Notes of $Stochastic\ Calculus$, $An\ introduction\ with$ Application

Keio University

Any question? Contact me by email to potiron@fbc.keio.ac.jp

1 Probability space

We start by introducing the theoretical framework of probability theory. If this is too abstract for the reader, then he/she should directly jump to the next section. A probability space $(\Omega, \mathcal{F}, \mathbb{P})$ consists of three ingredients:

- 1. A sample space Ω , which is the set of all possible outcomes.
- 2. An event space \mathcal{F} , which is a set of outcomes in the sample space. In particular, we have $\mathcal{F} \subset P(\Omega)$, where P the set of all the subsets of Ω .
- 3. A probability function \mathbb{P} , which assigns each event in the event space a probability, which is a number between 0 and 1.

In general, there is no specification on Ω , so it is a "general" space, but it can happen that it corresponds to the six possible outcomes of a dice roll, etc.

2 Continuous random variable

A random variable is a function $X : \Omega \to \mathbb{R}$, where $\mathbb{R} := (-\infty, \infty)$ is the space of real numbers. The probability that X takes on a value in $S \subset \mathbb{R}$ is defined as

$$\mathbb{P}(X \in S) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) \in S\}). \tag{1}$$

For example, X can be equal to the current price of Mitsubishi asset, the current temperature in Tokyo, etc.

We say that X has a related density f_X if for any two real numbers $a \leq b$, we have:

$$\mathbb{P}(X \in [a, b]) = \int_{a}^{b} f_X(s) ds. \tag{2}$$

The only density that we will be looking at in this class is the normal distribution, which we will be defining in a later section.

The definition can be generalized in the two-dimensional case, where we consider the joint density. More specifically, if X and Y are two random variables, then their joint density takes on the form $f_{X,Y}(s,t)$.

3 Independence

Two random variables are independent if the realization of one does not affect the probability distribution of the other. For example, if X stands for the current temperature in Tokyo, and Y corresponds to the number of students enrolled in this class, it would be reasonable to assume that X and Y are independent. If we add a third random variable Z, which is the current temperature in Yokohama, then it would be reasonable to assume Y and Z are independent, but it would be unreasonable to assume independence between X and Z. Indeed, if it is cold in Tokyo, it will be most likely cold in Yokohama too, and vice versa.

Formally, two random variables X and Y are independent if their joint density and their own density satisfy

$$f_{X,Y}(s,t) = f_X(s)f_Y(t)$$
 for any $(s,t) \in \mathbb{R} \times \mathbb{R}$. (3)

4 Expectation

Now we define the expectation, which is a NUMBER and not a random variable, for a general function $h : \mathbb{R} \to \mathbb{R}$. Cases of interest for the reader are mean (i.e. when h(s) = s) and variance (i.e. when $h(s) = (s - \mathbb{E}[X])^2$), which will be specified after the

general definition. The formal definition of expectation is given as

$$\mathbb{E}[h(X)] = \int_{\mathbb{R}} h(s) f_X(s) ds. \tag{4}$$

In particular, the mean of X is specified as

$$\mathbb{E}[X] = \int_{\mathbb{R}} s f_X(s) ds,\tag{5}$$

and the variance of X as

$$\operatorname{Var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \int_{\mathbb{R}} (s - \mathbb{E}[X])^2 f_X(s) ds. \tag{6}$$

We also provide the definition of expectation, when there are two random variables X and Y, and $h: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$. In that case, we have:

$$\mathbb{E}[h(X,Y)] = \int_{\mathbb{R}\times\mathbb{R}} h(s,t) f_{X,Y}(s,t) ds dt.$$
 (7)

In particular, we have:

$$\mathbb{E}[XY] = \int_{\mathbb{R} \times \mathbb{R}} st f_{X,Y}(s,t) ds dt, \tag{8}$$

so that IN GENERAL $\mathbb{E}[XY] \neq \mathbb{E}[X]\mathbb{E}[Y]$. We also give the definition of covariance:

$$Cov[X,Y] = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \int_{\mathbb{R} \times \mathbb{R}} (s - \mathbb{E}[X])(t - \mathbb{E}[Y])f_{X,Y}(s,t)dsdt.$$
(9)

We provide now some very useful properties about expectation and variance:

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y] \tag{10}$$

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]ifXandYareINDEPENDENT$$
 (11)

$$Var[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$
(12)

$$Cov[X,Y] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$
(13)

$$Var[X + Y] = Var[X] + Var[Y] + 2 Cov[X, Y].$$

$$(14)$$

5 Normal distribution

In probability theory, a (one-dimensional) normal distribution is a continuous probability distribution. We say that a random variable X is normally distributed if its related probability density function is

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

The parameter μ is the mean or expectation of the distribution, σ , and the variance is σ^2 . If $\mu = 0$ and $\sigma = 1$, we say that it is a standard normal distribution.