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Abstract: The inverse first-passage time problem determines a boundary
function such that the first-passage time of a Wiener process to this bound-
ary function has a given distribution. An approximation of the boundary
function by a piecewise-linear boundary is given by equating the probability
of the first-passage time to a linear boundary and the increment of the dis-
tribution on each interval. This is based on the starting value of the bound-
ary function, which is unknown in practice. We propose an approximation
for the starting value of the boundary function. We consider asymptotics
where the length of each interval goes to 0. We first show that the approx-
imation for the starting value of the boundary function converges to the
starting value of the boundary function when assuming that the boundary
function is absolutely continuous and with positive starting value. We also
show that a subsequence of the piecewise-linear approximation uniformly
converges to the boundary function. The proofs are based on an application
of Arzelà-Ascoli theorem. A numerical study shows that the piecewise-linear
approximation is sensitive to the starting value of the boundary function
and the starting value of the boundary function derivative. The results
obtained in the numerical study indicate that the piecewise-linear approx-
imation is adequate and relatively safe to use in practice.

Keywords and phrases: Applied probability, inverse first-passage time
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1. Introduction

This paper concerns the inverse first-passage time (IFPT) problem. The IFPT
problem determines the boundary function such that the first-passage time
(FPT) of a standard Wiener process to this boundary function has a given
distribution. This problem was formulated by A. Shiryaev during a Banach
center meeting in 1976. More specifically, he considered the particular case of
exponential distribution, which is commonly referred as the inverse Shiryaev
problem. The IFPT is an important problem in applied probability.

The primary application of the IFPT problem is in portfolio credit risk mod-
eling. Initially, the focus was on random walks (see Iscoe, Kreinin and Rosen
(1999)). A detailed analysis of the IFPT problem and an approximation is given
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in Iscoe and Kreinin (1999). A model of default events with a randomized bound-
ary is proposed in Schmidt and Novikov (2008). Another field of application is in
pricing of credit derivatives (see Avellaneda and Zhu (2001) and Hull and White
(2001)). The stochastic process represents the so-called distance to default of
an obligor, while the FPT represents a default event. The boundary function
stands for a barrier separating the healthy states of the obligor from the default
state. Another application is in inventory-control problem, whose formulation
can be equivalent to the IFPT problem (see Song and Zipkin (2013)).

Despite their importance for applications, explicit solutions of the IFPT are
very limited. There are some examples when the boundary function is linear.
Doob (1949) gives explicit formulae of crossing boundary probabilities (see
Equations (4.2)-(4.3), pp. 397-398) based on elementary geometrical and an-
alytical arguments. Malmquist (1954) obtains an explicit formula conditioned
on the starting and final values of the Wiener process (Theorem 1, p. 526). This
is obtained with Doob’s transformation (see Section 5, pp. 401-402). Anderson
(1960) derives an explicit formula conditioned on the final value of the Wiener
process (see Theorem 4.2, pp. 178-179). Then, he integrates it with respect to
the final value of the Wiener process to get an explicit solution (see Theorem
4.3, p. 180). For square root boundaries, Breiman (1967) expresses the FPT
problem as an FPT of an Ornstein-Uhlenbeck process to a constant boundary.
They are obtained with Doob’s transformation. However, the boundary crossing
probabilities of an Ornstein-Uhlenbeck process to a constant boundary are only
known in the form of a Laplace transform. Daniels (1969) uses the same tech-
nique and obtains an explicit solution. More recently, Potiron (2025a) obtains
non-explicit formulae by the Girsanov theorem. Finally, Potiron (2025b) obtains
an explicit formula when the boundary function is constant and the stochastic
process is a continuous local martingale.

As explicit solutions are very limited, the literature related to the IFPT
problem relies heavily on approximations (see Zucca and Sacerdote (2009) and
Song and Zipkin (2011)). In Zucca and Sacerdote (2009), an approximation
to a continuous boundary function by a piecewise-linear boundary is given by
equating the probability of the FPT to a linear boundary and the increment of
the cumulative distribution function (cdf) on each interval. That piecewise-liner
approximation uses Wang and Pötzelberger (1997) idea. That piecewise-linear
approximation is based on the starting value of the boundary function, which
has to be guessed in practice since it is unknown.

We propose an approximation for the starting value of the boundary func-
tion, which makes it more suitable for applications. The idea is to equate the
probability of the FPT to a constant boundary function and the increment
of the cdf on a first interval. First, we show that the approximation for the
starting value of the boundary function converges to the starting value of the
boundary function when assuming that the boundary function is absolutely con-
tinuous and with positive starting value. Second, we show that a subsequence of
the piecewise-linear approximation uniformly converges to the boundary func-
tion when assuming that the boundary is differentiable with uniformly bounded
derivative. The results are obtained using Arzelà-Ascoli theorem on any compact
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space.
We consider asymptotics where the length of each interval of linear approx-

imation goes to 0. These asymptotics are required to show that the piecewise-
linear approximation goes to the boundary function asymptotically. The use
of these asymptotics and the convergence results are new to the literature on
the IFPT problem. They are important in practice, although we only obtain
the uniform convergence for a subsequence of piecewise-linear approximation.
A numerical study shows that the piecewise-linear approximation is sensitive
to the starting value of the boundary function and the starting value of the
boundary function derivative. The results obtained in the numerical study indi-
cate that the piecewise-linear approximation is adequate and relatively safe to
use in practice. The numerical study also illustrates that these asymptotics are
adapted to obtain an adequate piecewise-linear approximation.

Since the formulation of the IFPT problem, many papers have investigated
its theoretical properties. Dudley and Gutmann (1977) show the existence of
a stopping time with respect to a general stochastic process, but this stop-
ping time is not a FPT. The existence of lower semi-continuous solutions was
established in Anulova (1981) for the FPT of a reflected Wiener process by
compacity arguments in a discrete approximation of the boundary function and
the distribution. The IFPT problem is reformulated as a nonlinear Volterra in-
tegral equation in Peskir (2002a). Peskir (2002b) studies the behavior of the
IFPT problem in the neighborhood of 0. Abundo (2006) consider extensions to
the general diffusion process case. When the distribution is non-atomic, Cheng
et al. (2006) and Chen et al. (2011) show the existence and uniqueness of the
IFPT problem for diffusions by a transfer into a free boundary problem.

