
SUPPLEMENTARYMATERIAL: This is the supplementary material of "Mutually exciting

point processes with latency" by Yoann Potiron and Vladimir Volkov published in the Journal

of the American Statistical Association. Our numerical study is carried over in Supplement A.

Examples are given in the Supplement B. All proofs of the theory are shown in Supplement C.

Additional empirical results belong to Supplement D.

Appendices

A Numerical study

The performance of the model is now explored via a simple multidimensional simulation exper-

iment. Consider the 5-dimensional specification of Equation (4) with intensity given by

λ(i)(t, θ∗) = nν∗,(i) +
5∑
j=1

ˆ t−

0

nh(i,j)(n(t− s), θ∗,(i,j)ker )dN (j)
s , (A1)

where ν∗ =
[

0.01 0.01 0.01 0.01 0.01
]′
, h(t, θ) is a gamma kernel defined in Equation

(B2) and the kernel parameters θ∗ker are chosen such that

h(t, θ∗ker) =
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(A2)

From Equation (B2), we can deduce that the Hawkes process generated by the intensity (A1)

has a baseline equal to ν̃∗,(i) = nν∗,(i) and a gamma kernel h̃(t, θ) with true value parameters
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(nα(i,j), β
(i,j)

n
, D(i,j)). Thus, there is a unique relationship between (ν∗, h) and (ν̃∗, h̃). The choice

of parameter values mimics the broad characteristics of the empirical data discussed in Section

5. From Equation (B3), latency and co-latency are obtained as a function of parameters equal to

L̃(i,j) = β(i,j)(D(i,j)−1)
n

. Thus, we obtain latency and co-latency values below 15 milliseconds. The

simulation exercise involves 500 independent replications with the sample size order n = 100, 000

and setting up T = 1 trading interval to generate the data. Since we recall that n corresponds

to the order of the number of observations, we note that the sample size order n = 100, 000 is

more conservative than the average number of observations in our empirical study, see Table 1.

The elements of the kernel h(t, θ∗ker) are estimated using the MLE approach presented in Section

3.1. The model defined in Equation (A1) meets the theoretical assumptions from Section 4.

Figure A1 illustrates histograms of the kernel estimates ĥ. The trapezoidal rule is used to

numerically compute the integral in Equation (A1). The estimates of all kernel functions are

close to their theoretical values and the confidence intervals behave as expected. One case where

the confidence intervals are especially narrow is represented by ĥ(3,2). This is expected as the

kernel specification has the highest mean rate. All kernels approach zero within 50 intervals.

Now we verify the CLT of the latency estimator. Histograms of latency and co-latency

estimates L̂(i,j)
T are presented in Figure A2. The obtained variance lies within the range of 2-3

intervals. Table A1 verifies the finite sample properties. The bias ranges from −0.10 to −0.30,

which only affects around 1% of latency values. The estimated latency has relatively similar in

sample standard error, which is calculated from (L̂
(i,j)
T − L(i,j)), and estimated standard error√

̂Cov
[
η(i,j), η(k,l)

]
. This indicates that our variance estimator performs reasonably well with

increasing n. To confirm the behavior of variance estimators and asymptotic Gaussianity, we

provide histograms of the standardized errors related to the latency estimator L̂(i,j)
T in Figure

A3.
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Figure A1: Histograms of the kernel estimates ĥ over 50 time intervals. The solid line represents

the estimated kernels. The confidence intervals (dashed line) are represented by 2.5% and 97.5%

percentiles. The histograms are generated from 500 independent replications with the sample size

order n = 100, 000.
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Figure A2: Histograms of latency and co-latency estimates L̂(i,j)
T . The histograms are generated from

500 independent replications with the sample size order n = 100, 000.
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Table A1: Finite sample properties of the latency estimator L̂(i,j)
T . The bias is computed as an average

of (L̂(i,j)
T −L(i,j)), in sample standard error is calculated from (L̂

(i,j)
T −L(i,j)), and the estimated standard

error is
√

̂Cov
[
η(i,j), η(k,l)

]
. The estimates are generated from 500 independent replications with the

sample size order n = 100, 000.

Bias In st. error Est. st. error Bias In st. error Est. st. error

L̂
(1,1)
T -0.11 2.50 2.62 L̂

(1,2)
T -0.15 2.25 3.85

L̂
(1,3)
T -0.20 1.84 3.43 L̂

(1,4)
T -0.18 1.35 3.13

L̂
(1,5)
T -0.21 1.45 3.11 L̂

(2,1)
T -0.30 2.63 3.11

L̂
(2,2)
T -0.13 2.35 3.18 L̂

(2,3)
T -0.22 1.65 3.84

L̂
(2,4)
T -0.25 3.95 4.31 L̂

(2,5)
T -0.16 1.54 3.66

L̂
(3,1)
T -0.26 3.08 3.50 L̂

(3,2)
T -0.18 1.84 3.06

L̂
(3,3)
T -0.19 2.28 3.31 L̂

(3,4)
T -0.17 2.08 4.22

L̂
(3,5)
T -0.20 2.62 3.76 L̂

(4,1)
T -0.11 1.98 3.98

L̂
(4,2)
T -0.20 1.42 2.86 L̂

(4,3)
T -0.24 1.51 2.75

L̂
(4,4)
T -0.41 1.53 3.39 L̂

(4,5)
T -0.13 3.20 3.72

L̂
(5,1)
T -0.12 1.47 3.68 L̂

(5,2)
T -0.18 2.46 3.28

L̂
(5,3)
T -0.20 1.86 2.96 L̂

(5,4)
T -0.15 1.63 3.40

L̂
(5,5)
T -0.19 2.04 3.03
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Figure A3: Histograms of the standardized errors for the latency estimator L̂(i,j)
T . The histograms are

generated from 500 independent replications with the sample size order n = 100, 000.
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Now we conduct hypothesis testing to confirm the size and power of the tests provided in

Section 4.3 for different sample sizes. While the sample size order in our empirical application

is larger than n = 100, 000 providing a better size and power, we aim to demonstrate that the

proposed latency test can be used in other areas of statistics. We compare the sample size

orders of n = 10, 000, n = 50, 000 and n = 100, 000. The sample size order of n = 50, 000 is

similar to a size of dataset from Ogata (1988) who considered earthquakes of magnitude 6 or

more that occurred in Japan and its vicinity over almost 100 years. The significance level is set

up at 5% level. Table A2 reports power and size at the 5% level of the tests: HA : L(1,1) = 0 ,

HB : L(1,2) = 0 , HC : L(1,3) = 0 , HD : L(1,4) = 0, HE : L(1,5) = 0 against one-sided alternatives.

For smaller samples the tests are slightly undersized in most cases but approach 5% for the

sample size order of n = 100, 000. The power is bigger than 0.93 in all cases and approaches

1. This highlights the potential of applying our method not only in finance but also in other

areas of statistics such as seismology.

Table A2: Power and size at the 5% level of the tests: HA : L(1,1) = 0 , HB : L(1,2) = 0 , HC : L(1,3) = 0

, HD : L(1,4) = 0, HE : L(1,5) = 0 against one-sided alternatives. 500 independent replications are used

for simulation.

Null HA HB HC HD HE HA HB HC HD HE

Sample order Size Power

10,000 0.040 0.016 0.010 0.044 0.011 0.932 0.944 0.964 0.956 0.948

50,000 0.032 0.036 0.060 0.036 0.044 0.938 0.951 0.952 0.958 0.952

100,000 0.039 0.044 0.046 0.048 0.046 0.974 0.996 1.000 0.959 1.000
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B Examples

In this supplement, we provide five examples of kernels, i.e. exponential, gamma, Weibull, gen-

eralized gamma, and mixture of several kernels, which meet the assumptions of our framework.

We insist on the fact that latency is not well-defined when the kernel is exponential as the mode

is always equal to 0 in that case. For the remaining examples, the latency is defined as the

mode of the kernel.

B.1 Exponential kernel

The conventional exponential kernel is defined as

h(i,j)(t, θ
(i,j)
ker ) = α(i,j) exp(−t/β(i,j))

β(i,j)
, α(i,j) ∈ (0, h+], β(i,j) ∈ R∗+. (B1)

This is a particular case of the generalized gamma kernel (5) when p(i,j) = D(i,j) = 1. On the

one hand, the exponential kernel satisfies the assumptions of this paper, so it is a valid kernel

form. On the other hand, we insist on the fact that latency is not well-defined when the kernel

is exponential as the mode is always equal to 0 in that case. Thus, the exponential kernel is

not suitable for estimating latency.

B.2 Gamma kernel

The gamma kernel is defined as

h(i,j)(t, θ
(i,j)
ker ) = α(i,j) t

(D(i,j)−1)exp(−t/β(i,j))

(β(i,j))D(i,j)γ(D(i,j))
, α(i,j) ∈ (0, h+], β(i,j) ∈ R∗+, D(i,j) ∈ R∗+. (B2)

This is a particular case of the generalized gamma kernel (5) when p(i,j) = 1. We define latency

as the mode, which can be expressed as

L(i,j) = β(i,j)(D(i,j) − 1). (B3)

44



When L(i,j) > 0, or equivalently D(i,j) > 1, a latency between an event in process j and its

impact on process i is introduced. When L(i,j) ≤ 0, or equivalently D(i,j) ≤ 1, there is no

latency between an event in process j and its impact on process i. Figure B1 illustrates an

example of gamma kernel defined in Equation (B2) and exponential kernel defined in Equation

(B1) for 20 intervals.

0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

Figure B1: An example of gamma kernel defined in Equation (B2) and exponential kernel defined in

Equation (B1) for 20 intervals. The solid line represents the gamma kernel with parameters α = 1,

β = 2, and D = 3 and the vertical line shows the latency L = 4. The dashed line represents the

exponential kernel with α = 1, β = 2, and D = 1.

B.3 Weibull kernel

The Weibull kernel is defined as

h(i,j)(t, θ
(i,j)
ker ) = α(i,j)D

(i,j)t(D
(i,j)−1) exp(−(t/β(i,j))D

(i,j)
)

(β(i,j))D(i,j)
, (B4)

α(i,j) ∈ (0, h+], β(i,j) ∈ R∗+, D(i,j) ∈ R∗+.

