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Abstract

A novel statistical approach to estimating latency, defined as the time it takes to learn

about an event and generate response to this event, is proposed. Our approach only

requires a multidimensional point process describing event times, which circumvents the

use of more detailed datasets which may not even be available. We consider the class

of parametric Hawkes models capturing clustering effects and define latency as a known

function of kernel parameters, typically the mode of kernel function. Since latency is not

well-defined when the kernel is exponential, we consider maximum likelihood estimation in

the mixture of generalized gamma kernels case and derive the feasible central limit theory

with in-fill asymptotics. As a byproduct, central limit theory for a latency estimator and

related tests are provided. Our numerical study corroborates the theory. An empirical

application on high frequency data transactions from the New York Stock Exchange and

Toronto Stock Exchange shows that latency estimates for the US and Canadian stock

exchanges vary between 1 and 6 milliseconds from 2020 to 2021.
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1 Introduction

Over the last decade, financial markets have undergone revolutionary institutional and techno-

logical changes. Massive increases in computer power have led to algorithmic trading, explosions

in sub-second orders, and large increases in trading volume. These changes transformed the

financial markets and made latency an inherent part of investment process. Low latency, or

simply latency, can be broadly defined following Hasbrouck and Saar (2013) as the time it takes

to learn about an event and generate response to this event.

Although the term latency is widely used in finance, it is also related to delay, a more

common term in statistics. In fact, delay is present in datasets related to seismology, insurance,

criminology, sociology and medicine as in e.g., Harris (1990). Indeed, just like a time lag before

a trading event is revealed to market participants, there is also a time lag before a tweet post

becomes available on X, or a registration of medical incidents. Despite the fact that we mainly

use the term latency and our empirical application focuses on finance, a statistician should keep

this parallel in mind when reading the manuscript.

In the finance literature an approach to obtaining latency is heavily dependent on datasets

that are not available in many cases. Hasbrouck and Saar (2013) propose a widely used low

latency measure based on strategic runs representing series of submissions, cancellations, and

executions that are linked by direction, size, and timing, and which are likely to arise from a

single algorithm. However, as the proposed approach requires detailed information about the

timing and other characteristics of cancellations - which is not available for many markets - a

unified statistical framework for accurate estimation of latency is a missing link in the literature.

An alternative method, proposed in this paper, is to make use of a statistical model relying

solely on multidimensional event times. These time series are normally available to a statis-

tician, making our approach widely suitable for applications. Building upon the stylized fact

that arrival times are not deterministic, an obvious choice is to use tractable Poisson processes,
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in which inter-arrival times are IID. Yet, Poisson processes are not well suited for modelling

the arrival times as the empirical literature on inter-arrival durations points out that trades

tend to cluster together over time. Accordingly, the class of autoregressive conditional duration

(ACD) models is introduced in Engle and Russell (1998). ACD models are closely aligned with

GARCH models and there are many multidimensional extensions of GARCH models. Most of

these extensions are also applicable to ACD models, and copulas can be also used to provide

appropriate solutions to such extensions, see Heinen and Rengifo (2007), Koopman et al. (2018),

Barra et al. (2018) and the references therein. However, these models are hard to generalize to

a set-up with asynchronous times.

This motivates using a more suitable class of multidimensional models, the so-called mutu-

ally exciting processes such that the occurrence of any event fuels the probability of the next

events occurring. The d-dimensional intensity, which can be interpreted as the instantaneous

expected number of events, is defined as

λ(t) = ν +

ˆ t

0

h(t− s) dNs, (1)

where ν is a d-dimensional Poisson baseline, h(t) is a d × d-dimensional kernel matrix whose

diagonal components h(i,i) are self-exciting terms for the related i-th process and non-diagonal

components h(i,j) are cross-exciting terms made by event from the j-th process to the i-th

process.

Considering a classical parametric specification of model (1), the novelty in our model is that

we define latency as a known function of parameters, typically the time corresponding to the

peak of the kernel function, i.e. the mode. We assume that the latency is a d× d-dimensional

matrix. We insist on the fact that latency is not well-defined when the kernel is exponential as

the mode is always equal to 0 in that case. Thus, we introduce a mixture of generalized gamma

kernels in which latency is well-defined.

In this paper, we focus on in-fill asymptotics, i.e. when T is fixed, since it is well-known that
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latency changes empirically across different days, and this is also corroborated by the findings

in our empirical application. In the absence of latency, there already exists successful attempts

to accommodate for in-fill asymptotics in Hawkes processes. Chen and Hall (2013) allow for

a nonrandom parametric time-varying baseline. Their in-fill asymptotic results are based on

random observation times of order n within the fixed time interval [0, T ]. A single boosting of

the baseline, i.e. λ(t) = αnνt+
´ t

0
h(t−s) dNs, is considered where αn →∞ is a scaling sequence

when n→∞. Chen and Hall (2013) derive a central limit theorem (CLT) for MLE parameters

related to the baseline and kernel. Clinet and Potiron (2018) consider stochastic time-varying

baseline and kernel parameters in the exponential kernel case, and introduce a joint boosting

of the baseline and the kernel, i.e. λ(t) = nνt +
´ t

0
nas exp(−nbs(t − s)) dNs to derive CLTs

on integrated baseline and parameters with local MLE. Kwan et al. (2023) revisit Chen and

Hall (2013) in the exponential kernel case and with the same in-fill asymptotics as in Clinet

and Potiron (2018), i.e. λ(t) = nνt +
´ t

0
na exp(−nb(t − s)) dNs. Kwan (2023) considers the

non-exponential kernel case and advocates the use of in-fill asymptotics for statistical inference

to better match high-frequency data. An example of Aït-Sahalia and Jacod (2014) for financial

applications also confirms the feasibility of in-fill asymptotics for financial data.

In the absence of latency, the parametric Hawkes literature provides the results of large-T

asymptotics, i.e. when the horizon time T → ∞. Maximum likelihood estimation (MLE) is

employed in the seminal paper of Ogata (1978), which shows the asymptotic normality of the

MLE for an ergodic stationary point process. However, the definition of ergodicity is vague

in that paper and most of the papers on parametric Hawkes models (e.g. Cavaliere et al.

(2023), Assumption 1(b) and Remark 2.1) make this ergodicity assumption and point out this

assumption is satisfied for Hawkes processes, whereas in fact this is hard to establish. As far as

we know, there are only two results in the literature showing rigorously the ergodicity of Hawkes

processes. Clinet and Yoshida (2017) provide a general point process framework where they
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obtain MLE based CLTs in Theorem 3.11 (p. 1809) when assuming ergodicity of the couplet

of intensity process and an intensity process derivative. Their general machinery is verified in

the case of a Hawkes process with exponential kernel in Theorem 4.6 (p. 1821) by proving first

that the couplet of intensity process and the intensity process derivative is mixing and stable,

and then ergodicity is implied. With in-fill asymptotics, i.e., when T is fixed based on random

observation times of order n and by exploiting a joint boosting of the baseline and the kernel,

Kwan (2023) considers the non-exponential kernel case but the author mentions that such

a setup is challenging since the resulting intensity process is non-Markovian, thus rendering

standard techniques for asymptotic inference of Markov processes futile. Consequently, the

author can only show the ergodicity for the intensity procecss itself but not for the couplet

of intensity process and intensity process derivative, and only the consistency of the MLE in

Theorem 3.4.3 (p. 73) of this paper is shown.

These two results are useful, but Clinet and Yoshida (2017) (Theorem 4.6) is restricted

to the exponential kernel case and Kwan (2023) (Theorem 3.4.3) only obtains consistency of

the MLE. Thus, no feasible CLTs are available when the kernel is not exponential, and tests

on latency cannot be directly inferred from these two results. In our Theorem 1, we consider

MLE in the mixture of generalized gamma kernels case and derive the feasible CLT with in-

fill asymptotics. Our proof strategy builds on the general machinery of Clinet and Yoshida

(2017) by proving first that the couplet of intensity process and intensity process derivative is

mixing and stable, and then ergodicity is implied. The novelty in the proofs is in establishing

the couplet is mixing and ergodic (Proposition C1). Consistent estimators of the asymptotic

variance and feasible normalized CLTs are also provided.

Our latency estimator is defined as the known function of MLE kernel parameters. As a

byproduct of Theorem 4.6, we obtain a feasible CLT for our latency estimator (Proposition 2

and Corollary 3). We also construct three Wald tests for latency. We first develop a test for
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equality between a latency matrix value for one particular index and a fixed value which can

in particular be used to test for the inexistence of latency. Our second test focuses on equality

between two latency matrix values. Our third test considers multidimensional linear hypotheses

on the latency vector. The limit theory of the three tests is established (Corollaries 4, 5 and 6).

A complementary approach with nonparametric Hawkes processes and applications to Covid-19

pandemic in France is given in Gámiz et al. (2022) and Gámiz et al. (2023) for the time-varying

case.

Our newly developed model contributes to the literature where a compensator of intensity

is interpreted as business time or economic time, see Engle (2000). These so-called models of

time deformation deal with the relevant time scale as ’economic time’ rather than ’calendar

time’. Intuitively, economic time measures the arrival rate of new information that influences

trading intensity. The joint analysis of transaction times and latency facilitates analysing an

impact of trading characteristics observed at ultra-high frequency on the complex interaction

between financial markets.

In our empirical analysis we focus on two major stock exchanges, the NYSE (US) and the

TSX (Canada). These exchanges have simultaneous trading sessions and are directly com-

parable due to similarity in trading environment, which creates opportunities for investors to

exploit price inefficiencies across venues. Gagnon and Karolyi (2010) show that deviations from

price parity are economically small but volatile and can reach large extremes. They report that

price parity deviations relate positively to proxies for holding costs that can limit arbitrage.

Moreover, the cross-exchange interactions may happen due to this excessive level of volatility.

In both markets latency varies between 1 and 6 milliseconds in 2020 and 2021 with the

traders in Canada being overall faster. The presence of interaction between trades and quotes

implies that information in trading (quoting) events can be absorbed with delay in response to

quoting (trading) events, which is associated with a phenomenon of co-latency. Our findings
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indicate the existence of co-latency channel working in both directions between trades and

quotes in the NYSE and the TSX. We observe a faster reaction of trading co-latency on the

response to quotes in both exchanges. This corresponds to Hoffmann (2014) where an ability

of fast traders to revise their quotes quickly after news arrivals helps reducing market risks in

some markets.

The rest of this paper is organized as follows. The model is introduced in Section 2. Esti-

mation and tests are given in Section 3. The theory is developed in Section 4. Our empirical

application is provided in Section 5. Our numerical study is carried over in the supplemen-

tary material Appendix A. Examples of kernels, that meet the assumptions of the proposed

framework, are given in the supplementary material Appendix B. All proofs of the theory are

shown in the supplementary material Appendix C. Additional empirical results belong to the

supplementary material Appendix D.

2 A parametric Hawkes model accommodating for latency

We start this section from a literature review. Then, we recall definitions of a point process

and a classic parametric Hawkes model, see Ogata (1978), Embrechts et al. (2011), Clinet and

Yoshida (2017), Cavaliere et al. (2023) and Kwan (2023). Finally, we introduce a definition of

latency, which is novel in the point processes literature.

2.1 Literature review

Hawkes (1971b) and Hawkes (1971a) introduces a family of models for point processes with

stochastic intensity called "self-exciting and mutually exciting point processes" such that the

occurrence of any event fuels the probability of the next occurring events. Importantly, these

papers provide the Bartlett spectrum and the corresponding covariance density function, useful
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tools for analyzing point process models. Details about these models are discussed in Liniger

(2009) and applications in finance are shown in Hawkes (2018) with the references therein.

Over the last few decades Hawkes processes have been widely used in the context of seismol-

ogy. The classical MLE for point processes is originally described in Rubin (1972), and applied

to Hawkes processes in Vere-Jones (1978) and Ozaki (1979). Vere-Jones and Ozaki (1982) rely

on the MLE and provide applications to earthquake data. Ogata (1978) shows the asymptotic

normality of the MLE for an ergodic stationary point process with large-T asymptotics.

Applications of Hawkes processes in finance have been evolving over the last two decades.

Bowsher (2007) considers a two-dimensional Hawkes process model of the timing of trades and

mid-quote price changes. Chavez-Demoulin et al. (2005) introduce a marked Hawkes process

to model extreme returns. A ten-dimensional Hawkes process model is used by Large (2007).

Embrechts et al. (2011) consider the application of Hawkes processes with marks using MLE.

Bacry et al. (2013) provide a CLT for the multidimensional Hawkes point process with large-T

asymptotics. Aït-Sahalia et al. (2014) model self- and cross-excitation shocks in CDS markets

for several European countries using a standard multidimensional Hawkes process with expo-

nential kernels. Aït-Sahalia et al. (2015) study Hawkes jump-diffusion processes in different

stock markets and use a parametric moment-based estimation.

The most recent use of point processes is also widespread. Corradi et al. (2020) develop a

test for conditional independence in quadratic variation jump components. Ikefuji et al. (2022)

analyze the impact of earthquake risk on real estate prices with the use of ETAS Hawkes-based

model. A bootstrap approach for Hawkes and more general point processes is developed in Cav-

aliere et al. (2023). In Karim et al. (2021), the authors provide an analysis of the probabilistic

behavior of the couplet of point process and intensity process. Kernel-based estimation of inten-

sity with in-fill asymptotics is presented in van Lieshout (2021). Bennedsen et al. (2023) develop

likelihood-based methods for estimation of continuous-time integer-valued trawl processes.
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None of these strands of literature provide a formal definition of latency using a point process

framework.

2.2 Parametric Hawkes model

Let T stand for the horizon time. A d-dimensional point process

(Nt)0≤t≤T := (N
(1)
t , . . . , N

(d)
t )0≤t≤T ,

corresponds to the accumulated number of market events at time t. In other words, the i-th

component, which corresponds to the i-th event type of the point process, is formally defined

as

dN
(i)
t := N

(i)
t −N

(i)

t− = 1 if there is an event at time t,

= 0 otherwise.

We will refer to (T
(i)
1 , . . . , T

(i)

N(i)) for the event times. A point process is driven by its d-

dimensional intensity λ(t), which can be interpreted as the instantaneous expected number

of events since

λ(t) = lim
u→0

E
[
Nt+u −Nt

u
|FNt

]
,

where FNt = σ{Ns, 0 ≤ s ≤ t} is defined as the canonical filtration generated by Nt. For formal

definitions related to the theory of point processes, see Daley and Vere-Jones (2003), Daley and

Vere-Jones (2008), and more generally Jacod and Shiryaev (2013).

The parametric mutually exciting processes have a d-dimensional intensity defined as

λ(t) = ν∗ +

ˆ t

0

h(t− s, θ∗ker) dNs, (2)

where ν∗ is a d-dimensional Poisson baseline, h(t, θ∗ker) is a d × d-dimensional kernel matrix

whose diagonal components h(i,i) are self-exciting terms for the related i-th process and non-
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diagonal components h(i,j) are cross-exciting terms made by event from the j-th process to the

i-th process.

2.3 Latency

The latency is defined as a d × d-dimensional matrix which is a known function of the kernel

parameter θ∗ker, i.e. we assume that

L = F (θ∗ker). (3)

If L(i,j) > 0, a latency between an event in process j and its impact on process i is introduced.

Typically, we set F such that the latency L(i,j) is specified as the time it takes before reaching

the pick, i.e. the mode, of the kernel h(i,j)(t, θ∗ker). This definition of latency is in agreement

with the finance literature, e.g. Hasbrouck and Saar (2013), defining it as the time it takes

to learn and generate response to a trading event. An advantage of this definition is that

latency can be characterized by parameters θ(i,j)
ker associated with factors affecting latency. Such

a structural approach permits identifying different aspects of latency. As we show in Section 3.2,

sub-parameters of θ, i.e. D, are interpreted as delay measures. This component of latency D

identifies the time of learning about a trading event, which is critical for financial applications.

3 Estimation and tests

In this section, we first introduce MLE for the parametric Hawkes model and discuss the in-fill

asymptotics used for theoretical analysis. Then, we introduce a mixture of generalized gamma

kernels in which latency is well-defined highlighting that latency is not well-defined when the

kernel is exponential. Finally, we introduce latency estimation and tests related to latency.
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3.1 MLE

We assume that a stochastic basis Bn = (Ω,F ,Fn,P) is given, where the filtration is defined as

Fn = (Ft)t∈[0,T ], where T is the horizon time, i.e. 1 trading interval. The filtration contains all

the necessary information to the statistician. We implicitly assume that the defined quantities

depend on n, but we do not write explicitly such a dependence when it is clear from the

context. Furthermore, we also assume that all the stochastic processes defined in the following

are Fn-adapted processes. In particular, this implies that FNt ⊂ Ft for any t ∈ [0, T ].

