
First passage time and inverse problem

for continuous local martingales

Yoann Potiron*1,

1Faculty of Business and Commerce, Keio University, e-mail: potiron@fbc.keio.ac.jp

Abstract: This paper derives an explicit formula for the probability that
a continuous local martingale crosses a one or two-sided random constant
boundary for a finite time interval. The boundary crossing probability
of a continuous local martingale to a constant boundary is equal to the
boundary crossing probability of a standard Wiener process, which is time-
changed by the martingale quadratic variation, to a constant boundary.
This paper also derives an explicit solution to the inverse first passage time
problem of quadratic variation. These results are obtained by an applica-
tion of the Dambis, Dubins-Schwarz theorem. The main elementary idea of
the proof is the scale invariant property of the time-changed Wiener process
and thus the scale invariant property of the first passage time. This is due
to the constancy of the boundary.
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1. Introduction

This paper first concerns the boundary crossing probabilities of the first passage
time (FPT), i.e., the probability that a stochastic process crosses a boundary.
This paper also concerns an inverse first passage time (IFPT) problem. The
IFPT problem determines the increasing function such that the FPT of a stan-
dard Wiener process, which is time changed by this increasing function, to the
boundary has a given distribution. As far as the author knows, this IFPT is
completely new to the literature. This problem differs from the Shiryaev IFPT
problem, which determines the boundary function such that the FPT of a stan-
dard Wiener process to this boundary has a given distribution.

The application of the FPT in statistics can be traced back to the Kolmogorov-
Smirnov statistic. The primary application of the FPT can be found in sequen-
tial analysis. At first, the focus was on the FPT of a random walk. Due to the
complexity of the problem, the literature often relies on the FPT of a Wiener
process (see Gut (1974), Woodroofe (1976), Woodroofe (1977)), Lai and Sieg-
mund (1977)), Lai and Siegmund (1979)) and Siegmund (1986)). In survival
analysis, Matthews, Farewell and Pyke (1985) show that tests for constant haz-
ard involve the FPT of an Ornstein-Uhlenbeck process. Butler and Huzurbazar
(1997)) consider a Bayesian approach for the FPT of a semi-Markovian process.
Eaton and Whitmore (1977) study the application of the FPT for hospital stay.
Aalen and Gjessing (2001)) consider the FPT of a Markovian process. Detailed
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reviews on the FPT can be found in Lee and Whitmore (2006) and Lawless
(2011) (see Section 11.5, pp. 518-523). Finally, Roberts and Shortland (1997)
and Borovkov and Novikov (2002) provide an application of the FPT for the
pricing of barrier options in mathematical finance.

Although the IFPT problem is new, it has useful applications in financial
econometrics. More specifically, the FPT of a continuous local martingale have
applications when estimating the quadratic variation of a continuous local mar-
tingale based on endogenous observations. In these models, endogenous obser-
vations are often generated by the FPT of a local martingale to a boundary
process. Fukasawa (2010) considers the FPT to a symmetric two-sided bound-
ary. Robert and Rosenbaum (2011) and Robert and Rosenbaum (2012) (see also
Section 4.4 in Potiron and Mykland (2020) for its extension) introduce the model
with uncertainty zones in which the two-sided boundary is dynamic. Fukasawa
and Rosenbaum (2012) consider the FPT to a two-sided boundary, which is
non-symmetric. Abbring (2012) studies the mixed FPT of a Levy process. Re-
nault, Van der Heijden and Werker (2014) consider the mixed FPT of the sum
of a Wiener process and a positive linear drift. Finally, Potiron and Mykland
(2017) estimate the quadratic covariation between two local martingales.

In these examples, two natural questions remain. First, is there a process
that generates a given distribution? Second, what is the quadratic variation of
this process? With the use of the IFPT problem, we can prove the existence
and determine the quadratic variation of the stochastic process. Kikuchi, Li and
Potiron (2026) consider nonparametric estimation of the explicit solution in the
IFPT problem. In their empirical application to financial data, they find that
the quadratic variation is not linear. However, most of the literature focuses on
a standard Wiener process, which has by definition a linear quadratic variation.
This is the reason why we consider a continuous local martingale in this paper.

Explicit formulae of the boundary crossing probabilities mostly exist in the
case of a Wiener process. Doob (1949) (Equations (4.2)-(4.3), pp. 397-398) ob-
tains explicit formulae, based on elementary geometrical and analytical argu-
ments. Malmquist (1954) (Theorem 1, p. 526) gives an explicit formula condi-
tioned on the starting and final values of the Wiener process for a finite final
time. Anderson (1960) (Theorem 4.2, pp. 178-179) derives an explicit formula
conditioned on the final value of the Wiener process in the two-sided boundary
case with linear drift. Then, he integrates it with respect to the final value of the
Wiener process to get an explicit formula (Theorem 4.3, p. 180). For square root
boundaries, Breiman (1967) rewrites the problem as the FPT of an Ornstein-
Uhlenbeck process to a constant boundary. With the same technique, Daniels
(1969) derives an explicit formula. Nobile, Ricciardi and Sacerdote (1985) inves-
tigate the asymptotic behaviour of the FPT by an Ornstein–Uhlenbeck process
to a large constant boundary. Kou and Wang (2003) derives, in the form of
Laplace transform, the boundary crossing probabilities of a jump diffusion pro-
cess with linear drift to a constant boundary. Alili and Kyprianou (2005), Doney
and Kyprianou (2006) and Kyprianou, Pardo and Rivero (2010) study a link
between the FPT, last passage time, and overshoot above or below a fixed level
of a Levy process. Borovkov and Novikov (2008) find an explicit formula for the



/First passage time and inverse problem 3

Laplace transform of the FPT of a Levy-driven Ornstein–Uhlenbeck process to
a two-sided constant boundary. Potiron (2025) derives non-explicit formulae of
the FPT by a Wiener process, which has a stochastic drift and random variance,
to a stochastic boundary. For the inverse IFPT problem, there is as far as the
author knows no related paper on it, since this is a new problem.

In this paper, we first derive an explicit formula for the one-sided and two-
sided boundary crossing probability of a continuous local martingale to a con-
stant boundary. We derive the results in two cases: (i) a nonrandom case when
the boundary is nonrandom constant and the quadratic variation of the continu-
ous local martingale is a nonrandom time-dependent function and (ii) a random
case when the boundary is random constant and the quadratic variation of the
continuous local martingale is a stochastic process.

We consider a continuous local martingale Z and its quadratic variation de-
fined as ⟨Z⟩. We also consider two boundaries g and h. We focus on the one-sided
and two-sided boundary crossing probabilities defined as

PZ
g (t) = P

(
sup

0≤s≤t
Zs ≥ g

)
, (1)

PZ
g,h(t) = P

(
sup

0≤s≤t
Zs ≥ g or inf

0≤s≤t
Zs ≤ h

)
. (2)

These boundary crossing probabilities correspond to the probability that the
process Z crosses one of both boundaries between the starting time 0 and the
final time t. To reexpress the IFPT problem, we can first reexpress Z as a
standard Wiener process, which is time-changed by the quadratic variation ⟨Z⟩.
Then, we can focus on the following IFPT problem. We want to determine the
quadratic variation of Z, namely ⟨Z⟩, such that the FPT of Z to the boundary
has a given cdf F .

We introduce a standard Wiener process W . We define the boundary crossing
probabilities PW

g (t) and PW
g,h(t) as a specification of Equations (1) and (2) in

the Wiener process case. We consider first the one-sided nonrandom case. We
obtain that the boundary crossing probability of a continuous local martingale to
a constant boundary is equal to the boundary crossing probability of a standard
Wiener process, which is time changed by the martingale quadratic variation,
to a constant boundary. More specifically, we obtain that (see Theorem 1)

PZ
g (t) = PW

g

(
⟨Z⟩t

)
.

This explicit formula is obtained by an application of the Dambis, Dubins-
Schwarz theorem. The main elementary idea of the proof is the scale invariant
property of the time-changed Wiener process and thus the scale invariant prop-
erty of the FPT. This is due to the constancy of the boundary. In the two-sided
nonrandom case, we obtain that (see Theorem 2)

PZ
g,h(t) = PW

g,h

(
⟨Z⟩t

)
.

To apply the Dambis, Dubins-Schwarz theorem in the one-sided random case,
the main elementary idea is to rewrite the FPT to a random boundary as an
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equivalent FPT to a nonrandom boundary. This is obtained by considering the
new stochastic process as Y = Z

g and the new boundary as 1. We also define

the set of functions which are nonrandom and nondecreasing from R+ to R+

as P and the cumulative distribution function (cdf) of ⟨Y ⟩ as F⟨Y ⟩. We obtain
that (see Theorem 3)

PY
1 (t) =

∫
P
PW
1

(
yt
)
dF⟨Y ⟩(y).

This is obtained by regular conditional probability, and using the explicit for-
mula obtained in the nonrandom case.

To apply the Dambis, Dubins-Schwarz theorem in the two-sided random case,
we cannot rewrite the FPT to a random two-sided boundary as an equivalent
FPT to a nonrandom two-sided boundary since there are two boundaries. How-
ever, we are able to adapt the arguments with a two-sided boundary. We define
the triplet of two boundaries and quadratic variation as u = (g, h, ⟨Z⟩), and its
cdf as Fu. We also define the product of the boundaries and functions which are
nonrandom and nondecreasing from R+ to R+ as S = J ×P. If we assume that
the stochastic process Z is independent from the two-sided boundary (g, h), we
obtain that (see Theorem 4)

PZ
g,h(t) =

∫
S
PW
g0,h0

(
zt
)
dFu(g0, h0, z). (3)

In this paper, we then derive an explicit solution for the IFPT problem. We
consider the one-sided and two-sided boundary with nonrandom case and ran-
dom case. We also consider the explicit solution in the case when the quadratic
variation is absolutely continuous and in the case when the quadratic variation
is not absolutely continuous. The proofs are based on the use of the explicit for-
mula of boundary crossing probability (1) and (2), and elementary topological
arguments.

We first consider the one-sided and nonrandom case when the quadratic vari-
ation ⟨Z⟩ is absolutely continuous of the form ⟨Zf ⟩t =

∫ t

0
σ2
s,fds. Then, we can

also define the pdf of F as f and focus on variance functions σ2
t,f . We define the

error function and its inverse as erf(t) = 2√
π

∫ t

0
e−u2

du and erfinv. We also intro-

duce the notation h(t) = erfinv(1− F (t)). We obtain that the explicit solution
of the variance function is equal to (see Theorem 5)

σ2
t,f =

f(t)
2

g2
√
π
h(t)

3
e−h(t)2

1{0<F (t)<1}.

In the case when the quadratic variation is not absolutely continuous, we obtain
that the explicit solution is equal to (see Theorem 6)

⟨ZF ⟩t =
g2

2h(t)2
1{0<F (t)<1}.
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We consider now the two-sided and nonrandom case when the quadratic
variation is absolutely continuous. We obtain that the explicit solution is equal
to (see Theorem 7)

σ2
t,f = f(t)

fW
g,h((P

W
g,h)

−1(F (t)))
1{0<F (t)<1}.

When the quadratic variation is not absolutely continuous, we obtain that the
explicit solution is equal to (see Theorem 8)

⟨ZF ⟩t = (PW
g,h)

−1(F (t))1{0<F (t)<1}.

We consider now the one-sided and random case, in which we define F as
the random cdf. When the random quadratic variation is absolutely continuous
of the form ⟨Y f ⟩t(ω) =

∫ t

0
σ2
s,f (ω)ds, we can define its random pdf as f . We

introduce the notation h(t, ω) = erfinv(1−F (t, ω)). We obtain that the explicit
solution is equal to (see Theorem 9)

σ2
t,f (ω) =

f(t,ω)
2

g2
√

π
h(t,ω)3e−h(t,ω)2

1{0<F (t,ω)<1}.

When the random quadratic variation is not absolutely continuous, we obtain
that the explicit solution is equal to (see Theorem 10)

⟨Y F ⟩t(ω) =
1

2h(t, ω)2
1{0<F (t,ω)<1}.

We consider now the two-sided random case. When the random quadratic
variation is absolutely continuous, we obtain that the explicit solution is equal
to (see Theorem 11)

σ2
t,f (ω) =

f(t,ω)

fW
g,h((P

W
g,h)

−1(F (t,ω)))
1{0<F (t,ω)<1}.

When the random quadratic variation is not absolutely continuous, we obtain
that the explicit solution is equal to (see Theorem 12)

⟨ZF ⟩t(ω) = (PW
g,h)

−1(F (t, ω))1{0<F (t,ω)<1}.

The following of this paper is structured as follows. We derive an explicit
formula for the boundary crossing probability in Section 2. We obtain an explicit
solution for the IFPT problem in Section 3. The proofs of the explicit formula are
given in Appendix A. The proofs of the explicit solution for the IFPT problem
can be found in Appendix B.

2. Explicit formula of boundary crossing probability

In this section, we derive an explicit formula for the one-sided and two-sided
boundary crossing probability (1)-(2) of a continuous local martingale in the
nonrandom case and random case.
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2.1. One-sided nonrandom case

In this part, we consider the case when the one-sided boundary is nonrandom
and constant, and the quadratic variation of the continuous local martingale is
a nonrandom time-dependent function.

We consider the complete stochastic basis B = (Ω,P,Σ,F), where Σ is a
σ-field and F = (Ft)t∈R+ is a filtration. We define the set without 0 as S+

∗
for any set S. Then, we define the set of nonrandom constant functions from
the space R+ to the space R∗ as R∗. By a constant function g ∈ R∗, we mean
that g(t) = g(u) for any time t ∈ R+ and any time s ∈ R+. We first give the
definition of the set of boundary functions.

Definition 1. We define the set of boundary functions which are nonrandom,
constant and one-sided as R∗.

We introduce an F-adapted continuous stochastic process Z with starting
time 0. With these assumptions, we can even consider a stochastic process which
does not start from the origin 0 and a boundary which is nonpositive, if they
satisfy Z0 < g with a nonrandom Z0. Then, we can reexpress the new process,
with starting value 0, as Zt − Z0 for any time t ≥ 0. We can also reexpress the
new positive boundary as g − Z0. We now give the definition of the FPT.

