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ABSTRACT
A novel statistical approach to estimating latency, defined as the time it takes to learn about an event
and generate response to this event, is proposed. Our approach only requires a multidimensional point
process describing event times, which circumvents the use of more detailed datasets which may not even
be available. We consider the class of parametric Hawkes models capturing clustering effects and define
latency as a known function of kernel parameters, typically the mode of kernel function. Since latency is not
well-defined when the kernel is exponential, we consider maximum likelihood estimation in the mixture
of generalized gamma kernels case and derive the feasible central limit theory with in-fill asymptotics.
As a byproduct, central limit theory for a latency estimator and related tests are provided. Our numerical
study corroborates the theory. An empirical application on high frequency data transactions from the
New York Stock Exchange and Toronto Stock Exchange shows that latency estimates for the United States
and Canadian stock exchanges vary between 1 and 6 milliseconds from 2020 to 2021. Supplementary
materials for this article are available online, including a standardized description of the materials available
for reproducing the work.
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1. Introduction

Over the last decade, financial markets have undergone
revolutionary institutional and technological changes. Massive
increases in computer power have led to algorithmic trading,
explosions in sub-second orders, and large increases in trading
volume. These changes transformed the financial markets and
made latency an inherent part of investment process. Low
latency, or simply latency, can be broadly defined following
Hasbrouck and Saar (2013) as the time it takes to learn about an
event and generate response to this event.

Although the term latency is widely used in finance, it is
also related to delay, a more common term in statistics. In fact,
delay is present in datasets related to seismology, insurance,
criminology, sociology and medicine as in for example, Harris
(1990). Indeed, just like a time lag before a trading event is
revealed to market participants, there is also a time lag before
a tweet post becomes available on X, or a registration of medical
incidents. Despite the fact that we mainly use the term latency
and our empirical application focuses on finance, a statistician
should keep this parallel in mind when reading the article.

In the finance literature an approach to obtaining latency is
heavily dependent on datasets that are not available in many
cases. Hasbrouck and Saar (2013) propose a widely used low
latency measure based on strategic runs representing series of
submissions, cancellations, and executions that are linked by
direction, size, and timing, and which are likely to arise from
a single algorithm. However, as the proposed approach requires
detailed information about the timing and other characteristics
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of cancellations—which is not available for many markets—a
unified statistical framework for accurate estimation of latency
is a missing link in the literature.

An alternative method, proposed in this article, is to make use
of a statistical model relying solely on multidimensional event
times. These time series are normally available to a statistician,
making our approach widely suitable for applications. Building
upon the stylized fact that arrival times are not deterministic,
an obvious choice is to use tractable Poisson processes, in which
inter-arrival times are IID. Yet, Poisson processes are not well
suited for modeling the arrival times as the empirical literature
on inter-arrival durations points out that trades tend to clus-
ter together over time. Accordingly, the class of autoregressive
conditional duration (ACD) models is introduced in Engle and
Russell (1998). ACD models are closely aligned with GARCH
models and there are many multidimensional extensions of
GARCH models. Most of these extensions are also applicable to
ACD models, and copulas can be also used to provide appropri-
ate solutions to such extensions, see Heinen and Rengifo (2007),
Koopman et al. (2018), Barra, Borowska, and Koopman (2018)
and the references therein. However, these models are hard to
generalize to a set-up with asynchronous times.

This motivates using a more suitable class of multidimen-
sional models, the so-called mutually exciting processes such
that the occurrence of any event fuels the probability of the next
events occurring. The d-dimensional intensity, which can be
interpreted as the instantaneous expected number of events, is
defined as
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λ(t) = ν +
∫ t

0
h(t − s) dNs, (1)

where ν is a d-dimensional Poisson baseline, h(t) is a d × d-
dimensional kernel matrix whose diagonal components h(i,i) are
self-exciting terms for the related ith process and non-diagonal
components h(i,j) are cross-exciting terms made by event from
the jth to the ith process.

Considering a classical parametric specification of model (1),
the novelty in our model is that we define latency as a known
function of parameters, typically the time corresponding to the
peak of the kernel function, that is the mode. We assume that
the latency is a d × d-dimensional matrix. We insist on the fact
that latency is not well-defined when the kernel is exponential as
the mode is always equal to 0 in that case. Thus, we introduce a
mixture of generalized gamma kernels in which latency is well-
defined.

In this article, we focus on in-fill asymptotics, that is when T
is fixed, since it is well-known that latency changes empirically
across different days, and this is also corroborated by the findings
in our empirical application. In the absence of latency, there
already exists successful attempts to accommodate for in-fill
asymptotics in Hawkes processes. Chen and Hall (2013) allow
for a nonrandom parametric time-varying baseline. Their in-
fill asymptotic results are based on random observation times of
order n within the fixed time interval [0, T]. A single boosting
of the baseline, that is λ(t) = αnνt + ∫ t

0 h(t − s) dNs, is
considered where αn → ∞ is a scaling sequence when n → ∞.
Chen and Hall (2013) derive a central limit theorem (CLT) for
MLE parameters related to the baseline and kernel. Clinet and
Potiron (2018) consider stochastic time-varying baseline and
kernel parameters in the exponential kernel case, and introduce
a joint boosting of the baseline and the kernel, that is λ(t) =
nνt + ∫ t

0 nas exp(−nbs(t − s)) dNs to derive CLTs on integrated
baseline and parameters with local MLE. Kwan, Chen, and Dun-
smuir (2023) revisit Chen and Hall (2013) in the exponential
kernel case and with the same in-fill asymptotics as in Clinet and
Potiron (2018), that is λ(t) = nνt + ∫ t

0 na exp(−nb(t − s)) dNs.
Kwan (2023) considers the non-exponential kernel case and
advocates the use of in-fill asymptotics for statistical inference
to better match high-frequency data. An example of Aït-Sahalia
and Jacod (2014) for financial applications also confirms the
feasibility of in-fill asymptotics for financial data.