This is a particular case of the generalized gamma kernel (5) when p(i,j) = D(i,j). We define

latency as the mode, which can be expressed as

L(i,j) = β(i,j)
(D(i,j) − 1

D(i,j)

)1/D(i,j)

. (B5)

45



B.4 Generalized gamma kernel

The generalized gamma kernel is defined as

h(i,j)(t, θ
(i,j)
ker ) = α(i,j)p

(i,j)t(D
(i,j)−1) exp(−(t/β(i,j))p

(i,j)
)

(β(i,j))D(i,j)γ(D(i,j)/p(i,j))
, α(i,j) ∈ (0, h+], β(i,j), D(i,j), p(i,j) ∈ R∗+.(B6)

We define latency as the mode, which can be expressed as

L(i,j) = β(i,j)
(D(i,j) − 1

p(i,j)

)1/p(i,j)

. (B7)

B.5 Mixture of several kernels

The mixture of exponential, gamma, Weibull and generalized gamma kernel is defined as

h(i,j)(t, θ
(i,j)
ker ) = h(i,j)

exp (t, θ
(i,j)
ker ) + h(i,j)

gam(t, θ
(i,j)
ker ) + h

(i,j)
Wei(t, θ

(i,j)
ker ) + h(i,j)

gengam(t, θ
(i,j)
ker ), (B8)

where

h(i,j)
exp (t, θ

(i,j)
ker ) =

K
(i,j)
1∑
k=1

α
(i,j)
k,1

exp(−t/β(i,j)
k,1 )

β
(i,j)
k,1

,

h(i,j)
gam(t, θ

(i,j)
ker ) =

K
(i,j)
2∑
k=1

α
(i,j)
k,2

t(D
(i,j)
k,2 −1) exp(−t/β(i,j)

k,2 )

(β
(i,j)
k,2 )D

(i,j)
k,2 γ(D

(i,j)
k,2 )

,

h
(i,j)
Wei(t, θ

(i,j)
ker ) =

K
(i,j)
3∑
k=1

α
(i,j)
k,3

D
(i,j)
k,3 t

(D
(i,j)
k,3 −1) exp(−(t/β

(i,j)
k,3 )D

(i,j)
k,3 )

(β
(i,j)
k,3 )D

(i,j)
k,3

,

h(i,j)
gengam(t, θ

(i,j)
ker ) =

K
(i,j)
4∑
k=1

α
(i,j)
k,4

p
(i,j)
k,4 t

(D
(i,j)
k,4 −1) exp(−(t/β

(i,j)
k,4 )p

(i,j)
k,4 )

(β
(i,j)
k,4 )D

(i,j)
k,4 γ(D

(i,j)
k,4 /p

(i,j)
k,4 )

,

and we have that
4∑
l=1

K(i,j)∑
k=1

α
(i,j)
k,l ≤ h+.

A general formula for the mode in the mixture of several kernels case is beyond the scope of

this paper.
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C Proofs

In this supplement, we give all the proofs of the theoretical results from Section 4, namely

Theorem 1, Proposition 2, Corollary 3, Corollary 4, Corollary 5 and Corollary 6.

C.1 Notations

Before we start the proofs, we need some more formal definitions. If z is a real number, a vector

or a matrix, we define its norm as | z |=
∑

k | zk |. When Z is a random variable, we define its

Lp-norm as || Z ||= E[| Z |p]1/p. When Yn and Zn are two sequences of random variables, we

define the notation small tau as Yn = oP(Zn), i.e. that Yn
Zn

1{Zn 6=0} →P 0, and the notation big

tau Yn = OP(Zn), i.e. that Yn
Zn

1{Zn 6=0} is stochastically bounded. Moreover, given a Borel space

(E,B(E)), Cb(E,R) is defined as the set of continuous and bounded functions from the space

E to R. For a measure µ, let L1(µ) be the space of functions that are integrable with respect

to µ. Finally, we define for any i = 1, . . . , d the event times of the ith process as

(T
(i)
1 , . . . , T

(i)

N(i)).

Since Nt is a point process, its F-intensity (4) can be re-expressed partly as the sum at jump

times, i.e.

λ(i)(t, θ∗) = nν∗,(i) +
d∑
j=1

∑
k∈N∗ s.t. T (j)

k <t

nh(i,j)(n(t− T (j)
k ), θ

∗,(i,j)
ker ). (C1)

C.2 Time transformation and some lemmas

Our proof strategy follows the general machinery of Clinet and Yoshida (2017), which consider

large-T asymptotics. To rewrite our problem with in-fill asymptotics as a problem with large-T

asymptotics, we consider a time transformation as in Clinet and Potiron (2018) and Kwan et al.
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(2023). More specifically, we define the time-transformed filtration as

Fn = (F t,n)t∈[0,nT ],

F t,n = F t
n
,n.

From now on, we implicitly assume that all the defined quantities are Fn-adapted. For any

i = 1, . . . , d we define the ith process of the time-transformed point process as

N
(i)

n : [0, nT ] → N (C2)

t 7→ N
(i)

t,n = N
(i)
t
n
,n
,

with corresponding jump times

(T
(i)

1,n, . . . , T
(i)

N
(i)
n ,n

)

defined such that T (i)

k,n = nT
(i)
k,n and the rescaled time-transformed stochastic Fn-intensity process

as

λ
(i)

n : [0, nT ]×Θ → R+ (C3)

(t, θ) 7→ λ
(i)

n (t, θ) =
λ

(i)
n ( t

n
, θ)

n
.

In this first lemma, we rewrite the rescaled time-transformed stochastic Fn-intensity in terms

of the time-transformed point process.

Lemma C1. For any (t, θ) ∈ [0, nT ]×Θ and any i = 1, . . . , d we have that

λ
(i)

n (t, θ) = ν(i) +
d∑
j=1

ˆ t−

0

h(i,j)((t− s), θ(i,j)
ker )dN

(j)

s,n. (C4)

Proof. If we substitute Equation (4) into Definition (C3), we obtain

λ
(i)

n (t, θ) = ν(i) +
d∑
j=1

ˆ t−

0

h(i,j)((t− s), θ(i,j)
ker )dN

(j)
s
n
,n. (C5)

Finally, we can conclude by substituting Definition (C2) into Equation (C5).
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The next lemma shows that Nn is a multidimensional Hawkes process with the same kernel.

Lemma C2. We have that

M t,n = N t,n −
ˆ t

0

λn(s, θ∗)ds (C6)

is a Fn-local martingale. In particular, this implies that Nn is a multidimensional Hawkes

process with the same kernel and related Fn-intensity λn(., θ∗).

Proof. By definition of a compensator, we have that

Mt,n = Nt,n −
ˆ t

0

λn(s, θ∗)ds (C7)

is a Fn-local martingale. First, we will show that Equation (C6) is a Fn-local martingale. In

fact we have

M t,n = N t,n −
ˆ t

0

λn(s, θ∗)ds

= N t
n
,n −
ˆ t

0

λn( s
n
, θ∗)

n
ds

= N t
n
,n −
ˆ t

n

0

λn(y, θ∗)dy

= M t
n
,n,

where we used Equation (C6) in the first equality, Equation (C2) and Equation (C3) in the

second equality, integral change of variable in the third equality and Equation (C7) in the fourth

equality. Now, as Mt,n is a Fn-local martingale, it is clear that the time-transformed local

martingale M t
n
,n is a Fn-local martingale. Then, it means that M t

n
,n is a Fn-local martingale,

thus we have shown the lemma. Second, we can deduce that Nn is a multidimensional Hawkes

process with a mixture of generalized gamma kernels and related Fn-intensity λn(., θ∗) by

Theorem 3.17 (p. 32) in Jacod and Shiryaev (2013).

We also define the log likelihood process of the time-transformed process as

lT,n(θ) =
d∑
i=1

ˆ Tn

0

log(λ
(i)

n (t, θ))dN
(i)

t,n −
d∑
i=1

ˆ Tn

0

λ
(i)

n (t, θ)dt, (C8)
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and θ̂T,n any maximizer of it. The following lemma states that a.s. the MLE on [0, T ] of the

standard point process is equal to the MLE on [0, nT ] of the time-transformed point process.

Lemma C3. We have that a.s.

θ̂T,n = θ̂T,n

Proof. By the time-transformed process form and Lemma C2, the result follows.

C.3 Adaptation of some lemmas in the mixture of generalized gamma

kernels case

The following lemma shows that the time-transformed Fn-intensity, together with its first three

derivatives, are in Lp for any p ∈ N with p ≥ 2. This corresponds to Condition [A2] (i) (p.

1804) in Clinet and Yoshida (2017). This extends Lemma A.5 (p. 1833) in Clinet and Yoshida

(2017) which is restricted to the exponential kernel case to the mixture of generalized gamma

kernels case.

Lemma C4. We assume that Condition [A] holds. For any i = 1, . . . , p, the Fn-intensity

process and their first derivatives satisfy for any p ∈ N, p ≥ 2,

sup
n∈N,t∈[0,nT ]

3∑
l=0

|| sup
θ∈Θ
| ∂lθλ

(i)

n (t, θ) |||p< +∞

Proof. Without loss of generality, we will show the statement only for integers of the form 2p

with p ∈ N∗. By Lemma C1, we have that

λ
(i)

n (t, θ) = ν(i) +
d∑
j=1

ˆ t−

0

h(i,j)((t− s), θ(i,j)
ker )dN

(j)

s,n.

Given that ν(i) is bounded above uniformly in θ ∈ Θ by Condition [A] (vi), there is no loss

of generality assuming that ν(i) = 0 in the rest of this proof. Thus, it remains to show for
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i, j = 1, . . . , d and l = 0, . . . , 3 that

sup
n∈N,t∈[0,nT ]

E
[∣∣∣ˆ t

0

sup
θ∈Θ
| ∂lθh(i,j)((t− s), θ(i,j)

ker )dN
(j)

s,n |
∣∣∣2p] < +∞.

Applying the triangular inequality, it is then sufficient to show that

sup
n∈N,t∈[0,nT ]

E
[∣∣∣ˆ t

0

sup
θ∈Θ
| ∂lθh(i,j)((t− s), θ(i,j)

ker ) | dN (j)

s,n

∣∣∣2p] < +∞.

Because the term inside the integral is positive, it is sufficient to show that uniformly in n ∈ N

we have

E
[∣∣∣ˆ nT

0

sup
θ∈Θ
| ∂lθh(i,j)((nT − s), θ(i,j)

ker ) | dN (j)

s,n

∣∣∣2p] < +∞.