Definition 2. We define the FPT of the stochastic process Z to a boundary
g ∈ R∗ as

TZ
g = inf{t ∈ R+ s.t. Zt ≥ g} for ω ∈ Ω. (4)

We have that Z is a continuous and F-adapted stochastic process and inf{t ∈
R+ s.t. Zt ≥ g} = inf{t ∈ R+ s.t. (t, Zt) ∈ G}, where G = {(t, u) ∈ R+ ×
R s.t. u ≥ g} is a closed subset of R2. Thus, the FPT TZ

g is an F-stopping
time by Theorem I.1.27 (p. 7) in Jacod and Shiryaev (2003). We can rewrite the
boundary crossing probability PZ

g as the cdf of TZ
g , i.e.,

PZ
g (t) = P(TZ

g ≤ t) for t ≥ 0. (5)

If the cdf is absolutely continuous, we can also define its pdf fZ
g : R+ → R+ as

fZ
g (t) =

dPZ
g (t)

dt
for t ≥ 0 a.e.. (6)

We introduce an F-adapted standard Wiener processW . We define the standard
normal cdf as

Φ(t) =

∫ t

−∞

1√
2π

exp
(
− u2

2

)
du for t ∈ R. (7)

We first consider the case when the stochastic process is a standard Wiener
process, i.e., when Zt = Wt for any time t ∈ R+. The next lemma gives an
explicit formula of PW

g and fW
g , namely a Levy distribution. These are known

results by integrating the explicit formula conditioned on the final value of
the Wiener process (see Malmquist (1954), p. 526) with respect to the Wiener
process final value (see Wang and Pötzelberger (1997), Equations (3), p. 55).



/First passage time and inverse problem 7

Lemma 1. We obtain a Levy distribution with PW
g (0) = 0, fW

g (0) = 0. We
also obtain

PW
g (t) = 1− Φ

(
g√
t

)
+Φ

(
−g√
t

)
for t > 0, (8)

fW
g (t) =

g√
2πt3

e
−g2

2t for t > 0. (9)

The explicit formula in the one-sided nonrandom case, i.e. Theorem 1, states
that the boundary crossing probability of a continuous local martingale to a
constant boundary is equal to the boundary crossing probability of a standard
Wiener process, which is time-changed by the martingale quadratic variation,
to a constant boundary. We get a time-changed Levy cdf. This is obtained by
an application of the Dambis, Dubins-Schwarz theorem for continuous local
martingale (see, Revuz and Yor (2013), Th. V.1.6). Accordingly, we provide the
assumption on the continuous local martingale which is required to apply the
Dambis, Dubins-Schwarz theorem.

Assumption 1. We assume that Z is a continuous F-adapted local martingale
with nonrandom quadratic variation ⟨Z⟩ and such that Z0 = 0 a.s. and ⟨Z⟩∞ =
∞ a.s..

For a function h : R+ → R+, a 7→ h(a) and a set A ⊂ R+, we define the
restriction of h to A as h ↾A such that h ↾A: A → R+ with a 7→ h(a). For a
measurable set A ⊂ R+ and p ∈ R with p ≥ 1, we define the set of p-integrable
and nonrandom functions as

Lp(A) =
{
h : A → R+ measurable s.t.

∫
A

|h(x)|p dx < +∞
}
.

For a measurable A ⊂ R+ and p ∈ R with p ≥ 1, we define the set of locally
p-integrable and nonrandom functions as

Lp,loc(A) =
{
h : A → R+ measurable s.t.

h ↾K∈ Lp(K) ∀K ⊂ A, K compact
}
.

In the following example, we show that a continuous F-Itô process satisfies
Assumption 1.

Example 1. We can consider a continuous F-Itô process with no trend, i.e.

Zt =

∫ t

0

σsdWs for t ≥ 0. (10)

Here, the standard deviation σ : R+ → R+ is a nonrandom function. If we
assume that σ ∈ L2,loc(R+), then Z is an F-local martingale with nonrandom

quadratic variation ⟨Z⟩t =
∫ t

0
σ2
udu by Theorem I.4.40 (p. 48) in Jacod and

Shiryaev (2003). If we further assume that the variance integral satisfies a.s.∫ t

0
σ2
udu → ∞ as t → ∞, we have that Z satisfies Assumption 1.
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We state Theorem 1 in what follows.

Theorem 1. Under Assumption 1, we have that

PZ
g (t) = PW

g

(
⟨Z⟩t

)
for t ≥ 0. (11)

As a corollary, we obtain the pdf from the FPT in the one-sided nonrandom
case if we assume that the quadratic variation is absolutely continuous. Then,
there exists a derivative, which we define as ⟨Z⟩′t for t ≥ 0 a.e.

Corollary 1. Under Assumption 1 and if we assume that the quadratic varia-
tion ⟨Z⟩ is absolutely continuous on R+, we have that

fZ
g (t) = ⟨Z⟩′tfW

g

(
⟨Z⟩t

)
for t ≥ 0 a.e. (12)

2.2. Two-sided nonrandom case

In this part, we consider the case when the two-sided boundary is nonrandom
constant and the quadratic variation of the continuous local martingale is a
nonrandom time-dependent function.

We first give the definition of the set of boundary functions.

Definition 3. We define the set of boundary functions which are nonrandom,
constant and two-sided as (R+

∗ ,R−
∗ ).

We consider an F-adapted continuous stochastic process Z, started at the
origin point 0. With these assumptions, we can even consider a process which
does not start from 0 and boundaries which are nonpositive and nonnegative if
they satisfy h < Z0 < g with a nonrandom Z0. Then, we can reexpress the new
process started at 0 as Zt − Z0 for any time t ≥ 0. We can also reexpress the
new positive boundary as g−Z0 and the new negative boundary as h−Z0. We
now give the definition of the FPT.

Definition 4. We define the FPT of the process Z to a boundary (g, h) ∈
(R+

∗ ,R−
∗ ) as

TZ
g,h = inf{t ∈ R+ s.t. Zt ≥ g or Zt ≤ h} for ω ∈ Ω. (13)

We have that Z is a continuous and F-adapted stochastic process and inf{t ∈
R+ s.t. Zt ≥ g or Zt ≤ h} = inf{t ∈ R+ s.t. (t, Zt) ∈ G}, where G = {(t, u) ∈
R+ × R s.t. u ≥ g or u ≤ h} is a closed subset of R2. Thus, the FPT TZ

g is an
F-stopping time by Theorem I.1.27 (p. 7) in Jacod and Shiryaev (2003). We
can rewrite the boundary crossing probability PZ

g,h as the cdf of TZ
g,h, i.e.

PZ
g,h(t) = P(TZ

g,h ≤ t) for t ≥ 0. (14)

If the cdf is absolutely continuous, we can also define its pdf fZ
g,h : R+ → R+ as

fZ
g,h(t) =

dPZ
g,h(t)

dt
for t ≥ 0 a.e. (15)



/First passage time and inverse problem 9

Moreover, we define sst(v, w) for any 0 < v < w as

sst(v, w) =

∞∑
k=−∞

w − v + 2kw√
2πt3/2

e−(w−v+2kw)2/2t. (16)

We first consider the case when the stochastic process is a standard Wiener
process, i.e. when Zt = Wt for any time t ∈ R+. The next lemma gives an explicit
formula of PW

g,h and fW
g,h which are respectively known results from Theorem 4.3

(p. 180) in Anderson (1960).

Lemma 2. We obtain that PW
g,h(0) = 0, fW

g,h(0) = 0. We also obtain that

PW
g,h(t) =

∞∑
k=−∞

(
4− (17)

2Φ

(
−h+ 2k(g − h)√

t

)
− 2Φ

(
g + 2k(g − h)√

t

))
for t > 0,

fW
g,h(t) = sst (g, g − h) + sst (−h, g − h) for t > 0. (18)

The explicit formula in the two-sided nonrandom case, namely Theorem 2, is
obtained by an application of the Dambis, Dubins-Schwarz theorem. Indeed, the
arguments used in the one-sided boundary case extend directly to this two-sided
boundary case.

Theorem 2. Under Assumption 1, we have that

PZ
g,h(t) = PW

g,h

(
⟨Z⟩t

)
for t ≥ 0. (19)

As a corollary, we obtain the pdf from the FPT of a continuous local mar-
tingale to a constant boundary if we assume that the quadratic variation is
absolutely continuous.

Corollary 2. Under Assumption 1 and if we assume that the quadratic varia-
tion ⟨Z⟩ is absolutely continuous on R+, we have that

fZ
g,h(t) = ⟨Z⟩′tfW

g,h

(
⟨Z⟩t

)
for t ≥ 0 a.e.. (20)

2.3. One-sided random case

In this part, we consider the case when the one-sided boundary is random con-
stant and the quadratic variation of the continuous local martingale is a stochas-
tic process.

We first give the definition of the set of boundary functions which are random
variables.

Definition 5. We define the set of boundary functions which are random, con-
stant, one-sided and F-adapted as g(ω) ∈ R∗ for any ω ∈ Ω.
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We consider an F-adapted continuous stochastic process Z started from the
origin 0. With these assumptions, we can even consider a stochastic process
which does not start from 0 and a boundary which is nonpositive, if they satisfy
P(Z0 < g) = 1. Then, we can reexpress the new stochastic process, started from
the origin 0, as Zt − Z0 for any time t ≥ 0 a.s. We can also reexpress the new
positive boundary as g − Z0 a.s. We now give the definition of the FPT.

Definition 6. We define the FPT of the stochastic process Z to a random bound-
ary g as

TZ
g = inf{t ∈ R+ s.t. Zt ≥ g}. (21)

We have that Z/g is a continuous and F-adapted stochastic process and
inf{t ∈ R+ s.t. Zt ≥ g} = inf{t ∈ R+ s.t. (t, Zt/g) ∈ G}, where G = {(t, u) ∈
R+×R s.t. u ≥ 1} is a closed subset of R2. Thus, the FPT TZ

g is an F-stopping
time by Theorem I.1.27 (p. 7) in Jacod and Shiryaev (2003). We can rewrite the
boundary crossing probability PZ

g as the cdf of TZ
g , i.e.,

PZ
g (t) = P(TZ

g ≤ t) for t ≥ 0. (22)

If the cdf is absolutely continuous, we can also define its pdf fZ
g : R+ → R+ as

fZ
g (t) =

dPZ
g (t)

dt
for t ≥ 0 a.e.. (23)

The explicit formula in the one-sided random case, namely Theorem 3, is
obtained by an application of the Dambis, Dubins-Schwarz theorem. To apply
the theorem in the random case, the main elementary idea is to rewrite the FPT
to a random boundary as an equivalent FPT to a nonrandom boundary. This
is obtained by dividing both the stochastic process and the boundary by the
boundary value. More specifically, we define the new process as Y = Z

g and the

new boundary as 1. Then, we observe that the FPT (21) may be rewritten as

TZ
g = TY

1 . (24)

In what follows, we give the assumption on the stochastic process Y .

Assumption 2. We assume that Y is a continuous F-local martingale with ran-
dom quadratic variation ⟨Y ⟩ and such that Y0 = 0 a.s. and ⟨Y ⟩∞ = ∞ a.s.

We introduce a stochastic process h : R+ × Ω → R+ defined as a 7→ h(a).
For any A ⊂ R+ × Ω, we define the restriction of h to A as h ↾A such that
h ↾A: A → R+ and h ↾A (a) = h(a) for any a ∈ A. For A ⊂ R+ × Ω measurable
and p ∈ R satisfying p ≥ 1, we define the set of stochastic processes which are
p-integrable as

Lp(A) =
{
h : A → R+ measurable s.t.

∫
A

|h(x)|p dx < +∞
}
.
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For A ⊂ R+ × Ω measurable and p ∈ R satisfying p ≥ 1, we define the set of
stochastic processes which are locally p-integrable as

Lp,loc(A) =
{
h : A → R+ measurable s.t.

h ↾K∈ Lp(K) for any K ⊂ A, K compact
}
.

In the following example, we rely on a continuous Itô process.

Example 2. We can consider a continuous F-Itô process with no trend, i.e.

Yt =

∫ t

0

σsdWs for t ≥ 0. (25)

Here, σ : R+ × Ω → R+ is an F-predictable stochastic process such that
the integral defined in Equation (25) is well-defined. If we assume that σ ∈
L2,loc(R+ × Ω), then Y is a local martingale with random quadratic variation

⟨Y ⟩t =
∫ t

0
σ2
udu by Theorem I.4.40 (p. 48) in Jacod and Shiryaev (2003). If we

further assume that the variance integral satisfies a.s.
∫ t

0
σ2
udu → ∞ as t → ∞,

we have that Y satisfies Assumption 2.

We define the set of functions which are nonrandom and nondecreasing from
R+ to R+ as P. When seen as a function of ω, the arrival space of ⟨Y ⟩ is P.
We define the distribution of ⟨Y ⟩ as F⟨Y ⟩. We get PY

1 in the next theorem by
regular conditional probability, and using the explicit formula obtained in the
nonrandom case.

In what follows, we state Theorem 3.

Theorem 3. Under Assumption 2, we have that

PY
1 (t) =

∫
P
PW
1

(
yt
)
dF⟨Y ⟩(y) for t ≥ 0. (26)

As a corollary, we obtain the pdf from the FPT of a continuous local mar-
tingale to a constant boundary if we assume that the quadratic variation ⟨Y ⟩ is
absolutely continuous a.s.. Then, there exists derivatives to ⟨Y ⟩ = y which we
define as y′t for t ≥ 0 a.e. and a.s.

Corollary 3. Under Assumption 2 and if we assume that the quadratic varia-
tion ⟨Y ⟩ is absolutely continuous on R+ a.s., we have that

fY
1 (t) =

∫
P
y′tf

W
1

(
yt
)
dF⟨Y ⟩(y) for t ≥ 0 a.e. (27)

2.4. Two-sided random case

In this part, we consider the case when the two-sided boundary is random con-
stant and the quadratic variation of the continuous local martingale is a stochas-
tic process.

We first give the definition of the set of boundary functions which are random
variables.
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Definition 7. We define the set of boundary functions which are random, con-
stant, two-sided and F-adapted as g(ω) ∈ R+

∗ and h(ω) ∈ R−
∗ for any ω ∈ Ω.

We consider an F-adapted continuous stochastic process Z, started from the
origin 0. With these assumptions, we can even consider a stochastic process
which does not start from 0 and boundaries which are nonpositive and non-
negative, if they satisfy P(h < Z0 < g) = 1. Then, we can reexpress the new
process, started from 0, as Zt−Z0 for any time t ≥ 0 a.s. We can also reexpress
the new positive boundary as g − Z0 a.s. and the new negative boundary as
h− Z0 a.s. We give the definition of the FPT in what follows.

Definition 8. We define the FPT of the stochastic process Z to a boundary
(g, h) as

TZ
g,h = inf{t ∈ R+ s.t. Zt ≥ g or Zt ≤ h}. (28)

We can rewrite TZ
g,h as the infimum of two F-stopping times, namely TZ

g,h =

inf(TZ
g ,T

−Z
−h ). Thus, it is an F-stopping time. We can rewrite the boundary

crossing probability PZ
g,h as the cdf of TZ

g,h, i.e.