In the absence of latency, the parametric Hawkes literature
provides the results of large-T asymptotics, that is when the
horizon time T → ∞. Maximum likelihood estimation (MLE)
is employed in the seminal paper of Ogata (1978), which shows
the asymptotic normality of the MLE for an ergodic stationary
point process. However, the definition of ergodicity is vague in
that paper and most of the papers on parametric Hawkes models
(e.g., Bowsher (2007), Large (2007), and Cavaliere et al. (2023),
Assumption 1(b) and Remark 2.1) make this ergodicity assump-
tion and point out this assumption is satisfied for Hawkes pro-
cesses, whereas in fact this is hard to establish. As far as we know,
there are only two results in the literature showing rigorously
the ergodicity of Hawkes processes. Clinet and Yoshida (2017)
provide a general point process framework where they obtain
MLE based CLTs in Theorem 3.11 (p. 1809) when assuming
ergodicity of the couplet of intensity process and an intensity

process derivative. Their general machinery is verified in the
case of a Hawkes process with exponential kernel in Theorem 4.6
(p. 1821) by proving first that the couplet of intensity process and
the intensity process derivative is mixing and stable, and then
ergodicity is implied. With in-fill asymptotics, that is, when T
is fixed based on random observation times of order n and by
exploiting a joint boosting of the baseline and the kernel, Kwan
(2023) considers the non-exponential kernel case but the author
mentions that such a setup is challenging since the resulting
intensity process is non-Markovian, thus, rendering standard
techniques for asymptotic inference of Markov processes futile.
Consequently, the author can only show the ergodicity for the
intensity procecss itself but not for the couplet of intensity pro-
cess and intensity process derivative, and only the consistency of
the MLE in Theorem 3.4.3 (p. 73) of this article is shown.

These two results are useful, but Clinet and Yoshida (2017)
(Theorem 4.6) is restricted to the exponential kernel case and
Kwan (2023) (Theorem 3.4.3) only obtains consistency of the
MLE. Thus, no feasible CLTs are available when the kernel is
not exponential, and tests on latency cannot be directly inferred
from these two results. In our Theorem 1, we consider MLE
in the mixture of generalized gamma kernels case and derive
the feasible CLT with in-fill asymptotics. Our proof strategy
builds on the general machinery of Clinet and Yoshida (2017) by
proving first that the couplet of intensity process and intensity
process derivative is mixing and stable, and then ergodicity is
implied. The novelty in the proofs is in establishing the couplet
is mixing and ergodic (Propoosition C1 in Supplement C).
Consistent estimators of the asymptotic variance and feasible
normalized CLTs are also provided.

Our latency estimator is defined as the known function of
MLE kernel parameters. As a byproduct of Theorem 4.6, we
obtain a feasible CLT for our latency estimator (Proposition 2
and Corollary 3). We also construct three Wald tests for latency.
We first develop a test for equality between a latency matrix value
for one particular index and a fixed value which can in particular
be used to test for the inexistence of latency. Our second test
focuses on equality between two latency matrix values. Our third
test considers multidimensional linear hypotheses on the latency
vector. The limit theory of the three tests is established (Corollar-
ies 4, 5 and 6). A complementary nonparametric approach with
applications to Covid-19 pandemic in France is given in Gámiz
et al. (2022) and Gámiz et al. (2023) for the time-varying case.

Our newly developed model contributes to the literature
where a compensator of intensity is interpreted as business time
or economic time, see Engle (2000). These so-called models of
time deformation deal with the relevant time scale as “economic
time” rather than “calendar time”. Intuitively, economic time
measures the arrival rate of new information that influences
trading intensity. The joint analysis of transaction times and
latency facilitates analyzing an impact of trading characteristics
observed at ultra-high frequency on the complex interaction
between financial markets.

In our empirical analysis we focus on two major stock
exchanges, the NYSE (US) and the TSX (Canada). These
exchanges have simultaneous trading sessions and are directly
comparable due to similarity in trading environment, which
creates opportunities for investors to exploit price inefficiencies
across venues. Gagnon and Karolyi (2010) show that deviations
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from price parity are economically small but volatile and can
reach large extremes. They report that price parity deviations
relate positively to proxies for holding costs that can limit
arbitrage. Moreover, the cross-exchange interactions may
happen due to this excessive level of volatility.

In both markets latency varies between 1 and 6 milliseconds
in 2020 and 2021 with the traders in Canada being overall faster.
The presence of interaction between trades and quotes implies
that information in trading (quoting) events can be absorbed
with delay in response to quoting (trading) events, which is asso-
ciated with a phenomenon of co-latency. Our findings indicate
the existence of co-latency channel working in both directions
between trades and quotes in the NYSE and the TSX. We observe
a faster reaction of trading co-latency on the response to quotes
in both exchanges. This corresponds to Hoffmann (2014) where
an ability of fast traders to revise their quotes quickly after news
arrivals helps reducing market risks.

The rest of this article is organized as follows. The model
is introduced in Section 2. Estimation and tests are given in
Section 3. The theory is developed in Section 4. Our empirical
application is provided in Section 5. Our numerical study is
carried over in Supplement A. Examples of kernels, that meet
the assumptions of the proposed framework, are given in Sup-
plement B. All proofs of the theory are shown in Supplement C.
Additional empirical results belong to Supplement D.

2. A Parametric Hawkes Model Accommodating for
Latency

We start this section from a literature review. Then, we
recall definitions of a point process and a classic parametric
Hawkes model, see Ogata (1978), Bowsher (2007), Large (2007),
Embrechts, Liniger, and Lin (2011), Clinet and Yoshida (2017),
Cavaliere et al. (2023) and Kwan (2023). See also Potiron (2025).
Finally, we introduce a definition of latency, which is novel in
the point processes literature.

2.1. Literature Review

Hawkes (1971b) and Hawkes (1971a) introduce a family of
models for point processes with stochastic intensity called
“self-exciting and mutually exciting point processes” such that
the occurrence of any event fuels the probability of the next
occurring events. Importantly, these papers provide the Bartlett
spectrum and the corresponding covariance density function,
useful tools for analyzing point process models. Details about
these models are discussed in Liniger (2009) and applications in
finance are shown in Hawkes (2018) with the references therein.

Over the last few decades Hawkes processes have been widely
used in the context of seismology. The classical MLE for point
processes is originally described in Rubin (1972), and applied to
Hawkes processes in Vere-Jones (1978) and Ozaki (1979). Vere-
Jones and Ozaki (1982) rely on the MLE and provide applica-
tions to earthquake data. Ogata (1978) shows the asymptotic
normality of the MLE for an ergodic stationary point process
with large-T asymptotics.