In view of Equation (5), this can be rewritten as

E
[∣∣∣ˆ nT

0

sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker ) exp(−((nT − s)/β(i,j)
k )p

(i,j)
k )

∣∣∣dN (i)

s,n

∣∣∣2p] < +∞,

where P (i,j)
k (t, θ

(i,j)
ker ) is defined as

P
(i,j)
k (t, θ

(i,j)
ker ) = α

(i,j)
k

p
(i,j)
k t(D

(i,j)
k −1)

(β
(i,j)
k )D

(i,j)
k Γ(D

(i,j)
k /p

(i,j)
k )

. (C9)

Since Θ is assumed to be bounded, there exists β+ ∈ R∗+ such that we have uniformly β(i,j)
k ≤ β+.

Then, an application of that inequality along with Condition [A](iii) yields

E
[∣∣∣ ˆ nT

0

sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker ) exp(−((nT − s)/β(i,j)
k )p

(i,j)
k )

∣∣∣dN (i)

s,n

∣∣∣2p]

≤ E
[∣∣∣ ˆ nT

0

e−((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣dN (i)

s,n

∣∣∣2p].
In what follows, we will show by induction that

E
[∣∣∣ ˆ nT

0

e−((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣dM (i)

t,n

∣∣∣2p] (C10)

≤ KpE
[ ˆ Tn

0

e−p((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣2pλ(i)

n (t, θ∗)dt
]

+KpE
[∣∣∣ˆ Tn

0

e−((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣2dt∣∣∣2p−1]

.
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We define

f(t) = e−((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣.

We consider the case p = 1. We can calculate

E
[∣∣∣ ˆ Tn

0

f(t)dM
(i)

t,n

∣∣∣2] = E
[ ˆ Tn

0

f(t)2d〈M (i)

n ,M
(i)

n 〉t
]

= E
[ ˆ Tn

0

f(t)2λ
(i)

n (t, θ∗)dt
]
,

where the first equality was obtained with Itô isometry for point process martingales and the

second equality is due to Equation (C6). This implies that Inequality (C10) holds in the case

p = 1. We investigate now the case p ≥ 2. By the Burkholder-Davis-Gundy inequality (see,

e.g., Equation (2.1.32) in Jacod and Protter (2011)), we obtain

E
[∣∣∣ ˆ Tn

0

f(t)dM
(i)

t,n

∣∣∣2p] ≤ DpE
[∣∣∣ˆ Tn

0

f(t)2dN
(i)

t,n

∣∣∣2p−1]
≤ 2p−1DpE

[∣∣∣ ˆ Tn

0

f(t)2dM
(i)

t,n

∣∣∣2p−1]
+2p−1DpE

[∣∣∣ ˆ Tn

0

f(t)2λ
(i)

n (t, θ∗)dt
∣∣∣2p−1]

.

Now, an induction argument yields that for some constant Qp > 0:

E
[∣∣∣ ˆ Tn

0

f(t)dM
(i)

t,n

∣∣∣2p] ≤ Qp

p∑
q=1

E
[∣∣∣ ˆ Tn

0

f(t)2qλ
(i)

n (t, θ∗)dt
∣∣∣2p−q].

If we can show that for any q = 1, . . . , p we have∣∣∣ ˆ Tn

0

f(t)2qλ
(i)

n (t, θ∗)dt
∣∣∣2p−q ≤ ˆ Tn

0

f(t)2pλ
(i)

n (t, θ∗)dt (C11)

+
∣∣∣f(t)2dt

∣∣∣2p−1

,

then Inequality (C10) is shown with Kp = pQp. We prove now that Inequality (C11) holds. We

write

g(i)
n (t) =

f(t)∣∣∣ ´ Tn0
f(t)2λ

(i)

n (t, θ∗)dt
∣∣∣ 12 . (C12)
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We then obtain that∣∣∣ ˆ Tn

0

g(i)
n (t)2qλ

(i)

n (t, θ∗)dt
∣∣∣2p−q =

∣∣∣ˆ Tn

0

g(i)
n (t)2q−2µ(i)

n (dt)
∣∣∣2p−q

≤
∣∣∣ˆ Tn

0

g(i)
n (t)2pλ

(i)

n (t, θ∗)dt
∣∣∣ 2p−1−2−q

2p−1−1

≤
∣∣∣ˆ Tn

0

g(i)
n (t)2pλ

(i)

n (t, θ∗)dt
∣∣∣ 2p−1−2−q

2p−1−1
+ 1, (C13)

where the equality is due to the fact that µ(i)
n (dt) := g

(i)
n (t)2qλ

(i)

n (t, θ∗)dt is a probability measure

on [0, Tn] and the first inequality comes from Jensen’s inequality. If we reexpress Inequality

(C13) with Definition (C12), we can show Inequality (C10).

We obviously have that

E
[∣∣∣ ˆ nT

0

e−((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣dN (i)

s,n

∣∣∣2p]

= E
[∣∣∣ ˆ nT

0

e−((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣dM (i)

s,n

∣∣∣2p]

+
(
E
[∣∣∣ ˆ nT

0

e−((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣dN (i)

s,n

∣∣∣2p]

−E
[∣∣∣ˆ nT

0

e−((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣dM (i)

s,n

∣∣∣2p]).
We use now Inequality (C10), and we obtain that

E
[∣∣∣ ˆ nT

0

e−((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣dN (i)

t,n

∣∣∣2p]

≤ KpE
[ ˆ Tn

0

e−p((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣2pλ(i)

n (t, θ∗)dt
]

+KpE
[∣∣∣ˆ Tn

0

e−((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣2dt∣∣∣2p−1]

+
(
E
[∣∣∣ˆ nT

0

e−((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣dN (i)

s,n

∣∣∣2p]

−E
[∣∣∣ˆ nT

0

e−((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣dM (i)

s,n

∣∣∣2p])
:= In + IIn + IIIn.
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We now show that In <∞ uniformly in n ∈ N. We can calculate

In
Kp

= E
[ ˆ Tn

0

e−p((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣2pλ(i)

n (t, θ∗)dt
]

=

ˆ Tn

0

e−p((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣2pE[λ(i)

n (t, θ∗)
]
dt,

where we use the definition of In in the first equality, and the second equality is due to Tonelli’s

theorem along with the fact that E[aX] = aE[X] for any random variableX and any nonrandom

a ∈ R. It remains to prove that uniformly in n ∈ N we have

ˆ Tn

0

e−p((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣2pE[λ(i)

n (t, θ∗)
]
dt <∞.

By the kernel definition (see Equation (5) and Equation (C9)), since Θ is bounded itself and

by Condition [A](iii)-(iv) we have that P (i,j)
k (t, .) is in C3(Θ). We can deduce that uniformly

in n ∈ N we have

sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣2p ≤ C.

The proof of In <∞ amounts to showing that uniformly in n ∈ N we have

ˆ Tn

0

e−p((nT−s)/β+)p−E
[
λ

(i)

n (t, θ∗)
]
dt <∞.

By Condition [A] (v) and Definition (C3), we obtain uniformly in n ∈ N and in s ∈ [0, nT ]

that

E
[
λ

(i)

n (t, θ∗)
]
≤ C.

We thus obtain that

In ≤ C

ˆ Tn

0

e−p((nT−s)/β+)p−dt.

By a change of variable in the integral, we can deduce that

ˆ nT

0

e−p((nT−s)/β+)p−dt =

ˆ nT

0

e−p(u/β+)p−du.
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The obtained term can be dominated uniformly in n ∈ N by

ˆ nT

0

e−p(u/β+)p−du ≤
ˆ ∞

0

e−p(u/β+)p−du (C14)

= C1.

We have thus proven that In <∞ uniformly in n ∈ N. The proof for IIn and IIIn follows with

the same arguments.

In what follows, we provide the definition of ergodicity in our time-transformed framework.

This extends Definition 3.1 in Clinet and Yoshida (2017) which does not consider any time

transformation. See also Kwan (2023) for a similar time-transformed framework.

Definition C1. (ergodicity) We assume that (E,B(E)) is a Borel space, and Xn : Ω×[0, nT ]→

E a sequence of stochastic processes adapted to the time-transformed filtration. We say that Xn

is ergodic if there exists a mapping π : Cb(E,R)→ R such that for any ψ ∈ Cb(E,R) we have

1

nT

ˆ nT

0

ψ(Xs,n)ds→P π(ψ).

The following definition introduces the notion of mixing to our time-transformed frame-

work. This extends the definition from Section 3.4 in Clinet and Yoshida (2017) which does

not consider any time transformation. See also Kwan (2023) for a similar time-transformed

framework.

Definition C2. (mixing) We assume that (E,B(E)) is a Borel space, and Xn : Ω×[0, nT ]→ E

a sequence of stochastic processes adapted to the time-transformed filtration. We say that Xn

is C-mixing, for some set of functions C from E to R, if for any φ, ψ ∈ C, the following

convergence holds

ρu := sup
n∈N∗

sup
s∈[0,nT−u]

| Cov[φ(Xs,n), ψ(Xs+u,n)] |→ 0 as u→ +∞.
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The following proposition states that X(i)
n is mixing in the sense of Definition C2, stable,

and ergodic in the sense of Definition C1. This corresponds to Condition [A3] (p. 1805) and

Condition [M1] (p. 1815) in Clinet and Yoshida (2017). This extends Lemma 3.16 (p. 1815)

and Lemma A.6 (p. 1834) in Clinet and Yoshida (2017) which are restricted to the exponential

kernel case to the mixture of generalized gamma kernels case. This also extends their general

machinery by proving first that X(i)
n is mixing and stable, and then this implies its ergodicity.

Finally, this extends Kwan (2023) who considers the non-exponential kernel case but can only

show the ergodicity of (λ
(i)

n (., θ∗), λ
(i)

n (., θ)) but not the ergodicity of X(i)
n . The stability is a

direct consequence of Theorem 1 and Lemma 4 in Brémaud and Massoulié (1996), along with

Condition [A] (v).

Proposition C1. We assume that Condition [A] (ii) to (vi) hold. For any i = 1, . . . , d and

any θ ∈ Θ, X(i)
n is:

(i) Cb(E,R)-mixing in the sense of Definition C2.

(ii) stable, i.e. there exists an R∗+-valued random variable λ
(i)

lim(θ) such that

X
(i)
nT,n →

D (λ
(i)

lim(θ∗), λ
(i)

lim(θ), ∂θλ
(i)

lim(θ)).

(iii) ergodic in the sense of Definition C1, i.e. there exists a mapping π(i) : Cb(E,R)×Θ→

R such that for any (ψ, θ) ∈ Cb(E,R) × Θ we have 1
nT

´ nT
0

ψ(X
(i)
s,n)ds →P π(i)(ψ, θ), where

π(i)(ψ, θ) = E[ψ(λ
(i)

lim(θ∗), λ
(i)

lim(θ), ∂θλ
(i)

lim(θ))].