For inference purposes, we consider in-fill asymptotics with joint boosting of the baseline

and the kernel. Relying on a parametric approach we assume the existence of an unknown true

value θ∗ = (ν∗, θ∗ker) such that for i = 1, . . . , d we have that the ith component of the F-intensity

is equal to

λ(i)(t, θ∗) = nν∗,(i) +
d∑
j=1

ˆ t

0

nh(i,j)(n(t− s), θ∗,(i,j)ker )dN (j)
s . (4)

We define the parameter space as Θ, i.e. θ∗ ∈ Θ. In Equation (4), in-fill asymptotics are based

on random observation times of order n within the time interval [0, T ] for a finite horizon time

T . Kwan (2023) extends the asymptotic analysis of Clinet and Potiron (2018) and Kwan et al.

(2023), also based on joint boosting, by not imposing an exponential kernel. Our case is different

from in-fill asymptotics of Chen and Hall (2013) who consider no boosting of the kernel. For

any space S such that 0 ∈ S, we define the space without zero as S∗. We assume that m ∈ N∗

is such that m ≥ 2d. We also assume that Θ ⊂ (R∗+)d × Rm−d is a convex, bounded and open

space which satisfies the assumptions from the Sobolev embedding Theorem (see Theorem 4.12

(p. 85) in Adams and Fournier (2003)). We rely on the log likelihood process, see Ogata (1978)

and Daley and Vere-Jones (2003),

lT (θ) =
d∑
i=1

ˆ T

0

log(λ(i)(t, θ))dNt −
d∑
i=1

ˆ T

0

λ(i)(t, θ)dt,

i.e. the MLE is defined as θ̂T ∈ argmaxθ∈Θ lT (θ).
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3.2 Mixture of generalized gamma kernels

For any i = 1, . . . , d and j = 1, . . . , d the mixture of generalized gamma kernels is defined as

h(i,j)(t, θ
(i,j)
ker ) =

K(i,j)∑
k=1

α
(i,j)
k

p
(i,j)
k t(D

(i,j)
k −1) exp(−(t/β

(i,j)
k )p

(i,j)
k )

(β
(i,j)
k )D

(i,j)
k Γ(D

(i,j)
k /p

(i,j)
k )

, (5)

in which Γ(·) is the gamma function, α(i,j)
k ∈ R∗+ is the size of the jump, β(i,j)

k ∈ R∗+ is the scale

parameter, D(i,j)
k ∈ R∗+ and p(i,j)

k ∈ R∗+ are shape parameters. In Equation (5) the number of

terms in the sum corresponding to the cross excitation between the ith and the jth market

K(i,j) is fixed by the statistician, so they are not parameters to be estimated. We assume that

the parameter related to the kernel is of the form

θker = (θ
(i,j)
ker )1≤i,j≤d = (θ

(1,1)
ker , θ

(1,2)
ker , · · · , θ

(d,d−1)
ker , θ

(d,d)
ker ) (6)

θ
(i,j)
ker = (α(i,j), β(i,j), D(i,j), p(i,j)) ∈ (R∗+)K

(i,j) × (R∗+)K
(i,j) × (R∗+)K

(i,j) × (R∗+)K
(i,j)

.

For simplicity of exposition, we assume that each term in the sum of Equation (5) is generalized

gamma kernel. However, all the theory of this paper also holds when some of parameters θ(i,j)
ker

are fixed to a value or equal to each other. In particular, the kernel can be exponential, gamma

or Weibull. Several examples covered by this framework are discussed in Appendix B from the

supplementary material.

3.3 Latency estimation

We recall from Equation (3) that latency is defined as a d × d-dimensional matrix which is a

known function of the kernel parameter θ∗ker, i.e. we have

L = F (θ∗ker) ∈ Rd×d
+ . (7)

The latency estimator is naturally defined as

L̂T = F (θ̂T ). (8)
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3.4 Tests related to latency

We consider three Wald tests associated with latency. We first provide a test for equality

between a latency value L(i,j) for an index (i, j) ∈ {1, . . . , d}2 and a latency value L̃ ∈ [0, T ],

i.e. we define the null hypothesis as H0(L̃) : {L(i,j) = L̃} and the alternative hypothesis as

H1(L̃) : {L(i,j) 6= L̃}. We let our first test statistic be

W (L̃) = nT
(L̂

(i,j)
T − L̃)2

̂Var
[
η(i,j)

] , (9)

where the variance estimator used in the denominator will be defined in Equation (23). In the

particular case when L̃ = 0, it provides a test for the absence against the presence of latency,

i.e. H0(0) : {L(i,j) = 0} against H1(0) : {L(i,j) > 0}.

We secondly propose a test for equality between two latency values L(i,j) and L(k,l) for

two indices (i, j) ∈ {1, . . . , d}2 and (k, l) ∈ {1, . . . , d}2, i.e. we define the null hypothesis as

H ′0 : {L(i,j) = L(k,l)} and the alternative hypothesis as H ′1 : {L(i,j) 6= L(k,l)}. We let our second

test statistic be

W ′ = nT
(L̂

(i,j)
T − L̂(k,l)

T )2

̂Var
[
η(i,j)

]
+ ̂Var

[
η(k,l)

]
− 2 ̂Cov

[
η(i,j), η(k,l)

] . (10)

where the variance and covariance estimators used in the denominator will be defined in Equa-

tion (23).

For convenience we rewrite the d × d-dimensional matrix of latencies (L(i,j))j=1,...,d
i=1,...,d as a

d2-dimensional vector of latencies

L = (L(i,j))i,j=1,...,d = (L(1,1), L(1,2), · · · , L(d,d))T .

We thirdly introduce a test of q linear hypotheses on the d2 latency vector which is expressed

with the q × d2-dimensional matrix R, i.e. we define the null hypothesis as H0(r) : {RL = r}

and the alternative hypothesis as H1(r) : {RL 6= r} for r ∈ R. We let our third test statistic
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be

W (r) = nT
(
RL̂T − r

)T (
RΓ̂TR

T
)−1(

RL̂T − r
)
, (11)

where the d2 × d2-dimensional covariance matrix estimator used in the denominator will be

defined in Equation (34).

4 Theory

In this section, we first derive the feasible CLT of the MLE in the mixture of generalized gamma

kernels case with in-fill asymptotics. This extends Clinet and Yoshida (2017) (Theorem 4.6)

which is restricted to the exponential kernel case and Kwan (2023) (Theorem 3.4.3) which only

obtains consistency of the MLE. Then, we derive the feasible CLT for the latency estimator.

Finally, we obtain the limit theory for the tests related to latency.

4.1 CLT with mixture of generalized gamma kernels

We make the following assumptions for the CLT. Following the conventional MLE set-up, we

require uniform boundedness of the parameter space.

[A ] (i) There exists ν− ∈ R∗+ such that for any θ = (ν, θker) ∈ Θ we have that

ν(i) > ν−. (12)

for any i = 1, . . . , d.

(ii) For any θ = (ν, θker) ∈ Θ, we have that the kernel parameter θker is of the form (6)

and the kernel h(t, θker) is of the form (5).

(iii) There exists p− ∈ R∗+ such that for any i = 1, . . . , d, any j = 1, . . . , d and any

k = 1, . . . , K(i,j) we have that

p
(i,j)
k > p−. (13)
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(iv) There exists D− ∈ R∗+ such that for any i = 1, . . . , d, any j = 1, . . . , d and any

k = 1, . . . , K(i,j) we have that

D
(i,j)
k > D−. (14)

(v) Let us define the matrix φ(θker) = (φ(i,j)(θ
(i,j)
ker ))j=1,...,d

i=1,...,d where

φ(i,j)(θ
(i,j)
ker ) =

ˆ ∞
0

h(i,j)(s, θ
(i,j)
ker )ds,

and write ρ(φ(θker)) being a spectral radius. There exists 0 < h+ < 1 such that for any

θ ∈ Θ we have that

ρ(φ(θker)) ≤ h+. (15)

Condition [A] (i), i.e. the positivity of the baseline, is well-known for Hawkes processes being

well-defined. Condition [A] (ii) restricts to Hawkes processes with mixture of generalized

gamma kernels. Condition [A] (v) is also common for Hawkes processes being well-defined,

as in the large-T asymptotics where Nt starts from −∞, this assumption is already required

to establish the existence of a stationary version of Nt on the same probability space and that

Nt tends in distribution to this stationary process for a certain topology, see Theorem 7 in

Brémaud and Massoulié (1996); Proposition 4.4 in Clinet and Yoshida (2017)).

Now we derive an important practical implication of Condition [A] (v). We obtain

ˆ ∞
0

h(i,j)(t, θ
(i,j)
ker )dt =

ˆ ∞
0

K(i,j)∑
k=1

α
(i,j)
k

p
(i,j)
k t(D

(i,j)
k −1) exp(−(t/β

(i,j)
k )p

(i,j)
k )

(β
(i,j)
k )D

(i,j)
k Γ(D

(i,j)
k /p

(i,j)
k )

dt

=
K(i,j)∑
k=1

α
(i,j)
k

ˆ ∞
0

p
(i,j)
k t(D

(i,j)
k −1) exp(−(t/β

(i,j)
k )p

(i,j)
k )

(β
(i,j)
k )D

(i,j)
k Γ(D

(i,j)
k /p

(i,j)
k )

dt

=
K(i,j)∑
k=1

α
(i,j)
k ,
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where we use Definition (5) in the first equality, Tonelli’s theorem in the second equality, and

the fact that the integral of any distribution is equal to 1. Furthermore, we can deduce that
ˆ ∞

0

h(i,j)(t, θ
(i,j)
ker )dt ≤ ρ(φ(θker))

by a spectral norm definition. Thus, Condition [A] (v) implies that
∑K(i,j)

k=1 α
(i,j)
k ≤ h+

We now provide the feasible CLT of the MLE in the mixture of generalized gamma kernels

case with in-fill asymptotics. This extends Clinet and Yoshida (2017) (Theorem 4.6) which is

restricted to the exponential kernel case and Kwan (2023) (Theorem 3.4.3) which only shows

consistency of the MLE. We define the space E as E = R∗+ × R∗+ × Rm. We also define as

C↑(E,R) the set of continuous functions ψ : (u, v, w)→ ψ(u, v, w) from E to R that satisfy ψ is

of polynomial growth in (u, v, w) and in ( 1
u
, 1
v
, w). For any i = 1, . . . , d and any θ ∈ Θ, we also

define the rescaled time-transformed intensity process as λ(i)
(t, θ) =

λ(i)( t
n
,θ)

n
, and the triplet

as X(i)
t = (λ

(i)
(t, θ∗), λ

(i)
(t, θ), ∂θλ

(i)
(t, θ)). Propositions C1 and C2 from the supplementary

material state that X(i)
t is stable, i.e. there exists an R∗+-valued random variable λ(i)

lim such

that X(i)
nT →D (λ

(i)

lim(θ∗), λ
(i)

lim(θ), ∂θλ
(i)

lim(θ)). They also state that the triplet is ergodic, i.e.

there exists a mapping π
(i)
θ∗ : C↑(E,R) × Θ → R such that for any (ψ, θ) ∈ C↑(E,R) × Θ

we have 1
nT

´ nT
0

ψ(X
(i)
s,n)ds →P π(i)(ψ, θ), where π(i)

θ∗ (ψ, θ) = E[ψ(λ
(i)

lim(θ∗), λ
(i)

lim(θ), ∂θλ
(i)

lim(θ))].

Finally, they state that there exists a probability measure Π
(i)
θ∗ on (E,B(E)) such that for any

ψ ∈ C↑(E,R), we have π(i)
θ∗ (ψ, θ) =

´
E
ψ(u, v, w)Π

(i)
θ∗ (du, dv, dw). If we consider a vector z ∈ Rm,

we define the tensor product as z⊗2 = z×zT ∈ Rm×m. We define the m×m-dimensional Fisher

information matrix Γ as

Γ =
d∑
i=1

ˆ
E

w⊗2 1

u
Π

(i)
θ∗ (du, dv, dw). (16)

In other words Γ−1 corresponds to the asymptotic covariance matrix. The Fisher information

matrix is estimated from

Γ̂T = −
[
∂2
θ lT (θ̂T )

]−1

, (17)
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where ∂2
θ lT (θ) is the m × m-dimensional Hessian matrix of the time-transformed likelihood

defined as lT (θ) =
∑d

i=1

´ Tn
0

log(λ
(i)

(t, θ))dN
(i)

t −
∑d

i=1

´ Tn
0

λ
(i)

(t, θ)dt with N (i)

t = N
(i)
t
n

. Also ξ

is defined as a m-dimensional standard normal vector.

Theorem 1. We assume that Condition [A] holds. As n→ +∞, we have the consistency

θ̂T →P θ∗ (18)

and the CLT

√
n(θ̂T − θ∗)→D

√
TΓ−1/2ξ. (19)

We show the consistency of the Fisher information matrix estimator

Γ̂T →P Γ. (20)

Moreover, we show the feasible normalized CLT

Γ̂
1/2
T

√
nT (θ̂T − θ∗)→D ξ. (21)

4.2 CLT for latency

We make the following assumption for deriving the CLT.

[B ] We assume that F : Θ→ Rd×d
+ is twice continuously differentiable.

For any i = 1, . . . , d and j = 1, . . . , d we define the m-dimensional differential vector corre-

sponding to the (i, j)-index of F at point θ as

dF (i,j)(θ) :=
(∂F (i,j)

∂θ(1)
(θ), . . . ,

∂F (i,j)

∂θ(m)
(θ)
)
.

We then define the asymptotic matrix as

(η(i,j))j=1,...,d
i=1,...,d = (dF (i,j)(θ∗)Γ−1/2ξ)j=1,...,d

i=1,...,d . (22)
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We estimate the covariance between η(i,j) and η(k,l) as

̂Cov
[
η(i,j), η(k,l)

]
=

m∑
q=1

( m∑
r=1

dF (i,j,r)(θ̂T )
(
Γ̂
−1/2
T

)(r,q)
)( m∑

r=1

dF (k,l,r)(θ̂T )
(
Γ̂
−1/2
T

)(r,q)
)

(23)

and the correlation between the normalized asymptotic covariance matrix (i, j)-index and (k, l)-

index as

̂
Cor

[
ξ̃(i,j), ξ̃(k,l)

]
=

̂Cov[η(i,j), η(k,l)]√
̂Var
[
η(i,j)

] ̂Var
[
η(k,l)

] , (24)

Now we provide the feasible CLT for the latency estimator with in-fill asymptotics. This

complements the related approach on nonparametric Hawkes processes and applications to

Covid-19 pandemic in France given in Gámiz et al. (2022) and Gámiz et al. (2023) for the

time-varying case.

Proposition 2. We assume that Condition [A] and Condition [B] hold. As n → +∞, we

have the consistency

L̂T →P L (25)

and the CLT

√
n(L̂

(i,j)
T − L(i,j))j=1,...,d

i=1,...,d →
D
√
T (η(i,j))j=1,...,d

i=1,...,d . (26)

Moreover, η(i,j) can be re-expressed for any i = 1, . . . , d and any j = 1, . . . , d as

η(i,j) =
m∑
q=1

( m∑
r=1

dF (i,j,r)(θ∗)
(
Γ−1/2

)(r,q)
)
ξ(q). (27)

We can deduce that

Cov[η(i,j), η(k,l)] =
m∑
q=1

( m∑
r=1

dF (i,j,r)(θ∗)
(
Γ−1/2

)(r,q)
)( m∑

r=1

dF (k,l,r)(θ∗)
(
Γ−1/2

)(r,q)
)
. (28)

We obtain the consistency of the covariance estimator

̂Cov
[
η(i,j), η(k,l)

]
→P Cov[η(i,j), η(k,l)]. (29)
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We show the feasible normalized CLT

√
nT

(
L̂

(i,j)
T − L(i,j)√

̂Var
[
η(i,j)

]
)j=1,...,d

i=1,...,d

→D (ξ̃(i,j))j=1,...,d
i=1,...,d , (30)

where each component ξ̃(i,j) is a standard normal variable with correlation that satisfies

Cor
[
ξ̃(i,j), ξ̃(k,l)

]
=

Cov[η(i,j), η(k,l)]√
Var

[
η(i,j)

]
Var

[
η(k,l)

] . (31)

The consistency of the correlation estimator is obtained as

̂
Cor

[
ξ̃(i,j), ξ̃(k,l)

]
→P Cor

[
ξ̃(i,j), ξ̃(k,l)

]
. (32)

For any i = 1, . . . , d and j = 1, . . . , d each component ξ̃(i,j) is a standard normal variable,

but the limit matrix (ξ̃(i,j))j=1,...,d
i=1,...,d is not a standard normal vector in Equation (30). In what

follows, we give a feasible CLT with a standard normal vector in the limit since this is useful for

providing the asymptotic theory of the multidimensional Wald test in Corollary 6. To obtain

a standard normal vector in the limit, we rewrite the d × d-dimensional matrix of latency

estimators (L̂
(i,j)
T )j=1,...,d

i=1,...,d as a d2-dimensional vector of latencies

L̂T = (L̂
(i,j)
T )i,j=1,...,d = (L̂

(1,1)
T , L̂

(1,2)
T , · · · , L̂(d,d)

T )T

and we introduce the d2 × d2-dimensional asymptotic covariance matrix Γ
−1 satisfying

(Γ
−1

)k,l=1,...,d
i,j=1,...,d = Cov[η(i,j), η(k,l)]. (33)

We estimate the asymptotic covariance matrix with

(Γ̂
−1

T )k,l=1,...,d
i,j=1,...,d = ̂Cov

[
η(i,j), η(k,l)

]
. (34)

We make the following assumption:

[C ] We assume that the d2×m-dimensional matrix
(∑m

r=1 dF
(i,j,r)(θ∗)

(
Γ−1/2

)(r,q)
)q=1,...,m

i,j=1,...,d
has

full rank.
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Corollary 3. We assume that Condition [A], Condition [B] and Condition [C] hold. As

n→ +∞, we have the CLT

√
n(L̂T − L)→D

√
TΓ
−1/2

ξ, (35)

where ξ follows a d2-dimensional standard normal vector. We obtain the consistency for the

asymptotic covariance matrix

Γ̂T →P Γ. (36)

Moreover, we provide the feasible normalized CLT

Γ̂
1/2

T

√
nT (L̂

(i,j)
T − L(i,j))i,j=1,...,d →D ξ. (37)

4.3 Tests related to latency

The following corollary shows that the first Wald test statistic converges in distribution to a

chi-squared distribution with one degree of freedom under the null hypothesis and is consistent

under the alternative hypothesis. The proof is based on Proposition 2. We denote Qu as the

quantile function of the chi-squared distribution with one degree of freedom.