Applications of Hawkes processes in finance have been evolv-
ing over the last two decades. Bowsher (2007) considers a two-

dimensional Hawkes process model of the timing of trades
and mid-quote price changes. Chavez-Demoulin, Davison, and
McNeil (2005) introduce a marked Hawkes process to model
extreme returns. A ten-dimensional Hawkes process model is
used by Large (2007). Embrechts, Liniger, and Lin (2011) con-
sider the application of Hawkes processes with marks using
MLE. Bacry et al. (2013) provide a CLT for the multidimensional
Hawkes point process with large-T asymptotics. Aït-Sahalia,
Laeven, and Pelizzon (2014) model self- and cross-excitation
shocks in CDS markets for several European countries using
a standard multidimensional Hawkes process with exponen-
tial kernels. Aït-Sahalia, Cacho-Diaz, and Laeven (2015) study
Hawkes jump-diffusion processes in different stock markets and
use a parametric moment-based estimation.

The most recent use of point processes is also widespread.
Corradi, Distaso, and Fernandes (2020) develop a test for con-
ditional independence in quadratic variation jump components.
Ikefuji et al. (2022) analyze the impact of earthquake risk on
real estate prices with the use of ETAS Hawkes-based model.
A bootstrap approach for Hawkes and more general point pro-
cesses is developed in Cavaliere et al. (2023). In Karim, Laeven,
and Mandjes (2021), the authors provide an analysis of the
probabilistic behavior of the couplet of point process and inten-
sity process. Kernel-based estimation of intensity with in-fill
asymptotics is presented in van Lieshout (2021). Bennedsen
et al. (2023) develop likelihood-based methods for estimation of
continuous-time integer-valued trawl processes. Clements et al.
(2023) consider nonparametric estimation.

None of these strands of literature provide a formal definition
of latency using a point process framework.

2.2. Parametric Hawkes Model

Let T stand for the horizon time. A d-dimensional point process

(Nt)0≤t≤T := (N(1)
t , . . . , N(d)

t )0≤t≤T ,

corresponds to the accumulated number of market events at
time t. In other words, the ith component, which corresponds
to the ith event type of the point process, is formally defined as

dN(i)
t := N(i)

t − N(i)
t− = 1 if there is an event at time t,

= 0 otherwise.

We will refer to (T(i)
1 , . . . , T(i)

N(i) ) for the event times. A point
process is driven by its d-dimensional intensity λ(t), which can
be interpreted as the instantaneous expected number of events
since

λ(t) = lim
u→0

E

[
Nt+u − Nt

u
|FN

t

]
,

where FN
t = σ {Ns, 0 ≤ s ≤ t} is defined as the canonical

filtration generated by Nt . For formal definitions related to the
theory of point processes, see Daley and Vere-Jones (2003),
Daley and Vere-Jones (2008), and more generally Jacod and
Shiryaev (2013).

The parametric mutually exciting processes have a d-
dimensional intensity defined as

λ(t) = ν∗ +
∫ t

0
h(t − s, θ∗

ker) dNs, (2)
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where ν∗ is a d-dimensional Poisson baseline, h(t, θ∗
ker) is a d×d-

dimensional kernel matrix whose diagonal components h(i,i) are
self-exciting terms for the related ith process and non-diagonal
components h(i,j) are cross-exciting terms made by event from
the jth process to the ith process.

2.3. Latency

The latency is defined as a d × d-dimensional matrix which is a
known function of the kernel parameter θ∗

ker , that is we assume
that

L = F(θ∗
ker). (3)

When L(i,j) > 0, a latency between an event in process j and its
impact on process i is introduced. Typically, we set F such that
the latency L(i,j) is specified as the time it takes before reach-
ing the pick, that is the mode, of the kernel h(i,j)(t, θ∗

ker). This
definition of latency is in agreement with the finance literature,
for example Hasbrouck and Saar (2013), defining it as the time
it takes to learn and generate response to a trading event. An
advantage of this definition is that latency can be characterized
by parameters θ

(i,j)
ker associated with factors affecting latency.

Such a structural approach permits identifying different aspects
of latency. As we show in Section 3.2, sub-parameters of θ , that is
D, are interpreted as delay measures. This component of latency
D identifies the time of learning about a trading event, which
is critical for financial applications. When L(i,j) ≤ 0, there is
no latency between an event in process j and its impact on
process i.

3. Estimation and Tests

In this section, we first introduce MLE for the parametric
Hawkes model and discuss the in-fill asymptotics used for
theoretical analysis. Then, we introduce a mixture of generalized
gamma kernels in which latency is well-defined highlighting
that latency is not well-defined when the kernel is exponential.
Finally, we introduce latency estimation and tests related to
latency.

3.1. MLE

We assume that a stochastic basis Bn = (�,F , Fn,P) is given,
where the filtration is defined as Fn = (Ft)t∈[0,T], where T
is the horizon time, that is 1 trading interval. The filtration
contains all the necessary information to the statistician. We
implicitly assume that the defined quantities depend on n, but
we do not write explicitly such a dependence when it is clear
from the context. Furthermore, we also assume that all the
stochastic processes defined in the following are Fn-adapted
processes. In particular, this implies that FN

t ⊂ Ft for any
t ∈ [0, T].

For any space S such that 0 ∈ S, we define the space
without zero as S∗. For inference purposes, we consider in-fill
asymptotics with joint boosting of the baseline and the kernel.
Relying on a parametric approach we assume the existence of
an unknown true value θ∗ = (ν∗, θ∗

ker) such that for i =

1, . . . , d we have that the ith component of the F-intensity is
equal to

λ(i)(t, θ∗) = nν∗,(i) +
d∑

j=1

∫ t

0
nh(i,j)(n(t − s), θ∗,(i,j)

ker )dN(j)
s . (4)

Here, we assume the existence of the parameter space �, con-
sisting of m parameters, and the true parameter θ∗ ∈ �. We
assume that m − d ≥ d2, since at least one parameter should be
used in each component of the kernel matrix. We denote the set
of baseline parameters as �ν , and the set of kernel parameters
as �h. By definition, we have � = (�ν , �h). In (4), in-fill
asymptotics are based on random observation times of order n
within the time interval [0, T] for a finite horizon time T. Kwan
(2023) extends the asymptotic analysis of Clinet and Potiron
(2018) and Kwan, Chen, and Dunsmuir (2023), also based on
joint boosting, by not imposing an exponential kernel. Our case
is different from in-fill asymptotics of Chen and Hall (2013) who
consider no boosting of the kernel. See also Potiron et al. (2025b)
and Potiron et al. (2025a). We rely on the log likelihood process
(see Ogata 1978 and Daley and Vere-Jones 2003)

lT(θ) =
d∑

i=1

∫ T

0
log(λ(i)(t, θ))dN(i)

t −
d∑

i=1

∫ T

0
λ(i)(t, θ)dt,

that is the MLE is defined as θ̂T ∈ argmaxθ∈� lT(θ).