Proof. We first show (i). We first define the truncated version of X(i)
s,n at time t ≤ s as

X̃
(i)
t,s,n := (λ

(i)

n (s, θ∗),
d∑
j=1

ˆ s−

t

h(i,j)(s− u, θ)dN (i)

u,n,

d∑
j=1

ˆ s−

t

∂θh
(i,j)(s− u, θ)dN (i)

u,n).

By considering φ, ψ ∈ Cb(E,R), we can reexpress ρ(i)
u as

ρ(i)
u = sup

n∈N∗
sup

s∈[0,nT−u]

| Cov[φ(X(i)
s,n), ψ(X

(i)
s+u,n)] |

= sup
n∈N∗

sup
s∈[0,nT−u]

| Cov[φ(X(i)
s,n), ψ(X

(i)
s+u,n)− ψ(X̃

(i)
s+v,s+u,n) + ψ(X̃

(i)
s+v,s+u,n)] |,
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where we use Definition C2 in the first equality, and we have v ≤ s− u in the second equality.

Using the triangular inequality, we can dominate ρ(i)
u as

ρ(i)
u ≤ sup

n∈N∗
sup

s∈[0,nT−u]

| Cov[φ(X(i)
s,n), ψ(X

(i)
s+u,n)− ψ(X̃

(i)
s+v,s+u,n)] |

+ sup
n∈N∗

sup
s∈[0,nT−u]

| Cov[φ(X(i)
s,n), ψ(X̃

(i)
s+v,s+u,n)] |

:= Iu + IIu.

Since Θ is assumed to be bounded, there exists β+ ∈ R∗+ such that we have uniformly β(i,j)
k ≤ β+.

Then, an application of that inequality along with Condition [A](ii) and (iii) yields that the

intensity process is decreasing exponentially. Thus, we can deduce by similar arguments from

the proof of Lemma A.6 (pp. 1834-1836) in Clinet and Yoshida (2017) that Iu → 0 and IIu → 0.

This in turn implies that

ρ(i)
u → 0 as u→ +∞.

The stability (ii) is a direct consequence of Theorem 1 and Lemma 4 in Brémaud and

Massoulié (1996), along with Condition [A] (v).

We now show the ergodicity (iii). For ψ ∈ Cb(E,R) we define V (i)
n (ψ, θ) as

V (i)
n (ψ, θ) =

1

nT

ˆ nT

0

ψ(X(i)
s,n)ds. (C15)

We consider π(i)(ψ, θ) = E[ψ(λ
(i)

lim(θ∗), λ
(i)

lim(θ), ∂θλ
(i)

lim(θ))]. Establishing ergodicity amounts to

showing the convergence in probability, i.e. V (i)
n (ψ, θ) →P π(i)(ψ, θ). In what follows, we show

a stronger statement, i.e. the L2-convergence. We calculate

E[(V (i)
n (ψ, θ)− π(i)(ψ, θ))2] = Var[V (i)

n (ψ, θ)] + (E[V (i)
n (ψ, θ)]− π(i)(ψ, θ))2

:= In + IIn

where the equality is due to the fact that for any random variable X and any nonrandom a ∈ R
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we have E[(X − a)2] = Var[X] + (E[X]− a)2. For the first term, we have that

In = Var[V (i)
n (ψ, θ)]

= Var
[ 1

nT

ˆ nT

0

ψ(X(i)
s,n)ds

]
=

1

n2T 2
Var

[ ˆ nT

0

ψ(X(i)
s,n)
]

=
1

n2T 2
Var

[
lim
K→∞

nT

K

K−1∑
k=0

ψ(X
(i)
knT/K,n)

]
=

1

n2T 2
lim
K→∞

Var
[nT
K

K−1∑
k=0

ψ(X
(i)
knT/K,n)

]
=

1

n2T 2
lim
K→∞

n2T 2

K2
Var

[K−1∑
k=0

ψ(X
(i)
knT/K,n)

]
=

1

n2T 2
lim
K→∞

n2T 2

K2

K−1∑
k=0

K−1∑
l=0

Cov
[
ψ(X

(i)
knT/K,n), ψ(X

(i)
lnT/K,n)

]
=

1

n2T 2

ˆ nT

0

ˆ nT

0

Cov
[
ψ(X(i)

s,n), ψ(X(i)
u,n)
]
dsdu,

where the second equality is obtained via Definition (C15), the third equality and the sixth

equality are due to the fact that for any nonrandom a ∈ R and any random variable X we have

Var[aX] = a2 Var[X], we used the approximation of Riemann sum in the fourth equality and

eight equality, the fifth equality is an application of dominated convergence theorem, and the

seventh equality corresponds to Bienayme’s identity. By Definition C1 and results obtained in

(i), we can bound In as

In ≤
1

n2T 2

ˆ nT

0

ˆ nT

0

ρ
(i)
|s−u|dsdu.

Then, splitting the integral into two terms leads to

In ≤
1

n2T 2

ˆ nT

0

ˆ nT

0

ρ
(i)
|s−u|1{|s−u|≤

√
nT}dsdu+

1

n2T 2

ˆ nT

0

ˆ nT

0

ρ
(i)
|s−u|1{|s−u|>

√
nT}dsdu
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Since there exists ρ(i)
max > 0 such that for any t ≥ 0 we have ρ(i)

t ≤ ρ
(i)
max, we can deduce that

1

n2T 2

ˆ nT

0

ˆ nT

0

ρ
(i)
|s−u|1{|s−u|≤

√
nT}dsdu ≤ ρ

(i)
max

n2T 2

ˆ nT

0

ˆ nT

0

1{|s−u|≤
√
nT}dsdu

= O(
1√
nT

)

→ 0.

We also have that

1

n2T 2

ˆ nT

0

ˆ nT

0

ρ
(i)
|s−u|1{|s−u|>

√
nT}dsdu ≤

sup
y>
√
nT

ρ
(i)
y

n2T 2

ˆ nT

0

ˆ nT

0

1{|s−u|>
√
nT}dsdu

≤ sup
y>
√
nT

ρ(i)
y .

Since ρu →u→∞ 0 by (i), we also deduce that

sup
y>
√
nT

ρ(i)
y → 0.

This implies that
1

n2T 2

ˆ nT

0

ˆ nT

0

ρ
(i)
|s−u|1{|s−u|>

√
nT}dsdu→ 0,

and thus In → 0. For the second term, we know by (ii) thatX(i)
s,n →D (λ

(i)

lim(θ∗), λ
(i)

lim(θ), ∂θλ
(i)

lim(θ)).

In particular, convergence in distribution implies convergence in expectation of any bounded

function, thus we obtain that E[ψ(X
(i)
s,n)]→ E[ψ(λ

(i)

lim(θ∗), λ
(i)

lim(θ), ∂θλ
(i)

lim(θ))]. This can be reex-

pressed as E[ψ(X
(i)
s,n)]→ π(i)(ψ, θ). In particular, this implies that (E[ψ(X

(i)
s,n)]−π(i)(ψ, θ))2 → 0,

i.e. IIn → 0.

For a measure µ, we denote by L1(µ) the space of functions that are integrable with respect

to µ. Since the functions that we will be using in our proofs will not necessarily be bounded,

we need to extend from Cb(E,R) to C↑(E,R) the space of functions in which the ergodicity

holds. We also give a more explicit form to the mapping π(i)(ψ, θ). The following proposition

extends Proposition 3.8 (pp. 1806-1807) in Clinet and Yoshida (2017). The proof follows the

arguments from the proof of Proposition 3.8 (pp. 1822-1824) in Clinet and Yoshida (2017).
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Proposition C2. We assume that Condition [A] (ii) to (vi) holds. Then, for any θ ∈ Θ and

for any i = 1, . . . , d, the following properties hold

(i) The ergodicity, i.e. Proposition C1(iii), still holds for any ψ ∈ C↑(E,R). In particu-

lar, the mapping π(i)
θ∗ (., θ) can be extended to C↑(E,R). Moreover, for any ψ ∈ C↑(E,R) the

convergence is uniform in θ.

(ii) There exists a probability measure Π
(i)
θ on (E,B(E)) such that for any ψ ∈ C↑(E,R),

we have π(i)(ψ, θ) =
´
E
ψ(x)Π

(i)
θ (dx). In particular, C↑(E,R) ⊂ L1(Π

(i)
θ ).

Proof. We can use the arguments from the proof of Proposition 3.8 (pp. 1822-1824) in Clinet

and Yoshida (2017).

C.4 Proofs of consistency

We define

Yn(θ) =
1

nT
(lT,n(θ)− lT,n(θ∗)) (C16)

and also the asymptotic rescaled of the time-transformed log likelihood as

Y(θ) =
d∑
i=1

ˆ
E

(log(
v

u
)u− (v − u))Π

(i)
θ (du, dv, dw). (C17)

In the following lemma, we will prove that Yn(θ) goes to Y(θ) uniformly in θ ∈ Θ and in

probability. This extends Lemma 3.10 (p. 1807) in Clinet and Yoshida (2017) which is restricted

to the large-T asymptotics to the in-fill asymptotics.

Lemma C5. We assume that Condition [A] holds. We have that

sup
θ∈Θ
| Yn(θ)− Y(θ) |→P 0.
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Proof. We can rewrite Yn(θ) as

Yn(θ) =
1

nT
(lT,n(θ)− lT,n(θ∗))

=
1

nT

( d∑
i=1

ˆ Tn

0

log(λ
(i)

n (t, θ))dN
(i)

t,n −
d∑
i=1

ˆ Tn

0

λ
(i)

n (t, θ)dt

−
d∑
i=1

ˆ Tn

0

log(λ
(i)

n (t, θ∗))dN
(i)

t,n +
d∑
i=1

ˆ Tn

0

λ
(i)

n (t, θ∗)dt
)

=
1

nT

d∑
i=1

ˆ Tn

0

log
( λ(i)

n (t, θ)

λ
(i)

n (t, θ∗)

)
dN

(i)

t,n −
1

nT

d∑
i=1

ˆ Tn

0

(λ
(i)

n (t, θ)− λ(i)

n (t, θ∗))dt

=
1

nT

d∑
i=1

ˆ Tn

0

log
( λ(i)

n (t, θ)

λ
(i)

n (t, θ∗)

)
dM

(i)

t,n

− 1

nT

d∑
i=1

ˆ Tn

0

(
λ

(i)

n (t, θ)− λ(i)

n (t, θ∗)− log
( λ(i)

n (t, θ)

λ
(i)

n (t, θ∗)

)
λ

(i)

n (t, θ∗)
)
dt

:=
d∑
i=1

I(i)
n (nT, θ) +

d∑
i=1

II(i)
n (nT, θ),

where we use Equation (C16) in the first equality, Equation (C8) in the second equality, al-

gebraic manipulation in the third equality, Equation (C6) and algebraic manipulation in the

fourth equality.