Corollary 4. We assume that Condition [A] and Condition [B] hold. As n → +∞ and for

any latency value L̃ ∈ [0, T ], the first Wald test statistic W (L̃) converges in distribution to a chi-

squared distribution with one degree of freedom under the null hypothesis H0(L̃) : {L(i,j) = L̃}

and is consistent under the alternative hypothesis H1(L̃) : {L(i,j) 6= L̃}, i.e. for any 0 < α < 1

we have

size(α) = P{W (L̃) > Q1−α | H0(L̃)} → α, (38)

power(α) = P{W (L̃) > Q1−α | H1(L̃)} → 1. (39)
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The second Wald test statistic converges in distribution to a chi-squared distribution with

one degree of freedom under the null hypothesis and is consistent. The proof is based on

Proposition 2.

Corollary 5. We assume that Condition [A] and Condition [B] hold. We also assume that

(η(i,j), η(k,l)) is a two-dimensional random vector. As n → +∞, the second Wald test statistic

W ′ converges in distribution to a chi-squared distribution with one degree of freedom under

the null hypothesis H ′0 : {L(i,j) = L(k,l)} and is consistent under the alternative hypothesis

H ′1 : {L(i,j) 6= L(k,l)}, i.e. for any 0 < α < 1 we have

size′(α) = P{W ′ > Q1−α | H ′0} → α, (40)

power′(α) = P{W ′ > Q1−α | H ′1} → 1. (41)

Finally, the following corollary shows the third Wald test statistic converging to a chi-

squared distribution with q degrees of freedom under the null hypothesis and being consistent.

The proof is based on Corollary 3. We denote Q(q)
u as the quantile function of the chi-squared

distribution with q degrees of freedom.

Corollary 6. We assume that Condition [A], Condition [B] and Condition [C] hold. As

n → +∞ and for any r ∈ R, the third Wald test statistic W (r) converges in distribution to a

chi-squared distribution with q degrees of freedom under the null hypothesis H0(r) : {RL = r}

and is consistent under the alternative hypothesis H1(r) : {RL 6= r}, i.e. for any 0 < α < 1 we

have

size(α) = P{W (r) > Q
(q)
1−α | H0(r)} → α, (42)

power(α) = P{W (r) > Q
(q)
1−α | H1(r)} → 1. (43)
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5 Empirical application

In this section we analyze the performance of the proposed model using the transaction data

for the New York Stock Exchange (NYSE) and the Toronto Stock Exchange (TSX).

5.1 Data

Our sample period runs from January 2, 2020 to December 31, 2021. Each day, we construct

a sample of stocks included in the S&P 500 index and the TSX composite index and that are

traded in the NYSE and the TSX. We obtain trade and mid-quote price, i.e. the average price

between best bid and ask prices, and time stamps from the consolidated trade history in the

transaction Datascope database. Following Hasbrouck (2018) all the stock trades and quotes

between 9.45 a.m. and 3.45 p.m. (EST) are considered. Our selection of characteristics for each

stock and each day includes millisecond time stamps. These stock characteristics are used to

obtain the estimates of latency and to test the hypotheses formulated in the following section.

We apply additional filters in the following order. First, we exclude trades and quotes

with zero volumes and prices. Second, we drop a stock-day observation if it takes extreme

values falling in the top or bottom 1% of the monthly cross-sections. Finally, each daily sample

comprises the 798 stocks traded in the NYSE and the TSX.

Table 1 presents summary sample statistics over the final sample. The sample statistics are

computed for the US and Canadian stock exchanges separately. The US market is characterized

by a shorter duration, while the TSX experienced a lower standard deviation of trade durations.
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Table 1: Summary statistics are reported for all S&P 500 and TSX composite index stocks traded

in the NYSE and TSX. The daily average statistics are obtained over the sample from 02/01/2020 to

31/12/2021. Durations are expressed in milliseconds.

Obs. Mean Std dev Min Max

NYSE

Trade Duration 273,845,398 33.304 149.052 1 63247.101

Mid-Quote Duration 3,361,459,591 2.987 4.983 1 72.370

TSX

Trade Duration 120,801,281 77.245 127.918 1 4336.670

Mid-Quote Duration 1,409,644,068 6.798 10.286 1 222.901

5.2 Hypotheses

To understand the evolution of latency in the NYSE and TSX we formulate testable hypotheses

of interest. All hypotheses are tested for the whole sample including all trading days and p-

values can be obtained with Corollary 6. To verify that our results of testing hypotheses are not

distorted due to a multiple statistical inference problem, we implement a Bonferroni adjustment

of Holm (1979) for all p-values. The adjusted p-values computed at the 1% level provide the

identical conclusions about all hypotheses confirming the statistical robustness of our results.

Another robustness check of our testing results is conducted following Bajgrowicz et al. (2016)

and the results are in agreement with the Bonferroni corrected tests.

First, we conjecture if latency exists in both exchanges and for mid-quote and trade events.

Latency exists in the NYSE and TSX stock exchanges, i.e. H0(0) : L(i,i) = 0 for all i =

1, . . . , 4.

A p-value of 0.001 confirms the existence of latency at the 5% level. One may argue that
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latency is solely characterized by technological development of a stock exchange. In this case

a technology arms race would not be defined by timing of orders and latency estimates are

expected to be similar in both exchanges. If this is not the case, transforming competition on

speed into competition on price is possible when firms strategically consider the timing of order

submissions, see e.g. Budish et al. (2015).

Latency varies across the stock exchanges, i.e. H0(0) : L(1,1) = L(3,3) and L(2,2) = L(4,4).

A p-value of 0.002 provides evidence of rejecting the null hypothesis at the 5% level. This

suggests that there exist additional sources of market information that must be taken into

consideration when a new measure of latency is designed. This conjecture extends an idea of

Riordan and Storkenmaier (2012) about interrelation between latency and price discovery.

The presence of latency is a feature of modern financial markets, but it is unclear if changes

in latencies across stock exchanges create market co-movements. This conjecture is supported

by Baron et al. (2019) who find latency to be used as a channel for cross-exchange interactions.

We call this phenomenon co-latency. Co-latency can be considered as a channel of emerging

spillovers between the market events corroborating findings of Malceniece et al. (2019) about the

substantial impact of trading activity on co-movements in stock returns. Following Aït-Sahalia

et al. (2015) the presence of spillovers is associated with statistically significant cross-excitation

effects.

Co-latency is observed for different events (trades, quotes) within the stock exchanges, i.e.

(*) H0(0) : L(1,2) = L(2,1) = 0 and L(3,4) = L(4,3) = 0 or (**) H0(0) : L(3,1) = L(3,2) = L(4,1) =

L(4,2) = 0 and L(1,3) = L(1,4) = L(2,3) = L(2,4) = 0.

Rejecting (*) with p-value=0.003 confirms the existence of co-latency in both exchanges.

However, (**) is not rejected (p-value=0.203), justifying the co-location argument of Brogaard

et al. (2015) and confirming that co-latency does not spread across exchanges.
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5.3 Latency in the US and Canadian stock exchanges

We now discuss the estimates of latency obtained by the MLE procedure presented in Section 3.

Trade and mid-quote time stamps of all the stocks are used to estimate Model (4) for each day

and for both the NYSE and the TSX. In this case the kernel matrix h(i,j) is 4× 4-dimensional

and the market interaction between the US and Canadian stock exchanges is captured by the

cross excitation terms h(i,j) when i 6= j. The shape of the kernel matrix h(i,j) follows the gamma

specification discussed in Appendix B.2 which is a special case of mixture of generalized gamma

kernels presented in Section 3.2 with parameters α, β and D. Following the results from the

previous section we discuss only (co)latency estimates within the NYSE and the TSX captured

by h(1,1), h(2,2), h(3,3), h(4,4) and h(1,2), h(2,1), h(3,4), h(4,3). This is verified by the testing results in

the previous section and in agreement with the colocation argument of Shkilko and Sokolov

(2020) implying the region specific nature of trading activity.

Delay D is discussed now as an important factor contributing to latency. Parameter es-

timates D̂(i,j)
T are presented in Figure 1 for each trading day.1 The delay parameters D(1,1),

D(2,2) for the NYSE and D(3,3), D(4,4) for the TSX trade and mid-quote events are statistically

different from zero changing between 1 and 5 milliseconds. A substantial drop in delay from

almost 4 to 2 milliseconds observed in Figure 1d happened in November 26th, 2021 which was

the worst day of year for North American stock markets. On this day S&P 500 index dropped

more than 2% due to a new Covid variant found in South Africa triggering a shift from risk

assets and accelerating the speed of trading. The cross-exciting parameter D(1,2) capturing

delay in the NYSE trades due to mid-quote events in the same exchange fluctuates between

1.4 and 4 milliseconds. In February and March 2020, active trading during the start of COVID

pandemic creates longer delays D(1,2) and D(3,4) showing that market participants respond more

quickly to trades when information is flowing. Delays of responding quotes to trades D(2,1) and
1The estimates of parameters α(i,j) and β(i,j) are not presented here, but available in Appendix D.
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D(4,3) are longer for both the NYSE and the TSX suggesting that in both markets trades absorb

market information faster.

The estimates of latency and co-latency L̂(i,j)
T for the NYSE and the TSX obtained for each

day over the sample are presented in Figure 2. The latency estimates L̂(i,i)
T for the US and

Canada change between 2 and 5 milliseconds over the sample. Overall the TSX is faster with

the latency just below 4 milliseconds for trades and mid-quotes. In February and March 2020,

the start of COVID-19 pandemic, co-latency in the NYSE and TSX observed from Figures

2(e),(g) jumped a few times between 1 and almost 4 milliseconds. This pattern is attributed

to suspending floor trading due to COVID-19 pandemic in February and March 2020. Another

common pattern for both exchanges observed from Figures 2 (e),(f),(g),(h) is a faster reaction

of trading co-latency in response to quotes. Confidence intervals for L̂(1,2)
T and L̂(3,4)

T are wider

comparing to L̂(2,1)
T and L̂(4,3)

T indicating uncertainty about the impact of quote events on trades

which reduces in 2021 for L̂(4,3)
T . Our findings indicate the existence of co-latency channel

working in both directions between the US and Canada. This corresponds to Hoffmann (2014)

where an ability of fast traders to revise their quotes quickly after news arrivals helps reducing

market risks in some markets, i.e. the TSX and the NYSE in our case.

6 Conclusion

A novel statistical approach to estimating latency, defined as the time it takes to learn about an

event and generate response to this event, is described. Outside of finance this definition helps

understanding and modelling delay in reactions to events for point processes. The problem

is formulated to be solved by the comprehensive use of stochastic analysis techniques. More

specifically, we have considered the class of parametric Hawkes models, which circumvents the

use of more detailed datasets which may not even be available. We define latency as a known

26



Jan-2020 Jul-2020 Jan-2021 Jul-2021 Jan-2022

0

2

4

6

8

Jan-2020 Jul-2020 Jan-2021 Jul-2021 Jan-2022

0

2

4

6

8

Jan-2020 Jul-2020 Jan-2021 Jul-2021 Jan-2022

0

2

4

6

8

Jan-2020 Jul-2020 Jan-2021 Jul-2021 Jan-2022

0

2

4

6

8

Jan-2020 Jul-2020 Jan-2021 Jul-2021 Jan-2022

0

2

4

6

8

Jan-2020 Jul-2020 Jan-2021 Jul-2021 Jan-2022

0

2

4

6

8

Jan-2020 Jul-2020 Jan-2021 Jul-2021 Jan-2022

0

2

4

6

8

Jan-2020 Jul-2020 Jan-2021 Jul-2021 Jan-2022

0

2

4

6

8

Figure 1: Parameter estimates D̂(i,j)
T obtained from Equation (4). Parameter estimates for each day

in the NYSE and TSX are shown. 90% confidence intervals are also presented.
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Figure 2: Latency and co-latency estimates L̂(i,j)
T obtained from Model (4). Each graph shows co-

latency estimates for each day across all events in the NYSE and TSX. 90% confidence intervals are

reported.
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function of kernel parameters, typically the mode of kernel function. Since latency is not

well-defined when the kernel is exponential, we consider maximum likelihood estimation in the

mixture of generalized gamma kernels case and derive the feasible CLT with in-fill asymptotics.

As a byproduct, CLT for a latency estimator, defined as the function of parameter estimates,

and three tests were deduced. Latency estimates for the US and Canadian stock exchanges are

found to vary between 1 and 6 milliseconds from 2020 to 2021. The existence of co-latency

channel working in both directions between the US and Canada is also confirmed.

Supplementary material

Our numerical study is carried over in Appendix A. Examples are given in Appendix B. All

proofs are shown in Appendix C. An additional empirical result belongs to Appendix D.
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Appendices

This part corresponds to the "supplementary material" of "Mutually exciting point processes

with latency" by Yoann Potiron and Vladimir Volkov submitted to Journal of the American

Statistical Association. Our numerical study is carried over in the Appendix A. Examples are

given in the Appendix B. All proofs of the theory are shown in the Appendix C. Additional

empirical results belong to the Appendix D.

A Numerical study

The performance of the model is now explored via a simple multidimensional simulation exper-

iment. Consider the 5-dimensional specification of Equation (4) with intensity given by

λ(i)(t, θ∗) = nν∗,(i) +
5∑
j=1

ˆ t−

0

nh(i,j)(n(t− s), θ∗,(i,j)ker )dN (j)
s , (A1)

where ν∗ =
[

0.01 0.01 0.01 0.01 0.01
]′
, h(t, θ) is a gamma kernel defined in Equation

(B2) and the kernel parameters θ∗ker are chosen such that

h(t, θ∗ker) =

0.15 t
8exp(−t)

Γ(9)
0.16 t

10exp(−t/1.5)
Γ(11)

0.14 t
10exp(−t/1.2)

Γ(11)
0.25 t

5exp(−t/2)
Γ(6)

0.14 t
9exp(−t/1.1)

Γ(10)

0.14 t
5exp(−t/2)

Γ(6)
0.15 t

11exp(−t/2)
Γ(12)

0.24 t
10exp(−t/1.5)

Γ(11)
0.15 t

9exp(−t/2.1)
Γ(10)

0.25 t
8exp(−t/1.7)

Γ(9)

0.14 t
7exp(−t/1.8)

Γ(8)
0.25 t

8exp(−t/1.2)
Γ(9)

0.15 t
9exp(−t/1.6)

Γ(10)
0.24 t

10exp(−t/1.8)
Γ(11)

0.15 t
9exp(−t/1.6)

Γ(10)

0.25 t
8exp(−t/2)

Γ(9)
0.14 t

7exp(−t/1.2)
Γ(8)

0.14 t
6exp(−t/1.3)

Γ(7)
0.24 t

8exp(−t/1.5)
Γ(9)

0.16 t
7exp(−t/2)

Γ(8)

0.24 t
9exp(−t/1.5)

Γ(10)
0.15 t

5.5exp(−t/2)
Γ(6.5)

0.14 t
6exp(−t/1.5)

Γ(7)
0.26 t

5.6exp(−t/2.1)
Γ(6.6)

0.15 t
7exp(−t/1.8)

Γ(8)


.