3.2. Mixture of Generalized Gamma Kernels

For any i = 1, . . . , d and j = 1, . . . , d the mixture of generalized
gamma kernels is defined as

h(i,j)(t, θ(i,j)
ker )

=
K(i,j)∑
k=1

α
(i,j)
k

p(i,j)
k t(D(i,j)

k −1) exp(−(t/β(i,j)
k )p(i,j)

k )

(β
(i,j)
k )D(i,j)

k γ (D(i,j)
k /p(i,j)

k )

, (5)

in which γ (·) is the gamma function, α
(i,j)
k ∈ R∗+ is the size of

the jump, β
(i,j)
k ∈ R∗+ is the scale parameter, D(i,j)

k ∈ R∗+ and
p(i,j)

k ∈ R∗+ are shape parameters. In (5) the number of terms in
the sum corresponding to the cross excitation between the ith
and the jth market K(i,j) is fixed by the statistician, so they are
not parameters to be estimated. We assume that the parameter
related to the kernel is of the form

θker = (θ
(i,j)
ker )1≤i,j≤d = (θ

(1,1)

ker , θ(1,2)

ker , . . . , θ(d,d−1)

ker , θ(d,d)

ker )

θ
(i,j)
ker = (α(i,j), β(i,j), D(i,j), p(i,j)) ∈ (R∗+)K(i,j) × (R∗+)K(i,j)

×(R∗+)K(i,j) × (R∗+)K(i,j)
. (6)

For simplicity of exposition, we assume that each term in the
sum of (5) is generalized gamma kernel. However, all the theory
of this article also holds when some of parameters θ

(i,j)
ker are fixed

to a value or equal to each other. In particular, the kernel can be
exponential, gamma, or Weibull. Several examples covered by
this framework are discussed in Supplement B.
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3.3. Latency Estimation

We define the MLE restricted to the kernel parameter θker as
θ̂T,ker . The latency estimator is naturally defined as

L̂T = F(θ̂T,ker). (7)

3.4. Tests Related to Latency

We consider three Wald tests associated with latency. We first
provide a test for equality between a latency value L(i,j) for an
index (i, j) ∈ {1, . . . , d}2 and a latency value L̃ ∈ R, that is
we define the null hypothesis as H0(̃L) : {L(i,j) = L̃} and the
alternative hypothesis as H1(̃L) : {L(i,j) 	= L̃}. We let our first test
statistic be

W (̃L) = nT
(̂L(i,j)

T − L̃)2

̂Var
[
η(i,j)] , (8)

where the variance estimator used in the denominator will be
defined in (22). In the particular case when L̃ = 0, it can
be interpreted as a test for the absence against the presence of
latency, although this is not completely the case since latency can
also be negative.

We second propose a test for equality between two latency
values L(i,j) and L(k,u) for two indices (i, j) ∈ {1, . . . , d}2 and
(k, u) ∈ {1, . . . , d}2, that is we define the null hypothesis as
H′

0 : {L(i,j) = L(k,u)} and the alternative hypothesis as H′
1 :

{L(i,j) 	= L(k,u)}. We let our second test statistic be

W′ = nT
(̂L(i,j)

T − L̂(k,u)
T )2

̂var
[
η(i,j)] + ̂var

[
η(k,u)

] − 2 ̂cov
[
η(i,j), η(k,u)

] . (9)

where the variance and covariance estimators used in the
denominator will be defined in (22).

For convenience we rewrite the d × d-dimensional matrix of
latencies (L(i,j))

j=1,...,d
i=1,...,d as a d2-dimensional vector of latencies

L = (L(i,j))i,j=1,...,d = (L(1,1), L(1,2), . . . , L(d,d))T .

We third introduce a test of q linear hypotheses on the d2 latency
vector which is expressed with the q×d2-dimensional matrix R,
that is we define the null hypothesis as H0(r) : {RL = r} and the
alternative hypothesis as H1(r) : {RL 	= r} for r ∈ R. We let our
third test statistic be

W(r) = nT
(
R̂LT − r

)T(
R�̂TRT)−1(R̂LT − r

)
, (10)

where the d2×d2-dimensional covariance matrix estimator used
in the denominator will be defined in (33).

4. Theory

In this section, we first derive the feasible CLT of the MLE
in the mixture of generalized gamma kernels case with in-fill
asymptotics. This extends Clinet and Yoshida (2017) (Theorem
4.6) which is restricted to the exponential kernel case and Kwan
(2023) (Theorem 3.4.3) which only obtains consistency of the
MLE. Then, we derive the feasible CLT for the latency estimator.
Finally, we obtain the limit theory for the tests related to latency.

4.1. CLT with Mixture of Generalized Gamma Kernels

We define � as the closure space of �. We make the following
conditions for the CLT.

[A ] (i) There exists ν− ∈ R∗+ such that for any ν ∈ �ν we have
that

ν(i) > ν−, (11)

for any i = 1, . . . , d.
(ii) For any θker ∈ �h, we have that the kernel parameter θker
is of the form (6) and the kernel h(t, θker) is of the form (5).
(iii) There exists p− ∈ R∗+ such that for any i = 1, . . . , d, any
j = 1, . . . , d and any k = 1, . . . , K(i,j) we have that

p(i,j)
k > p−. (12)

(iv) There exists D− ∈ R∗+ such that for any i = 1, . . . , d, any
j = 1, . . . , d and any k = 1, . . . , K(i,j) we have that

D(i,j)
k > D−. (13)

(v) Let us define the matrix φ(θker) = (φ(i,j)(θ
(i,j)
ker ))

j=1,...,d
i=1,...,d

where

φ(i,j)(θ
(i,j)
ker ) =

∫ ∞

0
h(i,j)(s, θ(i,j)

ker )ds,

and write ρ(φ(θker)) being its spectral radius. There exists
0 < h+ < 1 such that for any θ ∈ � we have that

ρ(φ(θker)) ≤ h+. (14)

(vi) We have that � ⊂ (R∗+)d ×Rm−d is such that its closure
� is a compact space which satisfies the assumptions from
the Sobolev embedding theorem (see Theorem 4.12 (p. 85)
in Adams and Fournier 2003).
(vii) For any i = 1, . . . , d and any j = 1, . . . , d we have that
K(i,j) = 1.