More recently, Jaimungal, Kreinin and Valov (2014) consider a connection be-
tween the Skorokhod embedding problem and the IFPT problem. For a general
distribution, Ekström and Janson (2016) show the existence and uniqueness for
Wiener processes by discretizing an optimal stopping problem. Beiglböck et al.
(2018) consider a more general optimal stopping problem which yields existence
and uniqueness as a consequence. Fukasawa and Obloj (2020) consider efficient
discretization of stochastic differential equations based on the FPT of spheres.
Chen, Chadam and Saunders (2022) study higher-order regularity properties of
the solution of the IFPT problem. The uniqueness for reflected Wiener processes
is shown by a discrete approximation argument along with stochastic ordering
in Klump and Kolb (2023). Klump and Kolb (2024) prove existence and unique-
ness of the IFPT problem for soft-killed Wiener processes. The existence and the
uniqueness for Levy processes and diffusions are studied in Klump and Savov
(2025).

Our theoretical results also complement the theoretical results on continuous
boundary functions obtained in Chen et al. (2011) (see Proposition 6) and Ek-
ström and Janson (2016) (see Theorem 8.2). Compared to these two papers, our
approach based on compacity requires stronger assumptions. This is a price to
pay as our approach is more direct and circumvents the use of a free boundary
problem or optimal stopping theory. The results are also proved in the FPT
problem of a reflected Wiener process, which are also novel.
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One limitation in this paper is that we only obtain the convergence for a sub-
sequence of the piecewise-linear approximation. The reason is that we are not
able to prove directly the convergence by extending the proving techniques used
in Zucca and Sacerdote (2009). More specifically, their two main ideas are the
use of concavity inequalities and the implicit function theorem. Assuming that
the FPT cdf is absolutely continuous and the boundary is monotone concave,
they prove in Theorem 4.3 (p. 1331) that the error due to the approximation
is of the order equal to the maximum of the initial error and the squared in-
terval length. We can weaken their assumptions on concavity by assumptions
on differentiability with uniformly bounded derivatives. The elementary idea of
the proof consists in bounding the difference between the approximation and
the boundary value by a linear function on each interval. However, we are not
able to extend their direct use of the implicit function theorem with the new
asymptotics. The reason is that we need to use the implicit function theorem
with an increasing number of intervals, whereas they only use it with a finite
number of intervals. Although we were not able to track down the calculation,
we conjecture that the direct convergence also holds.

The remaining of this paper is structured as follows. We give preliminary
results in Section 2. Then, we provide the main results in Section 3. In Section
4, we conduct a numerical study. We establish the proofs from the preliminary
results in Section 5. Section 6 yields the proofs of the main results. Finally, we
give concluding remarks in Section 7.

2. Preliminary results

We first introduce the probabilistic tools. We consider the complete stochastic
basis B = (Ω,P,F ,F), where F is a σ-field and F = (Ft)t∈R+ is a filtration.
For any set A ⊂ R+ and any set B ⊂ R such that 0 ∈ A, we define the set of
continuous functions with positive starting values as

C+
0 (A,B) = {h : A→ B s.t. h is continuous and h(0) > 0}.

We now give the definition of the set of boundary functions. Since the ap-
proximation by a piecewise linear boundary given in Wang and Pötzelberger
(1997) requires continuity of the boundary, we restrict ourselves to the continu-
ous boundary case. Moreover, we do not allow for a boundary starting from the
origin since our techniques unfortunately do not allow for that more complicated
case.

Definition 1. We define the set of boundary functions as G = C+
0 (R+,R).

Then, we give the definition of the FPT. We introduce an F-adapted con-
tinuous process Zt defined for any time t ∈ R+. We also introduce a boundary
function g ∈ G. We assume that the stochastic process is continuous since we
consider a Wiener process or a reflected Wiener process in this paper.

Definition 2. We define the FPT of the stochastic process Z to the boundary
function g as

TZg = inf{t ∈ R+ s.t. Zt ≥ g(t)}. (1)
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We define an F-standard Wiener process as Wt defined for any time t ∈ R+.
We will consider the two cases in the following of this paper:

1. Wiener process: Zt = Wt.
2. reflected Wiener process: Zt = |Wt|.

First, we have that Z is a continuous and F-adapted stochastic process and
inf{t ∈ R+ s.t. Zt ≥ g(t)} = inf{t ∈ R+ s.t. (t, Zt) ∈ G}, where G = {(t, u) ∈
R+ × R s.t. u ≥ g(t)} is a closed subset of R2. Thus, the FPT TZg is an F-
stopping time by Theorem I.1.27 (p. 7) in Jacod and Shiryaev (2003).

We define the cdf of Z as

PZg (t) = P(TZg ≤ t) for any time t ≥ 0. (2)

The basic assumption for the approximation by a piecewise linear boundary
given in Zucca and Sacerdote (2009) is that the cdf PZg is absolutely continu-
ous. Accordingly, the authors assume that all regularity assumptions ensuring
the existence of the objects introduced and properties imposed are fulfilled.
In the following assumption, we consider a slightly more explicit form of the
assumption.

Assumption 1. We assume that the boundary function g is absolutely continuous
on the set of nonnegative real numbers R+.

When the boundary function g is continuous, we know by Theorem 8.1 in
Ekström and Janson (2016) that PZg is continuous. When the boundary function
g is continuously differentiable, we know by Lemma 3.3 in Strassen (1967) that
the cdf PZg is continuously differentiable. The following lemma shows that when

the boundary function g is absolutely continuous, then the cdf PZg is absolutely
continuous.

Lemma 1. We assume that Assumption 1 holds. Then, the cdf PZg is absolutely
continuous on the set of nonnegative real numbers R+.

Since the cdf PZg is absolutely continuous, there exists a pdf fZg : R+ → R+

defined as

fZg (t) =
dPZg (t)

dt
for any time t ≥ 0 a.e.. (3)

Now, we give the definition of a possibly defective cdf. By Assumption 1, we
naturally restrict ourselves to the absolute continuous cdf case.