(A2)

From Equation (B2), we can deduce that the Hawkes process generated by the intensity (A1)

has a baseline equal to ν̃∗,(i) = nν∗,(i) and a gamma kernel h̃(t, θ) with true value parameters
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(nα(i,j), β
(i,j)

n
, D(i,j)). Thus, there is a unique relationship between (ν∗, h) and (ν̃∗, h̃). The choice

of parameter values mimics the broad characteristics of the empirical data discussed in Section

5. From Equation (B3), latency and co-latency are obtained as a function of parameters equal to

L̃(i,j) = β(i,j)(D(i,j)−1)
n

. Thus, we obtain latency and co-latency values below 15 milliseconds. The

simulation exercise involves 500 independent replications with the sample size order n = 100, 000

and setting up T = 1 trading interval to generate the data. Since we recall that n corresponds

to the order of the number of observations, we note that the sample size order n = 100, 000 is

more conservative than the average number of observations in our empirical study, see Table 1.

The elements of the kernel h(t, θ∗ker) are estimated using the MLE approach presented in Section

3.1. The model defined in Equation (A1) meets the theoretical assumptions from Section 4.

Figure A1 illustrates histograms of the kernel estimates ĥ. The trapezoidal rule is used to

numerically compute the integral in Equation (A1). The estimates of all kernel functions are

close to their theoretical values and the confidence intervals behave as expected. One case where

the confidence intervals are especially narrow is represented by ĥ(3,2). This is expected as the

kernel specification has the highest mean rate. All kernels approach zero within 50 intervals.

Now we verify the CLT of the latency estimator. Histograms of latency and co-latency

estimates L̂(i,j)
T are presented in Figure A2. The obtained variance lies within the range of 2-3

intervals. Table A1 verifies the finite sample properties. The bias ranges from −0.10 to −0.30,

which only affects around 1% of latency values. The estimated latency has relatively similar in

sample standard error, which is calculated from (L̂
(i,j)
T − L(i,j)), and estimated standard error√

̂Cov
[
η(i,j), η(k,l)

]
. This indicates that our variance estimator performs reasonably well with

increasing n. To confirm the behavior of variance estimators and asymptotic Gaussianity, we

provide histograms of the standardized errors related to the latency estimator L̂(i,j)
T in Figure

A3.

37



0 20 40

0.000

0.010

0.020

0 20 40

0.000

0.010

0.020

0 20 40

0.000

0.010

0.020

0 20 40

0.000

0.010

0.020

0.030

0 20 40

0.000

0.010

0.020

0 20 40

0.000

0.010

0.020

0 20 40

0.000

0.010

0.020

0 20 40

0.000

0.010

0.020

0 20 40

0.000

0.010

0.020

0 20 40

0.000

0.010

0.020

0 20 40

0.000

0.010

0.020

0 20 40

0.000

0.010

0.020

0.030

0 20 40

0.000

0.010

0.020

0 20 40

0.000

0.010

0.020

0 20 40

0.000

0.010

0.020

0 20 40

0.000

0.010

0.020

0 20 40

0.000

0.010

0.020

0 20 40

0.000

0.010

0.020

0 20 40

0.000

0.010

0.020

0.030

0 20 40

0.000

0.010

0.020

0 20 40

0.000

0.010

0.020

0 20 40

0.000

0.010

0.020

0 20 40

0.000

0.010

0.020

0 20 40

0.000

0.010

0.020

0 20 40

0.000

0.010

0.020

Figure A1: Histograms of the kernel estimates ĥ over 50 time intervals. The solid line represents

the estimated kernels. The confidence intervals (dashed line) are represented by 2.5% and 97.5%

percentiles. The histograms are generated from 500 independent replications with the sample size

order n = 100, 000.
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Figure A2: Histograms of latency and co-latency estimates L̂(i,j)
T . The histograms are generated from

500 independent replications with the sample size order n = 100, 000.
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Table A1: Finite sample properties of the latency estimator L̂(i,j)
T . The bias is computed as an average

of (L̂(i,j)
T −L(i,j)), in sample standard error is calculated from (L̂

(i,j)
T −L(i,j)), and the estimated standard

error is
√

̂Cov
[
η(i,j), η(k,l)

]
. The estimates are generated from 500 independent replications with the

sample size order n = 100, 000.

Bias In st. error Est. st. error Bias In st. error Est. st. error

L̂
(1,1)
T -0.11 2.50 2.62 L̂

(1,2)
T -0.15 2.25 3.85

L̂
(1,3)
T -0.20 1.84 3.43 L̂

(1,4)
T -0.18 1.35 3.13

L̂
(1,5)
T -0.21 1.45 3.11 L̂

(2,1)
T -0.30 2.63 3.11

L̂
(2,2)
T -0.13 2.35 3.18 L̂

(2,3)
T -0.22 1.65 3.84

L̂
(2,4)
T -0.25 3.95 4.31 L̂

(2,5)
T -0.16 1.54 3.66

L̂
(3,1)
T -0.26 3.08 3.50 L̂

(3,2)
T -0.18 1.84 3.06

L̂
(3,3)
T -0.19 2.28 3.31 L̂

(3,4)
T -0.17 2.08 4.22

L̂
(3,5)
T -0.20 2.62 3.76 L̂

(4,1)
T -0.11 1.98 3.98

L̂
(4,2)
T -0.20 1.42 2.86 L̂

(4,3)
T -0.24 1.51 2.75

L̂
(4,4)
T -0.41 1.53 3.39 L̂

(4,5)
T -0.13 3.20 3.72

L̂
(5,1)
T -0.12 1.47 3.68 L̂

(5,2)
T -0.18 2.46 3.28

L̂
(5,3)
T -0.20 1.86 2.96 L̂

(5,4)
T -0.15 1.63 3.40

L̂
(5,5)
T -0.19 2.04 3.03
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Figure A3: Histograms of the standardized errors for the latency estimator L̂(i,j)
T . The histograms are

generated from 500 independent replications with the sample size order n = 100, 000.
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Now we conduct hypothesis testing to confirm the size and power of the tests provided in

Section 4.3 for different sample sizes. While the sample size order in our empirical application

is larger than n = 100, 000 providing a better size and power, we aim to demonstrate that the

proposed latency test can be used in other areas of statistics. We compare the sample size

orders of n = 10, 000, n = 50, 000 and n = 100, 000. The sample size order of n = 50, 000 is

similar to a size of dataset from Ogata (1988) who considered earthquakes of magnitude 6 or

more that occurred in Japan and its vicinity over almost 100 years. The significance level is set

up at 5% level. Table A2 reports power and size at the 5% level of the tests: HA : L(1,1) = 0 ,

HB : L(1,2) = 0 , HC : L(1,3) = 0 , HD : L(1,4) = 0, HE : L(1,5) = 0 against one-sided alternatives.

For smaller samples the tests are slightly undersized in most cases but approach 5% for the

sample size order of n = 100, 000. The power is bigger than 0.93 in all cases and approaches

1. This highlights the potential of applying our method not only in finance but also in other

areas of statistics such as seismology.

Table A2: Power and size at the 5% level of the tests: HA : L(1,1) = 0 , HB : L(1,2) = 0 , HC : L(1,3) = 0

, HD : L(1,4) = 0, HE : L(1,5) = 0 against one-sided alternatives. 500 independent replications are used

for simulation.

Null HA HB HC HD HE HA HB HC HD HE

Sample order Size Power

10,000 0.040 0.016 0.010 0.044 0.011 0.932 0.944 0.964 0.956 0.948

50,000 0.032 0.036 0.060 0.036 0.044 0.938 0.951 0.952 0.958 0.952

100,000 0.039 0.044 0.046 0.048 0.046 0.974 0.996 1.000 0.959 1.000
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B Examples

In this section, we provide five examples of kernels, i.e. exponential, gamma, Weibull, general-

ized gamma, and mixture of several kernels, which meet the assumptions of our framework. We

insist on the fact that latency is not well-defined when the kernel is exponential as the mode is

always equal to 0 in that case. For the remaining examples, the latency is defined as the mode

of the kernel.

B.1 Exponential kernel

The conventional exponential kernel is defined as

h(i,j)(t, θ
(i,j)
ker ) = α(i,j) exp(−t/β(i,j))

β(i,j)
, α(i,j) ∈ (0, h+], β(i,j) ∈ R∗+. (B1)

This is a particular case of the generalized gamma kernel (5) when p(i,j) = D(i,j) = 1. On the

one hand, the exponential kernel satisfies the assumptions of this paper, so it is a valid kernel

form. On the other hand, we insist on the fact that latency is not well-defined when the kernel

is exponential as the mode is always equal to 0 in that case. Thus, the exponential kernel is

not suitable for estimating latency.

B.2 Gamma kernel

The gamma kernel is defined as

h(i,j)(t, θ
(i,j)
ker ) = α(i,j) t

(D(i,j)−1)exp(−t/β(i,j))

(β(i,j))D(i,j)Γ(D(i,j))
, α(i,j) ∈ (0, h+], β(i,j) ∈ R∗+, D(i,j) ∈ R∗+. (B2)

This is a particular case of the generalized gamma kernel (5) when p(i,j) = 1. We define latency

as the mode, which can be expressed as

L(i,j) = β(i,j)(D(i,j) − 1) ∀i, j,D(i,j) > 1. (B3)

L(i,j) = 0 ∀i, j,D(i,j) ≤ 1.
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If L(i,j) > 0, or equivalently D(i,j) > 1, a latency between an event in process j and its impact on

process i is introduced. If L(i,j) = 0, or equivalently D(i,j) ≤ 1, there is no latency between an

event in process j and its impact on process i. Figure B1 illustrates an example of gamma kernel

defined in Equation (B2) and exponential kernel defined in Equation (B1) for 20 intervals.

0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

Figure B1: An example of gamma kernel defined in Equation (B2) and exponential kernel defined in

Equation (B1) for 20 intervals. The solid line represents the gamma kernel with parameters α = 1,

β = 2, and D = 3 and the vertical line shows the latency L = 4. The dashed line represents the

exponential kernel with α = 1, β = 2, and D = 1.

B.3 Weibull kernel

The Weibull kernel is defined as

h(i,j)(t, θ
(i,j)
ker ) = α(i,j)D

(i,j)t(D
(i,j)−1) exp(−(t/β(i,j))D

(i,j)
)

(β(i,j))D(i,j)
, (B4)

α(i,j) ∈ (0, h+], β(i,j) ∈ R∗+, D(i,j) ∈ R∗+.

This is a particular case of the generalized gamma kernel (5) when p(i,j) = D(i,j). We define

latency as the mode, which can be expressed as

L(i,j) = β(i,j)
(D(i,j) − 1

D(i,j)

)1/D(i,j)

∀i, j,D(i,j) > 1. (B5)

L(i,j) = 0 ∀i, j,D(i,j) ≤ 1.
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B.4 Generalized gamma kernel

The generalized gamma kernel is defined as

h(i,j)(t, θ
(i,j)
ker ) = α(i,j)p

(i,j)t(D
(i,j)−1) exp(−(t/β(i,j))p

(i,j)
)

(β(i,j))D(i,j)Γ(D(i,j)/p(i,j))
, α(i,j) ∈ (0, h+], β(i,j), D(i,j), p(i,j) ∈ R∗+.(B6)

We define latency as the mode, which can be expressed as

L(i,j) = β(i,j)
(D(i,j) − 1

p(i,j)

)1/p(i,j)

∀i, j,D(i,j) > 1. (B7)

L(i,j) = 0 ∀i, j,D(i,j) ≤ 1.

B.5 Mixture of several kernels

The mixture of exponential, gamma, Weibull and generalized gamma kernel is defined as

h(i,j)(t, θ
(i,j)
ker ) = h(i,j)

exp (t, θ
(i,j)
ker ) + h(i,j)

gam(t, θ
(i,j)
ker ) + h

(i,j)
Wei(t, θ

(i,j)
ker ) + h(i,j)

gengam(t, θ
(i,j)
ker ), (B8)

where

h(i,j)
exp (t, θ

(i,j)
ker ) =

K
(i,j)
1∑
k=1

α
(i,j)
k,1

exp(−t/β(i,j)
k,1 )

β
(i,j)
k,1

,

h(i,j)
gam(t, θ

(i,j)
ker ) =

K
(i,j)
2∑
k=1

α
(i,j)
k,2

t(D
(i,j)
k,2 −1) exp(−t/β(i,j)

k,2 )

(β
(i,j)
k,2 )D

(i,j)
k,2 Γ(D

(i,j)
k,2 )

,

h
(i,j)
Wei(t, θ

(i,j)
ker ) =

K
(i,j)
3∑
k=1

α
(i,j)
k,3

D
(i,j)
k,3 t

(D
(i,j)
k,3 −1) exp(−(t/β

(i,j)
k,3 )D

(i,j)
k,3 )

(β
(i,j)
k,3 )D

(i,j)
k,3

,

h(i,j)
gengam(t, θ

(i,j)
ker ) =

K
(i,j)
4∑
k=1

α
(i,j)
k,4

p
(i,j)
k,4 t

(D
(i,j)
k,4 −1) exp(−(t/β

(i,j)
k,4 )p

(i,j)
k,4 )

(β
(i,j)
k,4 )D

(i,j)
k,4 Γ(D

(i,j)
k,4 /p

(i,j)
k,4 )

,

and we have that
4∑
l=1

K(i,j)∑
k=1

α
(i,j)
k,l ≤ h+.

A general formula for the mode in the mixture of several kernels case is beyond the scope of

this paper.
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C Proofs

C.1 Notations

Before we start the proofs, we need some more formal definitions. If z is a real number, a vector

or a matrix, we define its norm as | z |=
∑

k | zk |. When Z is a random variable, we define its

Lp-norm as || Z ||= E[| Z |p]1/p. When Yn and Zn are two sequences of random variables, we

define the notation small tau as Yn = oP(Zn), i.e. that Yn
Zn

1{Zn 6=0} →P 0, and the notation big

tau Yn = OP(Zn), i.e. that Yn
Zn

1{Zn 6=0} is stochastically bounded. Moreover, given a Borel space

(E,B(E)), Cb(E,R) is defined as the set of continuous and bounded functions from the space

E to R. For a measure µ, let L1(µ) be the space of functions that are integrable with respect

to µ. Finally, we define for any i = 1, . . . , d the event times of the ith process as

(T
(i)
1 , . . . , T

(i)

N(i)).

Since Nt is a point process, its F-intensity (4) can be re-expressed partly as the sum at jump

times, i.e.

λ(i)(t, θ∗) = nν∗,(i) +
d∑
j=1

∑
k∈N∗ s.t. T (j)

k <t

nh(i,j)(n(t− T (j)
k ), θ

∗,(i,j)
ker ). (C1)

C.2 Time transformation and some lemmas

Our proof strategy follows the general machinery of Clinet and Yoshida (2017), which consider

large-T asymptotics. To rewrite our problem with in-fill asymptotics as a problem with large-T

asymptotics, we consider a time transformation as in Kwan et al. (2023). More specifically, we

define the time-transformed filtration as

Fn = (F t,n)t∈[0,nT ],

F t,n = F t
n
,n.
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From now on, we implicitly assume that all the defined quantities are Fn-adapted. For any

i = 1, . . . , d we define the ith process of the time-transformed point process as

N
(i)

n : [0, nT ] → N (C2)

t 7→ N
(i)

t,n = N
(i)
t
n
,n
,

with corresponding jump times

(T
(i)

1,n, . . . , T
(i)

N
(i)
n ,n

)

defined such that T (i)

k,n = nT
(i)
k,n and the rescaled time-transformed stochastic Fn-intensity process

as

λ
(i)

n : [0, nT ]×Θ → R+ (C3)

(t, θ) 7→ λ
(i)

n (t, θ) =
λ

(i)
n ( t

n
, θ)

n
.

In this first lemma, we rewrite the rescaled time-transformed stochastic Fn-intensity in terms

of the time-transformed point process.

Lemma C1. For any (t, θ) ∈ [0, nT ]×Θ and any i = 1, . . . , d we have that

λ
(i)

n (t, θ) = ν(i) +
d∑
j=1

ˆ t−

0

h(i,j)((t− s), θ(i,j)
ker )dN

(j)

s,n. (C4)

Proof. If we substitute Equation (4) into Definition (C3), we obtain

λ
(i)

n (t, θ) = ν(i) +
d∑
j=1

ˆ t−

0

h(i,j)((t− s), θ(i,j)
ker )dN

(j)
s
n
,n. (C5)

Finally, we can conclude by substituting Definition (C2) into Equation (C5).