Condition [A] (i), that is the positivity of the baseline, is well-
known for Hawkes processes being well-defined. Condition [A]
(ii) restricts to Hawkes processes with mixture of generalized
gamma kernels. Condition [A] (iii) and (iv) put restriction on
the parameter space. Condition [A] (v) is already required in
the large-T asymptotics T → ∞ to establish the existence of
a stationary version of Nt on the same probability space and that
Nt tends in distribution to this stationary process for a certain
topology (see Theorem 7 in Brémaud and Massoulié (1996)
and Proposition 4.4 in Clinet and Yoshida 2017). Condition
[A] (vi) is necessary to apply the Sobolev embedding theorem.
Condition [A] (vii) is required to obtain the classical nondegen-
eracy condition (Condition [A4] in Clinet and Yoshida 2017)).
It is possible to weaken it, but its statement would be more
cumbersome.

We define the space E as E = R∗+ × R∗+ × Rm. We
also denote by C↑(E,R) the set of continuous functions
ψ : (u, v, w) → ψ(u, v, w) from E to R that satisfy ψ is of
polynomial growth in u, v, w, 1

u , and 1
v . For any i = 1, . . . , d

and any θ ∈ �, we also define the rescaled time-transformed
intensity process as λ

(i)
(t, θ) = λ(i)( t

n ,θ)

n , and the triplet as
X(i)

t = (λ
(i)

(t, θ∗), λ(i)
(t, θ), ∂θλ

(i)
(t, θ)). Propositions C1 and
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C2 from Supplement C state that X(i)
t is stable for any θ ∈ �, that

is for any i = 1, . . . , d there exists anR∗+-valued random variable
λ

(i)
lim(θ) such that X(i)

nT →D (λ
(i)
lim(θ∗), λ(i)

lim(θ), ∂θλ
(i)
lim(θ)). They

also state that the triplet is ergodic, that is there exists a mapping
π(i) : C↑(E,R) × � → R such that for any (ψ , θ) ∈
C↑(E,R) × � we have 1

nT
∫ nT

0 ψ(X(i)
s,n)ds →P π(i)(ψ , θ), where

π(i)(ψ , θ) = E[ψ(λ
(i)
lim(θ∗), λ(i)

lim(θ), ∂θλ
(i)
lim(θ))]. Finally, they

state that there exists a probability measure �
(i)
θ on (E, B(E))

such that for any ψ ∈ C↑(E,R) and any θ ∈ �, we have
π(i)(ψ , θ) = ∫

E ψ(u, v, w)�
(i)
θ (du, dv, dw). If we consider a

vector z ∈ Rm, we define the tensor product as z⊗2 = z × zT ∈
Rm×m. We define the m × m-dimensional Fisher information
matrix � as

� =
d∑

i=1

∫
E

w⊗2 1
u
�

(i)
θ∗(du, dv, dw). (15)

The Fisher information matrix measures the amount of infor-
mation that the intensity λ(t, .) carries about the parameter θ∗.
Formally, it is the expected value of the observed information.
The Fisher information matrix is used to calculate the covari-
ance matrices associated with MLE. In other words, �−1 is the
asymptotic covariance matrix. The asymptotic Fisher informa-
tion matrix is estimated from

�̂T = −∂2
θ lT(θ̂T), (16)

where ∂2
θ lT(θ) is the m × m-dimensional Hessian matrix

of the time-transformed likelihood defined as lT(θ) =∑d
i=1

∫ Tn
0 log(λ(i)

(t, θ))dN(i)
t − ∑d

i=1
∫ Tn

0 λ
(i)

(t, θ)dt with
N(i)

t = N(i)
t
n

. This is a natural estimator since we can
reexpress the asymptotic Fisher information matrix as � =
− limn→∞ 1

TnE
[
∂2
ξ l(θ∗)

]
. Finally, ξ is defined as an m-dimensional

standard normal vector.
We now provide the feasible CLT of the MLE in the mix-

ture of generalized gamma kernels case with in-fill asymptotics.
This extends Clinet and Yoshida (2017) (Theorem 4.6) which
is restricted to the exponential kernel case and Kwan (2023)
(Theorem 3.4.3) which only shows consistency of the MLE. See
also Cavaliere et al. (2023) (Theorem 2, p. 138), who require
stronger conditions.

Theorem 1. We assume that Condition [A] holds. As n → +∞,
we have the consistency

θ̂T →P θ∗ (17)

and the CLT
√

n(θ̂T − θ∗) →D √
T�−1/2ξ . (18)

We show the consistency of the Fisher information matrix esti-
mator

�̂T →P �. (19)

Moreover, we show the feasible normalized CLT

�̂
1/2
T

√
nT(θ̂T − θ∗) →D ξ . (20)

4.2. CLT for Latency

We introduce the parameters of the kernel used in the definition
of latency as θl of dimension l. As latency is equal to a function
of kernel parameters, we have by definition that θl ⊂ θker and
l ≤ m − d. Moreover, we can rewrite the latency function as
L = F(θ∗

l ). For any i = 1, . . . , d and j = 1, . . . , d we define
the l-dimensional differential vector corresponding to the (i, j)-
index of F at point θl as

dF(i,j)(θl) :=
(∂F(i,j)

∂θ
(1)

l
(θl), . . . ,

∂F(i,j)

∂θ
(l)
l

(θl)
)

.

We denote the Fisher information matrix and its estimator,
restricted to the latency parameter θl, by �l and �̂T,l. Also ξl
is defined as an l-dimensional standard normal vector. We then
define the limit random matrix in the CLT as

(η(i,j))
j=1,...,d
i=1,...,d = (dF(i,j)(θ∗

l )�
−1/2
l ξl)

j=1,...,d
i=1,...,d. (21)

We denote the space of latency parameters by �l. We make the
following condition for deriving the CLT of latency estimation.