PZ
g,h(t) = P(TZ

g,h ≤ t) for t ≥ 0. (29)

If the cdf is absolutely continuous, we can also define its pdf fZ
g,h : R+ → R+ as

fZ
g,h(t) =

dPZ
g,h(t)

dt
. (30)

The explicit formula in the one-sided random case, namely Theorem 4, is ob-
tained by an application of the Dambis, Dubins-Schwarz theorem. To apply
the theorem in the two-bounded random case, we cannot rewrite the FPT to a
random two-sided boundary as an equivalent FPT to a nonrandom two-sided
boundary since there are two boundaries. However, we are able to adapt the
arguments with a two-sided boundary. We now give the assumption on the
stochastic process Z.

Assumption 3. We assume that Z is a continuous F-local martingale with ran-
dom quadratic variation ⟨Z⟩ and such that Z0 = 0 a.s. and ⟨Z⟩∞ = ∞ a.s..

We define the triplet of two boundaries and quadratic variation as u =
(g, h, ⟨Z⟩), and its cdf as Fu. We also define the product of the boundaries and
functions which are nonrandom and nondecreasing from R+ to R+ as S = J×P.
We get PZ

g,h in the next theorem by regular conditional probability, and using
the explicit formula obtained in the nonrandom case.

We state Theorem 4 in what follows.

Theorem 4. Under Assumption 3, we have that

PZ
g,h(t) =

∫
S
PW
g0,h0

(
zt
)
dFu(g0, h0, z) for t ≥ 0. (31)
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As a corollary, we obtain the pdf from the FPT of a continuous local mar-
tingale to a constant boundary if we assume that the quadratic variation ⟨Z⟩ is
absolutely continuous a.s. Then, there exists derivatives to ⟨Z⟩ = z, which we
define as z′t for t ≥ 0 a.e. and a.s.

Corollary 4. Under Assumption 3 and if we assume that the quadratic varia-
tion ⟨Z⟩ is absolutely continuous on R+ a.s., we have that

fZ
g,h(t) =

∫
S
z′tf

W
g0,h0

(
zt
)
dFu(g0, h0, z) for t ≥ 0 a.e. (32)

3. Explicit solution of the IFPT problem

In this section, we derive an explicit solution of the IFPT problem for the one-
sided and two-sided boundary and in the nonrandom case and random case.

3.1. One-sided nonrandom case

In this part, we consider the case when the one-sided boundary is nonrandom
constant and the quadratic variation of the continuous local martingale is a
nonrandom time-dependent function.

3.1.1. Case when the quadratic variation is absolutely continuous

To define the IFPT problem, we first introduce the set of cdfs. Since the stochas-
tic process Z is continuous and thus its quadratic variation ⟨Z⟩ is also continu-
ous, we accordingly consider the set of continuous cdfs.

Definition 9. A function F : R+ → [0, 1] is a cdf if F is nondecreasing, contin-
uous, satisfies F (0) = 0 and lim

t→∞
F (t) = 1.

Since we consider the particular case when the quadratic variation ⟨Z⟩ is
absolutely continuous, we restrict to the set of absolutely continuous cdfs. Then,
we can also define the pdf of F as f : R+ → R+ which satisfies

F (t) =

∫ t

0

f(s)ds for t ≥ 0. (33)

The IFPT problem determines the increasing function such that the FPT of
a standard Wiener process, which is time changed by this increasing function,
to the boundary has a given cdf of the form (33). Since we consider increasing
functions which are absolutely continuous, we can focus on variance functions.

Definition 10. For a given pdf f , we say that a variance function σ2
f : R+ → R+

which is the quadratic variation derivative a.e. of a continuous local martingale
Zf , i.e.

⟨Zf ⟩t =

∫ t

0

σ2
s,fds for t ≥ 0, (34)
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is solution if it satisfies

PZf

g (t) = F (t) for t ≥ 0. (35)

Equation (34) in Definition 10 implicitly requires the existence of a continuous

local martingale with quadratic variation
∫ t

0
σ2
s,fds. This existence can be shown

with Itô processes considered in Example 1.
We define the infimum time such that F is positive and the infimum time

such that F equals unity as

K0
F = inf{t > 0 such that F (t) > 0} and (36)

K1
F = inf{t > 0 such that F (t) = 1}. (37)

Let us give a set of assumptions sufficient to obtain the explicit solution of the
IFPT problem.

Assumption 4. We assume that there exists η0F > 0 s.t. the explicit solution of
the IFPT problem is locally integrable on [K0

F ,K
0
F + η0F ], i.e.

σ2
f ↾[K0

F ,K0
F+η0

F ]∈ L1,loc

(
[K0

F ,K
0
F + η0F ]

)
. (38)

Moreover, we assume that K1
F is not finite.

We define the error function and its inverse as

erf(t) =
2√
π

∫ t

0

e−u2

du for t ∈ R, (39)

erf(erfinv(t)) = t for t ∈ (−1, 1). (40)

We also introduce the notation h(t) = erfinv(1−F (t)). We now give the explicit
solution of the IFPT problem. The proof is based on an application of Theorem
1, and the use of elementary topological arguments.

Theorem 5. Under Assumption 4, the variance function defined as

σ2
t,f = f(t)

2
g2

√
π
h(t)3e−h(t)2

1{0<F (t)<1} for t ≥ 0 (41)

is the explicit solution of the IFPT problem.

3.1.2. Case when the quadratic variation is not absolutely continuous

By Equation (11) from Theorem 1, we have that PZ
g (t) = PW

g

(
⟨Z⟩t

)
for t ≥ 0.

We first give the definition of a solution in the IFPT problem.

Definition 11. For a given cdf F , we say that a nonrandom and nondecreasing
function vF : R+ → R+ which is the quadratic variation of a continuous local
martingale ZF , i.e.

⟨ZF ⟩t = vF (t) for t ≥ 0, (42)

is solution if it satisfies

PZF

g (t) = F (t) for t ≥ 0. (43)
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Equation (42) in Definition 11 implicitly implies the existence of a continu-
ous local martingale with quadratic variation vF . This is true since a standard

Wiener process, which is time-changed by vF (t)
t , will have vF as quadratic vari-

ation.
Let us give an assumption sufficient to obtain the explicit solution of the

IFPT problem.

Assumption 5. We assume that K1
F is not finite.

We now give the explicit solution of the IFPT problem. The proof is based
on an application of Theorem 1 and the use of elementary analysis.

Theorem 6. Under Assumption 5, the function defined as

vF (t) =
g2

2h(t)21{0<F (t)<1} for t ≥ 0. (44)

is the explicit solution of the IFPT problem.

3.2. Two-sided nonrandom case

In this part, we consider the case when the two-sided boundary is nonrandom
constant and the quadratic variation of the continuous local martingale is a
nonrandom time-dependent function.

3.2.1. Case when the quadratic variation is absolutely continuous

We give the definition of a solution in the IFPT problem.

Definition 12. For a given pdf f , we say that a variance function σ2
f : R+ → R+

which is the quadratic variation derivative a.e. of a continuous local martingale
Zf , i.e.

⟨Zf ⟩t =

∫ t

0

σ2
s,fds for t ≥ 0, (45)

is solution if it satisfies

PZf

g,h(t) = F (t) for t ≥ 0. (46)

Let us give a set of assumptions sufficient to obtain the explicit solution of
the IFPT problem.

Assumption 6. We assume that the explicit solution of the IFPT problem is
locally integrable in K0

F , i.e. there exists η0F > 0 such that

σ2
f ↾[K0

F ,K0
F+η0

F ]∈ L1

(
[K0

F ,K
0
F + η0F ]

)
. (47)

Moreover, we also assume that K1
F is not finite.

We now give the explicit solution of the IFPT problem.

Theorem 7. Under Assumption 6, the variance function defined as

σ2
t,f = f(t)

fW
g,h((P

W
g,h)

−1(F (t)))
1{0<F (t)<1} for t ≥ 0 (48)

is the explicit solution of the IFPT problem.
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3.2.2. Case when the quadratic variation is not absolutely continuous

We first give the definition of a solution in the IFPT problem.

Definition 13. For a given cdf F , we say that a nonrandom and nondecreasing
function vF : R+ → R+ which is the quadratic variation of a continuous local
martingale ZF , i.e.

⟨ZF ⟩t = vF (t) for t ≥ 0, (49)

is solution if it satisfies

PZF

g,h (t) = F (t) for t ≥ 0. (50)

We now give the explicit solution of the IFPT problem.

Theorem 8. Under Assumption 5, the function defined as

vF (t) = (PW
g,h)

−1(F (t))1{0<F (t)<1} for t ≥ 0 (51)

is the explicit solution of the IFPT problem.

3.3. One-sided random case

In this part, we consider the case when the one-sided boundary is random con-
stant and the quadratic variation of the continuous local martingale is a stochas-
tic process.

3.3.1. Case when the quadratic variation is absolutely continuous

To define the IFPT problem, we introduce the set of random cdfs. Since the
stochastic process Y has its quadratic variation ⟨Y ⟩ which is continuous and
random, we accordingly consider the set of random continuous cdfs.

Definition 14. A function F : R+ × Ω → [0, 1] is a random cdf if F (ω) is
nondecreasing, continuous, satisfies F (0, ω) = 0 and lim

t→∞
F (t, ω) = 1 for ω ∈ Ω.

Since the quadratic variation ⟨Y ⟩ is a stochastic process which is absolutely
continuous, we restrict to the set of random absolutely continuous cdfs.

Definition 15. A function f : R+ × Ω → R+ is a random pdf if it satifies

F (t, ω) =

∫ t

0

f(s, ω)ds for t ≥ 0 and ω ∈ Ω. (52)

We define the regular conditional cdf of TZ
g as PZ

g (|ω). We give the definition
of a solution in the IFPT problem. Since the quadratic variation is a stochastic
process which is absolutely continuous, we can focus on variances which are a
stochastic process.
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Definition 16. For a given random pdf f , we say that a variance process σ2
f :

R+ × Ω → R+ which is the quadratic variation derivative a.e. of a continuous
local martingale Y f , i.e.

⟨Y f ⟩t(ω) =

∫ t

0

σ2
s,f (ω)ds for t ≥ 0 and ω ∈ Ω, (53)

is solution if it satisfies

PY F

1 (t|ω) = F (t, ω) for t ≥ 0 and ω ∈ Ω. (54)

Equation (53) in Definition 16 implicitly requires the existence of a continuous

local martingale with random quadratic variation
∫ t

0
σ2
s,fds. This existence can

be shown with Itô processes considered in Example 2.
Let us give a set of assumptions sufficient to obtain the explicit solution of

the IFPT problem.

Assumption 7. We assume that the explicit solution is locally integrable on
R+ × Ω, i.e.

σ2
f ∈ L1,loc

(
R+ × Ω

)
. (55)

Moreover, we also assume that K1
F is not finite.

We introduce the notation h(t, ω) = erfinv(1 − F (t, ω)). We now give the
explicit solution of the IFPT problem.

Theorem 9. Under Assumption 7, the variance process defined as

σ2
t,f (ω) =

f(t,ω)
2

g2
√

π
h(t,ω)3e−h(t,ω)2

1{0<F (t,ω)<1} for t ≥ 0 and ω ∈ Ω (56)

is the explicit solution of the IFPT problem.

3.3.2. Case when the quadratic variation is not absolutely continuous

We first give the definition of a solution in the IFPT problem.

Definition 17. For a given random cdf F , we say that a nondecreasing stochastic
process vF : R+×Ω → R+ which is the quadratic variation of a continuous local
martingale Y F , i.e.

⟨Y F ⟩t(ω) = vF (t, ω) for t ≥ 0 and ω ∈ Ω, (57)

is solution if it satisfies

PY F

1 (t|ω) = F (t, ω) for t ≥ 0 and ω ∈ Ω. (58)

Equation (57) in Definition 17 implicitly implies the existence of a continu-
ous local martingale with quadratic variation vF . This is true since a standard
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Wiener process, which is time-changed by vF (t)
t , will have vF as quadratic vari-

ation.
For ω ∈ Ω, we define the infimum time such that F (t, ω) is positive and the

infimum time such that F (t, ω) equals unity as

K0
F (ω) = inf{t > 0 such that F (t, ω) > 0} and (59)

K1
F (ω) = inf{t > 0 such that F (t, ω) = 1}. (60)

Let us give an assumption sufficient to obtain the explicit solution of the IFPT
problem.

Assumption 8. We assume that K1
F (ω) is not finite for ω ∈ Ω.

We now give the explicit solution of the IFPT problem.

Theorem 10. Under Assumption 8, the stochastic process defined as

vF (t, ω) =
1

2h(t,ω)21{0<F (t,ω)<1} for t ≥ 0 and ω ∈ Ω (61)

is the explicit solution of the IFPT problem.

3.4. Two-sided random case

In this part, we consider the case when the two-sided boundary is random con-
stant and the quadratic variation of the continuous local martingale is a stochas-
tic process.

3.4.1. Case when the quadratic variation is absolutely continuous

We define the regular conditional cdf of TZ
g,h as PZ

g,h(|ω). We give the definition
of a solution in the IFPT problem.

Definition 18. For a given random pdf f , we say that a variance process σ2
f :

R+ × Ω → R+ which is the quadratic variation derivative a.e. of a continuous
local martingale Zf , i.e.

⟨Zf ⟩t(ω) =

∫ t

0

σ2
s,f (ω)ds for t ≥ 0 and ω ∈ Ω, (62)

is solution if it satisfies

PZF

g,h (t|ω) = F (t, ω) for t ≥ 0 and ω ∈ Ω. (63)

Equation (62) in Definition 18 implicitly requires the existence of a continuous

local martingale with random quadratic variation
∫ t

0
σ2
s,fds. This is true since

we can consider Itô processes from Example 2.
We now give the explicit solution of the IFPT problem.
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Theorem 11. Under Assumption 7, the variance process, defined as

σ2
t,f (ω) =

f(t, ω)

fW
g,h((P

W
g,h)

−1(F (t, ω)))
1{0<F (t,ω)<1} (64)

for t ≥ 0 and ω ∈ Ω,

is the explicit solution of the IFPT problem.

3.4.2. Case when the quadratic variation is not absolutely continuous

We first give the definition of a solution in the IFPT problem.

Definition 19. For a given random cdf F , we say that a nondecreasing stochastic
process vF : R+×Ω → R+ which is the quadratic variation of a continuous local
martingale ZF , i.e.

⟨ZF ⟩t(ω) = vF (t, ω) for t ≥ 0 and ω ∈ Ω, (65)

is solution if it satisfies

PZF

g,h (t|ω) = F (t, ω) for t ≥ 0 and ω ∈ Ω. (66)

Equation (65) in Definition 19 implicitly implies the existence of a continu-
ous local martingale with quadratic variation vF . This is true since a standard

Wiener process, which is time-changed by vF (t)
t , will have vF as quadratic vari-

ation.
We now give the explicit solution of the IFPT problem.

