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1 Technical tools

1.1 Probability space

We start by introducing the theoretical framework of probability theory. A probability
space consists of three ingredients:

1. A set of all possible outcomes Ω.

2. A set of events

3. A probability function P, which assigns to each event a number between 0 and 1.

For example, we can consider the event that the average temperature during a day is at
least equal to 20 degrees. If we are in a summer day in Japan, this probability should
be very close to 1. If we are in a winter day, this probability should be closer to 0.
For more advanced students: In general, there is no specification on Ω, so it is a
"general" space, but it can happen that it corresponds to the six possible outcomes of a
dice roll, etc.

1.2 Continuous random variable

A random variable is a function X from the sample space to the set of real numbers R,
where R := (−∞,∞). The probability that X is between a and b is defined as

P(X ∈ [a, b]) = P({ω ∈ Ω | X(ω) ∈ [a, b]}). (1)
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For example, X can be equal to the current price of Mitsubishi asset, the current
temperature in Tokyo, the inflation rate in Japan, etc.
If X has a density fX , the probability that X is between a and b is equal to

P(X ∈ [a, b]) =

∫ b

a

fX(s)ds. (2)

The density is positive and can be interpreted as the instantaneous probability. It
corresponds to the area under the curve in Figure 1. We always have that the total
area below the density is equal to 1. This can be expressed as∫

fX(s)ds = 1. (3)

This is natural since the total probability is always equal to 1.
The only density that we will be looking at in this class is the normal distribution,

which we will be defining in a later section.
For more advanced students: The definition can be generalized in the two-dimensional
case, where we consider the joint density. More specifically, if X and Y are two random
variables, then their joint density takes on the form fX,Y (s, t).

1.3 Independence

Two random variables are independent if the realization of one does not affect the
realization of the other. For example, if X stands for the current temperature in
Tokyo, and Y corresponds to the number of students enrolled in this class, it would be
reasonable to assume that X and Y are independent.

If we add a third random variable Z, which is the current temperature in Yokohama,
then it would be reasonable to assume Y and Z are independent, but it would be
unreasonable to assume independence between X and Z. Indeed, if it is cold in Tokyo,
it will be most likely cold in Yokohama too, and vice versa.
For more advanced students: Two random variables X and Y are independent if their
joint density and their own density satisfy

fX,Y (s, t) = fX(s)fY (t) (4)
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Figure 1: Four different densities

1.4 Calculation properties

First, we have that the sum of two random variables, when squared, is equal to the
square of each random variable plus two times the product of each random variable, i.e.

(X + Y )2 = X2 + Y 2 + 2XY (5)

We also denote the sum symbol as
∑

, i.e.

n∑
i=1

Xi = X1 +X2 + . . .+Xn (6)

3



Then, the above property can be extended to the sum of n random variables squared,
i.e. ( n∑

i=1

Xi

)2
=

( n∑
i=1

Xi

)( n∑
j=1

Xj

)
(7)

=
n∑

i=1

n∑
j=1

XiXj (8)

=
n∑

i=1

X2
i +

∑
1≤i,j≤n s.t. i 6=j

XiXj (9)

In the property (9), there is n(n− 1) terms in the sum
∑

1≤i,j≤n s.t. i 6=j.

1.5 Mean

Now we define the mean as

Mean[X] =

∫
R
sfX(s)ds. (10)

The mean is a number representing the "center" of a collection of numbers and is
intermediate to the extreme values of the set of numbers. The mean is a NUMBER
and not a random variable.

We provide now some very useful properties about the mean. First, we have that
the mean of a number c is equal to the number c itself, i.e.,

Mean[c] = c. (11)

Second, we have that the mean of a number times a random variable equals the number
times the mean of the random variable, i.e.,

Mean[cX] = cMean[X]. (12)

Third, we have that the mean of the sum of two random variables is equal to the sum
of the mean of each random variable, i.e.

Mean[X + Y ] = Mean[X] + Mean[Y ]. (13)
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This property also generalizes when there are more than two random variables, i.e.

Mean
[ n∑

i=1

Xi

]
=

n∑
i=1

Mean[Xi] (14)

When X and Y are INDEPENDENT, we have that the mean of the product is equal
to the product of the mean, i.e.

Mean[XY ] = Mean[X] Mean[Y ] (15)

When (X1, . . . , Xn) are INDEPENDENT, the property generalizes, i.e.