[B ] We assume that F : �l → Rd×d is twice continuously
differentiable and dF(i,j)(θ∗

l )�
−1/2
l is not null for any i =

1, . . . , d and j = 1, . . . , d.

Condition [B] puts some regular smoothness restrictions on F
that are required to use Taylor expansion, while the non nullity
of the vectors dF(i,j)(θ∗

l )�
−1/2
l is required for the non nullity in

the limit random matrix of the CLT (21).
We estimate the covariance between η(i,j) and η(k,u) as

̂cov
[
η(i,j), η(k,u)

] =
l∑

q=1

( l∑
r=1

dF(i,j,r)(θ̂T,ker)
(
�̂

−1/2
T,ker

)(r,q)
)

×
( l∑

r=1
dF(k,u,r)(θ̂T,l)

(
�̂

−1/2
T,l

)(r,q)
)

. (22)

We also estimate the correlation between the normalized asymp-
totic covariance matrix (i, j)-index and (k, u)-index as

̂cor
[̃
ξ (i,j), ξ̃ (k,u)

] =
̂cov[η(i,j), η(k,u)]√

̂var
[
η(i,j)] ̂Var

[
η(k,u)

] . (23)

Now we provide the feasible CLT for the latency estimator with
in-fill asymptotics. This complements the related approach on
nonparametric Hawkes processes and applications to Covid-19
pandemic in France given in Gámiz et al. (2022) and Gámiz et al.
(2023) for the time-varying case.

Proposition 2. We assume that Condition [A] and Condition [B]
hold. As n → +∞, we have the consistency

L̂T →P L (24)

and the CLT
√

n(̂L(i,j)
T − L(i,j))

j=1,...,d
i=1,...,d →D √

T(η(i,j))
j=1,...,d
i=1,...,d. (25)
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Moreover, η(i,j) can be re-expressed for any i = 1, . . . , d and any
j = 1, . . . , d as

η(i,j) =
l∑

q=1

( l∑
r=1

dF(i,j,r)(θ∗
l )

(
�

−1/2
l

)(r,q)
)
ξ

(q)

l . (26)

We can deduce that

cov[η(i,j), η(k,u)] =
l∑

q=1

( l∑
r=1

dF(i,j,r)(θ∗
l )

(
�

−1/2
l

)(r,q)
)

×
( l∑

r=1
dF(k,u,r)(θ∗

l )
(
�

−1/2
l

)(r,q)
)

. (27)

We obtain the consistency of the covariance estimator

̂cov
[
η(i,j), η(k,u)

] →P cov[η(i,j), η(k,u)]. (28)

We show the feasible normalized CLT
√

nT
( L̂(i,j)

T − L(i,j)√
̂var
[
η(i,j)]

)j=1,...,d

i=1,...,d
→D (̃ξ (i,j))

j=1,...,d
i=1,...,d, (29)

where each component ξ̃ (i,j) is a standard normal variable with
correlation that satisfies

cor
[̃
ξ (i,j), ξ̃ (k,u)

] = cov[η(i,j), η(k,u)]√
var

[
η(i,j)] Var

[
η(k,u)

] . (30)

The consistency of the correlation estimator is obtained as

̂cor
[̃
ξ (i,j), ξ̃ (k,u)

] →P cor
[̃
ξ (i,j), ξ̃ (k,u)

]
. (31)

For any i = 1, . . . , d and j = 1, . . . , d each component ξ̃ (i,j)

is a standard normal variable, but the limit matrix (̃ξ (i,j))
j=1,...,d
i=1,...,d

is not a standard normal vector in (29). In what follows, we
give a feasible CLT with a standard normal vector in the limit
since this is useful for providing the asymptotic theory of the
multidimensional Wald test in Corollary 6. To obtain a standard
normal vector in the limit, we rewrite the d × d-dimensional
matrix of latency estimators (̂L(i,j)

T )
j=1,...,d
i=1,...,d as a d2-dimensional

vector of latencies

L̂T = (̂L(i,j)
T )i,j=1,...,d = (̂L(1,1)

T , L̂(1,2)
T , . . . , L̂(d,d)

T )T

and we introduce the d2 × d2-dimensional asymptotic covari-
ance matrix �

−1 satisfying

(�
−1

)
k,l=1,...,d
i,j=1,...,d = cov[η(i,j), η(k,l)]. (32)

We estimate the asymptotic covariance matrix with

(�̂
−1
T )

k,l=1,...,d
i,j=1,...,d = ̂cov

[
η(i,j), η(k,l)]. (33)

We make the following condition to derive the CLT of latency
estimation with a standard normal vector in the limit.

[C ] We assume that the d2 × l-dimensional matrix

( l∑
r=1

dF(i,j,r)(θ∗
l )

(
�

−1/2
l

)(r,q)
)q=1,··· ,l

i,j=1,··· ,d

has rank d2.

Condition [C] ensures existence of a standard normal vector in
the limit of the CLT. Thus, Condition [C] is slightly stronger than
Condition [B]. In practice, this implies that d2 ≤ l. However,
this condition is automatically satisfied since we use at least
one parameter for each index of the latency matrix. Finally, we
introduce the d2-dimensional standard normal vector ξ .

Corollary 3. We assume that Condition [A], Condition [B], and
Condition [C] hold. As n → +∞, we have the CLT

√
n(̂LT − L) →D √

T�
−1/2

ξ . (34)

We obtain the consistency for the asymptotic covariance matrix

�̂T →P �. (35)

Moreover, we provide the feasible normalized CLT

�̂
1/2
T

√
nT(̂L(i,j)

T − L(i,j))i,j=1,...,d →D ξ . (36)

4.3. Tests Related to Latency

The following corollary shows that the first Wald test statistic
converges in distribution to a Chi-squared distribution with one
degree of freedom under the null hypothesis and is consistent
under the alternative hypothesis. The proof is based on Proposi-
tion 2. We denote Qu as the quantile function of the Chi-squared
distribution with one degree of freedom.