Theorem 12. Under Assumption 8, the stochastic process defined as

vF (t, ω) = (PW
g,h)

−1(F (t, ω))1{0<F (t,ω)<1} for t ≥ 0 and ω ∈ Ω (67)

is the explicit solution of the IFPT problem.
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Appendix A: Proofs of the explicit formula

In this section, we prove the explicit formula for the one-sided and two-sided
boundary crossing probability (1) and (2) of a continuous local martingale in
the nonrandom case and random case.

A.1. One-sided nonrandom case

We start with the proof of Lemma 1, which are well-known results fromMalmquist
(1954) (Theorem 1, p. 526) and Wang and Pötzelberger (1997) (Equations (3),
p. 55).

Proof of Lemma 1. By Malmquist (1954) (Theorem 1, p. 526), we have that
the probability that a standard Wiener process crosses a constant boundary g
conditioned on its final value x at the final time t is given for x ∈ R by

P(TW
g ≤ t|Wt = x) = exp

(
− 2g(g − x)

t

)
1{x≤g} + 1{x>g}. (68)

Wang and Pötzelberger (1997) (Equations (3), p. 55) integrate Equation (68)
with respect to the Wiener process final value s and derive the cdf as PW

g (0) = 0
and Equation (8). Then, we can deduce the pdf for t > 0 as

fW
g (t) =

d

dt
PW
g (t)

=
d

dt

(
1− Φ

(
g√
t

)
+Φ

(
−g√
t

))
=

d

dt

(
1−

∫ g√
t

−∞

1√
2π

e−
u2

2 du+

∫ −g√
t

−∞

1√
2π

e−
u2

2 du

)

=
ge−

g2

2t

√
2πt3

,

where we use Equation (6) in the first equality, Equation (8) in the second
equality, Equation (7) in the third equality, the fundamental theorem of calculus
with the chain rule in the fourth equality. We have thus shown Equation (9).

We define the inverse function of the quadratic variation for t ≥ 0 and ω ∈ Ω
as

⟨Z⟩−1
t = inf{s ≥ 0 s.t. ⟨Z⟩s > t}.

We also define the canonical filtration of a stochastic process Z as FZ
t =

σ
(
Z(C), C ∈ B(R+), C ⊂ [0, t]

)
for t ≥ 0, where B(R+) is the Borel σ-field

generated by the open sets of R+. Finally, we define the process Z, which is
time changed by its quadratic variation inverse, as Bt = Z⟨Z⟩−1

t
for t ≥ 0 and

ω ∈ Ω. The following lemma states that B is a Wiener process. This is obtained
by a direct application of the Dambis, Dubins-Schwarz theorem for continuous
local martingale (see Revuz and Yor (2013), Th. V.1.6).
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Lemma 3. Under Assumption 1, we have that B is a FB-Wiener process and

Zt = B⟨Z⟩t for t ≥ 0 a.s. (69)

Proof of Lemma 3. This is obtained by a direct application of the Dambis,
Dubins-Schwarz theorem for continuous local martingale (see Revuz and Yor
(2013), Th. V.1.6) with Assumption 1.

We introduce Proposition 1 in what follows. It states that the FPT of Z and
B are equal, if we make a time change equal to the quadratic variation of Z.
The main elementary idea of the proof is the scale invariant property of the
time-changed Wiener process and thus the scale invariant property of the FPT.
This is due to the constancy of the boundary.

Proposition 1. Under Assumption 1, we have for any ω ∈ Ω satisfying Zt(ω) =
B⟨Z⟩t(ω) that {

TZ
g = t

}
=

{
TB

g = ⟨Z⟩t
}
for t ≥ 0. (70)

Proof of Proposition 1. We have for t ≥ 0 and any ω ∈ Ω satisfying Zt(ω) =
B⟨Z⟩t(ω) that {

TZ
g = t

}
=

{
inf{s ≥ 0 s.t. Zs ≥ g} = t

}
=

{
inf{s ≥ 0 s.t. B⟨Z⟩s ≥ g} = t

}
, (71)

where we use Equation (4) in the first equality, and Equation (69) from Lemma
3 with Assumption 1 in the second equality. Since B is a FB-Wiener process,
W is an F-Wiener process and the boundary is constant, we can make a time
change equal to the quadratic variation ⟨Z⟩t and obtain that{

inf{s ≥ 0 s.t. B⟨Z⟩s ≥ g} = t
}
=
{
inf{s ≥ 0 s.t. Bs ≥ g} = ⟨Z⟩t

}
. (72)

Then, we can calculate by Equation (4) that{
inf{s ≥ 0 s.t. Bs ≥ g} = ⟨Z⟩t

}
=

{
TB

g = ⟨Z⟩t
}
. (73)

By Equations (71), (72) and (73), we can deduce Equation (70).

In what follows, we give the proof of Theorem 1. The proof is mainly based
on Proposition 1.

Proof of Theorem 1. We have that for t ≥ 0

PZ
g (t) = P(TZ

g ≤ t)

= P
(
inf{s ≥ 0 s.t. Zs ≥ g} ≤ t

)
= P

(
inf{s ≥ 0 s.t. B⟨Z⟩s ≥ g} ≤ t

)
, (74)

where we use Equation (5) in the first equality, Equation (4) in the second
equality, and Equation (69) from Lemma 3 with Assumption 1 in the third
equality. By Lemma 1 with Assumption 1, we obtain that for t ≥ 0

P
(
inf{s ≥ 0 s.t. B⟨Z⟩s ≥ g} ≤ t

)
= P

(
inf{s ≥ 0 s.t. Bs ≥ g} ≤ ⟨Z⟩t

)
. (75)
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Then, we can calculate that for t ≥ 0

P
(
inf{s ≥ 0 s.t. Bs ≥ g} ≤ ⟨Z⟩t

)
= P

(
inf{s ≥ 0 s.t. Ws ≥ g} ≤ ⟨Z⟩t

)
= P

(
TW

g ≤ ⟨Z⟩t
)
,

= PW
g

(
⟨Z⟩t

)
. (76)

Here, we use the fact that B and W have the same distribution in the first
equality, Equation (4) in the second equality, and Equation (5) in the third
equality. By Equations (74), (75) and (76), we can deduce Equation (11).

Finally, we give the proof of Corollary 1.

Proof of Corollary 1. We have for t ≥ 0 a.e.

fX
g (t) =

dPX
g (t)

dt

=
d(PW

g (⟨Z⟩t))
dt

= ⟨Z⟩′tfW
g

(
⟨Z⟩t

)
.

where we use Equation (6) in the first equality, Equation (11) from Theorem
1 with Assumption 1 in the second equality, and the fundamental theorem of
calculus with the chain rule and the assumption that the quadratic variation
⟨Z⟩ is absolutely continuous on R+ in the third equality.

A.2. Two-sided nonrandom case

We start with the proof of Lemma 2, which is well-known results from Anderson
(1960) (Theorem 4.3, p. 180).

Proof of Lemma 2. Equation (18) is a more compact form of Theorem 4.3 (p.
180) in Anderson (1960). Then, we derive the integral of ss(v, w) for 0 < v < w
as ∫ t

0

ssx(v, w)dx =

∞∑
k=−∞

w − v + 2kw√
2π

∫ t

0

x−3/2e−(w−v+2kw)2/2xdx

=

∞∑
k=−∞

(
2− 2Φ

(
w − v + 2kw√

t

))
, (77)

where we use Equation (16) in the first equality. Then, we can obtain PW
g,h(0) = 0

and Equation (17) by integrating Equation (18) with the use of Equation (77)
for t > 0.

We introduce Proposition 2 in what follows. It states that the FPT of Z and
B are equal, if we make a time change equal to the quadratic variation of Z.
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Proposition 2. Under Assumption 1, we have for any ω ∈ Ω satisfying Zt(ω) =
B⟨Z⟩t(ω) that {

TZ
g,h = t

}
=

{
TB

g,h = ⟨Z⟩t
}
for t ≥ 0. (78)

Proof of Proposition 2. We have for t ≥ 0 and any ω ∈ Ω satisfying Zt(ω) =
B⟨Z⟩t(ω) that{

TZ
g,h = t

}
=

{
inf{s ≥ 0 s.t. Zs ≥ g or Zs ≤ h} = t

}
=

{
inf{s ≥ 0 s.t. B⟨Z⟩s ≥ g or B⟨Z⟩s ≤ h} = t

}
, (79)

where we use Equation (13) in the first equality, and Equation (69) from Lemma
3 with Assumption 1 in the second equality. Since B is a FB-Wiener process,
W is an F-Wiener process and the boundary is constant, we can make a time
change equal to the quadratic variation ⟨Z⟩t and obtain that{

inf{s ≥ 0 s.t. B⟨Z⟩s ≥ g or B⟨Z⟩s ≤ h} = t
}

(80)

=
{
inf{s ≥ 0 s.t. Bs ≥ g or Bs ≤ h} = ⟨Z⟩t

}
.

Then, we can calculate by Equation (13) that{
inf{s ≥ 0 s.t. Bs ≥ g or Bs ≤ h} = ⟨Z⟩t

}
=

{
TB

g,h = ⟨Z⟩t
}
. (81)

By Equations (79), (80) and (81), we can deduce Equation (78).

In what follows, we give the proof of Theorem 2.

Proof of Theorem 2. We have that for t ≥ 0

PZ
g,h(t) = P(TZ

g,h ≤ t)

= P
(
inf{s ≥ 0 s.t. Zs ≥ g or Zs ≤ h} ≤ t

)
= P

(
inf{s ≥ 0 s.t. B⟨Z⟩s ≥ g or B⟨Z⟩s ≤ h} ≤ t

)
, (82)

where we use Equation (14) in the first equality, Equation (13) in the second
equality, and Equation (69) from Lemma 3 with Assumption 1 in the third
equality. By Lemma 2 with Assumption 1, we obtain that

P
(
inf{s ≥ 0 s.t. B⟨Z⟩s ≥ g or B⟨Z⟩s ≤ h} ≤ t

)
(83)

= P
(
inf{s ≥ 0 s.t. Bs ≥ g or Bs ≤ h} ≤ ⟨Z⟩t

)
.

Then, we can calculate that

P
(
inf{s ≥ 0 s.t. Bs ≥ g or Bs ≤ h} ≤ ⟨Z⟩t

)
= P

(
inf{s ≥ 0 s.t. Ws ≥ g or Ws ≤ h} ≤ ⟨Z⟩t

)
= P

(
TW

g,h ≤ ⟨Z⟩t
)
,

= PW
g,h

(
⟨Z⟩t

)
, (84)
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where we use the fact that B and W have the same distribution in the second
equality, Equation (13) in the third equality, and Equation (14) in the fourth
equality. By Equations (82), (83) and (84), we can deduce Equation (19).

Finally, we give the proof of Corollary 2.

Proof of Corollary 2. We have for t ≥ 0 a.e.

fX
g,h(t) =

dPX
g,h(t)

dt

=
d(PW

g,h(⟨Z⟩t))
dt

= ⟨Z⟩′tfW
g,h

(
⟨Z⟩t

)
,

where we use Equation (15) in the first equality, Equation (19) from Theorem
2 with Assumption 1 in the second equality, and the fundamental theorem of
calculus with the chain rule and the assumption that the quadratic variation
⟨Z⟩ is absolutely continuous on R+ in the third equality.

A.3. One-sided random case

We define the inverse function of the quadratic variation for t ≥ 0 and ω ∈ Ω as

⟨Y ⟩−1
t = inf{s ≥ 0 s.t. ⟨Y ⟩s > t}.

Finally, we define the process Y , which is time changed by its quadratic variation
inverse, as Bt = Y⟨Y ⟩−1

t
for t ≥ 0 and ω ∈ Ω. The following lemma states that

B is a Wiener process.

Lemma 4. Under Assumption 2, we have that B is a FB-Wiener process and

Yt = B⟨Y ⟩t for t ≥ 0 a.s.. (85)

Proof of Lemma 4. This is obtained by a direct application of the Dambis,
Dubins-Schwarz theorem for continuous local martingale (see Revuz and Yor
(2013), Th. V.1.6) with Assumption 2.

We introduce Proposition 3 in what follows. The main elementary idea of
the proof is the scale invariant property of the time-changed Wiener process
and thus the scale invariant property of the FPT which adapts to the one-sided
random case by using the new process.

Proposition 3. Under Assumption 2, we have for any ω ∈ Ω satisfying Yt(ω) =
B⟨Y ⟩t(ω) that {

TY
1 = t

}
=

{
TB

1 = ⟨Y ⟩t
}
for t ≥ 0. (86)
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Proof of Proposition 3. We have that for t ≥ 0 and any ω ∈ Ω satisfying Yt(ω) =
B⟨Y ⟩t(ω) {

TY
1 = t

}
=

{
inf{s ≥ 0 s.t. Ys ≥ 1} = t

}
=

{
inf{s ≥ 0 s.t. B⟨Y ⟩s ≥ 1} = t

}
, (87)

where we use Equation (21) in the first equality, and Equation (85) from Lemma
4 with Assumption 2 in the second equality. Since B is a FB-Wiener process,
W is an F-Wiener process and the boundary is constant, we can make a time
change equal to the quadratic variation ⟨Y ⟩t and obtain that{

inf{s ≥ 0 s.t. B⟨Y ⟩s ≥ 1} = t
}

(88)

=
{
inf{s ≥ 0 s.t. Bs ≥ 1} = ⟨Y ⟩t

}
.

Then, we can calculate by Equation (21) that{
inf{s ≥ 0 s.t. Bs ≥ 1} = ⟨Y ⟩t

}
=

{
TB

1 = ⟨Y ⟩t
}
. (89)

By Equations (87), (88) and (89), we can deduce Equation (86).

In what follows, we give the proof of Theorem 3. The proof is mainly based
on Proposition 3. We get PY

1 in the proof of Theorem 3 by regular conditional
probability, and using the explicit formula obtained in the nonrandom case.