Definition 3. A function F : R+ → [0, 1] is a cdf if it satisfies the following
properties. First, the function F is nondecreasing. Secondly, the function F is

absolutely continuous, namely with pdf f : R+ → R+ defined as f(t) = dF (t)
dt for

any time t ≥ 0 a.e. Thirdly, the function F satisfies F (0) = 0 and lim
t→∞

F (t) =

F∞ ≤ 1 where 0 < F∞ ≤ 1.

We introduce now the main problem of this paper. The IFPT problem deter-
mines a boundary function g ∈ G such that

fZg (t) = f(t) for any time t ≥ 0 a.e. (4)
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As explicit solutions are very limited, the literature related to the IFPT prob-
lem relies heavily on approximations. Based on Wang and Pötzelberger (1997)
idea, an approximation to a continuous boundary by a piecewise linear bound-
ary is given in Zucca and Sacerdote (2009). Their driving idea is to determine
recursively the slope of the linear approximation on an interval by equating
the probability of the FPT of the stochastic process Z to the approximation
and the increment of the cdf on the interval. That approximation is based on
the starting value of the boundary. Since the starting value of the boundary
is unknown, it has to be guessed in practice. Moreover, they do not propose
any asymptotics when the length of each interval of linear approximation goes
to 0. These asymptotics are required to show that the approximated boundary
function goes to the boundary function asymptotically.

In what follows, we consider a slight extension of the setting in Zucca and Sac-
erdote (2009) which has two main novelties. First, we approximate the starting
value of the boundary. Second, we consider asymptotics where the length of each
interval of linear approximation goes to 0 as the number of intervals 2n → ∞.
More specifically, we introduce the final time tf ∈ R+

∗ . For any nonnegative
integer n ∈ N and any nonnegative integer m ∈ {0, . . . , 2n}, we consider a time
discretization tnm = m∆n. Here, ∆n = 2−ntf is the length of each interval of
linear approximation. We consider a nested time discretization as this will be
required in the proof of Theorem 4.

We define the sequence of piecewise-linear approximation of the boundary
function gn recursively on the positive integer m ∈ {1, . . . , 2n} as

gn(0) = αn0 , (5)

gn(u) = gn(tnm) + αnm+1(u− tnm) for any time u ∈ (tnm, t
n
m+1]. (6)

Here, we have that the coefficients αn0 ∈ R+
∗ and αnm ∈ R are defined implicitly

for any positive integer m ∈ {1, . . . , 2n} by

PZαn
0
(δn∆n) =

∫ δn∆n

0

f(s)ds, (7)

P
(
TZgn ∈ [tnm−1, t

n
m]
)

=

∫ tnm

tnm−1

f(s)ds. (8)

Equations (5), (6) and (8) correspond exactly to Equations (3.1)-(3.2) in Zucca
and Sacerdote (2009). The novelty in this paper is Equation (7), in which we
determine the approximation of the starting value of the boundary function.
The idea is to equate the probability of the FPT of the stochastic process Z
to a constant boundary value equal to the first coefficient αn0 on an interval of
length δn∆n. Here, the parameter δn ∈ (0, 1) corresponds to the proportion. The
reason why we introduce the parameter δn is that there are numerical problems
if we use δn = 1. In practice, we recommend to use δn = 0.25 which gives the
best results. There are no theoretical problems, since our main results do not
require any assumption on the parameter.
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Our next result establishes that the sequence of coefficients αnm is well-defined.
This is a slight extension of Remark 3.2 in Zucca and Sacerdote (2009), which
also includes that the first coefficient αn0 is well-defined.

Lemma 2. We assume that Assumption 1 holds. For any nonnegative integer
n ∈ N, Equation (7) defines a unique coefficient αn0 ∈ R+

∗ and Equation (8)
defines a unique coefficient αnm ∈ R for any nonnegative integer m ∈ {0, . . . , 2n}.

3. Main results

We first show that the starting value of the piecewise-linear approximation con-
verges to the starting value of the boundary function. The elementary idea of the
proof consists in observing that the boundary function can be bounded below
and above by positive constants for a very small time interval. Then, we show
that these constants converge to the boundary starting value as the interval
length goes to 0. This is possible since the starting value of the boundary func-
tion is positive and the boundary function is continuous with our assumptions.

Proposition 3. We assume that Assumption 1 holds. Then, the starting value
of the piecewise-linear approximation converges to the starting value of the
boundary function. Namely, we have gn(0) → g(0) as the number of intervals
n→∞.

We now give our main result in the next theorem. This shows that a subse-
quence of the piecewise-linear approximation uniformly converges to the bound-
ary function. The elementary idea of the proof consists in using Arzelà-Ascoli
theorem on the compact space [0, tf ]. We first show that the coefficients αnm are
uniformly bounded, which implies that the piecewise-linear approximation is
uniformly bounded and uniformly equicontinuous. For that purpose, we assume
that the boundary function is differentiable on the interval [0, tf ] with uniformly
dominated derivative.

Assumption 2. We assume that the boundary function g is differentiable on the
interval [0, tf ] with uniformly bounded derivatives, namely

sup
t∈[0,tf ]

| g′(t) |<∞.

One limitation in the next result is that we only obtain the convergence of a
subsequence, rather than a direct convergence. The reason is that we were not
able to prove directly the convergence by extending the proving techniques used
in Zucca and Sacerdote (2009).

Theorem 4. We assume that Assumption 2 holds. Then, there exists a subse-
quence gnk of the piecewise-linear approximation gn which converges uniformly
to the boundary function g on the interval [0, tf ]. Namely, we have

sup
t∈[0,tf ]

| gnk(t)− g(t) |→ 0

as the number of intervals n→∞.
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4. Numerical study

In this section, we conduct a numerical study. We first show that the starting
value of the piecewise-linear approximation is sensitive to the starting value of
the boundary function and the starting value of the boundary function deriva-
tive. Then, we check the stability of the piecewise-linear approximation pre-
sented in Section 2 with the use of some examples where a closed form solution
is available. We also consider another example where the solution is numeri-
cally evaluated. The results obtained in the numerical study indicate that the
piecewise-linear approximation is adequate and relatively safe to use in prac-
tice. The results also illustrate that our asymptotics are adapted to obtain an
adequate piecewise-linear approximation.