We first show that the martingale term disappears uniformly asymptotically in probability,

i.e. that

sup
θ∈Θ

∣∣∣ d∑
i=1

I(i)
n (nT, θ)

∣∣∣→P 0.

As an application of Lemma C4 along with Condition [A], for any i = 1, . . . , d and any θ ∈ Θ

we can deduce that I(i)
n (t, θ) is an Lp-integrable martingale for any p ∈ N, with p ≥ 2. By

Condition [A] (vi), we can apply Sobolev’s inequality, and for some big enough p ∈ N we

obtain

E
[∣∣∣ sup

θ∈Θ
I(i)
n (nT, θ)

∣∣∣p] ≤ C
(ˆ

Θ

dθE
[∣∣∣I(i)

n (nT, θ)
∣∣∣p]+

ˆ
Θ

dθE
[∣∣∣∂θI(i)

n (nT, θ)
∣∣∣p]). (C18)
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The first term in the right hand-side of Equation (C18) can be bounded by

ˆ
Θ

dθE
[∣∣∣I(i)

n (nT, θ)
∣∣∣p] ≤ C sup

θ∈Θ
E
[∣∣∣I(i)

n (nT, θ)
∣∣∣p]

= C sup
θ∈Θ

E
[∣∣∣ 1

nT

ˆ Tn

0

log
( λ(i)

n (t, θ)

λ
(i)

n (t, θ∗)

)
dM

(i)

t,n

∣∣∣p]
= C sup

θ∈Θ
E
[ 1

(nT )p

∣∣∣ ˆ Tn

0

log
( λ(i)

n (t, θ)

λ
(i)

n (t, θ∗)

)
dM

(i)

t,n

∣∣∣p]
≤ C sup

θ∈Θ
E
[ 1

(nT )p

∣∣∣ ˆ Tn

0

log
( λ(i)

n (t, θ)

λ
(i)

n (t, θ∗)

)2

λ
(i)

n (t, θ∗)dt
∣∣∣ p2 ]

≤ C sup
θ∈Θ

E
[ 1

(nT )
p
2
−1

ˆ Tn

0

log
( λ(i)

n (t, θ)

λ
(i)

n (t, θ∗)

)p
λ

(i)

n (t, θ∗)
p
2dt
]

≤ C sup
θ∈Θ

E
[ 1

(nT )
p
2
−1

ˆ Tn

0

log
(λ(i)

n (t, θ)

ν−

)p
λ

(i)

n (t, θ∗)
p
2dt
]
,

where the first equality is obtained with In(t, θ) definition, the second inequality is a consequence

to Burkholder-Davis-Gundy inequality, the third inequality comes from Jensen’s inequality, and

the fourth inequality is due to Condition [A](i)-(ii). We can continue to bound the first term

in the right hand-side of Equation (C18) by

ˆ
Θ

dθE
[∣∣∣I(i)

n (nT, θ)
∣∣∣p] ≤ sup

θ∈Θ
E
[ 1

(nT )
p
2
−1

ˆ Tn

0

log
(λ(i)

n (t, θ)

ν−

)p
λ

(i)

n (t, θ∗)
p
2dt
]

=
1

(nT )
p
2
−1

sup
θ∈Θ

E
[ ˆ Tn

0

log
(λ(i)

n (t, θ)

ν−

)p
λ

(i)

n (t, θ∗)
p
2dt
]

=
1

(nT )
p
2
−1

sup
θ∈Θ

ˆ Tn

0

E
[

log
(λ(i)

n (t, θ)

ν−

)p
λ

(i)

n (t, θ∗)
p
2

]
dt

=
1

(nT )
p
2
−2

sup
θ∈Θ

sup
n∈N,t∈[0,nT ]

E
[

log
(λ(i)

n (t, θ)

ν−

)p
λ

(i)

n (t, θ∗)
p
2

]
≤ 1

(nT )
p
2
−2

sup
θ∈Θ

sup
n∈N,t∈[0,nT ]

√
E
[

log
(λ(i)

n (t, θ)

ν−

)2p]√
E
[
λ

(i)

n (t, θ∗)p
]

≤ 1

(nT )
p
2
−2

sup
θ∈Θ

sup
n∈N,t∈[0,nT ]

√
E
[(

1 +
λ

(i)

n (t, θ)

ν−

)2p]√
E
[
λ

(i)

n (t, θ∗)p
]

≤ 1

(nT )
p
2
−2

sup
n∈N,t∈[0,nT ]

√
E
[

sup
θ∈Θ

(
1 +

λ
(i)

n (t, θ)

ν−

)2p]√
E
[

sup
θ∈Θ

λ
(i)

n (t, θ∗)p
]
,
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where the first equality corresponds to the fact that E[aX] = aE[X] for any random variable X

and any nonrandom a ∈ R, the second equality is explained by Tonelli’s theorem, the second

inequality is a consequence of Cauchy-Schwarz inequality, we used the fact that supE[.] ≤

E[sup .] in the fourth inequality. Using the arguments from the proof of Lemma C4 along with

Condition [A], we can show that

1

(nT )
p
2
−2

sup
n∈N,t∈[0,nT ]

√
E
[

sup
θ∈Θ

(
1 +

λ
(i)

n (t, θ)

ν−

)2p]√
E
[

sup
θ∈Θ

λ
(i)

n (t, θ∗)p
]
→ 0,

which implies that for i = 1, . . . , d we have

ˆ
Θ

dθE
[∣∣∣I(i)

n (nT, θ)
∣∣∣p]→ 0.

With the same arguments, we can also show that for i = 1, . . . , d we have

ˆ
Θ

dθE
[∣∣∣∂θI(i)

n (nT, θ)
∣∣∣p]→ 0.

Thus, we can deduce by Equation (C18) for i = 1, . . . , d that

E
[∣∣∣ sup

θ∈Θ
I(i)
n (nT, θ)

∣∣∣p]→ 0. (C19)

We can deduce that

E
[∣∣∣ sup

θ∈Θ

∣∣∣ d∑
i=1

I(i)
n (nT, θ)

∣∣∣p] ≤ CE
[

sup
θ∈Θ

d∑
i=1

∣∣∣I(i)
n (nT, θ)

∣∣∣p]
≤ CE

[ d∑
i=1

sup
θ∈Θ

∣∣∣I(i)
n (nT, θ)

∣∣∣p]
= C

d∑
i=1

E
[

sup
θ∈Θ

∣∣∣I(i)
n (nT, θ)

∣∣∣p]
= C

d∑
i=1

E
[∣∣∣ sup

θ∈Θ
I(i)
n (nT, θ)

∣∣∣p]+ oP(1)

→ 0,

where the first inequality is a consequence of the fact that |
∑d

i=1 ai|p ≤ C
∑d

i=1 |ai|p, the

second inequality follows as sup
∑
≤
∑

sup, the first equality corresponds to the fact that
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E[aX] = aE[X] for any random variable X and any nonrandom a ∈ R, the second equality

comes from Equation (C6) and the martingaleness of M t,n, and the convergence is due to

Equation (C19). To prove that |
∑d

i=1 II
(i)
n (nT, θ) − Y(θ) |→P 0, we can use Proposition C2

along with Condition [A].

We provide now the following lemma, which is the classical nondegeneracy condition on

Y. This corresponds to Condition [A](iv) (p. 1807) in Clinet and Yoshida (2017). This

complements Lemma A.7 (p. 1836) in Clinet and Yoshida (2017) which is restricted to the

large-T asymptotics.

Lemma C6. We assume that Condition [A] (ii) to (vii) hold. For any θ ∈ Θ − {θ∗}, we

have that Y(θ) 6= 0.

Proof. We assume that θ ∈ Θ and that Y(θ) = 0. In view of Equation (C17), we can deduce

that

0 =
d∑
i=1

ˆ
E

(log(
v

u
)u− (v − u))Π

(i)
θ (du, dv, dw).

By Proposition C1 along with Condition [A] (ii) to (vi), this equation can be reexpressed as

0 =
d∑
i=1

E
[
(log(

λ
(i)

lim(θ)

λ
(i)

lim(θ∗)
)λ

(i)

lim(θ∗)− (λ
(i)

lim(θ)− λ(i)

lim(θ∗)))
]
.

For any i = 1, . . . , d we also have that

0 ≥ (log(
λ

(i)

lim(θ)

λ
(i)

lim(θ∗)
)λ

(i)

lim(θ∗)− (λ
(i)

lim(θ)− λ(i)

lim(θ∗))).

This yields that for any i = 1, . . . , d a.s.

0 = (log(
λ

(i)

lim(θ)

λ
(i)

lim(θ∗)
)λ

(i)

lim(θ∗)− (λ
(i)

lim(θ)− λ(i)

lim(θ∗))).

We can then deduce that for any i = 1, . . . , d a.s.

λ
(i)

lim(θ∗) = λ
(i)

lim(θ).

By Condition [A] (ii) and (vii), we can get that θ∗ = θ.
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We provide the proof of consistency in what follows. This extends Theorem 3.9 (p. 1807) in

Clinet and Yoshida (2017) which is restricted to the large-T asymptotics to the in-fill asymp-

totics.

Proof of Equation (17) in Theorem 1. We have by Lemma C3 a.s. θ̂T,n = θ̂T,n. Since the

consistency is a convergence in probability, we can replace θ̂T,n by θ̂T,n in the rest of this proof.

In view of the expression Y(θ), we can see that Y(θ) ≤ 0 for any θ ∈ Θ and Y(θ∗) = 0. As an

application of Lemma C6 along with Condition [A], we can deduce that θ∗ is a global maximum

of Y. By Lemma C5 along with Condition [A], the consistency is directly proven.

C.5 Proofs of the CLT

We start with the following lemma. This extends Lemma A.1 (p. 1824) in Clinet and Yoshida

(2017) which is restricted to the large-T asymptotics to the in-fill asymptotics.