Proof of Theorem 3. We have that for t ≥ 0

PY
1 (t) = P(TY

1 ≤ t)

=

∫
P
P(TY

1 ≤ t|⟨Y ⟩ = y)dF⟨Y ⟩(y)

=

∫
P
P
(
inf{s ≥ 0 s.t. Ys ≥ 1} ≤ t|⟨Y ⟩ = y

)
dF⟨Y ⟩(y)

=

∫
P
P
(
inf{s ≥ 0 s.t. Bys ≥ 1} ≤ t

)
dF⟨Y ⟩(y), (90)

where we use Equation (22) in the first equality, regular conditional probability
in the second equality, Equation (21) in the third equality, and Equation (85)
in the fourth equality. By Lemma 3 with Assumption 2, we obtain that∫

P
P
(
inf{s ≥ 0 s.t. Bys

≥ 1} ≤ t
)
dF⟨Y ⟩(y) (91)

=

∫
P
P
(
inf{s ≥ 0 s.t. Bs ≥ 1} ≤ yt

)
dF⟨Y ⟩(y).
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Then, we can calculate that∫
P
P
(
inf{s ≥ 0 s.t. Bs ≥ 1} ≤ yt

)
dF⟨Y ⟩(y)

=

∫
P
P
(
inf{s ≥ 0 s.t. Ws ≥ 1} ≤ yt

)
dF⟨Y ⟩(y)

=

∫
P
P
(
TW

1 ≤ yt
)
dF⟨Y ⟩(y)

=

∫
P
PW
1

(
yt
)
dF⟨Y ⟩(y), (92)

where we use the fact that B and W have the same distribution in the first
equality, Equation (21) in the second equality, and Equation (22) in the third
equality. By Equations (90), (91) and (92), we can deduce Equation (26).

Finally, we give the proof of Corollary 3.

Proof of Corollary 3. We have for t ≥ 0 a.e.

fY
1 (t) =

dPY
1 (t)

dt

=
d(
∫
P PW

1

(
yt
)
dF⟨Y ⟩(y))

dt

=

∫
P

d(PW
1

(
yt
)
)

dt
dF⟨Y ⟩(y)

=

∫
P
y′tf

W
1

(
yt
)
dF⟨Y ⟩(y),

where we use Equation (23) in the first equality, Equation (26) from Theorem 3
with Assumption 2 in the second equality, Tonelli’s theorem in the third equality,
and the fundamental theorem of calculus with chain rule and the assumption
that the quadratic variation ⟨Y ⟩ is absolutely continuous on R+ a.s. in the fourth
equality.

A.4. Two-sided random case

We define the inverse function of the quadratic variation for t ≥ 0 and ω ∈ Ω as

⟨Z⟩−1
t = inf{s ≥ 0 s.t. ⟨Z⟩s > t}.

Finally, we define the process Z, which is time changed by its quadratic variation
inverse, as Bt = Z⟨Z⟩−1

t
for t ≥ 0 and ω ∈ Ω. The following lemma states that

B is a Wiener process.

Lemma 5. Under Assumption 3, we have that B is a FB-Wiener process and

Zt = B⟨Z⟩t for t ≥ 0 a.s.. (93)
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Proof of Lemma 5. This is obtained by a direct application of the Dambis,
Dubins-Schwarz theorem for continuous local martingale (see Revuz and Yor
(2013), Th. V.1.6) with Assumption 3.

We introduce Proposition 4 in what follows.

Proposition 4. Under Assumption 3, we have for any ω ∈ Ω satisfying Zt(ω) =
B⟨Z⟩t(ω) that {

TZ
g,h = t

}
=

{
TB

g,h = ⟨Z⟩t
}
for t ≥ 0. (94)

Proof of Proposition 4. We have for t ≥ 0 and any ω ∈ Ω satisfying Zt(ω) =
B⟨Z⟩t(ω) that{

TZ
g,h = t

}
=

{
inf{s ≥ 0 s.t. Zs ≥ g or Zs ≤ h} = t

}
=

{
inf{s ≥ 0 s.t. B⟨Z⟩s ≥ g or B⟨Z⟩s ≤ h} = t

}
, (95)

where we use Equation (28) in the first equality, and Equation (93) from Lemma
5 with Assumption 3 in the second equality. Since B is a FB-Wiener process,
W is an F-Wiener process and the boundary is constant, we can make a time
change equal to the quadratic variation ⟨Z⟩t and obtain that{

inf{s ≥ 0 s.t. B⟨Z⟩s ≥ g or B⟨Z⟩s ≤ h} = t
}

(96)

=
{
inf{s ≥ 0 s.t. Bs ≥ g or Bs ≤ h} = ⟨Z⟩t

}
.

Then, we can calculate by Equation (28) that{
inf{s ≥ 0 s.t. Bs ≥ g or Bs ≤ h} = ⟨Z⟩t

}
=

{
TB

g,h = ⟨Z⟩t
}
. (97)

By Equations (95), (96) and (97), we can deduce Equation (94).

In what follows, we give the proof of Theorem 4. The proof is mainly based
on Proposition 4. We get PZ

g,h in the next theorem by regular conditional prob-
ability, and using the explicit formula obtained in the nonrandom case.

Proof of Theorem 4. We have that for t ≥ 0

PZ
g,h(t) = P(TZ

g,h ≤ t)

=

∫
S
P(TZ

g,h ≤ t|u = (g0, h0, z))dFu(g0, h0, z)

=

∫
S
P
(
inf{s ≥ 0 s.t. Zs ≥ g or Zs ≤ h} ≤ t|u = (g0, h0, z))

dFu(g0, h0, z)

=

∫
S
P
(
inf{s ≥ 0 s.t. B⟨Z⟩s ≥ g or B⟨Z⟩s ≤ h} ≤ t (98)

|u = (g0, h0, z))dFu(g0, h0, z),

where we use Equation (29) in the first equality, regular conditional probability
in the second equality, Equation (28) in the third equality, and Equation (93)
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from Lemma 5 with Assumption 3 in the fourth equality. Since the stochastic
process Z is independent from the two-sided boundary (g, h), we obtain that∫

S
P
(
inf{s ≥ 0 s.t. B⟨Z⟩s ≥ g or B⟨Z⟩s ≤ h} ≤ t|u = (g0, h0, z)) (99)

dFu(g0, h0, z)

=

∫
S
P
(
inf{s ≥ 0 s.t. Bzs ≥ g0 or Bzs ≤ h0} ≤ t)dFu(g0, h0, z).

By Lemma 4 with Assumption 3, we obtain that∫
S
P
(
inf{s ≥ 0 s.t. Bzs ≥ g0 or Bzs ≤ h0} ≤ t)dFu(g0, h0, z) (100)

=

∫
S
P
(
inf{s ≥ 0 s.t. Bs ≥ g0 or Bs ≤ h0} ≤ zt)dFu(g0, h0, z).

Then, we can calculate that∫
S
P
(
inf{s ≥ 0 s.t. Bs ≥ g0 or Bs ≤ h0} ≤ zt)dFu(g0, h0, z)

=

∫
S
P
(
inf{s ≥ 0 s.t. Ws ≥ g0 or Ws ≤ h0} ≤ zt)dFu(g0, h0, z)

=

∫
S
P
(
TW

g0,h0
≤ zt

)
dFu(g0, h0, z)

=

∫
S
PW
g0,h0

(
zt
)
dFu(g0, h0, z), (101)

where we use the fact that B and W have the same distribution in the first
equality, Equation (28) in the second equality, and Equation (29) in the third
equality. By Equations (98), (99),(100) and (101), we can deduce Equation (31).

Finally, we give the proof of Corollary 4.

Proof of Corollary 4. We have for t ≥ 0 a.e.

fZ
g,h(t) =

dPZ
g,h(t)

dt

=
d(
∫
S PW

g0,h0

(
zt
)
dFu(g0, h0, z))

dt

=

∫
S

d(PW
g0,h0

(
zt
)
)

dt
dFu(g0, h0, z)

=

∫
S
z′tf

W
g0,h0

(
zt
)
dFu(g0, h0, z),

where we use Equation (30) in the first equality, Equation (31) from Theorem
4 with Assumption 3 and the assumption that the stochastic process Z is in-
dependent from the two-sided boundary (g, h) in the second equality, Tonelli’s
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theorem in the third equality, and the fundamental theorem of calculus with
chain rule and the assumption that the quadratic variation ⟨Z⟩ is absolutely
continuous on R+ a.s. in the fourth equality.

Appendix B: Proofs of the explicit solution in the IFPT problem

In this section, we prove the explicit solution of the IFPT problem for the one-
sided and two-sided boundary in the case (i) and (ii).

B.1. One-sided nonrandom case

B.1.1. Case when the quadratic variation is absolutely continuous

When PW
g is invertible, we define its inverse as (PW

g )−1 : [0, 1) → R+. The first

lemma shows that there exists an inverse of PW
g , and gives explicit formulae

of (PW
g )−1(t) and fW

g ((PW
g )−1(t)) for 0 ≤ t < 1, all of which are new results

which will be useful to express the explicit solution of the IFPT problem. The
proof relies on Lemma 1.

Lemma 6. There exists an inverse of PW
g which is strictly increasing such that

(PW
g )−1(0) = 0 and

(PW
g )−1(t) =

g2

2 erfinv(1− t)2
for 0 < t < 1. (102)

Finally, we have fW
g ((PW

g )−1(t)) = 0 and

fW
g ((PW

g )−1(t)) =
2

g2
√
π
erfinv(1− t)

3
e−erfinv(1−t)2 for 0 < t < 1. (103)

Proof of Lemma 6. Using Equation (8) from Lemma 1, Equation (7) with Equa-
tion (39), we can express the relation between the cdf of the standard normal
and the error function as

ϕ(x) =
1

2

(
1 + erf(

x√
2
)
)
. (104)

We can rewrite Equation (8) as

PW
g (t) = 1− 1

2

(
1 + erf(

g√
2t
)
)
+

1

2

(
1 + erf(

−g√
2t
)
)

= 1− 1

2

(
1 + erf(

g√
2t
)
)
+

1

2

(
1− erf(

g√
2t
)
)

= 1− erf(
g√
2t
),

We note that PW
g : R+ → [0, 1) is strictly increasing since fW

g (t) > 0 for t > 0

by Equation (9). Thus, there exists an inverse (PW
g )−1 : [0, 1) → R+ which is
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strictly increasing. First, note that as PW
g (0) = 0, this implies that (PW

g )−1(0) =
0. Using Equation (8), some algebraic manipulation leads to Equation (102).

Finally, applying Equation (9) yields the form of fW
g ((PW−1

g (t)), i.e., Equation
(103).

We then give a lemma whose proof relies on Lemma 1 and Lemma 6. For
A ⊂ R+ and B ⊂ R+, we denote the space C1 of functions k : A → B with
derivatives which are continuous as C1(A,B).

Lemma 7. We have

fW
g ∈ C1(R+,R+) and PW

g ∈ C1(R+, [0, 1)), (105)

(PW
g )−1 ∈ C1([0, 1),R+). (106)

Proof of Lemma 7. By Equations (8) and (9) in Lemma 1, we obtain Equation
(105). By Equation (102) in Lemma 6, we obtain Equation (106).

We now give the definition of an explicit solution.

Definition 20. For a given pdf f , we say that a variance function σ2
f : R+ → R+

which is the quadratic variation derivative a.e. of a continuous local martingale
Zf , i.e.

⟨Zf ⟩t =

∫ t

0

σ2
s,fds for t ≥ 0, (107)

is an explicit solution if it is of the form

σ2
t,f = f(t)

fW
g ((PW

g )−1(F (t)))
1{0<F (t)<1} for t ≥ 0. (108)

If we substitute (PW
g )−1 in Equation (108) with Equation (102) from Lemma

6, we can reexpress the explicit solution as Equation (41). The next proposition
shows that Assumption 4 implies that Zf satisfies Assumption 1. The proof is
mainly based on elementary topological arguments in R+.

Proposition 5. Under Assumption 4, we have that Zf satisfies Assumption 1.

Proof of Proposition 5. To prove that Zf satisfies Assumption 1, we first show
that σ2

f ∈ L1,loc(R+), i.e., we have to show by definition that ∀K ⊂ R+, K
compact, we have ∫

K

σ2
t,f dt < +∞. (109)

There is no loss of generality assuming that K has a closed interval form K =
[K0,K1] where 0 ≤ K0 < K1, since if not we can break K into a finite number of
nonoverlapping closed intervals by the Bolzano-Weierstrass theorem and prove
Equation (109) for each interval. We first consider the case where

0 ≤ K0
F < K0 < K1. (110)
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Given the form of the explicit solution (108), Equation (109) can be reexpressed
as ∫

K

f(t)

fW
g ((PW

g )−1(F (t)))
dt < +∞. (111)

We first show that the denominator in the integral of Equation (111) is uniformly
bounded away from 0 on K. By Definition 9, F is a cdf and thus a nondecreasing
function. We can deduce that

F (K0) ≤ F (t) ≤ F (K1) for t ∈ K. (112)

We also obtain by definition of K0
F in Equation (36), definition of K1

F in Equa-
tion (37) and the assumption that K1

F is not finite from Assumption 4 that

0 < F (K̃) < 1 for K̃ ∈ R such that K0
F < K̃. (113)

Combining Equations (112) and (113), we can deduce that

0 < F (K0) ≤ F (t) ≤ F (K1) < 1, for t ∈ K. (114)

By Lemma 6, we have that (PW
g )−1 is strictly increasing. Thus, applying (PW

g )−1

to each term of Inequality (114) yields

0 < (PW
g )−1(F (K0)) ≤ (PW

g )−1(F (t))) ≤ (PW
g )−1(F (K1)), for t ∈ K. (115)

We have that (PW
g )−1(F (t))) takes its values in the closed interval

[(PW
g )−1(F (K0)), (P

W
g )−1(F (K1))]

of R+ which is connected and compact by the Bolzano-Weierstrass theorem.
Besides, it is known from topological properties that the image of a compact
and connected set of R+ by a continuous function from R+ to R+ is a compact
and connected set of R+. Since fW

g is continuous by Equation (9), we can deduce

that fW
g ((PW

g )−1(F (t))) for t ∈ K is included into a compact and connected
space of R+, e.g., a closed interval of R+. From Equation (9), we get that there
exists C > 0 such that

C ≤ fW
g ((PW

g )−1(F (t))) for t ∈ K. (116)

This implies that the denominator in the integral of Equation (111) is uniformly
bounded away from 0 on K. Given that f is a pdf, we obtain that∫

K

f(t) dt < +∞.