Mean
[
Πn

i=1Xi

]
= Πn

i=1 Mean[Xi] (16)

1.6 Variance

We define the variance as

Var[X] = Mean[(X −Mean[X])2] =

∫
R
(s−Mean[X])2fX(s)ds. (17)

The variance is a number representing how close the the random variable is from its
mean. The variance is always positive. An important property of the variance is that
the variance of a random variable is equal to the mean of the squared random variable
minus the mean of the random variable, squared, i.e.

Var[X] = Mean[X2]−Mean[X]2. (18)

We provide now some very useful properties about the variance. First, we have that
the variance of a number c is equal to 0, i.e.

Var[c] = 0. (19)

The reason is that a number is a random variable which is always equal to c. Second,
we have that the variance of a number times a random variable equals the squared
number times the mean of the random variable, i.e.

Var[cX] = c2 Var[X]. (20)
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When X and Y are INDEPENDENT, we have that the variance of the sum is equal to
the sum of the variance, namely

Var[X + Y ] = Var[X] + Var[Y ]. (21)

When (X1, . . . , Xn) are INDEPENDENT, the property generalizes, namely

Var
[ n∑

i=1

Xi

]
=

n∑
i=1

Var[Xi]. (22)

1.7 Covariance

We define the covariance as

Cov[X, Y ] = Mean[(X −Mean[X])(Y −Mean[Y ])] (23)

=

∫
R×R

(s−Mean[X])(t−Mean[Y ])fX,Y (s, t)dsdt. (24)

The covariance is a number representing the linear association between the two variables
X and Y . The covariance can be positive or negative. If the covariance between
two random variables is positive, it means that their linear association is in the same
direction. If the covariance between two random variables is negative, it means that
their linear association is in the opposite direction. If the covariance between two
random variables is null, it means that there is no linear association between them.

An important property of the covariance is that the covariance of two random vari-
ables is equal to the mean of the product of both random variables minus the product
of the mean of each random variable, i.e.

Cov[X, Y ] = Mean[XY ]−Mean[X] Mean[Y ]. (25)

In particular, this implies that the covariance between a number c and a random variable
X is equal to 0, namely

Cov[c,X] = 0. (26)

The reason is that a number is a random variable which is always equal to itself. When
X and Y are INDEPENDENT, we have that the covariance of X and Y is null, i.e.

Cov[X, Y ] = 0. (27)
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Indeed, there is no linear association between X and Y when they are independent. We
have that the covariance between a random variable X and the sum of two random
variables Y + Z is equal to the sum of covariances, namely

Cov[X, Y + Z] = Cov[X, Y ] + Cov[X,Z]. (28)

This property also generalizes when there are more than two random variables, i.e.

Cov
[
X,

n∑
i=1

Yi

]
=

n∑
i=1

Cov[X, Yi]. (29)

The covariance property (25) is a generalization of the variance property (18). There
are relations between the variance and the covariance. First, the definition (23) directly
implies that the covariance between the same random variable is equal to its variance,
i.e.

Cov[X,X] = Var[X]. (30)

Second, the variance of the sum of two random variables is equal to the sum of each
random variable variance plus two times the covariance, i.e.

Var[X + Y ] = Var[X] + Var[Y ] + 2 Cov[X, Y ]. (31)

This property also generalizes when there are more than two random variables, i.e.

Var
[ n∑

i=1

Xi

]
=

n∑
i=1

n∑
j=1

Cov[Xi, Xj] (32)

=
n∑

i=1

Var[Xi] +
∑

1≤i,j≤n s.t. i 6=j

Cov[Xi, Xj]. (33)

1.8 Mean of a function

We define the mean of a function h as

Mean[h(X)] =

∫
R
h(s)fX(s)ds. (34)
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We also define the mean of a function when there are two random variables X and Y ,
i.e.

Mean[h(X, Y )] =

∫
R×R

h(s, t)fX,Y (s, t)dsdt. (35)

In particular, we have:

Mean[XY ] =

∫
R×R

stfX,Y (s, t)dsdt, (36)

so that IN GENERAL Mean[XY ] 6= Mean[X] Mean[Y ].