First, we report in Table 1 the normalized error for the starting value of
the piecewise-linear approximation. We consider several linear boundaries with
starting value equal to 0.5, 1, 2, 3, 4 and slope equal to 0, 1, 2, 3, 4. We choose
the interval length ∆n = 0.2 and the proportion parameter δn = 0.25, 0.5. The
starting value of the piecewise-linear approximation is sensitive to the start-
ing value of the linear boundary function and the slope of the linear boundary
function. More specifically, the quality of the piecewise-linear approximation
depends on the ratio of slope over starting value. When the slope is null, the
absolute value of the normalized error is systematically below 0.10%. This can
be explained by the fact that the boundary function is constant in that partic-
ular case. Overall, the absolute value of the normalized error is below 20.00%
and with a positive bias for most instances. The case with smaller proportion
parameter δn = 0.25 reduces the normalized error by half compared to the case
with larger proportion parameter δn = 0.5 for most instances. This illustrates
that our asymptotics based on the number of intervals n → ∞ are adapted to
obtain an adequate starting value of the piecewise-linear approximation.

Second, we define the Daniels boundary function and its pdf (see Daniels
(1969)) for any time t ≥ 0 as

g(t) =
α

2
− t

α
log
(β

2
+

√
β2

4
+ γ exp

(
− α2

t

))
,

fg(t) =
1√

2πt3

(
exp

(
− g(t)2

2t

)
− 2

β
exp

( (g(t)− α)2

2t

))
.

Here, we have that the parameters satisfy α > 0, β ≥ 0 and γ > β/4. We also
define the oscillating boundary function for any time t ≥ 0 as

g(t) = α+ β cos(γt).

Here, we have that the parameter α is the starting value of the oscillating
boundary function and satisfies α > 0. Moreover, the parameter β corresponds
to the amplitude and satisfies β > 0. Finally the parameter γ corresponds to the
period of an oscillation and satisfies γ > 0. Since there is no explicit formula for
the pdf fg, we evaluate numerically its value by Buonocore, Nobile and Ricciardi
(1987).
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Table 1
Normalized error for the starting value of the piecewise-linear approximation. We consider

several linear boundaries with starting value equal to 0.5, 1, 2, 3, 4 and slope equal to
0, 1, 2, 3, 4. We choose the interval length ∆n = 0.2 and the proportion parameter

δn = 0.25, 0.5.

Boundary starting δn = 0.25

Value Slope 0 1 2 3 4

0.5 -0.10% 8.60% 17.38% 26.20% 35.04%
1 -0.10% 4.69% 9.49% 14.29% 19.10%
2 -0.10% 2.37% 4.84% 7.32% 9.79%
3 -0.10% 1.56% 3.22% 4.88% 6.54%
4 -0.10% 2.43% 4.92% 7.41% 9.89%

Boundary starting δn = 0.5

Value Slope 0 1 2 3 4

0.5 -0.06% 15.90% 32.14% 48.52% 64.92%
1 -0.05% 9.18% 18.47% 27.78% 37.10%
2 -0.05% 4.83% 9.73% 14.62% 19.52%
3 -0.05% 3.25% 6.55% 9.85% 13.15%
4 -0.05% 2.43% 4.92% 7.41% 9.89%

Table 2
Mean squared error of the piecewise-linear approximations for the three boundary functions.

We choose the interval length ∆n = 0.2 and the proportion parameter δn = 0.25, 0.5, 1.

Daniels boundary with α = 1, β = 1, γ = 0.5

Proportion parameter δn Mean squared error

0.25 1.66× 10−5

0.5 5.96× 10−5

1 5.89× 10−5

Daniels boundary with α = 1, β = 0.5, γ = 0.5

Proportion parameter δn Mean squared error

0.25 1.82× 10−4

0.5 3.56× 10−4

1 1.07× 10−3

Oscillating boundary with α = 0.5, β = 0.2, γ = 8

Proportion parameter δn Mean squared error

0.25 7.09× 10−2

0.5 6.96× 10−2

1 7.21× 10−2
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Fig 1. Daniels boundary function with parameters α = 1, β = 1 and γ = 0.5 compared with the
piecewise-linear approximation as a function of time t ∈ [0, 2]. We choose the interval length
∆n = 0.2 and the proportion parameter δn = 0.25, 0.5, 1. with ∆n = 0.2 and δn = 0.25, 0.5, 1.

Figure 1 plots the Daniels boundary function with parameters α = 1, β = 1
and γ = 0.5 compared with the piecewise-linear approximation as a function
of time t ∈ [0, 2]. We choose the interval length ∆n = 0.2 and the proportion
parameter δn = 0.25, 0.5, 1. with ∆n = 0.2 and δn = 0.25, 0.5, 1. As the starting
value of the boundary function derivative is 0, the starting value of the three
piecewise-linear approximations are adequate.

Figure 2 plots the Daniels boundary function with parameters α = 1, β = 0.5
and γ = 0.5 compared with the piecewise-linear approximation as a function
of time t ∈ [0, 2]. We choose the interval length ∆n = 0.2 and the propor-
tion parameter δn = 0.25, 0.5, 1. The starting value of the boundary function
derivative is around unity. The piecewise-linear approximation is adequate when
δn = 0.25, but not as accurate when δn = 0.5 and a bit off when δn = 1. As the
time increases, the piecewise-linear approximation tends to oscillate around the
boundary. This is due to the fact that the approximation overcompensates by
its own definition (8). This also illustrates that our asymptotics based on the
number of intervals n→∞ are adapted to obtain an adequate starting value of
the piecewise-linear approximation.

Figure 3 plots the oscillating boundary function with parameters α = 0.5,
β = 0.2, γ = 8 compared with the piecewise-linear approximation as a function
of time t ∈ [0, 2]. We choose the interval length ∆n = 0.2 and the proportion
parameter δn = 0.25, 0.5, 1. This is a more complicated case as the oscillat-
ing boundary function is not monotone. As for Figure 2, the approximation is
adequate when δn = 0.25, but not as accurate when δn = 0.5 and a bit off
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Fig 2. Daniels boundary function with parameters α = 1, β = 0.5 and γ = 0.5 compared with
the piecewise-linear approximation as a function of time t ∈ [0, 2]. We choose the interval
length ∆n = 0.2 and the proportion parameter δn = 0.25, 0.5, 1.

when δn = 1. Moreover, all the piecewise-linear approximations are slightly off
at times where the monotonicity of the oscillating boundary function changes.
This documents the limitation of the method of approximation. All these re-
sults are confirmed by Table 2, which reports the mean squared error of the
piecewise-linear approximations for the three boundary functions.