Thus, Equation (111) holds. We now consider the general case when K is not
necessarily of the form (110). We consider the case when K0 ≤ K0

F < K1. If we

introduce the notation K̃0
F = K0

F + η0F , then we can decompose [K0,K1] as

[K0,K1] = [K0,K
0
F ] ∪ [K0

F , K̃
0
F ] ∪ [K̃0

F ,K1].
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We deduce that∫
K

σ2
t,f dt =

∫
[K0,K0

F ]

σ2
t,f dt+

∫
[K0

F ,K̃0
F ]

σ2
t,f dt+

∫
[K̃0

F ,K̃1
F ]

σ2
t,f dt

=

∫
[K0

F ,K̃0
F ]

σ2
t,f dt+

∫
[K̃0

F ,K̃1
F ]

σ2
t,f dt

≤ C +

∫
[K̃0

F ,K̃1
F ]

σ2
t,f dt

< +∞,

where the second equality is due to the fact that the variance function is null
on [K0,K

0
F ] by Equation (108), the first inequality with C > 0 follows by

Expression (38) from Assumption 4, and the second inequality is due to Equation
(111). Finally, we have that the variance function is null on by Equation (108)
in the case when K0

F ≤ K0. We have thus shown Expression (109). Thus, we
can deduce that Zf is a local martingale with nonrandom quadratic variation

⟨Zf ⟩t =

∫ t

0

σ2
u,fdu (117)

by Theorem I.4.40 (p. 48) from Jacod and Shiryaev (2003) with Expression
(109). Finally, we show that ⟨Zf ⟩t → ∞ as t → ∞. We can calculate that

⟨Zf ⟩t = ⟨ZF ⟩t
= vF (t)

=
g2

2 erfinv(1− F (t))2
1{0<F (t)<1}, (118)

where we use the fact that Zf = ZF in the first equality, Equation (124) from
Definition 21 in the second equality, and Equation (44) in the last equality. By
definition we have that erfinv(z) → 0 as z → 0, and by Definition 9 we have
that lim

t→∞
F (t) = 1. Thus, we can deduce by the assumption that K1

F is finite

from Assumption 4 that

g2

2 erfinv(1− F (t))2
1{0<F (t)<1} → 0 (119)

as t → ∞. We can deduce by Equations (117), (118) and (119) that ⟨Zf ⟩t → ∞
as t → ∞. This implies that Zf satisfies Assumption 1.

The next proposition states that if Zf satisfies Assumption 1, then, the vari-
ance function is a solution if and only if it is an explicit solution. The proof is
based on an application of Theorem 1, and elementary analysis. More specifi-
cally, it is based on substituting the left-hand side of Equation (35) with Equa-
tion (11) from Theorem 1 and Equation (107), and then differentiating and
inverting on both sides of the equation to derive the explicit solution.
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Proposition 6. If we assume that Zf satisfies Assumption 1, then, (i) σ2
f is a

solution of Definition 10 ⇐⇒ (ii) σ2
f is an explicit solution of Definition 20.

Proof of Proposition 6. Proof of (i) =⇒ (ii). We assume that σ2
f is a solution

of Definition 10. Given that Zf satisfies Assumption 1, we can substitute the
left-hand side of Equation (35) with Equation (11) to deduce

PW
g

(
⟨Zf ⟩t

)
= F (t) for t ≥ 0. (120)

Using Equation (107), Equation (120) can be reexpressed as

PW
g

(∫ t

0

σ2
s,fds

)
= F (t) for t ≥ 0. (121)

By Lemma 6, there exists an inverse(PW
g )−1 : [0, 1) → R+. Applying (PW

g )−1

on both sides of Equation (121), Equation (121) can be rewritten as∫ t

0

σ2
s,fds = (PW

g )−1(F (t))1{0<F (t)<1} for t ≥ 0. (122)

The left-hand side of Equation (122) and F have a derivative a.e. for t ≥ 0 by
absolute continuity properties and since F is absolutely continuous. (PW

g )−1 is
differentiable on [0, 1) by Lemma 7. Thus, we can differentiate (122) a.e. on both
sides, by using the chain rule on the right-hand side. We obtain

σ2
t,f = f(t)((PW

g )−1)′(F (t))1{0<F (t)<1} a.e. for t ≥ 0. (123)

Applying the inverse function theorem, Equation (123) can be reexpressed as

σ2
t,f = f(t)

(PW
g )′((PW

g )−1(F (t)))
1{0<F (t)<1} a.e. for t ≥ 0,

or equivalently of the form (108) as (PW
g )′(t) = fg(t) for t ≥ 0 a.e.. Thus, we

have shown that σ2
f is an explicit solution of Definition 20.

Proof of (ii) =⇒ (i). We assume that σ2
f is an explicit solution of Definition

20. We have for t ≥ 0

PZf

g (t) = PW
g (

∫ t

0

σ2
s,fds)

= PW
g (

∫ t

0

f(s)

fW
g ((PW

g )−1(F (s)))
1{0<F (t)<1}ds)

= PW
g (

∫ t

0

f(s)((PW
g )−1)′(F (s))1{0<F (t)<1}ds)

= PW
g ((PW

g )−1)(F (t))

= F (t),

where we use Equation (11) with the assumption that Zf satisfies Assumption 1
in the first equality, Equation (108) in the second equality, the inverse function
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theorem in the third equality, integration in the fourth equality and algebraic
manipulation in the fifth equality. We have thus shown that σ2

f satisfies Equation

(34), and thus that σ2
f is a solution of Definition 10.

The following theorem states that under Assumption 4, (a) Zf satisfies As-
sumption 1 and (b) that variance function is solution if and only if it is an
explicit solution. The proof of Theorem 13 is a direct application of Proposition
5 and Proposition 6.

Theorem 13. Under Assumption 4, (a) Zf satisfies Assumption 1 (b) (i) σ2
f

is a solution of Definition 10 ⇐⇒ (ii) σ2
f is an explicit solution of Definition

20.

Proof of Theorem 13. To obtain (a), we apply Proposition 5 with Assumption
4. Then, an application of Proposition 6 with (a) yields (b).

Finally, we give the proof of Theorem 5, which is a direct consequence of
Theorem 13.

Proof of Theorem 5. This is a direct consequence of Theorem 13 with Assump-
tion 4.

B.1.2. Case when the quadratic variation is not absolutely continuous

We first give the definition of the explicit solution.

Definition 21. For a given cdf F , we say that a nonrandom nondecreasing func-
tion vF which is the quadratic variation of a continuous local martingale ZF ,
i.e.

⟨ZF ⟩t = vF (t) for t ≥ 0, (124)

is an explicit solution if it is of the form

vF (t) = (PW
g )−1(F (t))1{0<F (t)<1} for t ≥ 0. (125)

If we substitute (PW
g )−1 in Equation (125) with Equation (102) from Lemma

6, we can reexpress the explicit solution as Equation (44).
The next proposition shows that Assumption 5 implies that ZF satisfies

Assumption 1.

Proposition 7. Under Assumption 5, we have that ZF satisfies Assumption 1.

Proof of Proposition 7. By Definition 21, ZF is defined as a continuous local
martingale with quadratic variation ⟨ZF ⟩t = vF (t) for t ≥ 0, which can be
expressed by Equation (44) as

vF (t) =
g2

2 erfinv(1−F (t))21{0<F (t)<1} for t ≥ 0.

By definition we have that erfinv(t) → 0 as t → 0, and by Definition 9 we have
that lim

t→∞
F (t) = 1. Thus, we can deduce by Assumption 5 that lim

t→∞
vF (t) = ∞.

This implies that ⟨ZF ⟩∞ = ∞ and thus that ZF satisfies Assumption 1.



/First passage time and inverse problem 38

The next proposition states that if a nondecreasing function satisfies Assump-
tion 1, then it is a solution if and only if it is an explicit solution. The proof
is based on substituting the left-hand side of Equation (43) with Equation (11)
from Theorem 1 and Equation (124), and then inverting on both sides of the
equation to derive the explicit solution.

Proposition 8. If we assume that vF satisfies Assumption 1, then, (i) vF is a
solution of Definition 11 ⇐⇒ (ii) vF is an explicit solution of Definition 21.

Proof of Proposition 8. Proof of (i) =⇒ (ii). We assume that vF is a solution
of Definition 11. Given that ZF satisfies Assumption 1, we can substitute the
left-hand side of Equation (43) with Equation (11) to deduce

PW
g

(
⟨ZF ⟩t

)
= F (t) for t ≥ 0. (126)

Using Equation (124), Equation (126) can be reexpressed as

PW
g

(
vF (t)

)
= F (t) for t ≥ 0. (127)

By Lemma 6, there exists an inverse (PW
g )−1 : [0, 1) → R+. Applying (PW

g )−1

on both sides of Equation (127), Equation (127) can be rewritten as Equation
(125).

Proof of (ii) =⇒ (i). We assume that vF is an explicit solution of Definition
21. We have

PZF

g (t) = PW
g

(
⟨ZF ⟩t

)
= PW

g (vF (t))

= PW
g ((PW

g )−1(F (t))1{0<F (t)<1})

= F (t),

where we use Equation (11) with the assumption that vF satisfies Assumption
1 in the first equality, Equation (124) in the second equality, Equation (125) in
the third equality, and algebraic manipulation in the fourth equality.

The following theorem states that under Assumption 5, (a) ZF satisfies As-
sumption 1 and (b) that nondecreasing function is solution if and only if it
is an explicit solution. The proof is a direct application of Proposition 7 and
Proposition 8.

Theorem 14. Under Assumption 5, (a) ZF satisfies Assumption 1 (b) (i) vF
is a solution of Definition 11 ⇐⇒ (ii) vF is an explicit solution of Definition
21.

Proof of Theorem 14. To obtain (a), we apply Proposition 7 with Assumption
5. Then, an application of Proposition 8 with (a) yields (b).

Finally, we give the proof of Theorem 5, which is a direct consequence of
Theorem 13.
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Proof of Theorem 6. This is a direct consequence of Theorem 14 with Assump-
tion 4.

B.2. Two-sided nonrandom case

B.2.1. Case when the quadratic variation is absolutely continuous

The first lemma shows that there exists an inverse of PW
g,h which we denote

(PW
g,h)

−1 and is strictly increasing such that (PW
g,h)

−1(0) = 0 and (PW
g,h)

−1(1) =
∞, all of which are new results which will be useful to prove the explicit solution
of the inverse problem. The proof relies on Lemma 2.

Lemma 8. There exists an inverse of PW
g,h which we denote (PW

g,h)
−1 : [0, 1) →

R+ and is strictly increasing such that (PW
g,h)

−1(0) = 0 and that (PW
g,h)

−1(1) =
∞.

Proof of Lemma 8. Using Equation (17) from Lemma 2, we note that PW
g,h :

R+ → [0, 1) is strictly increasing since fW
g,h(t) > 0 for t > 0 by Equation (18).

Thus, there exists an inverse(PW
g,h)

−1 : [0, 1) → R+ which is strictly increasing.

First, note that as PW
g,h(0) = 0, this implies that (PW

g,h)
−1(0) = 0. Using Equation

(17), some algebraic manipulation leads to (PW
g,h)

−1(1) = ∞.

We then give another lemma whose proof relies on Lemma 2.

Lemma 9. We have

fW
g,h ∈ C1(R+,R+) , PW

g,h ∈ C1(R+, [0, 1)) and (128)

(PW
g,h)

−1 ∈ C1([0, 1),R+). (129)

Proof of Lemma 9. By Equations (17) and (18) in Lemma 2, we obtain Equa-
tions (128) and (129).

We now give the definition of the explicit solution.

Definition 22. For a given pdf f , we say that a variance function σ2
f : R+ → R+

which is the quadratic variation derivative a.e. of a continuous local martingale
Zf , i.e.

⟨Zf ⟩t =

∫ t

0

σ2
s,fds for t ≥ 0, (130)

is an explicit solution if it is of the form Equation (48).

The next proposition shows that Assumption 6 implies that Zf satisfies As-
sumption 1. The proof is mainly based on topological argument in R+ and the
use of Assumption 6.

Proposition 9. Under Assumption 6, we have that Zf satisfies Assumption 1.
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Proof of Proposition 9. To prove that Zf satisfies Assumption 1, we first show
that σ2

f ∈ L1,loc(R+), i.e., we have to show by definition that ∀K ⊂ R+, K
compact, we have ∫

K

σ2
t,f dt < +∞. (131)

There is no loss of generality assuming that K has a closed interval form K =
[K0,K1] where 0 ≤ K0 < K1, since if not we can break K into a finite number of
nonoverlapping closed intervals by the Bolzano-Weierstrass theorem and prove
Equation (109) for each interval. We first consider the case where

0 ≤ K0
F < K0 < K1. (132)

Given the form of the explicit solution (48), Equation (131) can be reexpressed
as ∫

K

f(t)

fW
g,h((P

W
g,h)

−1(F (t)))
dt < +∞. (133)

We first show that the denominator in the integral of Equation (133) is uniformly
bounded away from 0 on K. By Definition 9, F is a cdf and thus a nondecreasing
function. We can deduce that

F (K0) ≤ F (t) ≤ F (K1) for t ∈ K. (134)

We also obtain by definition of K0
F in Equation (36), definition of K1

F in Equa-
tion (37) and the assumption that K1

F is not finite from Assumption 6 that

0 < F (K̃) < 1 for K̃ ∈ R such that K0
F < K̃. (135)

Combining Equations (134) and (135), we can deduce that

0 < F (K0) ≤ F (t) ≤ F (K1) < 1, for t ∈ K. (136)

By Lemma 8, we have that (PW
g,h)

−1 is strictly increasing. Thus, applying (PW
g,h)

−1

to each term of Inequality (136) yields

0 < (PW
g,h)

−1(F (K0)) ≤ (PW
g,h)

−1(F (t))) ≤ (PW
g,h)

−1(F (K1)), for t ∈ K. (137)

We have that (PW
g,h)

−1(F (t))) takes its values in the closed interval

[(PW
g,h)

−1(F (K0)), (P
W
g,h)

−1(F (K1))]

of R+ which is connected and compact by the Bolzano-Weierstrass theorem.
Besides, it is known from topological properties that the image of a compact
and connected set of R+ by a continuous function from R+ to R+ is a compact
and connected set of R+. Since fW

g,h is continuous by Equation (18), we can

deduce that fW
g,h((P

W
g,h)

−1(F (t))) for t ∈ K is included into a compact and
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connected space of R+, e.g., a closed interval of R+. From Equation (18), we
get that there exists C > 0 such that

C ≤ fW
g,h((P

W
g,h)

−1(F (t))) for t ∈ K. (138)

This implies that the denominator in the integral of Equation (133) is uniformly
bounded away from 0 on K. Given that f is a pdf, we obtain that∫

K

f(t) dt < +∞.

Thus, Equation (133) holds. We now consider the general case when K is not
necessarily of the form (132). We consider the case when K0 ≤ K0

F < K1. If we

introduce the notation K̃0
F = K0

F + η0F , then we can decompose [K0,K1] as

[K0,K1] = [K0,K
0
F ] ∪ [K0

F , K̃
0
F ] ∪ [K̃0

F ,K1].