Lemma C7. We assume that Condition [A] holds. For any θ ∈ Θ, we have that lT,n(θ) is a.s.

finite and admits a derivative in θ that satisfies

∂θlT,n(θ) =
d∑
i=1

ˆ Tn

0

∂θλ
(i)

n (t, θ)

λ
(i)

n (t, θ)
dN

(i)

t,n −
d∑
i=1

ˆ Tn

0

∂θλ
(i)

n (t, θ)dt.

Moreover, we have that lT,n(θ) is twice differentiable and that its Hessian matrix satisfies

∂2
θ lT,n(θ) =

d∑
i=1

ˆ Tn

0

∂θ
∂θλ

(i)

n (t, θ)

λ
(i)

n (t, θ)
dM

(i)

t,n −
d∑
i=1

ˆ Tn

0

(∂θλ
(i)

n )⊗2(t, θ))λ
(i)

n (t, θ)−2λ
(i)

n (t, θ∗)dt

+
d∑
i=1

ˆ Tn

0

(∂2
θλ

(i)

n )(t, θ))λ
(i)

n (t, θ)−1(λ
(i)

n (t, θ)− λ(i)

n (t, θ∗))dt.

Proof. From Equation (C8), we define lT,n(θ) :=
∑d

i=1 l
(i),I

T,n (θ) − l(i),IIT,n (θ). First, we show that

for any θ ∈ Θ and any i = 1, . . . , d we have that l(i),IT,n (θ) − l(i),IIT,n (θ) is a.s. finite and admits a
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derivative in θ satisfying

∂θ

ˆ nT

0

log(λ
(i)

n (t, θ))dN
(i)

t,n =

ˆ nT

0

∂θ log(λ
(i)

n (t, θ))dN
(i)

t,n, (C20)

∂θ

ˆ nT

0

λ
(i)

n (t, θ)dt =

ˆ Tn

0

∂θλ
(i)

n (t, θ)dt. (C21)

By Equation (C1), l(i),IT,n (θ) can be reexpressed as

l
(i),I

T,n (θ) =
∑

k∈N∗ s.t. T (i)
k <nT

log(λ
(i)

n (T
(i)

k , θ)). (C22)

As l(i),IT,n (θ) is a finite sum, and since λ(i)

n (T
(i)

k , θ) > 0 by Condition [A] (i)-(ii) , it is a.s. finite.

In addition, since log and λ
(i)

n (T
(i)

k , .) admit derivative in θ ∈ Θ by Lemma C4 along with

Condition [A], then l(i),IT,n also admits a derivative by the chain rule. As the sum is finite and

by linearity of the derivative operator, we deduce that

∂θ
∑

k∈N∗ s.t. T (i)
k <nT

log(λ
(i)

n (T
(i)

k , θ)) =
∑

k∈N∗ s.t. T (i)
k <nT

∂θ log(λ
(i)

n (T
(i)

k , θ)).

By Equation (C22), this equality can be reexpressed as

∂θ

ˆ nT

0

log(λ
(i)

n (t, θ))dN
(i)

t,n =

ˆ nT

0

∂θ log(λ
(i)

n (t, θ))dN
(i)

t,n.

The term l
(i),II

T,n (θ) will be a.s. finite if we can show that its L1-norm is finite. We have that its

L1-norm can be bounded as

E
[∣∣∣l(i),IIT,n (θ)

∣∣∣] = E
[∣∣∣ ˆ nT

0

log(λ
(i)

n (t, θ))dt
∣∣∣]

≤ E
[ ˆ nT

0

∣∣∣ log(λ
(i)

n (t, θ))
∣∣∣dt]

≤ E
[ ˆ nT

0

|λ(i)

n (t, θ)|−1dt
]

+ E
[ ˆ nT

0

∣∣∣λ(i)

n (t, θ))− 1
∣∣∣dt]

≤ nT

ν−
+ E

[ ˆ nT

0

∣∣∣λ(i)

n (t, θ))− 1
∣∣∣dt]

≤ nT

ν−
+ C,
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where we use the definition of l(i),IIT,n (θ) in the equality, the triangular inequality in the first

inequality, the fact that | log(z)| ≤ z−1 + |z − 1| for any z ∈ R+
∗ together with the linearity of

the expectation operator in the second inequality, the third inequality is explained by Condition

[A] (i)-(ii) and the fourth inequality by Lemma C4 along with Condition [A]. We have thus

shown that the L1-norm of l(i),IIT,n (θ) is finite, so that l(i),IIT,n (θ) is a.s. finite. By extending the

arguments, we can prove that

ˆ Tn

0

|∂θλ
(i)

n (t, θ)|dt ≤
ˆ Tn

0

| sup
θ∈Θ

∂θλ
(i)

n (t, θ)|dt

≤ C.

Now, an application of the dominated convergence theorem yields Equation (C21). We can

prove the case ∂2
θ lT,n(θ) with the same arguments.

We note that by Equation (C6), ∂θlT,n(θ∗) can be reexpressed as

∂θlT,n(θ∗) =
d∑
i=1

ˆ Tn

0

∂θλ
(i)

n (t, θ∗)

λ
(i)

n (t, θ∗)
dM

(i)

t,n. (C23)

We provide the proof of the CLT in what follows. This extends Theorem 3.11 (p. 1809) in Clinet

and Yoshida (2017) which is restricted to the large-T asymptotics to the in-fill asymptotics.

Proof of Equations (18), (19) and (20) in Theorem 1. First, we have a.s. θ̂T,n = θ̂T,n by Lemma

C3 and thus we can replace θ̂T,n by θ̂T,n in the rest of this proof since it will not affect conver-

gence in distribution. We obtain by a Taylor expansion that

∂θlT,n(θ̂T,n) = ∂θlT,n(θ∗) + ∂2
θ lT,n(ζn)(θ̂T,n − θ∗),

where ζn is between θ̂T,n and θ∗. Since θ̂T,n is defined as the maximizer of lT,n(.), we deduce

that ∂θlT,n(θ̂T,n) = 0. This yields that

0 = ∂θlT,n(θ∗) + ∂2
θ lT,n(ζn)(θ̂T,n − θ∗).
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If we multiply by −Γ−1
√
nT

, we obtain that

0 =
−Γ−1

√
nT

∂θlT,n(θ∗) +
−Γ−1

√
nT

∂2
θ lT,n(ζn)(θ̂T,n − θ∗).

This equation can be reexpressed as

0 =
−Γ−1

√
nT

∂θlT,n(θ∗) +
−Γ−1

nT
∂2
θ lT,n(ζn)

√
nT (θ̂T,n − θ∗).

To prove Equation (18), it remains to show that

−Γ−1

√
nT

∂θlT,n(θ∗) →D Γ−1/2ξ., (C24)

−Γ−1

nT
∂2
θ lT,n(ζn) →P 1. (C25)

Then, Equation (18) easily follows using Slutsky’s theorem. We prove now Equation (C24). By

Equation (C23), we have that

−Γ−1

√
nT

∂θlT,n(θ∗) =
−Γ−1

√
nT

d∑
i=1

ˆ Tn

0

∂θλ
(i)

n (t, θ∗)

λ
(i)

n (t, θ∗)
dM

(i)

t,n.

For u ∈ [0, 1], we define Su,n as

Su,n =
−Γ−1

√
nT

d∑
i=1

ˆ uTn

0

∂θλ
(i)

n (t, θ∗)

λ
(i)

n (t, θ∗)
dM

(i)

t,n. (C26)

We use Theorem V III.3.24 in Jacod and Shiryaev (2013). We can calculate that

〈Sn, Sn〉u =
Γ−2

nT

d∑
i=1

ˆ uTn

0

∂θλ
(i)

n (t, θ∗)2

λ
(i)

n (t, θ∗)2
dt.

→P uΓ−1.

We prove now that Lindeberg’s condition is satisfied. For any a > 0 we have

E
[∑
s≤u

|∆Ss,n|21|∆Ss,n|>a
]
≤ E

[1

a

∑
s≤u

|∆Ss,n|3
]

= E
[1

a

∑
s≤u

∣∣∣−Γ−1

√
nT

d∑
i=1

ˆ uTn

0

∂θλ
(i)

n (t, θ∗)

λ
(i)

n (t, θ∗)
dM

(i)

t,n

∣∣∣3]
= E

[1

a

∑
s≤u

∣∣∣−Γ−1

√
nT

d∑
i=1

ˆ uTn

0

∂θλ
(i)

n (t, θ∗)

λ
(i)

n (t, θ∗)
dN

(i)

t,n

∣∣∣3]
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= E
[1

a

d∑
i=1

ˆ uTn

0

∣∣∣−Γ−1

√
nT

∂θλ
(i)

n (t, θ∗)

λ
(i)

n (t, θ∗)

∣∣∣3dN (i)

t,n

]
= E

[1

a

d∑
i=1

ˆ uTn

0

∣∣∣−Γ−1

√
nT

∂θλ
(i)

n (t, θ∗)

λ
(i)

n (t, θ∗)

∣∣∣3λ(i)

n (t, θ∗)dt
]

≤ E
[1

a

∣∣∣−Γ−1

√
nT

∣∣∣3 d∑
i=1

ˆ uTn

0

∣∣∣∂θλ(i)

n (t, θ∗)

λ
(i)

n (t, θ∗)

∣∣∣3λ(i)

n (t, θ∗)dt
]

≤ E
[1

a

∣∣∣−Γ−1

√
nT

∣∣∣3 d∑
i=1

ˆ uTn

0

sup
θ∈Θ

∣∣∣∂θλ(i)

n (t, θ)

λ
(i)

n (t, θ)

∣∣∣3λ(i)

n (t, θ)dt
]
,

where we used the fact that 1|∆Ss,n|>a ≤ 1
a
|∆Ss,n| in the first inequality, the first equality is due

to Definition (C26), the second equality is explained by the fact that the drift part does not

jump, the third and fourth equality are a consequence of the form of dN (i)

t,n. We can continue

to bound the Linderberg’s term by

E
[∑
s≤u

|∆Ss,n|21|∆Ss,n|>ε
]
≤ E

[1

a

∣∣∣−Γ−1

√
nT

∣∣∣3 d∑
i=1

ˆ uTn

0

sup
θ∈Θ

∣∣∣∂θλ(i)

n (t, θ)

λ
(i)

n (t, θ)

∣∣∣3λ(i)

n (t, θ)dt
]

≤ E
[1

a

∣∣∣−Γ−1

√
nT

∣∣∣3 d∑
i=1

ˆ uTn

0

sup
θ∈Θ

|∂θλ
(i)

n (t, θ)|3

λ
(i)

n (t, θ)2
dt
]

≤ E
[ 1

aν2
−

∣∣∣−Γ−1

√
nT

∣∣∣3 d∑
i=1

ˆ uTn

0

sup
θ∈Θ
|∂θλ

(i)

n (t, θ)|3dt
]

=
1

aν2
−

∣∣∣−Γ−1

√
nT

∣∣∣3 d∑
i=1

ˆ uTn

0

E
[

sup
θ∈Θ
|∂θλ

(i)

n (t, θ)|3
]
dt

≤ CunT

aν2
−

∣∣∣−Γ−1

√
nT

∣∣∣3
→ 0,

where the third inequality is due to Condition [A] (i)-(ii), and Lemma C4 along with Condition

[A] is used for the fourth inequality. We have thus shown that Lindeberg’s condition holds, so

that Equation (C24) is satisfied. We prove now Equation (C25), i.e. that −Γ−1

nT
∂2
θ lT,n(ζn)→P 1.