The next lemma shows that Nn is a multidimensional Hawkes process with a mixture of

generalized gamma kernels.

Lemma C2. We have that

M t,n = N t,n −
ˆ t

0

λn(s, θ∗)ds (C6)
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is a Fn-local martingale. In particular, this implies that Nn is a multidimensional Hawkes

process with a mixture of generalized gamma kernels and related Fn-intensity λn(., θ∗).

Proof. By definition of a compensator, we have that

Mt,n = Nt,n −
ˆ t

0

λn(s, θ∗)ds (C7)

is a Fn-local martingale. First, we will show that Equation (C6) is a Fn-local martingale. In

fact we have

M t,n = N t,n −
ˆ t

0

λn(s, θ∗)ds

= N t
n
,n −
ˆ t

0

λn( s
n
, θ∗)

n
ds

= N t
n
,n −
ˆ t

n

0

λn(y, θ∗)dy

= M t
n
,n,

where we used Equation (C6) in the first equality, Equation (C2) and Equation (C3) in the

second equality, integral change of variable in the third equality and Equation (C7) in the fourth

equality. Now, as Mt,n is a Fn-local martingale, it is clear that the time-transformed local

martingale M t
n
,n is a Fn-local martingale. Then, it means that M t

n
,n is a Fn-local martingale,

thus we have shown the lemma. Second, we can deduce that Nn is a multidimensional Hawkes

process with a mixture of generalized gamma kernels and related Fn-intensity λn(., θ∗) by

Theorem 3.17 (p. 32) in Jacod and Shiryaev (2013).

We also define the log likelihood process of the time-transformed process as

ln(θ) =
d∑
i=1

ˆ Tn

0

log(λ
(i)

n (t, θ))dN
(i)

t,n −
d∑
i=1

ˆ Tn

0

λ
(i)

n (t, θ)dt, (C8)

and θ̂n any maximizer of it. The following lemma states that a.s. the MLE on [0, T ] of the

standard point process is equal to the MLE on [0, nT ] of the time-transformed point process.
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Lemma C3. We have that a.s.

θ̂n = θ̂T,n

Proof. By the time-transformed process form and Lemma C2, the result follows.

C.3 Adaptation of some lemmas in the mixture of generalized gamma

kernels case

The following lemma shows that the time-transformed Fn-intensity, together with its first three

derivatives, are in Lp for any p ∈ N with p ≥ 2. This corresponds to Condition [A2] (i) (p.

1804) in Clinet and Yoshida (2017). This extends Lemma A.5 (p. 1833) in Clinet and Yoshida

(2017) which is restricted to the exponential kernel case to the mixture of generalized gamma

kernels case.

Lemma C4. We assume that Condition [A] holds. For any i = 1, . . . , p, the Fn-intensity

process and their first derivatives satisfy for any p ∈ N, p ≥ 2,

sup
n∈N,t∈[0,nT ]

3∑
l=0

|| sup
θ∈Θ
| ∂lθλ

(i)

n (t, θ) |||p< +∞

Proof. Without loss of generality, we will show the statement only for integers of the form 2p

with p ∈ N∗. By Lemma C1, we have that

λ
(i)

n (t, θ) = ν(i) +
d∑
j=1

ˆ t−

0

h(i,j)((t− s), θ(i,j)
ker )dN

(j)

s,n.

Given that ν(i) is bounded above as Θ is itself assumed to be bounded and bounded below by

Condition [A] (i), there is no loss of generality assuming that ν(i) = 0 in the rest of this proof.

Thus, it remains to show for i, j = 1, . . . , d and l = 0, . . . , 3 that

sup
n∈N,t∈[0,nT ]

E
[∣∣∣ˆ t

0

sup
θ∈Θ
| ∂lθh(i,j)((t− s), θ(i,j)

ker )dN
(j)

s,n |
∣∣∣2p] < +∞.
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Applying the triangular inequality, it is then sufficient to show that

sup
n∈N,t∈[0,nT ]

E
[∣∣∣ˆ t

0

sup
θ∈Θ
| ∂lθh(i,j)((t− s), θ(i,j)

ker ) | dN (j)

s,n

∣∣∣2p] < +∞.

Because the term inside the integral is positive, it is sufficient to show that uniformly in n ∈ N

we have

E
[∣∣∣ˆ nT

0

sup
θ∈Θ
| ∂lθh(i,j)((nT − s), θ(i,j)

ker ) | dN (j)

s,n

∣∣∣2p] < +∞.

In view of Equation (5), this can be rewritten as

E
[∣∣∣ˆ nT

0

sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker ) exp(−((nT − s)/β(i,j)
k )p

(i,j)
k )

∣∣∣dN (i)

s,n

∣∣∣2p] < +∞,

where P (i,j)
k (t, θ

(i,j)
ker ) is defined as

P
(i,j)
k (t, θ

(i,j)
ker ) = α

(i,j)
k

p
(i,j)
k t(D

(i,j)
k −1)

(β
(i,j)
k )D

(i,j)
k Γ(D

(i,j)
k /p

(i,j)
k )

. (C9)

Since Θ is assumed to be bounded, there exists β+ ∈ R∗+ such that we have uniformly β(i,j)
k ≤ β+.

Then, an application of that inequality along with Condition [A](iii) yields

E
[∣∣∣ ˆ nT

0

sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker ) exp(−((nT − s)/β(i,j)
k )p

(i,j)
k )

∣∣∣dN (i)

s,n

∣∣∣2p]

≤ E
[∣∣∣ ˆ nT

0

e−((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣dN (i)

s,n

∣∣∣2p].
In what follows, we will show by induction that

E
[∣∣∣ ˆ nT

0

e−((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣dM (i)

t,n

∣∣∣2p] (C10)

≤ KpE
[ ˆ Tn

0

e−p((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣2pλ(i)

n (t, θ∗)dt
]

+KpE
[∣∣∣ˆ Tn

0

e−((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣2dt∣∣∣2p−1]

.

We define

f(t) = e−((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣.
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We consider the case p = 1. We can calculate

E
[∣∣∣ˆ Tn

0

f(t)dM
(i)

t,n

∣∣∣2] = E
[ ˆ Tn

0

f(t)2d〈M (i)

n ,M
(i)

n 〉t
]

= E
[ ˆ Tn

0

f(t)2λ
(i)

n (t, θ∗)dt
]
,

where the first equality was obtained with Itô isometry for point process martingales and the

second equality is due to Equation (C6). This implies that Inequality (C10) holds in the case

p = 1. We investigate now the case p ≥ 2. By the Burkholder-Davis-Gundy inequality (see,

e.g., Equation (2.1.32) in Jacod and Protter (2011)), we obtain

E
[∣∣∣ ˆ Tn

0

f(t)dM
(i)

t,n

∣∣∣2p] ≤ DpE
[∣∣∣ˆ Tn

0

f(t)2dN
(i)

t,n

∣∣∣2p−1]
≤ 2p−1DpE

[∣∣∣ ˆ Tn

0

f(t)2dM
(i)

t,n

∣∣∣2p−1]
+2p−1DpE

[∣∣∣ ˆ Tn

0

f(t)2λ
(i)

n (t, θ∗)dt
∣∣∣2p−1]

.

Now, an induction argument yields that for some constant Qp > 0:

E
[∣∣∣ ˆ Tn

0

f(t)dM
(i)

t,n

∣∣∣2p] ≤ Qp

p∑
q=1

E
[∣∣∣ ˆ Tn

0

f(t)2qλ
(i)

n (t, θ∗)dt
∣∣∣2p−q].

If we can show that for any q = 1, . . . , p we have

∣∣∣ ˆ Tn

0

f(t)2qλ
(i)

n (t, θ∗)dt
∣∣∣2p−q ≤ ˆ Tn

0

f(t)2pλ
(i)

n (t, θ∗)dt (C11)

+
∣∣∣f(t)2dt

∣∣∣2p−1

,

then Inequality (C10) is shown with Kp = pQp. We prove now that Inequality (C11) holds. We

write

g(i)
n (t) =

f(t)∣∣∣ ´ Tn0
f(t)2λ

(i)

n (t, θ∗)dt
∣∣∣ 12 . (C12)
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We then obtain that∣∣∣ ˆ Tn

0

g(i)
n (t)2qλ

(i)

n (t, θ∗)dt
∣∣∣2p−q =

∣∣∣ˆ Tn

0

g(i)
n (t)2q−2µ(i)

n (dt)
∣∣∣2p−q

≤
∣∣∣ˆ Tn

0

g(i)
n (t)2pλ

(i)

n (t, θ∗)dt
∣∣∣ 2p−1−2−q

2p−1−1

≤
∣∣∣ˆ Tn

0

g(i)
n (t)2pλ

(i)

n (t, θ∗)dt
∣∣∣ 2p−1−2−q

2p−1−1
+ 1, (C13)

where the equality is due to the fact that µ(i)
n (dt) := g

(i)
n (t)2qλ

(i)

n (t, θ∗)dt is a probability measure

on [0, Tn] and the first inequality comes from Jensen’s inequality. If we reexpress Inequality

(C13) with Definition (C12), we can show Inequality (C10).

We obviously have that

E
[∣∣∣ ˆ nT

0

e−((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣dN (i)

s,n

∣∣∣2p]

= E
[∣∣∣ ˆ nT

0

e−((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣dM (i)

s,n

∣∣∣2p]

+
(
E
[∣∣∣ ˆ nT

0

e−((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣dN (i)

s,n

∣∣∣2p]

−E
[∣∣∣ˆ nT

0

e−((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣dM (i)

s,n

∣∣∣2p]).
We use now Inequality (C10), and we obtain that

E
[∣∣∣ ˆ nT

0

e−((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣dN (i)

t,n

∣∣∣2p]

≤ KpE
[ ˆ Tn

0

e−p((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣2pλ(i)

n (t, θ∗)dt
]

+KpE
[∣∣∣ˆ Tn

0

e−((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣2dt∣∣∣2p−1]

+
(
E
[∣∣∣ˆ nT

0

e−((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣dN (i)

s,n

∣∣∣2p]

−E
[∣∣∣ˆ nT

0

e−((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣dM (i)

s,n

∣∣∣2p])
:= In + IIn + IIIn.
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We now show that In <∞ uniformly in n ∈ N. We can calculate

In
Kp

= E
[ ˆ Tn

0

e−p((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣2pλ(i)

n (t, θ∗)dt
]

=

ˆ Tn

0

e−p((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣2pE[λ(i)

n (t, θ∗)
]
dt,

where we use the definition of In in the first equality, and the second equality is due to Tonelli’s

theorem along with the fact that E[aX] = aE[X] for any random variableX and any nonrandom

a ∈ R. It remains to prove that uniformly in n ∈ N we have

ˆ Tn

0

e−p((nT−s)/β+)p− sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣2pE[λ(i)

n (t, θ∗)
]
dt <∞.

By the kernel definition (see Equation (5) and Equation (C9)), since Θ is bounded itself and

by Condition [A](iii)-(iv) we have that P (i,j)
k (t, .) is in C3(Θ). We can deduce that uniformly

in n ∈ N we have

sup
θ∈Θ

∣∣∣∂lθ K(i,j)∑
k=1

P
(i,j)
k ((nT − s), θ(i,j)

ker )
∣∣∣2p ≤ C.

The proof of In <∞ amounts to showing that uniformly in n ∈ N we have

ˆ Tn

0

e−p((nT−s)/β+)p−E
[
λ

(i)

n (t, θ∗)
]
dt <∞.

By Condition [A] (v) and Definition (C3), we obtain uniformly in n ∈ N and in s ∈ [0, nT ]

that

E
[
λ

(i)

n (t, θ∗)
]
≤ C.

We thus obtain that

In ≤ C

ˆ Tn

0

e−p((nT−s)/β+)p−dt.

By a change of variable in the integral, we can deduce that

ˆ nT

0

e−p((nT−s)/β+)p−dt =

ˆ nT

0

e−p(u/β+)p−du.
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The obtained term can be dominated uniformly in n ∈ N by

ˆ nT

0

e−p(u/β+)p−du ≤
ˆ ∞

0

e−p(u/β+)p−du (C14)

= C1.

We have thus proven that In <∞ uniformly in n ∈ N. The proof for IIn and IIIn follows with

the same arguments.

In what follows, we provide the definition of ergodicity in our time-transformed framework.

This extends Definition 3.1 in Clinet and Yoshida (2017) which does not consider any time

transformation. See also Kwan (2023) for a similar time-transformed framework.

Definition C1. (ergodicity) We assume that (E,B(E)) is a Borel space, and Xn : Ω×[0, nT ]→

E a sequence of stochastic processes adapted to the time-transformed filtration. We say that Xn

is ergodic if there exists a mapping π : Cb(E,R)→ R such that for any ψ ∈ Cb(E,R) we have

1

nT

ˆ nT

0

ψ(Xs,n)ds→P π(ψ).

The following definition introduces the notion of mixing to our time-transformed frame-

work. This extends the definition from Section 3.4 in Clinet and Yoshida (2017) which does

not consider any time transformation. See also Kwan (2023) for a similar time-transformed

framework.

Definition C2. (mixing) We assume that (E,B(E)) is a Borel space, and Xn : Ω×[0, nT ]→ E

a sequence of stochastic processes adapted to the time-transformed filtration. We say that Xn

is C-mixing, for some set of functions C from E to R, if for any φ, ψ ∈ C, the following

convergence holds

ρu := sup
n∈N∗

sup
s∈[0,nT−u]

| Cov[φ(Xs,n), ψ(Xs+u,n)] |→ 0 as u→ +∞.
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The following proposition states that X(i)
n is mixing in the sense of Definition C2, stable,

and ergodic in the sense of Definition C1. This corresponds to Condition [A3] (p. 1805) and

Condition [M1] (p. 1815) in Clinet and Yoshida (2017). This extends Lemma 3.16 (p. 1815)

and Lemma A.6 (p. 1834) in Clinet and Yoshida (2017) which are restricted to the exponential

kernel case to the mixture of generalized gamma kernels case. This also extends their general

machinery by proving first that X(i)
n is mixing and stable, and then this implies its ergodicity.

Finally, this extends Kwan (2023) who considers the non-exponential kernel case but can only

show the ergodicity of (λ
(i)

n (., θ∗), λ
(i)

n (., θ)) but not the ergodicity of X(i)
n . The stability is a

direct consequence of Theorem 1 and Lemma 4 in Brémaud and Massoulié (1996), along with

Condition [A] (v).

Proposition C1. We assume that Condition [A] (iii) and (v) hold. For any i = 1, . . . , d

and any θ ∈ Θ, X(i)
n is:

(i) Cb(E,R)-mixing in the sense of Definition C2.

(ii) stable, i.e. there exists a E-valued random variable λ
(i)

lim such that

X
(i)
nT,n →

D (λ
(i)

lim(θ∗), λ
(i)

lim(θ), ∂θλ
(i)

lim(θ)).

(iii) ergodic in the sense of Definition C1, i.e. there exists a mapping π(i)
θ∗ : Cb(E,R)×Θ→

R such that for any (ψ, θ) ∈ Cb(E,R) × Θ we have 1
nT

´ nT
0

ψ(X
(i)
s,n)ds →P π

(i)
θ∗ (ψ, θ), where

π
(i)
θ∗ (ψ, θ) = E[ψ(λ

(i)

lim(θ∗), λ
(i)

lim(θ), ∂θλ
(i)

lim(θ))].

Proof. We first show (i). We first define the truncated version of X(i)
s,n at time t ≤ s as

X̃
(i)
t,s,n := (λ

(i)

n (s, θ∗),
d∑
j=1

ˆ s−

t

h(i,j)(s− u, θ)dN (i)

u,n,

d∑
j=1

ˆ s−

t

∂θh
(i,j)(s− u, θ)dN (i)

u,n).

By considering φ, ψ ∈ Cb(E,R), we can reexpress ρ(i)
u as

ρ(i)
u = sup

n∈N∗
sup

s∈[0,nT−u]

| Cov[φ(X(i)
s,n), ψ(X

(i)
s+u,n)] |

= sup
n∈N∗

sup
s∈[0,nT−u]

| Cov[φ(X(i)
s,n), ψ(X

(i)
s+u,n)− ψ(X̃

(i)
s+v,s+u,n) + ψ(X̃

(i)
s+v,s+u,n)] |,
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where we use Definition C2 in the first equality, and we have v ≤ s− u in the second equality.