We deduce that∫
K

σ2
t,f dt =

∫
[K0,K0

F ]

σ2
t,f dt+

∫
[K0

F ,K̃0
F ]

σ2
t,f dt+

∫
[K̃0

F ,K̃1
F ]

σ2
t,f dt

=

∫
[K0

F ,K̃0
F ]

σ2
t,f dt+

∫
[K̃0

F ,K̃1
F ]

σ2
t,f dt

≤ C +

∫
[K̃0

F ,K̃1
F ]

σ2
t,f dt

< +∞,

where the second equality is due to the fact that the variance function is null on
[K0,K

0
F ] by Equation (48), the first inequality with C > 0 follows by Expression

(47) from Assumption 6, and the second inequality is due to Equation (133).
Finally, we have that the variance function is null on by Equation (48) in the
case when K0

F ≤ K0. We have thus shown Expression (131). Thus, we can
deduce that Zf is a local martingale with nonrandom quadratic variation

⟨Zf ⟩t =

∫ t

0

σ2
u,fdu (139)

by Theorem I.4.40 (p. 48) from Jacod and Shiryaev (2003) with Expression
(131). Finally, we show that ⟨Zf ⟩t → ∞ as t → ∞. We can calculate that

⟨Zf ⟩t = ⟨ZF ⟩t
= vF (t)

= (PW
g,h)

−1(F (t))1{0<F (t)<1} (140)

where we use the fact that Zf = ZF in the first equality, Equation (146) from
Definition 23 in the second equality, and Definition 23 in the last equality. By
Lemma 8 we have that (PW

g,h)
−1(1) = ∞, and by Definition 9 we have that
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lim
t→∞

F (t) = 1. Thus, we can deduce by the assumption that K1
F is finite from

Assumption 6 that

(PW
g,h)

−1(F (t))1{0<F (t)<1} → 0 (141)

as t → ∞. We can deduce by Equations (139), (140) and (141) that ⟨Zf ⟩tdu →
∞ as t → ∞. This implies that Zf satisfies Assumption 1.

The next proposition states that if Zf satisfies Assumption 1, then, the vari-
ance function is a solution if and only if it is an explicit solution. The proof is
based on substituting the left-hand side of Equation (46) with Equations (19)
from Theorem 2 and (130) and then differentiating and inverting on both sides
of the equation to derive the explicit solution.

Proposition 10. If we assume that Zf satisfies Assumption 1, then, (i) σ2
f is

a solution of Definition 12 ⇐⇒ (ii) σ2
f is an explicit solution of Definition 22.

Proof of Proposition 10. Proof of (i) =⇒ (ii). We assume that σ2
f is a solution

of Definition 12. Given that Zf satisfies Assumption 1, we can substitute the
left-hand side of Equation (46) with Equation (19) to deduce

PW
g,h

(
⟨Zf ⟩t

)
= F (t) for t ≥ 0. (142)

Using Equation (130), Equation (142) can be reexpressed as

PW
g,h

(∫ t

0

σ2
s,fds

)
= F (t) for t ≥ 0. (143)

By Lemma 8, there exists an inverse(PW
g,h)

−1 : [0, 1) → R+. Applying (PW
g,h)

−1

on both sides of Equation (143), Equation (143) can be rewritten as∫ t

0

σ2
s,fds = (PW

g,h)
−1(F (t))1{0<F (t)<1} for t ≥ 0. (144)

The left-hand side of Equation (144) and F have a derivative a.e. for t ≥ 0 by
absolute continuity properties and since F is absolutely continuous. (PW

g,h)
−1 is

differentiable on [0, 1) by Lemma 9. Thus, we can differentiate Equation (144)
a.e. on both sides, by using the chain rule on the right-hand side. We obtain

σ2
t,f = f(t)((PW

g,h)
−1)′(F (t))1{0<F (t)<1} a.e. for t ≥ 0. (145)

Applying the inverse function theorem, Equation (145) can be reexpressed as

σ2
t,f = f(t)

(PW
g,h)

′((PW
g,h)

−1(F (t)))
1{0<F (t)<1} a.e. for t ≥ 0,

or equivalently of the form (48) as (PW
g,h)

′(t) = fg,h(t) a.e. for t ≥ 0. Thus, we

have shown that σ2
f is an explicit solution of Definition 22.
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Proof of (ii) =⇒ (i). We assume that σ2
f is an explicit solution of Definition

22. We have a.e. for t ≥ 0

PZf

g,h(t) = PW
g,h(

∫ t

0

σ2
s,fds)

= PW
g,h(

∫ t

0

f(s)

fW
g,h((P

W
g,h)

−1(F (s)))
1{0<F (t)<1}ds)

= PW
g,h(

∫ t

0

f(s)((PW
g,h)

−1)′(F (s))1{0<F (t)<1}ds)

= PW
g,h((P

W
g,h)

−1)(F (t))

= F (t),

where we use Equation (19) with the assumption that Zf satisfies Assumption
1 in the first equality, Equation (48) in the second equality, the inverse function
theorem in the third equality, integration in the fourth equality and algebraic
manipulation in the fifth equality. We have thus shown that σ2

t satisfies Equation
(45), and thus that σ2

f is a solution of Definition 12.

The following theorem in the particular case when the quadratic variation
⟨Z⟩ is absolutely continuous states that under Assumption 6, (a) Zf satisfies
Assumption 1 and (b) that variance function is solution if and only if it is an
explicit solution.

Theorem 15. Under Assumption 6, (a) Zf satisfies Assumption 1 (b) (i) σ2
f

is a solution of Definition 12 ⇐⇒ (ii) σ2
f is an explicit solution of Definition

22.

Proof of Theorem 15. To obtain (a), we apply Proposition 9 with Assumption
6. Then, an application of Proposition 10 with (a) yields (b).

Finally, we give the proof of Theorem 7, which is a direct consequence of
Theorem 15.

Proof of Theorem 7. This is a direct consequence of Theorem 15 with Assump-
tion 6.

B.2.2. Case when the quadratic variation is not absolutely continuous

We first give the definition of the explicit solution.

Definition 23. For a given cdf F , we say that a nonrandom nondecreasing func-
tion vF which is the quadratic variation of a continuous local martingale ZF ,
i.e.

⟨ZF ⟩t = vF (t) for t ≥ 0, (146)

is an explicit solution if it is of the form

vF (t) = (PW
g,h)

−1(F (t))1{0<F (t)<1} for t ≥ 0. (147)
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The next proposition shows that Assumption 5 implies that ZF satisfies
Assumption 1.

Proposition 11. Under Assumption 5, we have that ZF satisfies Assumption
1.

Proof of Proposition 11. By Definition 23, ZF is defined as a continuous local
martingale with quadratic variation ⟨ZF ⟩t = vF (t) for t ≥ 0, which can be
expressed as

vF (t) = (PW
g,h)

−1(F (t))1{0<F (t)<1} for t ≥ 0.

By Lemma 8 we have that (PW
g,h)

−1(1) = ∞, and by Definition 9 we have that
lim
t→∞

F (t) = 1. Thus, we can deduce by Assumption 5 that lim
t→∞

vF (t) = ∞. This

implies that ⟨ZF ⟩∞ = ∞ and thus that ZF satisfies Assumption 1.

The next proposition states that if a nondecreasing function satisfies Assump-
tion 1, then it is a solution if and only if it is an explicit solution. The proof is
based on substituting the left-hand side of Equation (50) with Equations (19)
and (146) and then inverting on both sides of the equation to derive the explicit
solution.

Proposition 12. We assume that vF satisfies Assumption 1. Then, (i) vF is
a solution of Definition 13 ⇐⇒ (ii) vF is an explicit solution of Definition 23.

Proof of Proposition 12. Proof of (i) =⇒ (ii). We assume that vF is a solution
of Definition 13. Given that ZF satisfies Assumption 1, we can substitute the
left-hand side of Equation (50) with Equation (19) to deduce

PW
g,h

(
⟨ZF ⟩t

)
= F (t) for t ≥ 0. (148)

Using Equation (146), Equation (148) can be reexpressed as

PW
g,h

(
vF (t)

)
= F (t) for t ≥ 0. (149)

By Lemma 8, there exists an inverse(PW
g,h)

−1 : [0, 1) → R+. Applying (PW
g,h)

−1

on both sides of Equation (149), Equation (149) can be rewritten as Equation
(147).

Proof of (ii) =⇒ (i). We assume that vF is an explicit solution of Definition
23. We have

PZF

g,h (t) = PW
g,h

(
⟨ZF ⟩t

)
= PW

g,h(vF (t))

= PW
g,h((P

W
g )−1(F (t))1{0<F (t)<1})

= F (t),

where we use Equation (19) with the assumption that vF satisfies Assumption
1 in the first equality, Equation (146) in the second equality, Equation (147) in
the third equality, and algebraic manipulation in the fourth equality.
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The following theorem states that under Assumption 5, (a) ZF satisfies As-
sumption 1 and (b) that a nondecreasing function is solution if and only if it is
an explicit solution.

Theorem 16. We assume that Assumption 5 holds. Then, we have that (a)
ZF satisfies Assumption 1 and (b) (i) vF is a solution of Definition 13 ⇐⇒
(ii) vF is an explicit solution of Definition 23.

Proof of Theorem 16. To obtain (a), we apply Proposition 11 with Assumption
5. Then, an application of Proposition 12 with (a) yields (b).

Finally, we give the proof of Theorem 8, which is a direct consequence of
Theorem 16.

Proof of Theorem 8. This is a direct consequence of Theorem 16 with Assump-
tion 5.

B.3. One-sided random case

B.3.1. Case when the quadratic variation is absolutely continuous

We now give the definition of the explicit solution.

Definition 24. For a given random pdf f , we say that a variance process σ2
f :

R+ × Ω → R+ which is the quadratic variation derivative a.e. of a continuous
local martingale Y f , i.e.

⟨Y f ⟩t(ω) =

∫ t

0

σ2
s,f (ω)ds for t ≥ 0 and ω ∈ Ω, (150)

is an explicit solution if it is of the form

σ2
t,f (ω) =

f(t, ω)

fW
1 ((PW

1 )−1(F (t, ω)))
1{0<F (t,ω)<1} (151)

a.e. for t ≥ 0 and ω ∈ Ω.

If we substitute (PW
1 )−1 in Equation (151) with Equation (102) from Lemma

6, we can reexpress the explicit solution as Equation (56).
The next proposition shows that Assumption 7 implies that Y f satisfies As-

sumption 2. The proof is mainly based on the use of Assumption 7.

Proposition 13. Under Assumption 7, we have that Y f satisfies Assumption
2.

Proof of Proposition 13. We can deduce that Y f is a local martingale with ran-
dom quadratic variation

⟨Y f ⟩t(ω) =

∫ t

0

σ2
u,f (ω)du for t ≥ 0 and ω ∈ Ω (152)
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by Theorem I.4.40 (p. 48) from Jacod and Shiryaev (2003) with Expression (55)
from Assumption 7. We show that ⟨Y f ⟩t → ∞ as t → ∞. We can calculate that

⟨Y f ⟩t(ω) = ⟨Y F ⟩t(ω)
= vF (t, ω)

=
1

2 erfinv(1− F (t, ω))2
1{0<F (t,ω)<1} for t ≥ 0 and ω ∈ Ω,(153)

where we use the fact that Y f = Y F in the first equality, Equation (159) from
Definition 25 in the second equality, and Equation (61) in the last equality. By
definition we have that erfinv(z) → 0 as z → 0, and by Definition 14 we have
that lim

t→∞
F (t, ω) = 1. Thus, we can deduce by the assumption that K1

F is finite

from Assumption 7 that

1

2 erfinv(1− F (t, ω))2
1{0<F (t,ω)<1} → 0 (154)

as t → ∞. We can deduce by Equations (152), (153) and (154) that ⟨Y f ⟩t → ∞
as t → ∞. This implies that Y f satisfies Assumption 2.

The next proposition states that if Y f satisfies Assumption 2, then, the vari-
ance function is a solution if and only if it is an explicit solution. The proof is
based on substituting the left-hand side of Equation (54) with Equations (26)
from Theorem 3 and (150) and then differentiating and inverting on both sides
of the equation to derive the explicit solution.

Proposition 14. We assume that Y f satisfies Assumption 2. Then, (i) σ2
f is

a solution of Definition 16 ⇐⇒ (ii) σ2
f is an explicit solution of Definition 24.

Proof of Proposition 14. Proof of (i) =⇒ (ii). We assume that σ2
f is a solution

of Definition 16. Given that Y f satisfies Assumption 2, we can substitute the
left-hand side of Equation (54) with Equation (26) to deduce

PW
1

(
⟨Zf ⟩t(ω)

)
= F (t, ω) for t ≥ 0 and ω ∈ Ω. (155)

Using Equation (150), Equation (155) can be reexpressed as

PW
1

(∫ t

0

σ2
s,f (ω)ds

)
= F (t, ω) for t ≥ 0 and ω ∈ Ω. (156)

By Lemma 6, there exists an inverse(PW
1 )−1 : [0, 1) → R+. Applying (PW

1 )−1

on both sides of Equation (156), Equation (156) can be rewritten as∫ t

0

σ2
s,f (ω)ds = (PW

1 )−1(F (t, ω))1{0<F (t,ω)<1} for t ≥ 0 and ω ∈ Ω.(157)

The left-hand side of Equation (157) and F have a derivative a.e. for t ≥ 0 by
absolute continuity properties and since F is absolutely continuous. (PW

1 )−1 is
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differentiable on [0, 1) by Lemma 7. Thus, we can differentiate Equation (157)
a.e. on both sides, by using the chain rule on the right-hand side. We obtain

σ2
t,f (ω) = f(t, ω)((PW

1 )−1(ω))′(F (t, ω))1{0<F (t,ω)<1} (158)

a.e. for t ≥ 0 and ω ∈ Ω.

Applying the inverse function theorem, Equation (158) can be reexpressed as

σ2
t,f (ω) =

f(t,ω)

(PW
1 )′((PW

1 )−1(F (t,ω)))
1{0<F (t,ω)<1} a.e. for t ≥ 0 and ω ∈ Ω,

or equivalently of the form (151) as (PW
1 )′(t) = f1(t) a.e. for t ≥ 0. Thus, we

have shown that σ2
f is an explicit solution of Definition 24.

Proof of (ii) =⇒ (i). We assume that σ2
f is an explicit solution of Definition

24. We have a.e. for t ≥ 0 and ω ∈ Ω that

PY f

1 (t|ω) = PW
1 (

∫ t

0

σ2
s,f (ω)ds)

= PW
1 (

∫ t

0

f(s, ω)

fW
1 ((PW

1 )−1(F (s, ω)))
1{0<F (s,ω)<1}ds)

= PW
1 (

∫ t

0

f(s, ω)((PW
1 )−1)′(F (s, ω))1{0<F (s,ω)<1}ds)

= PW
1 ((PW

1 )−1)(F (t, ω))

= F (t, ω).

where we use Equation (26) with the assumption that Y f satisfies Assumption 2
in the first equality, Equation (151) in the second equality, the inverse function
theorem in the third equality, integration in the fourth equality and algebraic
manipulation in the fifth equality. We have thus shown that σ2

t satisfies Equation
(53), and thus that σ2

f is a solution of Definition 16.

The following theorem states that under Assumption 7, (a) Y f satisfies As-
sumption 2 and (b) that variance function is solution if and only if it is an
explicit solution.