1.9 Normal distribution

A normal distribution is a continuous probability distribution. We say that a random
variable X is normally distributed if its related probability density function is

fX(x) =
1

σ
√

2π
e−

1
2(x−µσ )

2

f(x) =
1

σ
√

2π
e−

1
2(x−µσ )

2

The value µ is the mean, and the value σ2 is the variance. If µ = 0 and σ = 1, we say
that it is a standard normal distribution. When the mean is equal to zero, i.e. µ = 0,
we have that

Mean[X4] = 3σ4. (37)

When the mean is not equal to zero, i.e. µ 6= 0, we have that

Mean[X4] = µ4 + 6µ2σ2 + 3σ4. (38)

1.10 Brownian motion

The Brownian motion B is a random function. It means that for each event, we observe
a function Bt of the time t ≥ 0 which depends on the event. It is a generalization
of normal distribution. It has many applications in economics, finance, biology, and
physics. This course is focused on applications in finance. More specifically, we consider
that the Brownian motion represents the price of a financial stock, such as Mitsubishi.
This stock price evolves for one day. The reason why we need a random function to
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model is due to the fact that prices of stock change very fast, such as one second, or even
one millisecond nowadays. Traditional time series models, based on a fixed increment
of time, cannot be used for this problem. Figure 2 shows the function of the Brownian
motion on one event.

Figure 2: Function of the Brownian motion on one event

We give the mathematical properties of the Brownian motion.
First, the Brownian motion starts from the origin 0, i.e.

B0 = 0. (39)

Second, the increments of a Brownian motion have a normal distribution with mean
equal to zero, and variance equal to the time increment, i.e.

Bt+u −Bt have a normal distribution with mean=0, variance=u for any u ≥ 0. (40)

In particular, the first and second property imply the following property.

The Brownian motion Bt has a normal distribution with mean equal to 0

and variance equal to t for any time t ≥ 0. (41)

Third, the Brownian motion has independent increments, i.e.

Bt+u −Bt are independent of Bs+v −Bs for any u ≥ 0, v ≥ 0, s+ v ≤ t. (42)
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1.11 Generalized Brownian motion

Although the Brownian motion looks very similar to a financial price, there are some
limitations for applications. First, the mean of the Brownian motion is zero, and its
instantaneous variance is one. Thus, we introduce the generalized Brownian motion
with mean equal to µ and instantaneous variance equal to σ2 as

Xt = µ+ σBt. (43)

2 Exercises

2.1 Statistics

The common framework of statistics is that we observe X1, X2, · · · , Xn which are in-
dependent and identically distributed (with the same distribution), random variables.
The number n corresponds to the number of observations. We denote the mean of X1

as µ, i.e., Mean[X1] = µ, and the variance of X1 as σ2, i.e., Var[X1] = σ2. We note
that the mean (or variance) of X1 is equal to the mean (or variance) of Xk for any
k = 2, . . . , n since they are identically distributed. We want to learn the mean µ and
the variance σ2, which are unknown. We estimate the mean µ with the average as

µ̂ =
1

n

n∑
i=1

Xi.

Taking the average of all the observations is natural to estimate the mean µ. The
average is a random variable, whereas the mean µ is a constant.

1. Calculate the mean of the average, i.e. calculate Mean[µ̂].

2. Calculate the limit of the mean of the average Mean[µ̂] when the number of
observations n increases and interpret the result.

3. Calculate the variance of µ̂, i.e. calculate Var[µ̂].

4. Calculate the limit of the variance of the average Var[µ̂] when the number of
observations n increases and interpret the result.
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We estimate the variance σ2 with the average of each variable minus the average,
squared, i.e.

σ̂2 =
1

n− 1

n∑
i=1

(Xi − µ̂)2.

Taking the average of all the observations squared is natural to estimate the variance
σ2. Since we remove the average from each variable Xi, we obtain that the mean of
(Xi − µ̂)2 is not equal to the variance σ2, but a bigger number.

1. Calculate the mean of the variance estimator σ̂2, i.e. calculate Mean[σ̂2].

2. Calculate the limit for the mean of the variance estimator σ̂2 when the number
of observations n increases and interpret the result.

2.2 Normal distribution

We consider that the mean is zero, i.e. µ = 0. We can estimate the variance σ2 as

σ̂2 =
1

n

n∑
i=1

X2
i .

Taking the average of all the observations squared is natural to estimate the variance
σ2, since the mean is equal to 0.

1. Calculate the mean of the variance estimator σ̂2, i.e. calculate Mean[σ̂2].

2. Calculate the limit for the mean of the variance estimator σ̂2 when the number
of observations n increases and interpret the result.

3. Calculate the variance of σ̂2, i.e. calculate Var[σ̂2].

4. Calculate the limit for the variance of the variance estimator Var[σ̂2] when the
number of observations n increases and interpret the result.

2.3 Bernoulli distribution

A Bernoulli distribution is a discrete probability distribution which takes the value 1
with probability p and the value 0 with probability 1− p, i.e.