Using the triangular inequality, we can dominate ρ(i)
u as

ρ(i)
u ≤ sup

n∈N∗
sup

s∈[0,nT−u]

| Cov[φ(X(i)
s,n), ψ(X

(i)
s+u,n)− ψ(X̃

(i)
s+v,s+u,n)] |

+ sup
n∈N∗

sup
s∈[0,nT−u]

| Cov[φ(X(i)
s,n), ψ(X̃

(i)
s+v,s+u,n)] |

:= Iu + IIu.

Since Θ is assumed to be bounded, there exists β+ ∈ R∗+ such that we have uniformly β(i,j)
k ≤ β+.

Then, an application of that inequality along with Condition [A](iii) yields that the intensity

process is decreasing exponentially. Thus, we can deduce by similar arguments from the proof

of Lemma A.6 (pp. 1834-1836) in Clinet and Yoshida (2017) that Iu → 0 and IIu → 0. This

in turn implies that

ρ(i)
u → 0 as u→ +∞.

The stability (ii) is a direct consequence of Theorem 1 and Lemma 4 in Brémaud and

Massoulié (1996), along with Condition [A] (v).

We now show the ergodicity (iii). For ψ ∈ Cb(E,R) we define V (i)
n (ψ, θ) as

V (i)
n (ψ, θ) =

1

nT

ˆ nT

0

ψ(X(i)
s,n)ds. (C15)

We consider π(i)(ψ, θ) = E[ψ(λ
(i)

lim(θ∗), λ
(i)

lim(θ), ∂θλ
(i)

lim(θ))]. Establishing ergodicity amounts to

showing the convergence in probability, i.e. V (i)
n (ψ, θ) →P π(i)(ψ, θ). In what follows, we show

a stronger statement, i.e. the L2-convergence. We calculate

E[(V (i)
n (ψ, θ)− π(i)(ψ, θ))2] = Var[V (i)

n (ψ, θ)] + (E[V (i)
n (ψ, θ)]− π(i)(ψ, θ))2

:= In + IIn

where the equality is due to the fact that for any random variable X and any nonrandom a ∈ R
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we have E[(X − a)2] = Var[X] + (E[X]− a)2. For the first term, we have that

In = Var[V (i)
n (ψ, θ)]

= Var
[ 1

nT

ˆ nT

0

ψ(X(i)
s,n)ds

]
=

1

n2T 2
Var

[ ˆ nT

0

ψ(X(i)
s,n)
]

=
1

n2T 2
Var

[
lim
K→∞

nT

K

K−1∑
k=0

ψ(X
(i)
knT/K,n)

]
=

1

n2T 2
lim
K→∞

Var
[nT
K

K−1∑
k=0

ψ(X
(i)
knT/K,n)

]
=

1

n2T 2
lim
K→∞

n2T 2

K2
Var

[K−1∑
k=0

ψ(X
(i)
knT/K,n)

]
=

1

n2T 2
lim
K→∞

n2T 2

K2

K−1∑
k=0

K−1∑
l=0

Cov
[
ψ(X

(i)
knT/K,n), ψ(X

(i)
lnT/K,n)

]
=

1

n2T 2

ˆ nT

0

ˆ nT

0

Cov
[
ψ(X(i)

s,n), ψ(X(i)
u,n)
]
dsdu,

where the second equality is obtained via Definition (C15), the third equality and the sixth

equality are due to the fact that for any nonrandom a ∈ R and any random variable X we have

Var[aX] = a2 Var[X], we used the approximation of Riemann sum in the fourth equality and

eight equality, the fifth equality is an application of dominated convergence theorem, and the

seventh equality corresponds to Bienayme’s identity. By Definition C1 and results obtained in

(i), we can bound In as

In ≤
1

n2T 2

ˆ nT

0

ˆ nT

0

ρ
(i)
|s−u|dsdu.

Then, splitting the integral into two terms leads to

In ≤
1

n2T 2

ˆ nT

0

ˆ nT

0

ρ
(i)
|s−u|1{|s−u|≤

√
nT}dsdu+

1

n2T 2

ˆ nT

0

ˆ nT

0

ρ
(i)
|s−u|1{|s−u|>

√
nT}dsdu
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Since there exists ρ(i)
max > 0 such that for any t ≥ 0 we have ρ(i)

t ≤ ρ
(i)
max, we can deduce that

1

n2T 2

ˆ nT

0

ˆ nT

0

ρ
(i)
|s−u|1{|s−u|≤

√
nT}dsdu ≤ ρ

(i)
max

n2T 2

ˆ nT

0

ˆ nT

0

1{|s−u|≤
√
nT}dsdu

= O(
1√
nT

)

→ 0.

We also have that

1

n2T 2

ˆ nT

0

ˆ nT

0

ρ
(i)
|s−u|1{|s−u|>

√
nT}dsdu ≤

sup
y>
√
nT

ρ
(i)
y

n2T 2

ˆ nT

0

ˆ nT

0

1{|s−u|>
√
nT}dsdu

≤ sup
y>
√
nT

ρ(i)
y .

Since ρu →u→∞ 0 by (i), we also deduce that

sup
y>
√
nT

ρ(i)
y → 0.

This implies that
1

n2T 2

ˆ nT

0

ˆ nT

0

ρ
(i)
|s−u|1{|s−u|>

√
nT}dsdu→ 0,

and thus In → 0. For the second term, we know by (ii) thatX(i)
s,n →D (λ

(i)

lim(θ∗), λ
(i)

lim(θ), ∂θλ
(i)

lim(θ)).

In particular, convergence in distribution implies convergence in expectation of any bounded

function, thus we obtain that E[ψ(X
(i)
s,n)]→ E[ψ(λ

(i)

lim(θ∗), λ
(i)

lim(θ), ∂θλ
(i)

lim(θ))]. This can be reex-

pressed as E[ψ(X
(i)
s,n)]→ π

(i)
θ∗ (ψ, θ). In particular, this implies that (E[ψ(X

(i)
s,n)]−π(i)

θ∗ (ψ, θ))2 → 0,

i.e. IIn → 0.

Since the functions that we will be using in our proofs will not necessarily be bounded, we

need to extend from Cb(E,R) to C↑(E,R) the space of functions in which the ergodicity holds.

We also give a more explicit form to the mapping π(i)
θ∗ (ψ, θ). The following proposition extends

Proposition 3.8 (pp. 1806-1807) in Clinet and Yoshida (2017). The proof follows the arguments

from the proof of Proposition 3.8 (pp. 1822-1824) in Clinet and Yoshida (2017).
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Proposition C2. We assume that Condition [A] holds. Then, for any θ ∈ Θ and for any

i = 1, . . . , d, the following properties hold

(i) The ergodicity, i.e. Proposition C1(iii), still holds for any ψ ∈ C↑(E,R). In particu-

lar, the mapping π(i)
θ∗ (., θ) can be extended to C↑(E,R). Moreover, for any ψ ∈ C↑(E,R) the

convergence is uniform in θ.

(ii) There exists a probability measure Π
(i)
θ∗ on (E,B(E)) such that for any ψ ∈ C↑(E,R),

we have π(i)
θ∗ (ψ, θ) =

´
E
ψ(x)Π

(i)
θ∗ (dx). In particular, C↑(E,R) ⊂ L1(Π

(i)
θ∗ ).

Proof. We can use the arguments from the proof of Proposition 3.8 (pp. 1822-1824) in Clinet

and Yoshida (2017).

C.4 Proofs of consistency

We define

Yn(θ) =
1

nT
(ln(θ)− ln(θ∗)) (C16)

and also the asymptotic rescaled of the time-transformed log likelihood as

Y(θ) =
d∑
i=1

ˆ
E

(log(
v

u
)u− (v − u))Π

(i)
θ∗ (du, dv, dw). (C17)

In the following lemma, we will prove that Yn(θ) goes to Y(θ) uniformly in θ ∈ Θ and in

probability. This extends Lemma 3.10 (p. 1807) in Clinet and Yoshida (2017) which is restricted

to the large-T asymptotics to the in-fill asymptotics.

Lemma C5. We assume that Condition [A] holds. We have that

sup
θ∈Θ
| Yn(θ)− Y(θ) |→P 0.
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Proof. We can rewrite Yn(θ) as

Yn(θ) =
1

nT
(ln(θ)− ln(θ∗))

=
1

nT

( d∑
i=1

ˆ Tn

0

log(λ
(i)

n (t, θ))dN
(i)

t,n −
d∑
i=1

ˆ Tn

0

λ
(i)

n (t, θ)dt

−
d∑
i=1

ˆ Tn

0

log(λ
(i)

n (t, θ∗))dN
(i)

t,n +
d∑
i=1

ˆ Tn

0

λ
(i)

n (t, θ∗)dt
)

=
1

nT

d∑
i=1

ˆ Tn

0

log
( λ(i)

n (t, θ)

λ
(i)

n (t, θ∗)

)
dN

(i)

t,n −
1

nT

d∑
i=1

ˆ Tn

0

(λ
(i)

n (t, θ)− λ(i)

n (t, θ∗))dt

=
1

nT

d∑
i=1

ˆ Tn

0

log
( λ(i)

n (t, θ)

λ
(i)

n (t, θ∗)

)
dM

(i)

t,n

− 1

nT

d∑
i=1

ˆ Tn

0

(
λ

(i)

n (t, θ)− λ(i)

n (t, θ∗)− log
( λ(i)

n (t, θ)

λ
(i)

n (t, θ∗)

)
λ

(i)

n (t, θ∗)
)
dt

:=
d∑
i=1

I(i)
n (nT, θ) +

d∑
i=1

II(i)
n (nT, θ),

where we use Equation (C16) in the first equality, Equation (C8) in the second equality, al-

gebraic manipulation in the third equality, Equation (C6) and algebraic manipulation in the

fourth equality.

We first show that the martingale term disappears uniformly asymptotically in probability,

i.e. that

sup
θ∈Θ

∣∣∣ d∑
i=1

I(i)
n (nT, θ)

∣∣∣→P 0.

As an application of Lemma C4 along with Condition [A], for any i = 1, . . . , d and any θ ∈ Θ

we can deduce that I(i)
n (t, θ) is an Lp-integrable martingale for any p ∈ N, with p ≥ 2. We can

thus apply Sobolev’s inequality (see, e.g, Theorem 4.2, part 1, case A in Kallenberg (1997)),

and for some big enough p ∈ N we obtain

E
[∣∣∣ sup

θ∈Θ
I(i)
n (nT, θ)

∣∣∣p] ≤ C
(ˆ

Θ

dθE
[∣∣∣I(i)

n (nT, θ)
∣∣∣p]+

ˆ
Θ

dθE
[∣∣∣∂θI(i)

n (nT, θ)
∣∣∣p]). (C18)
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The first term in the right hand-side of Equation (C18) can be bounded by

ˆ
Θ

dθE
[∣∣∣I(i)

n (nT, θ)
∣∣∣p] ≤ C sup

θ∈Θ
E
[∣∣∣I(i)

n (nT, θ)
∣∣∣p]

= C sup
θ∈Θ

E
[∣∣∣ 1

nT

ˆ Tn

0

log
( λ(i)

n (t, θ)

λ
(i)

n (t, θ∗)

)
dM

(i)

t,n

∣∣∣p]
= C sup

θ∈Θ
E
[ 1

(nT )p

∣∣∣ ˆ Tn

0

log
( λ(i)

n (t, θ)

λ
(i)

n (t, θ∗)

)
dM

(i)

t,n

∣∣∣p]
≤ C sup

θ∈Θ
E
[ 1

(nT )p

∣∣∣ ˆ Tn

0

log
( λ(i)

n (t, θ)

λ
(i)

n (t, θ∗)

)2

λ
(i)

n (t, θ∗)dt
∣∣∣ p2 ]

≤ C sup
θ∈Θ

E
[ 1

(nT )
p
2
−1

ˆ Tn

0

log
( λ(i)

n (t, θ)

λ
(i)

n (t, θ∗)

)p
λ

(i)

n (t, θ∗)
p
2dt
]

≤ C sup
θ∈Θ

E
[ 1

(nT )
p
2
−1

ˆ Tn

0

log
(λ(i)

n (t, θ)

ν−

)p
λ

(i)

n (t, θ∗)
p
2dt
]
,

where the first equality is obtained with In(t, θ) definition, the second inequality is a consequence

to Burkholder-Davis-Gundy inequality, the third inequality comes from Jensen’s inequality, and

the fourth inequality is due to Condition [A](i)-(ii). We can continue to bound the first term

in the right hand-side of Equation (C18) by

ˆ
Θ

dθE
[∣∣∣I(i)

n (nT, θ)
∣∣∣p] ≤ sup

θ∈Θ
E
[ 1

(nT )
p
2
−1

ˆ Tn

0

log
(λ(i)

n (t, θ)

ν−

)p
λ

(i)

n (t, θ∗)
p
2dt
]

=
1

(nT )
p
2
−1

sup
θ∈Θ

E
[ ˆ Tn

0

log
(λ(i)

n (t, θ)

ν−

)p
λ

(i)

n (t, θ∗)
p
2dt
]

=
1

(nT )
p
2
−1

sup
θ∈Θ

ˆ Tn

0

E
[

log
(λ(i)

n (t, θ)

ν−

)p
λ

(i)

n (t, θ∗)
p
2

]
dt

=
1

(nT )
p
2
−2

sup
θ∈Θ

sup
n∈N,t∈[0,nT ]

E
[

log
(λ(i)

n (t, θ)

ν−

)p
λ

(i)

n (t, θ∗)
p
2

]
≤ 1

(nT )
p
2
−2

sup
θ∈Θ

sup
n∈N,t∈[0,nT ]

√
E
[

log
(λ(i)

n (t, θ)

ν−

)2p]√
E
[
λ

(i)

n (t, θ∗)p
]

≤ 1

(nT )
p
2
−2

sup
θ∈Θ

sup
n∈N,t∈[0,nT ]

√
E
[(

1 +
λ

(i)

n (t, θ)

ν−

)2p]√
E
[
λ

(i)

n (t, θ∗)p
]

≤ 1

(nT )
p
2
−2

sup
n∈N,t∈[0,nT ]

√
E
[

sup
θ∈Θ

(
1 +

λ
(i)

n (t, θ)

ν−

)2p]√
E
[

sup
θ∈Θ

λ
(i)

n (t, θ∗)p
]
,
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where the first equality corresponds to the fact that E[aX] = aE[X] for any random variable X

and any nonrandom a ∈ R, the second equality is explained by Tonelli’s theorem, the second

inequality is a consequence of Cauchy-Schwarz inequality, we used the fact that supE[.] ≤

E[sup .] in the fourth inequality. Using the arguments from the proof of Lemma C4 along with

Condition [A], we can show that

1

(nT )
p
2
−2

sup
n∈N,t∈[0,nT ]

√
E
[

sup
θ∈Θ

(
1 +

λ
(i)

n (t, θ)

ν−

)2p]√
E
[

sup
θ∈Θ

λ
(i)

n (t, θ∗)p
]
→ 0,

which implies that for i = 1, . . . , d we have

ˆ
Θ

dθE
[∣∣∣I(i)

n (nT, θ)
∣∣∣p]→ 0.

With the same arguments, we can also show that for i = 1, . . . , d we have

ˆ
Θ

dθE
[∣∣∣∂θI(i)

n (nT, θ)
∣∣∣p]→ 0.

Thus, we can deduce by Equation (C18) for i = 1, . . . , d that

E
[∣∣∣ sup

θ∈Θ
I(i)
n (nT, θ)

∣∣∣p]→ 0. (C19)

We can deduce that

E
[∣∣∣ sup

θ∈Θ

∣∣∣ d∑
i=1

I(i)
n (nT, θ)

∣∣∣p] ≤ CE
[

sup
θ∈Θ

d∑
i=1

∣∣∣I(i)
n (nT, θ)

∣∣∣p]
≤ CE

[ d∑
i=1

sup
θ∈Θ

∣∣∣I(i)
n (nT, θ)

∣∣∣p]
= C

d∑
i=1

E
[

sup
θ∈Θ

∣∣∣I(i)
n (nT, θ)

∣∣∣p]
= C

d∑
i=1

E
[∣∣∣ sup

θ∈Θ
I(i)
n (nT, θ)

∣∣∣p]+ oP(1)

→ 0,

where the first inequality is a consequence of the fact that |
∑d

i=1 ai|p ≤ C
∑d

i=1 |ai|p, the

second inequality follows as sup
∑
≤
∑

sup, the first equality corresponds to the fact that
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E[aX] = aE[X] for any random variable X and any nonrandom a ∈ R, the second equality

comes from Equation (C6) and the martingaleness of M t,n, and the convergence is due to

Equation (C19). To prove that |
∑d

i=1 II
(i)
n (nT, θ) − Y(θ) |→P 0, we can use Proposition C2

along with Condition [A].