Theorem 17. We assume that Assumption 7 holds. Then, we have that (a) Y f

satisfies Assumption 2 and (b) (i) σ2
f is a solution of Definition 16 ⇐⇒ (ii)

σ2
f is an explicit solution of Definition 24.

Proof of Theorem 17. To obtain (a), we apply Proposition 13 with Assumption
7. Then, an application of Proposition 14 with (a) yields (b).

Finally, we give the proof of Theorem 9, which is a direct consequence of
Theorem 17.

Proof of Theorem 9. This is a direct consequence of Theorem 17 with Assump-
tion 7.



/First passage time and inverse problem 48

B.3.2. Case when the quadratic variation is not absolutely continuous

We first give the definition of the explicit solution.

Definition 25. For a given random cdf F , we say that a nondecreasing stochastic
process vF which is the quadratic variation of a continuous local martingale Y F ,
i.e.

⟨Y F ⟩t(ω) = vF (t, ω) for t ≥ 0 and ω ∈ Ω, (159)

is an explicit solution if it is of the form

vF (t, ω) = (PW
1 )−1(F (t, ω))1{0<F (t,ω)<1} for t ≥ 0 and ω ∈ Ω. (160)

If we substitute (PW
1 )−1 in Equation (160) with Equation (102) from Lemma

6, we can reexpress the explicit solution as Equation (61).
The next proposition shows that Assumption 8 implies that Y F satisfies

Assumption 2.

Proposition 15. Under Assumption 8, we have that Y F satisfies Assumption
2.

Proof of Proposition 15. By Definition 25, Y F is defined as a continuous local
martingale with quadratic variation ⟨Y F ⟩t(ω) = vF (t, ω) for t ≥ 0 and ω ∈ Ω,
which can be expressed by Equation (61) as

vF (t, ω) =
1

2 erfinv(1−F (t,ω))21{0<F (t,ω)<1} for t ≥ 0 and ω ∈ Ω.

By definition we have that erfinv(z) → 0 as z → 0, and by Definition 14 we have
that lim

t→∞
F (t, ω) = 1. Thus, we can deduce by Assumption 8 that lim

t→∞
vF (t, ω) =

∞. This implies that ⟨Y F ⟩∞ = ∞ and thus that Y F satisfies Assumption 2.

The next proposition states that if a nondecreasing function satisfies Assump-
tion 2, then it is a solution if and only if it is an explicit solution. The proof is
based on substituting the left-hand side of Equation (58) with Equations (26)
and (159) and then inverting on both sides of the equation to derive the explicit
solution.

Proposition 16. We assume that vF satisfies Assumption 2. Then, we have
that (i) vF is a solution of Definition 17 ⇐⇒ (ii) vF is an explicit solution of
Definition 25.

Proof of Proposition 16. Proof of (i) =⇒ (ii). We assume that vF is a solution
of Definition 17. Given that Y F satisfies Assumption 2, we can substitute the
left-hand side of Equation (58) with Equation (26) to deduce

PW
1

(
⟨Y F ⟩t(ω)

)
= F (t, ω) for t ≥ 0 and ω ∈ Ω. (161)

Using Equation (159), Equation (161) can be reexpressed as

PW
1

(
vF (t, ω)

)
= F (t, ω) for t ≥ 0 and ω ∈ Ω. (162)
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By Lemma 6, there exists an inverse(PW
1 )−1 : [0, 1) → R+. Applying (PW

1 )−1

on both sides of Equation (162), Equation (162) can be rewritten as Equation
(160).

Proof of (ii) =⇒ (i). We assume that vF is an explicit solution of Definition
25. We have

PY F

1 (t|ω) = PW
1

(
⟨Y F ⟩t(ω)

)
= PW

1

(
vF (t, ω)

)
= PW

1

(
(PW

1 )−1(F (t, ω))1{0<F (t,ω)<1})
)

= F (t, ω),

where we use Equation (26) with the assumption that vF satisfies Assumption
2 in the first equality, Equation (159) in the second equality, Equation (160) in
the third equality, and algebraic manipulation in the fourth equality.

The following theorem states that under Assumption 8, (a) Y F satisfies As-
sumption 2 and (b) that random nondecreasing function is solution if and only
if it is an explicit solution.

Theorem 18. We assume that Assumption 8 holds. Then, we have that (a)
Y F satisfies Assumption 2 and (b) (i) vF is a solution of Definition 17 ⇐⇒
(ii) vF is an explicit solution of Definition 25.

Proof of Theorem 18. To obtain (a), we apply Proposition 15 with Assumption
8. Then, an application of Proposition 16 with (a) yields (b).

Finally, we give the proof of Theorem 10, which is a direct consequence of
Theorem 18.

Proof of Theorem 10. This is a direct consequence of Theorem 18 with Assump-
tion 8.

B.4. Two-sided random case

B.4.1. Case when the quadratic variation is absolutely continuous

We first give the definition of the explicit solution.

Definition 26. For a given random pdf f , we say that a variance process σ2
f :

R+ × Ω → R+ which is the quadratic variation derivative a.e. of a continuous
local martingale Zf , i.e.

⟨Zf ⟩t(ω) =

∫ t

0

σ2
s,f (ω)ds for t ≥ 0 and ω ∈ Ω, (163)

is an explicit solution if it is equal to Equation (64).
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The next proposition shows that Assumption 7 implies that Zf satisfies As-
sumption 2. The proof is mainly based on the use of Assumption 7.

Proposition 17. Under Assumption 7, we have that Zf satisfies Assumption
2.

Proof of Proposition 17. We can deduce that Zf is a local martingale with ran-
dom quadratic variation

⟨Zf ⟩t(ω) =

∫ t

0

σ2
u,f (ω)du for t ≥ 0 and ω ∈ Ω (164)

by Theorem I.4.40 (p. 48) from Jacod and Shiryaev (2003) with Expression (55)
from Assumption 7. We show that ⟨Zf ⟩t → ∞ as t → ∞. We can calculate that

⟨Zf ⟩t(ω) = ⟨ZF ⟩t(ω)
= vF (t, ω)

= (PW
g,h)

−1(F (t, ω))1{0<F (t,ω)<1} for t ≥ 0 and ω ∈ Ω, (165)

where we use the fact that Zf = ZF in the first equality, Equation (159) from
Definition 25 in the second equality, and Equation (172) in the last equality.
By Lemma 8 we have that (PW

g,h)
−1(1) = ∞, and by Definition 14 we have that

lim
t→∞

F (t, ω) = 1. Thus, we can deduce by the assumption that K1
F is finite from

Assumption 7 that

(PW
g,h)

−1(F (t, ω))1{0<F (t,ω)<1} → 0 (166)

as t → ∞. We can deduce by Equations (164), (165) and (166) that ⟨Zf ⟩t → ∞
as t → ∞. This implies that Zf satisfies Assumption 2.

The next proposition states that if Zf satisfies Assumption 2, then, the vari-
ance function is a solution if and only if it is an explicit solution. The proof is
based on substituting the left-hand side of Equation (63) with Equations (31)
from Theorem 4 and (163) and then differentiating and inverting on both sides
of the equation to derive the explicit solution.

Proposition 18. We assume that Zf satisfies Assumption 2. Then, we have
that (i) σ2

f is a solution of Definition 18 ⇐⇒ (ii) σ2
f is an explicit solution of

Definition 26.

Proof of Proposition 18. Proof of (i) =⇒ (ii). We assume that σ2
f is a solution

of Definition 18. Given that Zf satisfies Assumption 2, we can substitute the
left-hand side of Equation (63) with Equation (31) to deduce

PW
g,h

(
⟨Zf ⟩t(ω)

)
= F (t, ω) for t ≥ 0 and ω ∈ Ω. (167)

Using Equation (163), Equation (167) can be reexpressed as

PW
g,h

(∫ t

0

σ2
s,f (ω)ds

)
= F (t, ω) for t ≥ 0 and ω ∈ Ω. (168)
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By Lemma 6, there exists an inverse (PW
g,h)

−1 : [0, 1) → R+. Applying (PW
g,h)

−1

on both sides of Equation (168), Equation (168) can be rewritten as∫ t

0

σ2
s,f (ω)ds = (PW

g,h)
−1(F (t, ω))1{0<F (t,ω)<1} for t ≥ 0 and ω ∈ Ω.(169)

The left-hand side of Equation (169) and F have a derivative a.e. for t ≥ 0 by
absolute continuity properties and since F is absolutely continuous. (PW

g,h)
−1 is

differentiable on [0, 1) by Lemma 7. Thus, we can differentiate Equation (169)
a.e. on both sides, by using the chain rule on the right-hand side. We obtain

σ2
t,f (ω) = f(t, ω)((PW

g,h)
−1(ω))′(F (t, ω))1{0<F (t,ω)<1} (170)

a.e. for t ≥ 0 and ω ∈ Ω.

Applying the inverse function theorem, Equation (170) can be reexpressed as

σ2
t,f (ω) =

f(t,ω)

(PW
g,h)

′((PW
g,h)

−1(F (t,ω)))
1{0<F (t,ω)<1} a.e. for t ≥ 0 and ω ∈ Ω,

or equivalently of the form (151) as (PW
g,h)

′(t) = fg,h(t) a.e. for t ≥ 0. Thus, we

have shown that σ2
f is an explicit solution of Definition 26.

Proof of (ii) =⇒ (i). We assume that σ2
f is an explicit solution of Definition

26. We have a.e. for t ≥ 0 and ω ∈ Ω that

PZf

g,h(t|ω) = PW
g,h(

∫ t

0

σ2
s,f (ω)ds)

= PW
g,h(

∫ t

0

f(s, ω)

fW
g,h((P

W
g,h)

−1(F (s, ω)))
1{0<F (s,ω)<1}ds)

= PW
g,h(

∫ t

0

f(s)((PW
g,h)

−1)′(F (s, ω))1{0<F (s,ω)<1}ds)

= PW
g,h((P

W
g,h)

−1)(F (t, ω))

= F (t, ω).

where we use Equation (31) with the assumption that Zf satisfies Assumption
2 in the first equality, Equation (64) in the second equality, the inverse function
theorem in the third equality, integration in the fourth equality and algebraic
manipulation in the fifth equality. We have thus shown that σ2

t satisfies Equation
(62), and thus that σ2

f is a solution of Definition 18.

The following theorem states that under Assumption 7, (a) Zf satisfies As-
sumption 2 and (b) that variance function is solution if and only if it is an
explicit solution.

Theorem 19. We assume that Assumption 7 holds. Then, we have (a) Zf

satisfies Assumption 2 and (b) (i) σ2
f is a solution of Definition 18 ⇐⇒ (ii)

σ2
f is an explicit solution of Definition 26.
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Proof of Theorem 19. To obtain (a), we apply Proposition 17 with Assumption
7. Then, an application of Proposition 18 with (a) yields (b).

Finally, we give the proof of Theorem 11, which is a direct consequence of
Theorem 19.

Proof of Theorem 11. This is a direct consequence of Theorem 19 with Assump-
tion 7.

B.4.2. Case when the quadratic variation is not absolutely continuous

We first give the definition of the explicit solution.

Definition 27. For a given random cdf F , we say that a nondecreasing stochastic
process vF which is the quadratic variation of a continuous local martingale ZF ,
i.e.

⟨ZF ⟩t(ω) = vF (t, ω) for t ≥ 0 and ω ∈ Ω, (171)

is an explicit solution if it is of the form

vF (t, ω) = (PW
g,h)

−1(F (t, ω))1{0<F (t,ω)<1} for t ≥ 0 and ω ∈ Ω. (172)

The next proposition shows that Assumption 8 implies that ZF satisfies
Assumption 2.

Proposition 19. Under Assumption 8, we have that ZF satisfies Assumption
2.

Proof of Proposition 19. By Definition 27, ZF is defined as a continuous local
martingale with quadratic variation ⟨ZF ⟩t(ω) = vF (t, ω) for t ≥ 0 and ω ∈ Ω,
which can be expressed as

vF (t, ω) = (PW
g,h)

−1(F (t, ω))1{0<F (t,ω)<1} for t ≥ 0.

By Lemma 8 we have that (PW
g,h)

−1(1) = ∞, and by Definition 14 we have that
lim
t→∞

F (t, ω) = 1. Thus, we can deduce by Assumption 8 that lim
t→∞

vF (t, ω) = ∞.

This implies that ⟨ZF ⟩∞ = ∞ and thus that ZF satisfies Assumption 2.

The next proposition states that if a nondecreasing function satisfies Assump-
tion 2, then it is a solution if and only if it is an explicit solution. The proof is
based on substituting the left-hand side of Equation (66) with Equations (31)
and (171) and then inverting on both sides of the equation to derive the explicit
solution.

Proposition 20. We assume that vF satisfies Assumption 2. Then, we have
that (i) vF is a solution of Definition 19 ⇐⇒ (ii) vF is an explicit solution of
Definition 27.
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Proof of Proposition 20. Proof of (i) =⇒ (ii). We assume that vF is a solution
of Definition 19. Given that ZF satisfies Assumption 2, we can substitute the
left-hand side of Equation (66) with Equation (31) to deduce

PW
g,h

(
⟨ZF ⟩t(ω)

)
= F (t, ω) for t ≥ 0 and ω ∈ Ω. (173)

Using Equation (171), Equation (173) can be reexpressed as

PW
g,h

(
vF (t, ω)

)
= F (t, ω) for t ≥ 0 and ω ∈ Ω. (174)

By Lemma 6, there exists an inverse(PW
g,h)

−1 : [0, 1) → R+. Applying (PW
g,h)

−1

on both sides of Equation (174), Equation (174) can be rewritten as Equation
(172).

Proof of (ii) =⇒ (i). We assume that vF is an explicit solution of Definition
27. We have

PZF

g,h (t|ω) = PW
g,h

(
⟨ZF ⟩t(ω)

)
= PW

g,h

(
vF (t, ω)

)
= PW

g,h

(
(PW

g,h)
−1(F (t, ω))1{0<F (t,ω)<1})

)
= F (t, ω),

where we use Equation (31) with the assumption that vF satisfies Assumption
2 in the first equality, Equation (171) in the second equality, Equation (172) in
the third equality, and algebraic manipulation in the fourth equality.

The following theorem states that under Assumption 8, (a) ZF satisfies As-
sumption 2 and (b) that random nondecreasing function is solution if and only
if it is an explicit solution.

Theorem 20. We assume that Assumption 8 holds. Then, we have (a) ZF

satisfies Assumption 2 and (b) (i) vF is a solution of Definition 19 ⇐⇒ (ii)
vF is an explicit solution of Definition 27.

Proof of Theorem 20. To obtain (a), we apply Proposition 19 with Assumption
8. Then, an application of Proposition 20 with (a) yields (b).
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