P(X = 1) = p = 1− P(X = 0).
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There are many applications of the Bernoulli distribution. For instance, it can be used
in the head or tail coin experiment, yes or no poll questionnaires. It can be shown that

µ = Mean[X] = p (44)

σ2 = Var[X] = p(1− p) (45)

Mean[X3] = p (46)

Mean[X4] = p (47)

We can estimate the mean µ with the average as

µ̂ =
1

n

n∑
i=1

Xi.

1. Calculate the mean of the average , i.e. calculate Mean[µ̂].

2. Calculate the limit of the mean of the average Mean[µ̂] when the number of
observations n increases and interpret the result.

By Equation (45), we can estimate the variance as

σ̂2 = µ̂(1− µ̂).

1. Calculate the mean of the variance estimator σ̂2, i.e. calculate Mean[σ̂2].

2. Calculate the limit for the mean of the variance estimator σ̂2 when the number
of observations n increases and interpret the result.

3. Calculate the variance of σ̂2 when n = 2, i.e. calculate Var[σ̂2].

2.4 Understanding Brownian motion

We first play with the statistical properties of the Brownian motion. The goal is to
understand that the Brownian motion is both a function of time and random.

1. Calculate the mean of the Brownian motion at time t, i.e. calculate Mean[Bt].

2. Calculate the limit for the mean of the Brownian motion when the time t increases
and interpret the result.
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3. Calculate the variance of the Brownian motion at time t, i.e. calculate Var[Bt].

4. Calculate the limit for the variance of the Brownian motion when the time t
increases and interpret the result.

5. Calculate the covariance of the Brownian motion at time t and time s, i.e. calcu-
late Cov[Bt, Bs] when 0 < t < s.

6. Calculate the mean of the squared Brownian motion at time t, i.e. calculate
Mean[B2

t ].

7. Calculate the mean of the fourth power of the Brownian motion at time t, i.e.
calculate Mean[B4

t ].

2.5 Understanding the generalized Brownian motion

We now play with the statistical properties of the generalized Brownian motion.

1. Calculate the mean of the generalized Brownian motion at time t, i.e. calculate
Mean[Xt].

2. Calculate the limit for the mean of the generalized Brownian motion when the
time t increases and interpret the result.

3. Calculate the variance of the generalized Brownian motion at time t, i.e. calculate
Var[Bt].

4. Calculate the limit for the variance of the generalized Brownian motion when the
time t increases and interpret the result.

5. Calculate the covariance of the generalized Brownian motion at time t and time
s, i.e. calculate Cov[Xt, Xs] when 0 < t < s.

6. Calculate the mean of the squared generalized Brownian motion at time t, i.e.
calculate Mean[X2

t ].

7. Calculate the mean of the fourth power of the generalized Brownian motion at
time t, i.e. calculate Mean[X4

t ].
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2.6 Statistics for generalized Brownian motion

We consider an important problem in statistics for generalized Brownian motion. De-
pending on the point-of-view, this can also be seen as a problem for financial econo-
metrics. It is based on financial data.

We first observe the generalized Brownian motion everyday, i.e. we observe Xi when
i = 0, 1, · · · , n. We want to learn the mean µ and the variance σ2, which are unknown.
We estimate the mean µ with the average as

µ̂ =
1

n

n∑
i=1

Xi.

Taking the average of all the observations is natural to estimate the mean µ. The
average is a random variable, whereas the mean µ is a constant.

1. Calculate the mean of the average, i.e. calculate Mean[µ̂].

2. Calculate the limit of the mean of the average Mean[µ̂] when the number of
observations n increases and interpret the result.

3. Calculate the variance of µ̂, i.e. calculate Var[µ̂].

4. Calculate the limit of the variance of the average Var[µ̂] when the number of
observations n increases and interpret the result.

We can estimate the variance σ2 as

σ̂2 =
1

n

n∑
i=1

(Xi −Xi−1)
2.

Taking the average of the observation at time i minus the observation at time i − 1,
squared, is natural to estimate the variance σ2.

1. Calculate the mean of the variance estimator σ̂2, i.e. calculate Mean[σ̂2].

2. Calculate the limit for the mean of the variance estimator σ̂2 when the number
of observations n increases and interpret the result.

3. Calculate the variance of σ̂2, i.e. calculate Var[σ̂2].

4. Calculate the limit for the variance of the variance estimator Var[σ̂2] when the
number of observations n increases and interpret the result.
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