It is sufficient to prove that

|Γ + (nT )−1∂2
θ lT,n(ζn)| →P 0.

69



If we define Vn as a shrinking ball centered on θ∗ it is sufficient to show that

sup
θ∈Vn
|Γ + (nT )−1∂2

θ lT,n(θ)| →P 0. (C27)

We can reexpress Equation (C27) as the sum of a martingale term and a drift term. For the

martingale term, we can notice that ∂θ ∂θλ
(i)
n (t,θ)

λ
(i)
n (t,θ)

and ∂2
θ
∂θλ

(i)
n (t,θ)

λ
(i)
n (t,θ)

are dominated by polynoms in

∂kθλ
(i)

n (t, θ) and 1

λ
(i)
n (t,θ)

for k = 0, 1, 2, 3. By an application of Sobolev’s inequality, Lemma C4

along with Condition [A], we obtain for p big enough that

E
∣∣∣ sup
θ∈Θ

1

nT

ˆ nT

0

∂θ
∂θλ

(i)

n (t, θ)

λ
(i)

n (t, θ)
dM

(i)

t,n

∣∣∣p = O((nT )−p/2).

Given that we have Lp convergence implies convergence in probability, we can deduce that

d∑
i=1

sup
θ∈Θ

1

nT

ˆ nT

0

∂θ
∂θλ

(i)

n (t, θ)

λ
(i)

n (t, θ)
dM

(i)

t,n →P 0.

We have that

E sup
θ∈Vn

∣∣∣ 1

nT

ˆ nT

0

∂2
θλ

(i)

n (t, θ)

λ
(i)

n (t, θ)
(λ

(i)

n (t, θ)

−λ(i)

n (t, θ∗))dt
∣∣∣ ≤ 1

nT

ˆ nT

0

E sup
θ∈Vn

∣∣∣∂2
θλ

(i)

n (t, θ)

λ
(i)

n (t, θ)
(λ

(i)

n (t, θ)−

λ
(i)

n (t, θ∗))
∣∣∣dt

≤ 1

nTν−

ˆ nT

0

E sup
θ∈Vn

∣∣∣∂2
θλ

(i)

n (t, θ)(λ
(i)

n (t, θ)

−λ(i)

n (t, θ∗))
∣∣∣dt

≤ 1

nTν−

ˆ nT

0

√
E sup
θ∈Vn

∣∣∣∂2
θλ

(i)

n (t, θ)
∣∣∣2

×

√
E sup
θ∈Vn

∣∣∣λ(i)

n (t, θ)− λ(i)

n (t, θ∗)
∣∣∣2dt

70



≤ 1

nTν−

ˆ nT

0

√
sup

n∈N,t∈[0,nT ]

E
[

sup
θ∈Θ

∣∣∣∂2
θλ

(i)

n (t, θ)
∣∣∣2]

×

√
E sup
θ∈Vn

∣∣∣λ(i)

n (t, θ)− λ(i)

n (t, θ∗)
∣∣∣2dt

≤ C

nTν−

ˆ nT

0

(C28)√
E sup
θ∈Vn

∣∣∣λ(i)

n (t, θ)− λ(i)

n (t, θ∗)
∣∣∣2dt,

where we use the triangular inequality and linearity of expectation operator in the first inequal-

ity, the second inequality is due to Condition [A] (i)-(ii), the third inequality corresponds to

Cauchy-Schwarz inequality, and the fifth inequality comes from Lemma C4 along with Condi-

tion [A]. Now, we obtain by a Taylor expansion that

λ
(i)

n (t, θ)− λ(i)

n (t, θ∗) = ∂θλ
(i)

n (t, θ̃)(θ − θ∗),

where θ̃ is between θ and θ∗. Applying square operator on both sides of the equation, we obtain

that ∣∣∣λ(i)

n (t, θ)− λ(i)

n (t, θ∗)
∣∣∣2 =

∣∣∣∂θλ(i)

n (t, θ̃)
∣∣∣2∣∣∣θ − θ∗∣∣∣2.

We can easily deduce that

sup
θ∈Vn

∣∣∣λ(i)

n (t, θ)− λ(i)

n (t, θ∗)
∣∣∣2 ≤ sup

θ∈Θ

∣∣∣∂θλ(i)

n (t, θ)
∣∣∣2∣∣∣θ − θ∗∣∣∣2. (C29)

We have that

E sup
θ∈Vn

∣∣∣ 1

nT

ˆ nT

0

∂2
θλ

(i)

n (t, θ)

λ
(i)

n (t, θ)
(λ

(i)

n (t, θ)

−λ(i)

n (t, θ∗))dt
∣∣∣ ≤ C

nTν−

ˆ nT

0

√
E sup
θ∈Vn

∣∣∣λ(i)

n (t, θ)− λ(i)

n (t, θ∗)
∣∣∣2dt

≤ C

nTν−

ˆ nT

0

√
E sup
θ∈Θ

∣∣∣∂θλ(i)

n (t, θ)
∣∣∣2∣∣∣θ − θ∗∣∣∣2dt
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≤ C

ν−

∣∣∣θ − θ∗∣∣∣√ sup
n∈N,t∈[0,nT ]

E sup
θ∈Θ

∣∣∣∂θλ(i)

n (t, θ)
∣∣∣2

≤ CK

ν−

∣∣∣θ − θ∗∣∣∣
→ 0.

where the first inequality comes from Equation (C28), the second inequality is due to Equation

(C29), the fourth inequality is deduced by Lemma C4 along with Condition [A], and the

convergence is due to the fact that θ ∈ Vn with Vn shrinking to θ. Since L1 convergence implies

convergence in probability we obtain that

sup
θ∈Vn

∣∣∣ 1

nT

ˆ nT

0

∂2
θλ

(i)

n (t, θ)

λ
(i)

n (t, θ)
(λ

(i)

n (t, θ)− λ(i)

n (t, θ∗))dt
∣∣∣→P 0.

For the drift term, we define the process as

U (i)
n (θ) =

1

nT

ˆ nT

0

(∂θ)
⊗2λ

(i)

n (t, θ)λ
(i)

n (t, θ)−2λ
(i)

n (t, θ∗)dt.

When evaluated at θ∗, this process is equal to

U (i)
n (θ∗) =

1

nT

ˆ nT

0

(∂θ)
⊗2λ

(i)

n (t, θ∗)λ
(i)

n (t, θ∗)−1dt.

Using the arguments from the proof of the martingale case, we can show for any i = 1, . . . , d

that

|U (i)
n (θ∗)− U (i)

n (θ)| →P 0.

Then the conclusion follows by writing Γ as the limit of
∑d

i=1 U
(i)
n (θ∗) and an application of

Proposition C2 along with Condition [A]. Finally, the consistency of the asymptotic variance

estimator, i.e. Equation (19), follows given its definition (16), the definition of the Fisher

Hessian matrix in Equation (15), along with the consistency of θ̂T,n (see Equation (17) in

Theorem 1). The feasible CLT, i.e. Equation (20), is obtained via the standard CLT (see

Equation (18)) together with Slutsky’s theorem.
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C.6 Proofs of CLT for latency

We first give the proof of Proposition 2.

Proof of Proposition 2. By Equation (7) and Equation (3), we can reexpress L̂T,n − L as

L̂T,n − L = F (θ̂T,n,l)− F (θ∗l ). (C30)

By Condition [B], we obtain for any i = 1, . . . , d and any j = 1, . . . , d by componentwise Taylor

expansion that

F (i,j)(θ̂T,n,l)− F (i,j)(θ∗l ) = dF (i,j)(θ∗l )(θ̂T,n,l − θ∗l ) (C31)

+(θ̂T,n,l − θ∗l )Td2F (i,j)(θ̃)(θ̂T,n,l − θ∗l ),

where d2F (i,j)(θl) corresponds to the (m−d)× (m−d)-dimensional Hessian matrix of the (i, j)-

index of F at point θl, and θ̃ is between θ̂T,n,l and θ∗l . To show the consistency, i.e. Equation

(24), we can calculate for any i = 1, . . . , d and any j = 1, . . . , d that

L̂
(i,j)
T,n − L

(i,j) = F (i,j)(θ̂T,n,l)− F (i,j)(θ∗l )

= dF (i,j)(θ∗l )(θ̂T,n,l − θ∗l ) + (θ̂T,n,l − θ∗l )Td2F (i,j)(θ̃)(θ̂T,n,l − θ∗l )

= OP(||θ̂T,n,l − θ∗l ||) +OP(||θ̂T,n,l − θ∗l ||2)

→P 0,

where we use Equation (C30) in the first equality, the second equality is due to Equation

(C31), the third equality is a consequence to the fact that Θ is a compact set and F is twice

continuously differentiable by Condition [B] so that dF (i,j)(θ∗l ) and d2F (i,j)(θ̃) are bounded,

and the convergence is obtained via the consistency of θ̂T,n,l (see Equation (17) in Theorem 1
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along with Condition [A]). To prove the CLT, i.e. Equation (25), we can calculate

√
nT (L̂

(i,j)
T,n − L

(i,j))j=1,...,d
i=1,...,d =

√
nT (F (i,j)(θ̂T,n,l)− F (i,j)(θ∗l ))

j=1,...,d
i=1,...,d

=
√
nT
(
dF (i,j)(θ∗l )(θ̂T,n,l)− θ∗l )

)j=1,...,d

i=1,...,d

+
√
nT
(
(θ̂T,n,l − θ∗l )Td2F (i,j)(θ̃)(θ̂T,n,l − θ∗l )