Corollary 4. We assume that Condition [A] and Condition [B]
hold. As n → +∞ and for any latency value L̃ ∈ R, the
first Wald test statistic W (̃L) converges in distribution to a Chi-
squared distribution with one degree of freedom under the null
hypothesis H0(̃L) : {L(i,j) = L̃} and is consistent under the
alternative hypothesis H1(̃L) : {L(i,j) 	= L̃}, that is for any
0 < α < 1:

size(α) = P{W (̃L) > Q1−α | H0(̃L)} → α, (37)
power(α) = P{W (̃L) > Q1−α | H1(̃L)} → 1. (38)

The second Wald test statistic converges in distribution to
a Chi-squared distribution with one degree of freedom under
the null hypothesis and is consistent. The proof is based on
Proposition 2.

Corollary 5. We assume that Condition [A] and Condition [B]
hold. We also assume that (η(i,j), η(k,l)) is a two-dimensional
random vector. As n → +∞, the second Wald test statistic W′
converges in distribution to a Chi-squared distribution with one
degree of freedom under the null hypothesis H′

0 : {L(i,j) = L(k,l)}
and is consistent under the alternative hypothesis H′

1 : {L(i,j) 	=
L(k,l)}, that is for any 0 < α < 1 we have

size′(α) = P{W′ > Q1−α | H′
0} → α, (39)

power′(α) = P{W′ > Q1−α | H′
1} → 1. (40)

Finally, the following corollary shows the third Wald test
statistic converging to a Chi-squared distribution with q degrees
of freedom under the null hypothesis and being consistent. The
proof is based on Corollary 3. We denote Q(q)

u as the quan-
tile function of the Chi-squared distribution with q degrees of
freedom.
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Corollary 6. We assume that Condition [A], Condition [B] and
Condition [C] hold. As n → +∞ and for any r ∈ R, the
third Wald test statistic W(r) converges in distribution to a
Chi-squared distribution with q degrees of freedom under the
null hypothesis H0(r) : {RL = r} and is consistent under
the alternative hypothesis H1(r) : {RL 	= r}, that is for any
0 < α < 1:

size(α) = P{W(r) > Q(q)

1−α | H0(r)} → α, (41)

power(α) = P{W(r) > Q(q)

1−α | H1(r)} → 1. (42)

5. Empirical Application

In this section we analyze the performance of the proposed
model using the transaction data for the New York Stock
Exchange (NYSE) and the Toronto Stock Exchange (TSX).

5.1. Data

Our sample period runs from January 2, 2020 to December 31,
2021. Each day, we construct a sample of stocks included in
the S&P 500 index and the TSX composite index and that are
traded in the NYSE and the TSX. We obtain trade and mid-
quote price, that is the average price between best bid and ask
prices, and time stamps from the consolidated trade history
in the transaction Datascope database. Following Hasbrouck
(2018) all the stock trades and quotes between 9.45 a.m. and
3.45 p.m. (EST) are considered. Our selection of characteristics
for each stock and each day includes millisecond time stamps.
These stock characteristics are used to obtain the estimates of
latency and to test the hypotheses formulated in the following
section.

We apply additional filters in the following order. First, we
exclude trades and quotes with zero volumes and prices. Second,
we drop a stock-day observation if it takes extreme values falling
in the top or bottom 1% of the monthly cross-sections. Finally,
each daily sample comprises the 798 stocks traded in the NYSE
and the TSX.

Table 1 presents summary sample statistics over the final
sample. The sample statistics are computed for the United States
and Canadian stock exchanges separately. The U.S. market is
characterized by a shorter duration, while the TSX experienced
a lower standard deviation of trade durations.

Table 1. Summary statistics are reported for all S&P 500 and TSX composite index
stocks traded in the NYSE and TSX.

Obs. Mean Std dev Min Max

NYSE

Trade duration 273,845,398 33.304 149.052 1 63247.101
Mid-quote duration 3,361,459,591 2.987 4.983 1 72.370

TSX

Trade duration 120,801,281 77.245 127.918 1 4336.670
Mid-quote duration 1,409,644,068 6.798 10.286 1 222.901

NOTE: The daily average statistics are obtained over the sample from January 02,
2020 to December 31, 2021. Durations are expressed in milliseconds.

5.2. Hypotheses

To understand the evolution of latency in the NYSE and TSX
we formulate testable hypotheses of interest. All hypotheses are
tested for the whole sample including all trading days and p-
values can be obtained with Corollary 6. To verify that our results
of testing hypotheses are not distorted due to a multiple statisti-
cal inference problem, we implement a Bonferroni adjustment of
Holm (1979) for all p-values. The adjusted p-values computed at
the 1% level provide the identical conclusions about all hypothe-
ses confirming the statistical robustness of our results. Another
robustness check of our testing results is conducted following
Bajgrowicz, Scaillet, and Treccani (2016) and the results are in
agreement with the Bonferroni corrected tests.

First, we conjecture if latency exists in both exchanges and for
mid-quote and trade events.

Latency exists in the NYSE and TSX stock exchanges, that is
H0(0) : L(i,i) = 0 for all i = 1, . . . , 4.

A p-value of 0.001 confirms the existence of latency at the
5% level. One may argue that latency is solely characterized
by technological development of a stock exchange. In this case
a technology arms race would not be defined by timing of
orders and latency estimates are expected to be similar in both
exchanges. If this is not the case, transforming competition on
speed into competition on price is possible when firms strategi-
cally consider the timing of order submissions, see for example
Budish, Cramton, and Shim (2015).

Latency varies across the stock exchanges, that is H0(0) :
L(1,1) = L(3,3) and L(2,2) = L(4,4).

A p-value of 0.002 provides evidence of rejecting the null
hypothesis at the 5% level. This suggests that there exist
additional sources of market information that must be taken
into consideration when a new measure of latency is designed.
This conjecture extends an idea of Riordan and Storken-
maier (2012) about interrelation between latency and price
discovery.

The presence of latency is a feature of modern financial
markets, but it is unclear if changes in latencies across stock
exchanges create market co-movements. This conjecture is sup-
ported by Baron et al. (2019) who find latency to be used as
a channel for cross-exchange interactions. We call this phe-
nomenon co-latency. Co-latency can be considered as a channel
of emerging spillovers between the market events corroborating
findings of Malceniece, Malcenieks, and Putniņš (2019) about
the substantial impact of trading activity on co-movements in
stock returns. Following Aït-Sahalia, Cacho-Diaz, and Laeven
(2015) the presence of spillovers is associated with statistically
significant cross-excitation effects.