We provide now the following lemma, which is the classical nondegeneracy condition on

Y. This corresponds to Condition [A](iv) (p. 1807) in Clinet and Yoshida (2017). This

extends Lemma A.7 (p. 1836) in Clinet and Yoshida (2017) which is restricted to the large-T

asymptotics to the in-fill asymptotics.

Lemma C6. We assume that Condition [A] (iii) and (v) hold. For any θ ∈ Θ − {θ∗}, we

have that Y(θ) 6= 0.

Proof. We assume that θ ∈ Θ and that Y(θ) = 0. In view of Equation (C17), we can deduce

that

0 =
d∑
i=1

ˆ
E

(log(
v

u
)u− (v − u))Π

(i)
θ∗ (du, dv, dw).

By Proposition C1 along with Condition [A] (iii) and (v), this equation can be reexpressed

as

0 =
d∑
i=1

E
[
(log(

λ
(i)

lim(θ)

λ
(i)

lim(θ∗)
)λ

(i)

lim(θ∗)− (λ
(i)

lim(θ)− λ(i)

lim(θ∗)))
]
.

For any i = 1, . . . , d we also have that

0 ≥ (log(
λ

(i)

lim(θ)

λ
(i)

lim(θ∗)
)λ

(i)

lim(θ∗)− (λ
(i)

lim(θ)− λ(i)

lim(θ∗))).

This yields that for any i = 1, . . . , d a.s.

0 = (log(
λ

(i)

lim(θ)

λ
(i)

lim(θ∗)
)λ

(i)

lim(θ∗)− (λ
(i)

lim(θ)− λ(i)

lim(θ∗))).
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We can then deduce that for any i = 1, . . . , d a.s.

λ
(i)

lim(θ∗) = λ
(i)

lim(θ).

By injectivity of the function θ 7→ (λ
(1)

lim(θ), . . . , λ
(d)

lim(θ)), we can infer that θ∗ = θ.

We provide the proof of consistency in what follows. This extends Theorem 3.9 (p. 1807) in

Clinet and Yoshida (2017) which is restricted to the large-T asymptotics to the in-fill asymp-

totics.

Proof of Equation (18) in Theorem 1. We have by Lemma C3 a.s. θ̂n = θ̂T,n. Since the con-

sistency is a convergence in probability, we can replace θ̂T,n by θ̂n in the rest of this proof. In

view of the expression Y(θ), we can see that Y(θ) ≤ 0 for any θ ∈ Θ and Y(θ∗) = 0. As an

application of Lemma C6 along with Condition [A] (iii) and (v), we can deduce that θ∗ is

a global maximum of Y. By Lemma C5 along with Condition [A], the consistency is directly

proven.

C.5 Proofs of the CLT

We start with the following lemma. This extends Lemma A.1 (p. 1824) in Clinet and Yoshida

(2017) which is restricted to the large-T asymptotics to the in-fill asymptotics.

Lemma C7. We assume that Condition [A] holds. For any θ ∈ Θ, we have that ln(θ) is a.s.

finite and admits a derivative in θ that satisfies

∂θln(θ) =
d∑
i=1

ˆ Tn

0

∂θλ
(i)

n (t, θ)

λ
(i)

n (t, θ)
dN

(i)

t,n −
d∑
i=1

ˆ Tn

0

∂θλ
(i)

n (t, θ)dt.

Moreover, we have that ln(θ) is twice differentiable and that its Hessian matrix satisfies

∂2
θ ln(θ) =

d∑
i=1

ˆ Tn

0

∂θ
∂θλ

(i)

n (t, θ)

λ
(i)

n (t, θ)
dM

(i)

t,n −
d∑
i=1

ˆ Tn

0

(∂θλ
(i)

n )⊗2(t, θ))λ
(i)

n (t, θ)−2λ
(i)

n (t, θ∗)dt

+
d∑
i=1

ˆ Tn

0

(∂2
θλ

(i)

n )(t, θ))λ
(i)

n (t, θ)−1(λ
(i)

n (t, θ)− λ(i)

n (t, θ∗))dt.
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Proof. From Equation (C8), we define ln(θ) :=
∑d

i=1 l
(i),I

n (θ) − l
(i),II

n (θ). First, we show that

for any θ ∈ Θ and any i = 1, . . . , d we have that l(i),In (θ) − l(i),IIn (θ) is a.s. finite and admits a

derivative in θ satisfying

∂θ

ˆ nT

0

log(λ
(i)

n (t, θ))dN
(i)

t,n =

ˆ nT

0

∂θ log(λ
(i)

n (t, θ))dN
(i)

t,n, (C20)

∂θ

ˆ nT

0

λ
(i)

n (t, θ)dt =

ˆ Tn

0

∂θλ
(i)

n (t, θ)dt. (C21)

By Equation (C1), l(i),In (θ) can be reexpressed as

l
(i),I

n (θ) =
∑

k∈N∗ s.t. T (i)
k <nT

log(λ
(i)

n (T
(i)

k , θ)). (C22)

As l(i),In (θ) is a finite sum, and since λ(i)

n (T
(i)

k , θ) > 0 by Condition [A] (i)-(ii) , it is a.s. finite.

In addition, since log and λ
(i)

n (T
(i)

k , .) admit derivative in θ ∈ Θ by Lemma C4 along with

Condition [A], then l(i),In also admits a derivative by the chain rule. As the sum is finite and

by linearity of the derivative operator, we deduce that

∂θ
∑

k∈N∗ s.t. T (i)
k <nT

log(λ
(i)

n (T
(i)

k , θ)) =
∑

k∈N∗ s.t. T (i)
k <nT

∂θ log(λ
(i)

n (T
(i)

k , θ)).

By Equation (C22), this equality can be reexpressed as

∂θ

ˆ nT

0

log(λ
(i)

n (t, θ))dN
(i)

t,n =

ˆ nT

0

∂θ log(λ
(i)

n (t, θ))dN
(i)

t,n.

The term l
(i),II

n (θ) will be a.s. finite if we can show that its L1-norm is finite. We have that its

L1-norm can be bounded as

E
[∣∣∣l(i),IIn (θ)

∣∣∣] = E
[∣∣∣ ˆ nT

0

log(λ
(i)

n (t, θ))dt
∣∣∣]

≤ E
[ ˆ nT

0

∣∣∣ log(λ
(i)

n (t, θ))
∣∣∣dt]

≤ E
[ ˆ nT

0

|λ(i)

n (t, θ)|−1dt
]

+ E
[ ˆ nT

0

∣∣∣λ(i)

n (t, θ))− 1
∣∣∣dt]

≤ nT

ν−
+ E

[ ˆ nT

0

∣∣∣λ(i)

n (t, θ))− 1
∣∣∣dt]

≤ nT

ν−
+ C,
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where we use the definition of l(i),IIn (θ) in the equality, the triangular inequality in the first

inequality, the fact that | log(z)| ≤ z−1 + |z − 1| for any z ∈ R+
∗ together with the linearity of

the expectation operator in the second inequality, the third inequality is explained by Condition

[A] (i)-(ii) and the fourth inequality by Lemma C4 along with Condition [A]. We have thus

shown that the L1-norm of l(i),IIn (θ) is finite, so that l(i),IIn (θ) is a.s. finite. By extending the

arguments, we can prove that

ˆ Tn

0

|∂θλ
(i)

n (t, θ)|dt ≤
ˆ Tn

0

| sup
θ∈Θ

∂θλ
(i)

n (t, θ)|dt

≤ C.

Now, an application of the dominated convergence theorem yields Equation (C21). We can

prove the case ∂2
θ ln(θ) with the same arguments.

We note that by Equation (C6), ∂θln(θ∗) can be reexpressed as

∂θln(θ∗) =
d∑
i=1

ˆ Tn

0

∂θλ
(i)

n (t, θ∗)

λ
(i)

n (t, θ∗)
dM

(i)

t,n. (C23)

We provide the proof of the CLT in what follows. This extends Theorem 3.11 (p. 1809) in Clinet

and Yoshida (2017) which is restricted to the large-T asymptotics to the in-fill asymptotics.

Proof of Equations (19), (20) and (21) in Theorem 1. First, we have a.s. θ̂n = θ̂T,n by Lemma

C3 and thus we can replace θ̂T,n by θ̂n in the rest of this proof since it will not affect convergence

in distribution. We obtain by a Taylor expansion that

∂θln(θ̂n) = ∂θln(θ∗) + ∂2
θ ln(ζn)(θ̂n − θ∗),

where ζn is between θ̂n and θ∗. Since θ̂n is defined as the maximizer of ln(.), we deduce that

∂θln(θ̂n) = 0. This yields that

0 = ∂θln(θ∗) + ∂2
θ ln(ζn)(θ̂n − θ∗).
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If we multiply by −Γ−1
√
nT

, we obtain that

0 =
−Γ−1

√
nT

∂θln(θ∗) +
−Γ−1

√
nT

∂2
θ ln(ζn)(θ̂n − θ∗).

This equation can be reexpressed as

0 =
−Γ−1

√
nT

∂θln(θ∗) +
−Γ−1

nT
∂2
θ ln(ζn)

√
nT (θ̂n − θ∗).

To prove Equation (19), it remains to show that

−Γ−1

√
nT

∂θln(θ̂n) →D Γ−1/2ξ., (C24)

−Γ−1

nT
∂2
θ ln(ζn) →P 1. (C25)

Then, Equation (19) easily follows using Slutsky’s theorem. We prove now Equation (C24). By

Equation (C23), we have that

−Γ−1

√
nT

∂θln(θ̂n) =
−Γ−1

√
nT

d∑
i=1

ˆ Tn

0

∂θλ
(i)

n (t, θ∗)

λ
(i)

n (t, θ∗)
dM

(i)

t,n.

For u ∈ [0, 1], we define Su,n as

Su,n =
−Γ−1

√
nT

d∑
i=1

ˆ uTn

0

∂θλ
(i)

n (t, θ∗)

λ
(i)

n (t, θ∗)
dM

(i)

t,n. (C26)

We use Theorem V III.3.24 in Jacod and Shiryaev (2013). We can calculate that

〈Sn, Sn〉u =
Γ−2

nT

d∑
i=1

ˆ uTn

0

∂θλ
(i)

n (t, θ∗)2

λ
(i)

n (t, θ∗)
dt.

→P uΓ−1.
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We prove now that Lindeberg’s condition is satisfied. For any ε > 0 we have

E
[∑
s≤u

|∆Ss,n|21|∆Ss,n|>ε
]
≤ E

[1

a

∑
s≤u

|∆Ss,n|3
]

= E
[1

a

∑
s≤u

∣∣∣∆−Γ−1

√
nT

d∑
i=1

ˆ uTn

0

∂θλ
(i)

n (t, θ∗)

λ
(i)

n (t, θ∗)
dM

(i)

t,n

∣∣∣3]
= E

[1

a

∑
s≤u

∣∣∣∆−Γ−1

√
nT

d∑
i=1

ˆ uTn

0

∂θλ
(i)

n (t, θ∗)

λ
(i)

n (t, θ∗)
dN

(i)

t,n

∣∣∣3]
= E

[1

a

d∑
i=1

ˆ uTn

0

∣∣∣−Γ−1

√
nT

∂θλ
(i)

n (t, θ∗)

λ
(i)

n (t, θ∗)

∣∣∣3dN (i)

t,n

]
= E

[1

a

d∑
i=1

ˆ uTn

0

∣∣∣−Γ−1

√
nT

∂θλ
(i)

n (t, θ∗)

λ
(i)

n (t, θ∗)

∣∣∣3λ(i)

n (t, θ∗)dt
]

≤ E
[1

a

∣∣∣−Γ−1

√
nT

∣∣∣3 d∑
i=1

ˆ uTn

0

∣∣∣∂θλ(i)

n (t, θ∗)

λ
(i)

n (t, θ∗)

∣∣∣3λ(i)

n (t, θ∗)dt
]

≤ E
[1

a

∣∣∣−Γ−1

√
nT

∣∣∣3 d∑
i=1

ˆ uTn

0

sup
θ∈Θ

∣∣∣∂θλ(i)

n (t, θ∗)

λ
(i)

n (t, θ∗)

∣∣∣3λ(i)

n (t, θ∗)dt
]
,

where we used the fact that 1|∆Ss,n|>ε ≤ 1
a
|∆Ss,n| in the first inequality, the first equality is due

to Definition (C26), the second equality is explained by the fact that the drift part does not

jump, the third and fourth equality are a consequence of the form of dN (i)

t,n. We can continue
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to bound the Linderberg’s term by

E
[∑
s≤u

|∆Ss,n|21|∆Ss,n|>ε
]
≤ E

[1

a

∣∣∣−Γ−1

√
nT

∣∣∣3 d∑
i=1

ˆ uTn

0

sup
θ∈Θ

∣∣∣∂θλ(i)

n (t, θ∗)

λ
(i)

n (t, θ∗)

∣∣∣3λ(i)

n (t, θ∗)dt
]

≤ E
[1

a

∣∣∣−Γ−1

√
nT

∣∣∣3 d∑
i=1

ˆ uTn

0

sup
θ∈Θ

|∂θλ
(i)

n (t, θ∗)|3

λ
(i)

n (t, θ∗)2
dt
]

≤ E
[ 1

aν2
−

∣∣∣−Γ−1

√
nT

∣∣∣3 d∑
i=1

ˆ uTn

0

sup
θ∈Θ
|∂θλ

(i)

n (t, θ∗)|3dt
]

=
1

aν2
−

∣∣∣−Γ−1

√
nT

∣∣∣3 d∑
i=1

ˆ uTn

0

E
[

sup
θ∈Θ
|∂θλ

(i)

n (t, θ∗)|3
]
dt

≤ CunT

aν2
−

∣∣∣−Γ−1

√
nT

∣∣∣3
→ 0,

where the third inequality is due to Condition [A] (i)-(ii), and Lemma C4 along with Condition

[A] is used for the fourth inequality. We have thus shown that Lindeberg’s condition holds, so

that Equation (C24) is satisfied. We prove now Equation (C25), i.e. that −Γ−1

nT
∂2
θ ln(ζn) →P 1.

It is sufficient to prove that

|Γ + (nT )−1∂2
θ ln(ζn)| →P 0.

If we define Vn as a shrinking ball centered on θ∗ it is sufficient to show that

sup
θ∈Vn
|Γ + (nT )−1∂2

θ ln(ζn)| →P 0. (C27)

We can reexpress Equation (C27) as the sum of a martingale term and a drift term. For the

martingale term, we can notice that ∂θ ∂θλ
(i)
n (t,θ)

λ
(i)
n (t,θ)

and ∂2
θ
∂θλ

(i)
n (t,θ)

λ
(i)
n (t,θ)

are dominated by polynoms in

∂kθλ
(i)

n (t, θ) and 1

λ
(i)
n (t,θ)

for k = 0, 1, 2, 3. By an application of Sobolev’s inequality, Lemma C4

along with Condition [A], we obtain for p big enough that

E
∣∣∣ sup
θ∈Θ

1

nT

ˆ nT

0

∂θ
∂θλ

(i)

n (t, θ)

λ
(i)

n (t, θ)
dM

(i)

t,n

∣∣∣p = O((nT )−p/2).
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Given that we have Lp convergence implies convergence in probability, we can deduce that

d∑
i=1

sup
θ∈Θ

1

nT

ˆ nT

0

∂θ
∂θλ

(i)

n (t, θ)

λ
(i)

n (t, θ)
dM

(i)

t,n →P 0.

We have that

E sup
θ∈Vn

∣∣∣ 1

nT

ˆ nT

0

∂2
θλ

(i)

n (t, θ)

λ
(i)

n (t, θ)
(λ

(i)

n (t, θ)

−λ(i)

n (t, θ∗))dt
∣∣∣ ≤ 1

nT

ˆ nT

0

E sup
θ∈Vn

∣∣∣∂2
θλ

(i)

n (t, θ)

λ
(i)

n (t, θ)
(λ

(i)

n (t, θ)−

λ
(i)

n (t, θ∗))
∣∣∣dt

≤ 1

nTν−

ˆ nT

0

E sup
θ∈Vn

∣∣∣∂2
θλ

(i)

n (t, θ)(λ
(i)

n (t, θ)

−λ(i)

n (t, θ∗))
∣∣∣dt

≤ 1

nTν−

ˆ nT

0

√
E sup
θ∈Vn

∣∣∣∂2
θλ

(i)

n (t, θ)
∣∣∣2

×

√
E sup
θ∈Vn

∣∣∣λ(i)

n (t, θ)− λ(i)

n (t, θ∗)
∣∣∣2dt

≤ 1

nTν−

ˆ nT

0

√
sup

n∈N,t∈[0,nT ]

E
[

sup
θ∈Θ

∣∣∣∂2
θλ

(i)

n (t, θ)
∣∣∣2]

×

√
E sup
θ∈Vn

∣∣∣λ(i)

n (t, θ)− λ(i)

n (t, θ∗)
∣∣∣2dt

≤ C

nTν−

ˆ nT

0

(C28)√
E sup
θ∈Vn

∣∣∣λ(i)

n (t, θ)− λ(i)

n (t, θ∗)
∣∣∣2dt,

where we use the triangular inequality and linearity of expectation operator in the first inequal-

ity, the second inequality is due to Condition [A] (i)-(ii), the third inequality corresponds to

Cauchy-Schwarz inequality, and the fifth inequality comes from Lemma C4 along with Condi-

tion [A]. Now, we obtain by a Taylor expansion that

λ
(i)

n (t, θ)− λ(i)

n (t, θ∗) = ∂θλ
(i)

n (t, θ̃)(θ − θ∗),
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where θ̃ is between θ and θ∗. Applying square operator on both sides of the equation, we obtain

that ∣∣∣λ(i)

n (t, θ)− λ(i)

n (t, θ∗)
∣∣∣2 =

∣∣∣∂θλ(i)

n (t, θ̃)
∣∣∣2∣∣∣θ − θ∗∣∣∣2.

