈ t)⊥ = s /∈ t and (s /∈ t)⊥ = s ∈ t.

Our inference system is the two-sided Gentzen-style sequent calculus for MALL
enhanced with the new rules of inference for the set abstraction

Γ, A[s/v]  ∆
Γ, s ∈ {v : A}  ∆

Γ  A[s/v],∆
Γ  s ∈ {v : A},∆

where A[s/v] is the result of the substitution of the term s for the variable v in
the formula A.

The terms s and formulas A with n free variables are interpreted by mor-

phisms V n �s�→ V and V n �s�→ C(T ) in the category CPO. Let φ be the isomor-

phism V
φ∼= [V → C(T )] and f̂ be the transpose of the morphism f . Furthermore

we assume the alignment of the number of free variables by appropriate canon-
ical morphisms. Then the interpretation can be assigned inductively as follows:

1. �1� and �⊥� are singleton coherence spaces;

2. ��� and �0� are the empty coherence space;

3. �v� for the i-th variable v is the projection V n πi→ V ;

4. �s ∈ t� is the composition

V n 〈�s�,�t�〉−−−−−→ V × V
Id×φ−−−−→ V × [V → C(T )] eval−−−−→ C(T );

5. �{v : A}� is the composition

V n−1 �A�−−−−→ [V → C(T )]
φ−1

−−−−→ V ;

9



6. �A⊥� is the composition

V n �A�−−−−→ C(T ) ⊥−−−−→ C(T )

where ⊥ is the operation of linear negation;

7. �A � B� is the composition

V n 〈�A�,�B�〉−−−−−−→ C(T )× C(T ) �−−−−→ C(T )

where � is the operation of tensor product;

8. �A�B� is the composition

V n 〈�A�,�B�〉−−−−−−→ C(T )× C(T ) �−−−−→ C(T )

where � is the operation of Cartesian product.

9. �A�B� and �A � B� are given by the de Morgan duality.

The morphisms V n → C(T ) in CPO are monotone and can be regarded as func-
tors from the category V n to the category Coh(T) with the ordering A �C(T ) B
now read as the inclusion map. Then the sequents Γ  ∆ are interpreted as a
natural transformation from �Γ�� to �∆�� where Γ� and ∆� are the tensor and
par products of all occurrences of formulas in Γ and ∆, respectively. Note that
the interpretation of the formula A[s/v] can be computed by the composition

V n Id×Id−−−−→ V n × V n Id×�s�−−−−→ V n+1 �A�−−−−→ C(T )

and �s ∈ {v : A}� = �A[s/v]� holds. Hence the inference rules for the set ab-
straction are sound as well as the axioms and other inference rules.

6 Conclusion

We constructed a model of a naive set theory based on MALL by combining
the coherence space semantics for propositional linear logic and the Scott-style
inverse limit construction. The main reason for this to be possible is that one
can define the ordering among coherence spaces with respect to which the linear
negation is a monotone, i.e. covariant, operation. This seems to show one of
the special features of linear negation as opposed to intuitionistic or classical
negation.

Our model is very natural and sufficiently model-theoretic. It is not, how-
ever, completely satisfactory. One of such unsatisfactory points is that our
system of naive set theory does not have quantifiers although it has the set
abstraction. The interpretation of a formula A(x) with one free variable x is
a map �A(x)� : V → C(T ) and the obvious candidate for the interpretation of
∀xA(x) is the coherence space Πa∈V �A(X)�(a). In general, however, the latter
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does not reside in C(T ). For example, if T is a countable set, then C(T ) is
uncountable and so is V . Then we do not have enough elements of T to use as
indices for each �A(x)�(a). The other unsatisfactory point is that the coherence
space semantics is by no means complete with respect to propositional linear
logic. In particular, the constants 1 and � are self-dual, i.e. �1� = �⊥� and
��� = �0�.

For further study, we need to address those issues. One direction seems to
extend the truth-value set C(T ), on the one hand, and consider a structure more
restrictive than cpo, on the other. Another direction is to use different types
of semantics from coherence space semantics as the base model of propositional
linear logic. For example, a certain version of game semantics seems promising.
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