5. Proofs from the preliminary results

In this section, we give the proofs from the preliminary results, which are ele-
mentary. However, some ideas and notations are used for the proofs of the main
results given in Section 6. Thus, the reader interested in the proofs of the main
results should use this section as a reference.

We start with the proof of Lemma 1, which slightly extends the arguments
from the proof of Lemma 3.3 in Strassen (1967).

Proof of Lemma 1. By Assumption 1, we have that the boundary function g
is absolutely continuous on the set of nonnegative real numbers R+. Thus, the
boundary function g admits a derivative a.e. on the set of nonnegative real
numbers R+. Namely, there exists a Lebesgue-negligible set N ⊂ R+ such that
the boundary function g admits a derivative for any time t ∈ R+ −N .

To show that the cdf PWg is absolutely continuous on the set of nonnegative

real numbers R+, it is sufficient to show that the cdf PWg admits a derivative
for any time t ∈ R+−N . This is due to the fact that N is a Lebesgue-negligible
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Fig 3. Oscillating boundary function with parameters α = 0.5, β = 0.2 and γ = 8 compared
with the piecewise-linear approximation as a function of time t ∈ [0, 2]. We choose the interval
length ∆n = 0.2 and the proportion parameter δn = 0.25, 0.5, 1.

set. By the definition of absolute continuity, we have that the set N is countable
on any compact space of R+. Indeed, the boundary function g does not admit
a derivative in the neighborhood of the time s if s ∈ R+ is an accumulation
point of N . Thus, the boundary function g is not absolutely continuous. Then,
we have that the set N is countable on any compact space of R+.

To show that the cdf PWg is absolutely continuous on R+, it is then sufficient

to show that the cdf PWg admits a derivative on any open interval (u, v) where
the times u ∈ R+ and v ∈ R+ satisfy u < v and (u, v)∩N = ∅. We can show this
statement by extending the arguments from the proof of Lemma 3.3 in Strassen
(1967) along with the assumption that g(0) > 0 from Definition 1.

Finally, the reflected Wiener process case follows since the FPT of a reflected
Wiener process to a linear boundary is equal to the FPT of a Wiener process
to a symmetric upper linear boundary and lower linear boundary when the
boundary from the reflected Wiener process and the upper boundary are equal.

In the next definition, we introduce the transition pdf of a stochastic process
constrained by an absorbing boundary.

Definition 4. We define the transition pdf of the stochastic process Z at the
time t ∈ R+ constrained by the absorbing boundary function g over the interval
[s, t] given that Zs = y as pZg (t, x | s, y). The transition pdf satisfies for any
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x < g(t), t > s ≥ 0 and y < g(s) that

pZg (t, x | s, y) =
∂

∂x
P(Zt < x,TZg > t | Zs = y). (9)

In the following lemma, we give the pdf and the transition pdf for the FPT
of a Wiener process to a linear boundary. This is a consequence to Doob (1949)
(Equation (4.2), p. 397), Malmquist (1954) (p. 526) and Durbin (1971) (Lemma
1).

Lemma 5. We assume that the boundary function is linear

g(t) = α1t+ α0 for any time t ≥ 0.

Here, t0 ≥ 0, α0 ∈ R+
∗ , α1 ∈ R and x0 ∈ R satisfy g(t0) > x0. Then, we have

that the pdf for the FPT of a Wiener process is equal to

fWg (t | t0, x0) =
α0 − x0√
2π(t− t0)3

exp
(
− (α0 + α1(t− t0)− x0)2

2(t− t0)

)
. (10)

Moreover, the transition pdf is equal to

pWg (t1, x1 | t0, x0) =
(

1− exp
(−2(g(t1)− x1)(g(t0)− x0)

t1 − t0

))
×

exp(− (x1−x0)2

2(t1−t0) )√
2π(t1 − t0)

. (11)

Proof of Lemma 5. Equation (10) is obtained in Doob (1949) (Equation (4.2),
p. 397) or Malmquist (1954) (p. 526). Equation (11) follows from Durbin (1971)
(Lemma 1).

In the following lemma, we give the pdf and the transition pdf for the FPT
of a Wiener process to a continuous piecewise linear boundary. Equation (13)
is already available in Wang and Pötzelberger (1997) and Zucca and Sacerdote
(2009) (Section 2.1.3, pp. 1323-1324).

Lemma 6. We assume that the boundary function is piecewise linear

g(t) = αit+ βi, for any time t ∈ [ti−1, ti].

Here, we have that ti = i∆ + t0, where t0 ≥ 0, ∆ > 0 and the coefficients
αi, βi ∈ R satisfy αi+1 + βi+1ti = αi + βiti. Thus, the boundary is continuous.
Then, we can express the transition pdf as

pWg (t1, x1, . . . , tn, xn | t0, x0) =

n∏
i=1

pWg (ti, xi | ti−1, xi−1). (12)

Here, we have that (x1, x2, . . . , xn) ∈ Rn and xi ≤ g(ti) for any nonnegative
integer i = 1, . . . , n and x0 < g(t0) where t0 < t1 < t2 < . . . < tn. Moreover, we
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can reexpress the transition pdf with the following explicit expression

pWg (t1, x1, . . . , tn, xn | t0, x0) =

n∏
i=1

(
1−

exp
(−2(g(ti)− xi)(g(ti−1)− xi−1)

ti − ti−1

))
×

exp
(
− (xi−xi−1)2

2(ti−ti−1)

)
√

2π(ti − ti−1)
. (13)

Finally, we can deduce for any Borel set Ci ⊂ (−∞, g(ti)] with i = 1, . . . , n that

P(Wt1 ∈ C1, . . . ,Wtn ∈ Cn,TWg > tn |Wt0 = x0) (14)

=

∫
C1

. . .

∫
Cn

pWg (t1, x1, . . . , tn, xn | t0, x0)dx1 . . . dxn.

Proof of Lemma 6. Equation (12) is obtained by Definition (9) and follows by
induction with conditional probability formula. Then, Equation (13) can be
deduced by plugging Equation (11) into Equation (12). Finally, Equation (14)
is a direct consequence of Equation (13).