Co-latency is observed for different events (trades, quotes)
within the stock exchanges, that is (*) H0(0) : L(1,2) = L(2,1) = 0
and L(3,4) = L(4,3) = 0 or (**) H0(0) : L(3,1) = L(3,2) = L(4,1) =
L(4,2) = 0 and L(1,3) = L(1,4) = L(2,3) = L(2,4) = 0.

Rejecting (*) with p-value=0.003 confirms the existence of
co-latency in both exchanges. However, (**) is not rejected (p-
value=0.203), justifying the co-location argument of Brogaard
et al. (2015) and confirming that co-latency does not spread
across exchanges.
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Figure 1. Parameter estimates D̂(i,j)
T obtained from (4). Parameter estimates for each day in the NYSE and TSX are shown. 90% confidence intervals are also presented.

5.3. Latency in the United States and Canadian Stock
Exchanges

We now discuss the estimates of latency obtained by the MLE
procedure presented in Section 3. Trade and mid-quote time
stamps of all the stocks are used to estimate Model (4) for each
day and for both the NYSE and the TSX. In this case the kernel
matrix h(i,j) is 4 × 4-dimensional and the market interaction
between the United States and Canadian stock exchanges is
captured by the cross excitation terms h(i,j) when i 	= j. The
shape of the kernel matrix h(i,j) follows the gamma specifica-
tion discussed in Supplement B.2 which is a special case of
mixture of generalized gamma kernels presented in Section 3.2
with parameters α, β and D. Following the results from the

previous section we discuss only (co)latency estimates within
the NYSE and the TSX captured by h(1,1), h(2,2), h(3,3), h(4,4) and
h(1,2), h(2,1), h(3,4), h(4,3). This is verified by the testing results
in the previous section and in agreement with the colocation
argument of Shkilko and Sokolov (2020) implying the region
specific nature of trading activity.

Delay D is discussed now as an important factor contributing
to latency. Parameter estimates D̂(i,j)

T are presented in Figure 1
for each trading day.1 The delay parameters D(1,1), D(2,2) for
the NYSE and D(3,3), D(4,4) for the TSX trade and mid-quote

1The estimates of parameters α(i,j) and β(i,j) are not presented here, but
available in Supplement D.
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Figure 2. Latency and co-latency estimates L̂(i,j)
T obtained from Model (4). Each graph shows co-latency estimates for each day across all events in the NYSE and TSX. 90%

confidence intervals are reported.

events are statistically different from zero changing between 1
and 5 milliseconds. A substantial drop in delay from almost 4 to
2 milliseconds observed in Figure 1(d) happened in November
26th, 2021 which was the worst day of year for North American
stock markets. On this day S&P 500 index dropped more than
2% due to a new Covid variant found in South Africa triggering
a shift from risk assets and accelerating the speed of trading.
The cross-exciting parameter D(1,2) capturing delay in the NYSE
trades due to mid-quote events in the same exchange fluctuates
between 1.4 and 4 milliseconds. In February and March 2020,
active trading during the start of COVID pandemic creates
longer delays D(1,2) and D(3,4) showing that market participants
respond more quickly to trades when information is flowing.
Delays of responding quotes to trades D(2,1) and D(4,3) are longer

for both the NYSE and the TSX suggesting that in both markets
trades absorb market information faster.

The estimates of latency and co-latency L̂(i,j)
T for the NYSE

and the TSX obtained for each day over the sample are presented
in Figure 2. The latency estimates L̂(i,i)

T for the United States
and Canada change between 2 and 5 milliseconds over the
sample. Overall the TSX is faster with the latency just below 4
milliseconds for trades and mid-quotes. In February and March
2020, the start of COVID-19 pandemic, co-latency in the NYSE
and TSX observed from Figure 2(e) and (g) jumped a few times
between 1 and almost 4 milliseconds. This pattern is attributed
to suspending floor trading due to COVID-19 pandemic in
February and March 2020. Another common pattern for both
exchanges observed from Figure 2(e)–(h) is a faster reaction of
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trading co-latency in response to quotes. Confidence intervals

for ̂L(1,2)
T and ̂L(3,4)

T are wider comparing to ̂L(2,1)
T and ̂L(4,3)

T
indicating uncertainty about the impact of quote events on

trades which reduces in 2021 for ̂L(4,3)
T . Our findings indicate

the existence of co-latency channel working in both directions
between the United States and Canada. This corresponds to
Hoffmann (2014) where an ability of fast traders to revise their
quotes quickly after news arrivals helps reducing market risks in
some markets, that is the TSX and the NYSE in our case.

6. Conclusion

A novel statistical approach to estimating latency, defined as
the time it takes to learn about an event and generate response
to this event, is described. Outside of finance this definition
helps understanding and modeling delay in reactions to events
for point processes. The problem is formulated to be solved by
the comprehensive use of stochastic analysis techniques. More
specifically, we have considered the class of parametric Hawkes
models, which circumvents the use of more detailed datasets
which may not even be available. We define latency as a known
function of kernel parameters, typically the mode of kernel
function. Since latency is not well-defined when the kernel is
exponential, we consider maximum likelihood estimation in
the mixture of generalized gamma kernels case and derive the
feasible CLT with in-fill asymptotics. As a byproduct, CLT for
a latency estimator, defined as the function of parameter esti-
mates, and three tests were deduced. Latency estimates for the
United States and Canadian stock exchanges are found to vary
between 1 and 6 milliseconds from 2020 to 2021. The existence
of co-latency channel working in both directions between the
United States and Canada is also confirmed.

A more realistic framework with polynomial periodic kernel
is studied in Erdemlioglu et al. (2025a). This is based on the
theoretical results given in Potiron (2025), which extend the
theoretical results from Clinet and Yoshida (2017). Finally, there
is an extension to time-dependent latency in Erdemlioglu et al.
(2025b). This time-dependent latency work builds on Clinet and
Potiron (2018).

Supplementary Materials

Our numerical study is carried over in Supplement A. Examples of kernels
covered by our framework are given in the Supplement B. All proofs of
the theoretical results are shown in Supplement C. An additional empirical
result belongs to Supplement D.
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