We can easily deduce that

sup
θ∈Vn

∣∣∣λ(i)

n (t, θ)− λ(i)

n (t, θ∗)
∣∣∣2 ≤ sup

θ∈Θ

∣∣∣∂θλ(i)

n (t, θ)
∣∣∣2∣∣∣θ − θ∗∣∣∣2. (C29)

We have that

E sup
θ∈Vn

∣∣∣ 1

nT

ˆ nT

0

∂2
θλ

(i)

n (t, θ)

λ
(i)

n (t, θ)
(λ

(i)

n (t, θ)

−λ(i)

n (t, θ∗))dt
∣∣∣ ≤ C

nTν−

ˆ nT

0

√
E sup
θ∈Vn

∣∣∣λ(i)

n (t, θ)− λ(i)

n (t, θ∗)
∣∣∣2dt

≤ C

nTν−

ˆ nT

0

√
E sup
θ∈Θ

∣∣∣∂θλ(i)

n (t, θ)
∣∣∣2∣∣∣θ − θ∗∣∣∣2dt

≤ C

ν−

∣∣∣θ − θ∗∣∣∣√ sup
n∈N,t∈[0,nT ]

E sup
θ∈Θ

∣∣∣∂θλ(i)

n (t, θ)
∣∣∣2

≤ CK

ν−

∣∣∣θ − θ∗∣∣∣
→ 0.

where the first inequality comes from Equation (C28), the second inequality is due to Equation

(C29), the fourth inequality is deduced by Lemma C4 along with Condition [A], and the

convergence is due to the fact that θ ∈ Vn with Vn shrinking to θ. Since L1 convergence implies

convergence in probability we obtain that

sup
θ∈Vn

∣∣∣ 1

nT

ˆ nT

0

∂2
θλ

(i)

n (t, θ)

λ
(i)

n (t, θ)
(λ

(i)

n (t, θ)− λ(i)

n (t, θ∗))dt
∣∣∣→P 0.

For the drift term, we define the process as

U (i)
n (θ) =

1

nT

ˆ nT

0

(∂θ)
⊗2λ

(i)

n (t, θ)λ
(i)

n (t, θ)−2λ
(i)

n (t, θ∗)dt.

71



When evaluated at θ∗, this process is equal to

U (i)
n (θ∗) =

1

nT

ˆ nT

0

(∂θ)
⊗2λ

(i)

n (t, θ∗)λ
(i)

n (t, θ∗)−1dt.

Using the arguments from the proof of the martingale case, we can show for any i = 1, . . . , d

that

|U (i)
n (θ∗)− U (i)

n (θ)| →P 0.

Then the conclusion follows by writing Γ as the limit of
∑d

i=1 U
(i)
n (θ∗) and an application of

Proposition C2 along with Condition [A]. Finally, the consistency of the asymptotic variance

estimator, i.e. Equation (20), follows given its definition (17), the definition of the Fisher

Hessian matrix in Equation (16), along with the consistency of θ̂T,n (see Equation (18) in

Theorem 1). The feasible CLT, i.e. Equation (21), is obtained via the standard CLT (see

Equation (19)) together with Slutsky’s theorem.

C.6 Proofs of CLT for latency

We first give the proof of Proposition 2.

Proof of Proposition 2. By Equation (8) and Equation (7), we can reexpress L̂T,n − L as

L̂T,n − L = F (θ̂T,n)− F (θ∗ker). (C30)

By Condition [B], we obtain for any i = 1, . . . , d and any j = 1, . . . , d by componentwise Taylor

expansion that

F (i,j)(θ̂T,n)− F (i,j)(θ∗ker) = dF (i,j)(θ∗ker)(θ̂T,n − θ∗ker) (C31)

+(θ̂T,n − θ∗ker)Td2F (i,j)(θ̃)(θ̂T,n − θ∗ker),

where d2F (i,j)(θ) corresponds the (m×m)-dimensional Hessian matrix of the (i, j)-index of F

at point θ, and θ̃ is between θ̂T,n and θ∗ker. To show the consistency, i.e. Equation (25), we can
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calculate for any i = 1, . . . , d and any j = 1, . . . , d that

L̂
(i,j)
T,n − L

(i,j) = F (i,j)(θ̂T,n)− F (i,j)(θ∗ker)

= dF (i,j)(θ∗)(θ̂T,n − θ∗ker) + (θ̂T,n − θ∗ker)Td2F (i,j)(θ̃)(θ̂T,n − θ∗ker)

= OP(||θ̂T,n − θ∗ker||) +OP(||θ̂T,n − θ∗ker||2)

→P 0,

where we use Equation (C30) in the first equality, the second equality is due to Equation

(C31), the third equality is a consequence to the fact that Ω is a compact set and F is twice

continuously differentiable by Condition [B] so that dF (i,j)(θ∗ker) and d2F (i,j)(θ̃) are bounded,

and the convergence is obtained via the consistency of θ̂T,n (see Equation (18) in Theorem 1

along with Condition [A]). To prove the CLT, i.e. Equation (26), we can calculate

√
nT (L̂

(i,j)
T,n − L

(i,j))j=1,...,d
i=1,...,d =

√
nT (F (i,j)(θ̂T,n)− F (i,j)(θ∗ker))

j=1,...,d
i=1,...,d

=
√
nT
(
dF (i,j)(θ∗ker)(θ̂T,n)− θ∗ker)

)j=1,...,d

i=1,...,d

+
√
nT
(
(θ̂T,n − θ∗ker)Td2F (i,j)(θ̃)(θ̂T,n − θ∗ker)

)j=1,...,d

i=1,...,d

=
√
nT
(
dF (i,j)(θ∗ker)(θ̂T,n)− θ∗ker)

)j=1,...,d

i=1,...,d
+
√
nTOP(||θ̂T,n − θ∗ker||2)

=
√
nT
(
dF (i,j)(θ∗ker)(θ̂T,n)− θ∗ker)

)j=1,...,d

i=1,...,d
+OP(||θ̂T,n − θ∗ker||)

→D (dF (i,j)(θ∗ker)Γ
−1/2ξ)j=1,...,d

i=1,...,d

where we use Equation (C30) in the first equality, the second equality is a consequence to

Equation (C31), the third equality is due to the fact that Ω is a compact set and F is twice

continuously differentiable by Condition [B] so that d2F (i,j)(θ̃) is bounded, the fourth equality

is a consequence to the CLT of θ̂T,n (see Equation (19) in Theorem 1 along with Condition

[A]), and the convergence is obtained via the consistency and CLT of θ̂T,n (see Equation (18)

and Equation (19) in Theorem 1 along with Condition [A]). We show now Equation (27), i.e.
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we reexpress η(i,j) as

η(i,j) = dF (i,j)(θ∗ker)Γ
−1/2ξ

= dF (i,j)(θ∗ker)
( m∑
q=1

(
Γ−1/2

)(1,q)
ξ(q), . . . ,

m∑
q=1

(
Γ−1/2

)(m,q)
ξ(q)
)T

=
m∑
r=1

(
dF (i,j,r)(θ∗ker)

m∑
q=1

(
Γ−1/2

)(r,q)
ξ(q)
)

=
m∑
q=1

( m∑
r=1

dF (i,j,r)(θ∗ker)
(
Γ−1/2

)(r,q)
)
ξ(q),

where the first equality is due to Equation (22), the second and third equalities are matrix

calculation, the fourth equality is from algebraic manipulations by inverting sums. Equation

(28) can be deduced directly by using the fact that ξ follows a m-dimensional standard normal

vector. The consistency of the covariance estimator, i.e. Equation (29), is due to the consistency

of θ̂T,n (see Equation (18) in Theorem 1 along with Condition [A]), the consistency of Γ̂T (see

Equation (20) in Theorem 1), along with Condition [B]. The normalized feasible CLT, i.e.

Equation (30) and Equation (31), is deduced via the standard CLT (see Equation (26)), the

consistency of the covariance estimator (see Equation (29)), together with Slutsky’s theorem.

Finally, we can show Equation (32) since

̂
Cor

[
ξ̃(i,j), ξ̃(k,l)

]
=

̂Cov[η(i,j), η(k,l)]√
̂Var
[
η(i,j)

] ̂Var
[
η(k,l)

]
=

∑m
q=1

(∑m
r=1 dF

(i,j,r)(θ̂T )
(
Γ̂
−1/2
T

)(r,q)
)(∑m

r=1 dF
(k,l,r)(θ̂T )

(
Γ̂
−1/2
T

)(r,q)
)

√
̂Var
[
η(i,j)

] ̂Var
[
η(k,l)

]
→

∑m
q=1

(∑m
r=1 dF

(i,j,r)(θ∗)
(
Γ−1/2

)(r,q)
)(∑m

r=1 dF
(k,l,r)(θ∗)

(
Γ−1/2

)(r,q)
)

√
Var

[
η(i,j)

]
Var

[
η(k,l)

]
=

Cov[η(i,j), η(k,l)]√
Var

[
η(i,j)

]
Var

[
η(k,l)

]
= Cor

[
ξ̃(i,j), ξ̃(k,l)

]
,

where the first equality is due to Equation (24), the second equality comes from Equation (23),
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the convergence is due to the consistency of θ̂T,n (see Equation (18) in Theorem 1 along with

Condition [A]) together with the consistency of Γ̂T (see Equation (20) in Theorem 1 along with

Condition [A]) in the numerator and to Equation (29) in the denominator, the third equality

corresponds to Equation (28), and the fourth equality is obtained by Equation (31).

We provide now the proof of Corollary 3.

Proof of Corollary 3. We obtain by the CLT of the latency estimator (see Equation (26) in

Proposition 2 along with Condition [A] and Condition [B]) the asymptotic matrix (η(i,j))j=1,...,d
i=1,...,d ,

which can be reexpressed as in Equation (27). We can then deduce Equation (35) by Condi-

tion [C]. The consistency of the asymptotic covariance matrix inverse, i.e. Equation (36),

follows directly from the consistency of the covariance estimator in Equation (29). The feasible

normalized CLT, i.e. Equation (37), is deduced via the standard CLT (see Equation (35)),

the consistency of the asymptotic covariance matrix inverse (see Equation (36)) together with

Slutsky’s theorem.

C.7 Proofs of the tests related to latency

We finally give the proofs of the corollaries related to latency tests. We start with the proof of

Corollary 4.

Proof of Corollary 4. The size of the first Wald test statistic W (L̃), i.e. Equation (38), can be

shown converging in distribution to a chi-squared distribution with one degree of freedom using

its definition (see Equation (9)), the CLT of the latency matrix estimator and the consistency of

the covariance estimator (see Equations (26) and (29) in Proposition 2 along with Condition [A]

and Condition [B]), and the form of the chi-squared distribution with one degree of freedom.

The power of the first Wald test statistic W (L̃), i.e. Equation (39), goes to 1 as an application

of the CLT of the latency matrix estimator and the consistency of the covariance estimator (see

75



Equations (26) and (29) in Proposition 2 along with Condition [A] and Condition [B]) along

with its definition (see Equation (9)).

We provide the proof of Corollary 5 in what follows.

Proof of Corollary 5. Under the null hypothesis H ′0 : {L(i,j) = L(k,l)}, we can calculate that

√
nT (L̂

(i,j)
T − L̂(k,l)

T ) =
√
nT (L̂

(i,j)
T − L(i,j)) +

√
nT (L(k,l) − L̂(k,l)

T ) +
√
nT (L(i,j) − L(k,l))

=
√
nT (L̂

(i,j)
T − L(i,j)) +

√
nT (L(k,l) − L̂(k,l)

T )

→D η(i,j) − η(k,l),

where the first equality corresponds to algebraic manipulation, the second equality is due to

the fact that under H ′0 we have that L(i,j) = L(k,l), and the convergence comes from the CLT

of the latency matrix estimator (see Equation (26) in Proposition 2 along with Condition [A]

and Condition [B]). If we write

η̃ = η(i,j) − η(k,l), (C32)

we know that η̃ is normally distributed since we assume that (η(i,j), η(k,l)) is a two-dimensional

random vector. We have that the mean of η̃ is null by its definition in Equation (22). It remains

to calculate its variance. We obtain that

Var
[
η̃
]

= Var
[
η(i,j) − η(k,l)

]
= Var

[
η(i,j)

]
+ Var

[
η(k,l)

]
− 2 Cov

[
η(i,j), η(k,l)

]
where the first equality comes from Equation (C32), and the second equality corresponds to a

well-known variance-covariance property. By the consistency of the covariance estimator (see

Equation (29) in Proposition 2 along with Condition [A] and Condition [B]), Var
[
η̃
]
can be

consistently estimated as

V̂ar
[
η̃
]

= ̂Var
[
η(i,j)

]
+ ̂Var

[
η(k,l)

]
− 2 ̂Cov

[
η(i,j), η(k,l)

]
.
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As a consequence, we obtain that W ′ converges in distribution to a chi-square with one degree

of freedom. Under the alternative hypothesis H ′1 : {L(i,j) 6= L(k,l)}, we can calculate that

√
nT (L̂

(i,j)
T − L̂(k,l)

T ) =
√
nT (L̂

(i,j)
T − L(i,j)) +

√
nT (L(k,l) − L̂(k,l)

T ) +
√
nT (L(i,j) − L(k,l))

= OP(1) +
√
nT (L(i,j) − L(k,l)),

where the first equality corresponds to algebraic manipulation, and the second equality comes

from the CLT of the latency matrix estimator (see Equation (26) in Proposition 2 along with

Condition [A] and Condition [B]). Finally, we have by the consistency of the covariance esti-

mator (see Equation (29) in Proposition 2 along with Condition [A] and Condition [B]) and

by the fact that Ω is bounded that Var
[
η̃
]
is uniformly bounded. Thus, we can deduce that

the second Wald statistic W ′ diverges under H ′1.

Finally, we give the proof of Corollary 6.

Proof of Corollary 6. The size of the third Wald test statistic W (r), i.e. Equation (42), can be

shown converging in distribution to a chi-squared distribution with q degrees of freedom using

its definition (see Equation (11)), the CLT of the latency vector estimator and the consistency of

the asymptotic covariance matrix inverse (see Equations (35) and (36) in Corollary 3 along with

Condition [A], Condition [B] and Condition [C]), and the form of the chi-squared distribution

with q degrees of freedom. The power of the third Wald test statistic W (r), i.e. Equation (43),

goes to 1 as an application of the CLT of the latency vector estimator and the consistency

of the asymptotic covariance matrix inverse (see Equations (35) and (36) in Corollary 3 along

with Condition [A], Condition [B] and Condition [C]) along with its definition (see Equation

(11)).
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D Additional empirical results

The parameter estimates α̂(i,j)
T are presented in Figure D1. Recall that α captures a size of

jump associated with trading or quoting intensity. The size of jump for self-exciting effects in

plots (a) and (c) is larger in periods of intensive trading - March 2020 when traders utilized the

market shift due to the start of COVID-19 pandemic. Interestingly the cross-exciting effects

from quotes to trades in the US, plots (f), and in Canada, plot (h), dropped during this period

showing a change towards a trade driven market.

The parameter estimates β̂(i,j) are presented in Figure D2. At the beginning of COVID-19

pandemic in March 2020, decay captured by β changed from 1 to almost 2 reflecting acceleration

in trading reactions for self-excitation parts in the US and Canada (plots (a) and (c)). Cross-

exciting parameters β̂(4,3)
T and β̂(2,1)

T for quotes due to trades are stable during this period.
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Figure D1: Parameter estimates α̂(i,j)
T for each day for events in the NYSE and TSX. 90% confidence

intervals are reported.
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Figure D2: Parameter estimates β̂(i,j)
T for each day for events in the NYSE and TSX. 90% confidence

intervals are reported.
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