We define φ as the standard Gaussian cdf. In the following lemma, we give
the pdf for the FPT of a reflected Wiener process to a linear boundary. This is
based on the explicit solution from Anderson (1960) (Theorem 5.1, p. 191) for
the FPT to an upper linear boundary and a lower linear boundary. This is due
to the fact that the FPT of a reflected Wiener process to a linear boundary is
equal to the FPT of a Wiener process to a symmetric upper linear boundary and
lower linear boundary when the boundary from the reflected Wiener process and
the upper boundary are equal. Although we can deduce the transition pdf and
transition pdf for the piecewise linear boundary with the same arguments as in
the proofs of Lemma 5 and Lemma 6, we do not report them in the following
of this paper.

Lemma 7. We assume that the boundary function is linear

g(t) = α1t+ α0 for any time t ≥ 0.

Here, we have that t0 ≥ 0 is the starting time, α0 ∈ R+
∗ is the intercept, α1 ∈ R

is the trend and the starting value x0 ∈ R satisfy g(t0) > x0. Then, we have
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that the pdf for the FPT of a reflected Wiener process is equal to

f |W |g (t0 | t0, x0) = 0, (15)

f |W |g (t | t0, x0) =
2

(t− t0)3/2
φ
(α1(t− t0) + α0 − x0√

t− t0
)

×
∞∑
r=0

{
(4r + 1)(α0 − x0)

× exp
(−(8r(r + 1)(α0 − x0))(α1(t− t0) + α0 − x0)

t− t0

)
−(4r + 2)(α0 − x0) exp

(
−(4(r + 1)(2r + 1)(α0 − x0)(α1(t− t0) + α0 − x0)

t− t0

)}
for any time t > t0. (16)

Proof of Lemma 7. The proof follows from the fact that we have the FPT of a
reflected Wiener to a linear boundary is equal to the FPT of a Wiener process
to a symmetric upper linear boundary and lower linear boundary when the
boundary from the reflected Wiener process and the upper boundary are equal.

More specifically, we first consider the FPT of a Wiener process to an upper
linear boundary and a lower linear boundary. We first assume that the boundary
is upper linear and lower linear. Namely, we assume that

g(t) = (γ2 + δ2t, γ1 + δ1t).

Here, we have that γ1 > 0, γ2 < 0, δ1 ≥ δ2 and we do not have that δ1 = δ2 = 0.
By Anderson (1960) (Theorem 5.1, p. 191), we have that the pdf of the FPT is
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equal for any time t > t0 to

fWg (t0) = 0, (17)

fWg (t) =
1

(t− t0)3/2

[
φ
(δ1(t− t0) + γ1√

t− t0

) ∞∑
r=0

{(
(2r + 1)γ1 − 2rγ2

)
(18)

× exp
(−2r(rγ1 − (r + 1)γ2)(δ1(t− t0) + γ1 − (δ2(t− t0) + γ2))

t− t0

)
−
(
2(r + 1)γ1 − 2rγ2

)
exp

(
−2(r + 1)((r + 1)γ1 − rγ2)(δ1(t− t0) + γ1 − (δ2(t− t0) + γ2))

t− t0

)}
+φ
(δ2(t− t0) + γ2√

t− t0

) ∞∑
r=0

{(
2rγ1 − (2r + 1)γ2

)
exp

(
−2(r + 1)((r + 1)γ1 − rγ2)(δ1(t− t0) + γ1 − (δ2(t− t0) + γ2))

t− t0

)
−
(
2(r + 1)γ1 − 2rγ2

)
exp

(−2r(rγ1 − (r + 1)γ2)(δ1(t− t0) + γ1 − (δ2t+ γ2))

t− t0

)}]
,

Now, we assume that the boundaries are symmetric. Namely, we assume that
g(t) = (−α1t− α0, α1t+ α0) where α1 ∈ R and α0 ∈ R+

∗ . From Equations (17)
and (18), we can deduce that

fWg (t0) = 0, (19)

fWg (t) =
2

(t− t0)3/2
φ
(α1(t− t0) + α0√

t− t0

)
(20)

∞∑
r=0

{
(4r + 1)α0 exp

(−(8r(r + 1)α0)(α1t− t0 + α0)

t− t0

)
−(4r + 2)α0 exp

(−(4(r + 1)(2r + 1)α0(α1(t− t0) + α0)

t− t0

}
for any time t > t0.

We have the FPT of a reflected Wiener to a linear boundary is equal to the
FPT of a Wiener process to a symmetric upper linear boundary and lower
linear boundary when the boundary from the reflected Wiener process and the
upper boundary are equal. From the previous sentence with Equations (19) and
(20), we can deduce Equations (15) and (16).

The next lemma gives the transition pdf for a FPT of a Wiener process W at
time tnm+1 constrained by the absorbing boundary function gn over the interval
[tnm, t

n
m+1] given that Wtm = xm.
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Lemma 8. For any positive integer n ∈ N∗ and any nonnegative integer m ∈
{0, . . . , 2n − 1}, we have

pWgn
(
tnm+1, xm+1 | tnm, xm

)
=

(
1− exp

(
−2(gn(tnm+1)− xm+1)(gn(tnm)− xm)

∆n

))
×

exp
(
− (xm+1−xm)2

∆n

)
√
π∆n

. (21)

Proof of Lemma 8. Equation (21) can be obtained directly from Equation (11)
in Lemma 5.

We define the probability of the FPT to a constant boundary function equal
to α ∈ R+

∗ on the first interval [0, δn∆n] as Gn0 : R+
∗ → R which satisfies

Gn0 (α) = 1−
∫ α

−∞

(
1− exp

(−2(α− x1)α

δn∆n

))exp
(
− x2

1

δn∆n

)
√
πδn∆n

dx1. (22)

The next lemma gives a more explicit form to the starting coefficient αn0 .

Lemma 9. For any positive integer n ∈ N, Equation (7) can be reexpressed as

Gn0 (αn0 )−
∫ δn∆n

0

f(s)ds = 0. (23)

Proof of Lemma 9. We have that

PWαn
0
(δn∆n) = P

(
TWαn

0
∈ [0, δn∆n]

)
= P

(
(TWαn

0
> δn∆n

)C
)

= 1− P
(
TWαn

0
> δn∆n

)
= 1− P

(
Wδn∆n ∈ (−∞, αn0 ], TWαn

0
> δn∆n

)
= 1−

∫ αn
0

−∞
pWαn

0
(δn∆n, x1 | 0, 0)dx1

= 1−
∫ αn

0

−∞

(
1− exp

(−2(αn0 − x1)αn0
δn∆n

))
(24)

×
exp

(
− x2

1

δn∆n

)
√
πδn∆n

dx1.