)j=1,...,d

i=1,...,d

=
√
nT
(
dF (i,j)(θ∗l )(θ̂T,n,l)− θ∗l )

)j=1,...,d

i=1,...,d

+
√
nTOP(||θ̂T,n,l − θ∗l ||2)

=
√
nT
(
dF (i,j)(θ∗l )(θ̂T,n,l)− θ∗l )

)j=1,...,d

i=1,...,d

+OP(||θ̂T,n,l − θ∗l ||)

→D (dF (i,j)(θ∗l )Γ
−1/2
l ξl)

j=1,...,d
i=1,...,d

where we use Equation (C30) in the first equality, the second equality is a consequence to

Equation (C31), the third equality is due to the fact that Θ is a compact set and F is twice

continuously differentiable by Condition [B] so that d2F (i,j)(θ̃) is bounded, the fourth equality

is a consequence to the CLT of θ̂T,n,l (see Equation (18) in Theorem 1 along with Condition

[A]), and the convergence is obtained via the consistency and CLT of θ̂T,n,ker (see Equation (17)

and Equation (18) in Theorem 1 along with Condition [A]). Finally, we have that the limit is

not null by Condition [B]). We show now Equation (26), i.e. we reexpress η(i,j) as

η(i,j) = dF (i,j)(θ∗l )Γ
−1/2
l ξl

= dF (i,j)(θ∗l )
( l∑
q=1

(
Γ
−1/2
l

)(1,q)
ξ

(q)
l , . . . ,

l∑
q=1

(
Γ
−1/2
l

)(m−d,q)
ξ

(q)
l

)T
=

l∑
r=1

(
dF (i,j,r)(θ∗l )

l∑
q=1

(
Γ
−1/2
l

)(r,q)
ξ

(q)
l

)
=

l∑
q=1

( l∑
r=1

dF (i,j,r)(θ∗l )
(
Γ
−1/2
l

)(r,q)
)
ξ

(q)
l ,

where the first equality is due to Equation (21), the second and third equalities are matrix

calculation, the fourth equality is from algebraic manipulations by inverting sums. Equation
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(27) can be deduced directly by using the fact that ξl follows an l-dimensional standard normal

vector. The consistency of the covariance estimator, i.e. Equation (28), is due to the consistency

of θ̂T,n,l (see Equation (17) in Theorem 1 along with Condition [A]), the consistency of Γ̂T,n,l

(see Equation (19) in Theorem 1), along with Condition [B]. The normalized feasible CLT, i.e.

Equation (29) and Equation (30), is deduced via the standard CLT (see Equation (25)), the

consistency of the covariance estimator (see Equation (28)), together with Slutsky’s theorem.

Finally, we can show Equation (31) since

̂
Cor

[
ξ̃(i,j), ξ̃(k,u)

]
=

̂Cov[η(i,j), η(k,u)]√
̂Var
[
η(i,j)

] ̂Var
[
η(k,u)

]
=

∑l
q=1

(∑l
r=1 dF

(i,j,r)(θ̂l)
(
Γ̂
−1/2
l

)(r,q)
)(∑l

r=1 dF
(k,u,r)(θ̂l)

(
Γ̂
−1/2
l

)(r,q)
)

√
̂Var
[
η(i,j)

] ̂Var
[
η(k,u)

]
→

∑l
q=1

(∑l
r=1 dF

(i,j,r)(θ∗l )
(
Γ
−1/2
l

)(r,q)
)(∑l

r=1 dF
(k,u,r)(θ∗l )

(
Γ
−1/2
ker

)(r,q)
)

√
Var

[
η(i,j)

]
Var

[
η(k,u)

]
=

Cov[η(i,j), η(k,u)]√
Var

[
η(i,j)

]
Var

[
η(k,u)

]
= Cor

[
ξ̃(i,j), ξ̃(k,u)

]
,

where the first equality is due to Equation (23), the second equality comes from Equation

(22), the convergence is due to the consistency of θ̂T,n,l (see Equation (17) in Theorem 1 along

with Condition [A]) together with the consistency of Γ̂T,n,l (see Equation (19) in Theorem 1

along with Condition [A]) in the numerator and to Equation (28) in the denominator, the

third equality corresponds to Equation (27), and the fourth equality is obtained by Equation

(30).

We provide now the proof of Corollary 3.

Proof of Corollary 3. We obtain by the CLT of the latency estimator (see Equation (25) in

Proposition 2 along with Condition [A] and Condition [B]) the asymptotic matrix (η(i,j))j=1,...,d
i=1,...,d ,
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which can be reexpressed as in Equation (26). We can then deduce Equation (34) by Condi-

tion [C]. The consistency of the asymptotic covariance matrix inverse, i.e. Equation (35),

follows directly from the consistency of the covariance estimator in Equation (28). The feasible

normalized CLT, i.e. Equation (36), is deduced via the standard CLT (see Equation (34)),

the consistency of the asymptotic covariance matrix inverse (see Equation (35)) together with

Slutsky’s theorem.

C.7 Proofs of the tests related to latency

We finally give the proofs of the corollaries related to latency tests. We start with the proof of

Corollary 4.

Proof of Corollary 4. The size of the first Wald test statistic W (L̃), i.e. Equation (37), can be

shown converging in distribution to a chi-squared distribution with one degree of freedom using

its definition (see Equation (8)), the CLT of the latency matrix estimator and the consistency of

the covariance estimator (see Equations (25) and (28) in Proposition 2 along with Condition [A]

and Condition [B]), and the form of the chi-squared distribution with one degree of freedom.

The power of the first Wald test statistic W (L̃), i.e. Equation (38), goes to 1 as an application

of the CLT of the latency matrix estimator and the consistency of the covariance estimator (see

Equations (25) and (28) in Proposition 2 along with Condition [A] and Condition [B]) along

with its definition (see Equation (8)).

We provide the proof of Corollary 5 in what follows.

Proof of Corollary 5. Under the null hypothesis H ′0 : {L(i,j) = L(k,u)}, we can calculate that

√
nT (L̂

(i,j)
T − L̂(k,u)

T ) =
√
nT (L̂

(i,j)
T − L(i,j)) +

√
nT (L(k,u) − L̂(k,u)

T ) +
√
nT (L(i,j) − L(k,u))

=
√
nT (L̂

(i,j)
T − L(i,j)) +

√
nT (L(k,u) − L̂(k,u)

T )

→D η(i,j) − η(k,u),
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where the first equality corresponds to algebraic manipulation, the second equality is due to

the fact that under H ′0 we have that L(i,j) = L(k,l), and the convergence comes from the CLT

of the latency matrix estimator (see Equation (25) in Proposition 2 along with Condition [A]

and Condition [B]). If we write

η̃ = η(i,j) − η(k,u), (C32)

we know that η̃ is normally distributed since we assume that (η(i,j), η(k,u)) is a two-dimensional

random vector. We have that the mean of η̃ is null by its definition in Equation (21). It remains

to calculate its variance. We obtain that

Var
[
η̃
]

= Var
[
η(i,j) − η(k,u)

]
= Var

[
η(i,j)

]
+ Var

[
η(k,u)

]
− 2 Cov

[
η(i,j), η(k,u)

]
where the first equality comes from Equation (C32), and the second equality corresponds to a

well-known variance-covariance property. By the consistency of the covariance estimator (see

Equation (28) in Proposition 2 along with Condition [A] and Condition [B]), Var
[
η̃
]
can be

consistently estimated as

V̂ar
[
η̃
]

= ̂Var
[
η(i,j)

]
+ ̂Var

[
η(k,l)

]
− 2 ̂Cov

[
η(i,j), η(k,l)

]
.

As a consequence, we obtain that W ′ converges in distribution to a chi-square with one degree

of freedom. Under the alternative hypothesis H ′1 : {L(i,j) 6= L(k,l)}, we can calculate that

√
nT (L̂

(i,j)
T − L̂(k,l)

T ) =
√
nT (L̂

(i,j)
T − L(i,j)) +

√
nT (L(k,l) − L̂(k,l)

T ) +
√
nT (L(i,j) − L(k,l))

= OP(1) +
√
nT (L(i,j) − L(k,l)),

where the first equality corresponds to algebraic manipulation, and the second equality comes

from the CLT of the latency matrix estimator (see Equation (25) in Proposition 2 along with
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Condition [A] and Condition [B]). Finally, we have by the consistency of the covariance esti-

mator (see Equation (28) in Proposition 2 along with Condition [A] and Condition [B]) and

by the fact that Ω is bounded that Var
[
η̃
]
is uniformly bounded. Thus, we can deduce that

the second Wald statistic W ′ diverges under H ′1.

Finally, we give the proof of Corollary 6.

Proof of Corollary 6. The size of the third Wald test statistic W (r), i.e. Equation (41), can be

shown converging in distribution to a chi-squared distribution with q degrees of freedom using

its definition (see Equation (10)), the CLT of the latency vector estimator and the consistency of

the asymptotic covariance matrix inverse (see Equations (34) and (35) in Corollary 3 along with

Condition [A], Condition [B] and Condition [C]), and the form of the chi-squared distribution

with q degrees of freedom. The power of the third Wald test statistic W (r), i.e. Equation (42),

goes to 1 as an application of the CLT of the latency vector estimator and the consistency

of the asymptotic covariance matrix inverse (see Equations (34) and (35) in Corollary 3 along

with Condition [A], Condition [B] and Condition [C]) along with its definition (see Equation

(10)).

D Additional empirical results

The parameter estimates α̂(i,j)
T are presented in Figure D1. Recall that α captures a size of

jump associated with trading or quoting intensity. The size of jump for self-exciting effects in

plots (a) and (c) is larger in periods of intensive trading - March 2020 when traders utilized the

market shift due to the start of COVID-19 pandemic. Interestingly the cross-exciting effects

from quotes to trades in the US, plots (f), and in Canada, plot (h), dropped during this period

showing a change towards a trade driven market.
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The parameter estimates β̂(i,j) are presented in Figure D2. At the beginning of COVID-19

pandemic in March 2020, decay captured by β changed from 1 to almost 2 reflecting acceleration

in trading reactions for self-excitation parts in the US and Canada (plots (a) and (c)). Cross-

exciting parameters β̂(4,3)
T and β̂(2,1)

T for quotes due to trades are stable during this period.
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Figure D1: Parameter estimates α̂(i,j)
T for each day for events in the NYSE and TSX. 90% confidence

intervals are reported.
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Figure D2: Parameter estimates β̂(i,j)
T for each day for events in the NYSE and TSX. 90% confidence

intervals are reported.
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