Here, we use Equation (2) in the first equality and the fact that TWαn
0
≥ 0 a.s.

by Definition 2 along with the completeness of the filtration F in the second
equality. We also use elementary probability facts in the third equality and the
fact that TWαn

0
⊂ {Wδn∆n

∈ (−∞, αn0 ]} in the fourth equality. Moreover, we

use Equation (14) from Lemma 6 in the fifth equality and Equation (21) from
Lemma 8 in the sixth equality. Finally, we can deduce Equation (23) by plugging
Equation (7) into Equation (24).
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We define the probability of the FPT to a linear boundary function started
from αn0 with trend α ∈ R on the interval [0, tn1 ] as Gn1 : R→ R which satisfies

Gn1 (α) = 1−
∫ αn

0 +α∆n

−∞

(
1− exp

(−2(αn0 + α∆n − x1)αn0
∆n

))exp(− x2
1

∆n
)

√
π∆n

dx1. (25)

In the next lemma, we give a more explicit form to the coefficient αn1 based on
the known coefficient value αn0 . The idea of the proof is similar to the idea of
the proof from Lemma 9.

Lemma 10. For any nonnegative integer n ∈ N and m = 1, Equation (8) can
be reexpressed as

Gn1 (αn1 )−
∫ tn1

0

f(s)ds = 0. (26)

Proof of Lemma 10. We have that

P
(
TWgn ∈ [0, tn1 ]

)
= P

(
(TWgn > tn1

)C
)

= 1− P
(
TWgn > tn1

)
= 1− P

(
Wtn1

∈ (−∞, gn(tn1 )], TWgn > tn1
)

= 1−
∫ gn(tn1 )

−∞
pWgn(tn1 , x1 | 0, 0)dx1

= 1−
∫ gn(tn1 )

−∞

(
1− exp

(−2(gn(tn1 )− x1)gn(0)

∆n

))
exp

(
− x2

1

∆n

)
√
π∆n

dx1

= 1−
∫ αn

0 +αn
1 ∆n

−∞

(
1− exp

(−2(αn0 + αn1 ∆n − x1)αn0
∆n

))
exp

(
− x2

1

∆n

)
√
π∆n

dx1. (27)

Here, we use the fact that TWgn ≥ 0 a.s. by Definition 2 along with the complete-
ness of the filtration F in the first equality and elementary probability facts in
the second equality. We also use the fact that TWgn ⊂ {Wtn1

∈ (−∞, gn(tn1 )]} in
the third equality and Equation (14) from Lemma 6 in the fourth equality. More-
over, we use Equation (21) from Lemma 8 in the fifth equality and Equations
(5)-(6) in the sixth equality. Finally, we can deduce Equation (26) by plugging
Equation (8) into Equation (27).

We define now the probability of the FPT to a continuous piecewise linear
boundary gn on the first interval [0, tn1 ] and with trend α ∈ R on the second
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interval [tn1 , t
n
2 ] as Gn2 : R→ R which satisfies

Gn2 (α) = 1−Gn1 (αn1 )−
∫ αn

0 +αn
1 ∆n

−∞

∫ αn
0 +(αn

1 +α)∆n

−∞
(28)(

1− exp
(−2(αn0 + (αn1 + α)∆n − x2)(αn0 + αn1 ∆n − x1)

∆n

))
exp(− (x2−x1)2

∆n
)

√
π∆n

×
(

1− exp
(−2(αn0 + αn1 ∆n − x1)αn0

∆n

))exp(− x2
1

∆n
)

√
π∆n

dx1dx2.

In the next lemma, we give a more explicit form to αn2 based on the known
values αn1 and αn0 . The idea of the proof is similar to the idea of the proof from
Lemma 9.

Lemma 11. For any nonnegative integer n ∈ N and m = 2, Equation (8) can
be reexpressed as

Gn2 (αn2 )−
∫ tn2

tn1

f(s)ds = 0.

Proof of Lemma 11. We have that

P
(
TWgn ∈ [tn1 , t

n
2 ]
)

= P
(
(TWgn < tn1 ,T

W
gn > tn2 )C

)
= 1− P

(
TWgn < tn1 ,T

W
gn > tn2

)
= 1− P

(
TWgn < tn1

)
− P

(
TWgn > tn2

)
= 1− P

(
0 ≤ TWgn < tn1

)
− P

(
TWgn > tn2

)
= 1−

∫ tn1

0

f(s)ds− P
(
TWgn > tn2

)
= 1−Gn1 (αn1 )− P

(
TWgn > tn2

)
. (29)

Here, we use elementary probability facts in the first and second equalities. We
also use the fact that {TWgn < ∆n} and {TWgn > 2∆n} are disjoint events in

the third equality and the fact that TWgn ≥ 0 a.s. by Definition 2 along with
the completeness of the filtration F in the fourth equality. Moreover, we use
Equation (8) in the fifth equality and Lemma 10 in the sixth equality.
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Also, we have that

P
(
TWgn > tn2

)
= P

(
Wtn1

∈ (−∞, gn(tn1 )],Wtn2
∈ (−∞, gn(tn2 )],TWgn > tn2

)
=

∫ gn(tn1 )

−∞

∫ gn(tn2 )

−∞
pWgn(tn1 , x1, t

n
2 , x2 | 0, 0)dx1dx2

=

∫ gn(tn1 )

−∞

∫ gn(tn2 )

−∞
pWgn(tn2 , x2 | tn1 , x1)pWgn(tn1 , x1 | 0, 0)dx1dx2

=

∫ gn(tn1 )

−∞

∫ gn(tn2 )

−∞(
1− exp

(−2(gn(tn2 )− x2)(gn(tn1 )− x1)

∆n

))exp
(
− (x2−x1)2

∆n

)
√
π∆n

×(1− exp(
−2(gn(tn1 )− x1)gn(tn0 )

∆n
))

exp(− x2
1

∆n
)

√
π∆n

dx1dx2.

Here, we use the fact that

{TWgn > tn2} ⊂ {Wtn1
∈ (−∞, gn(tn1 )],Wtn2

∈ (−∞, gn(tn2 )]}

in the first equality. We also use Equation (14) in the second equality, Equation
(12) in the third equality and Equation (21) from Lemma 8 in the fourth equality.

Then, we have that

P
(
TWgn > tn2

)
=

∫ αn
0 +αn

1 ∆n

−∞

∫ αn
0 +(αn

1 +αn
2 )∆n

−∞
(30)(

1− exp
(−2(αn0 + (αn1 + αn2 )∆n − x2)(αn0 + αn1 ∆n − x1)

∆n

))
exp(− (x2−x1)2

∆n
)

√
π∆n

×
(

1− exp
(−2(αn0 + αn1 ∆n − x1)αn0

∆n

))exp(− x2
1

∆n
)

√
π∆n

dx1dx2.

Here, we use Equations (5)-(6). Finally, we can deduce Equation (29) by plug-
ging Equation (30) and Equation (8) into Equation (29).

For any positive integer m ∈ {3, . . . , 2n − 1}, we define x0 = 0 and the
probability of the FPT to a continuous piecewise linear boundary gn on the
interval [0, tnm−1] and with trend α ∈ R on the interval [tnm−1, t

n
m] as Gnm : R→ R
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which satisfies

Gnm(α) = 1−
m−1∑
k=1

Gnk (αnk )−
∫ αn

0 +αn
1 ∆n

−∞

∫ αn
0 +(αn

1 +αn
2 )∆n

−∞
. . .

∫ αn
0 +(

∑m
k=1 α

n
k+α)∆n

−∞

(
1− exp

(
−2(αn0 + (

∑m
i=1 α

n
i + α)∆n − xm+1)(αn0 +

∑m
i=1 α

n
i ∆n − xm)

∆n

))
×

exp
(
− (xm+1−xm)2

∆n

)
√
π∆n

m−1∏
k=0

(
1−

exp(
−2(αn0 +

∑k+1
i=1 α

n
i ∆n − xk+1)(αn0 +

∑k
i=1 α

n
i ∆n − xk)

∆n

))
×

exp
(
− (xk+1−xk)2

∆n

)
√
π∆n

dx1dx2 . . . dxm. (31)

In the lemma that follows, we give a more explicit form to the unknown
coefficient αnm based on known coefficient values (αnk )k=0,...,m−1. The idea of the
proof is similar to the idea of the proof from Lemma 9.

Lemma 12. For any nonnegative integer n ∈ N and any positive integer m ∈
{3, . . . , 2n − 1}, Equation (8) can be reexpressed as

Gnm(αnm)−
∫ tnm

tnm−1

f(s)ds = 0. (32)

Proof of Lemma 12. We have that

P
(
TWgn ∈ [tnm−1, t

n
m]
)

= P
(
(TWgn < tnm−1,T

W
gn > tnm)C

)
= 1− P

(
TWgn < tnm−1,T

W
gn > tnm

)
= 1− P

(
TWgn < tnm−1

)
− P

(
TWgn > tnm

)
= 1− P

(
0 ≤ TWgn < tnm−1

)
− P

(
TWgn > tnm

)
= 1−

∫ tnm−1

0

f(s)ds− P
(
TWgn > tnm

)
= 1−

m−1∑
k=1

Gnk (αnk )− P
(
TWgn > tnm

)
. (33)

Here, we use elementary probability facts in the first and second equalities. We
also use the fact that {TWgn < tnm−1} and {TWgn > tnm} are disjoint events in

the third equality and the fact that TWgn ≥ 0 a.s. by Definition 2 along with
the completeness of the filtration F in the fourth equality. Moreover, we use
Equation (8) in the fifth equality and Lemmas 10 and 11 in the sixth equality.
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Also, we have that

P
(
TWgn > tnm

)
= P

(
Wtn1

∈ (−∞, gn(tn1 )],Wtn2
∈ (−∞, gn(tn2 )], . . . ,

Wtnm
∈ (−∞, gn(tnm)],TWgn > tnm

)
=

∫ gn(tn1 )

−∞

∫ gn(tn2 )

−∞
. . .

∫ gn(tnm)

−∞
pWgn(tn1 , x1, t

n
2 , x2, . . . ,

tnm, xm | 0, 0)dx1dx2 . . . dxm

=

∫ gn(tn1 )

−∞

∫ gn(tn2 )

−∞
. . .

∫ gn(tnm)

−∞

m−1∏
k=0

pWgn(tnk+1, xk+1 | tnk , xk)

dx1dx2 . . . dxm.

Here, we use the fact that

{TWgn > tnm} ⊂ {Wtn1
∈ (−∞, gn(tn1 )],Wtn2

∈ (−∞, gn(tn2 )], . . . ,

Wtnm
∈ (−∞, gn(tnm)]}

in the first equality. We also use Equation (14) in the second equality and
Equation (12) in the third equality.

Then, we have that

P
(
TWgn > tnm

)
=

∫ gn(tn1 )

−∞

∫ gn(tn2 )

−∞
. . .

∫ gn(tnm)

−∞

m−1∏
k=0

(
1−

exp
(−2(gn(tnk+1)− xk+1)(gn(tnk )− xk)

∆n

))
×

exp
(
− (xk+1−xk)2

∆n

)
√
π∆n

dx1dx2 . . . dxm,

=

∫ αn
0 +αn

1 ∆n

−∞

∫ αn
0 +(αn

1 +αn
2 )∆n

−∞
. . .

∫ αn
0 +

∑m
k=1 α

n
k∆n

−∞

m−1∏
k=0(

1− exp
(

−2(αn0 +
∑k+1
i=1 α

n
i ∆n − xk+1)(αn0 +

∑k
i=1 α

n
i ∆n − xk)

∆n

))
×

exp
(
− (xk+1−xk)2

∆n

)
√
π∆n

dx1dx2 . . . dxm. (34)

Here, we use Equation (21) from Lemma 8 in the first equality as well as Equa-
tions (5) and (6) in the fifth equality. Finally, we can deduce Equation (32) by
plugging Equation (34) and Equation (8) into Equation (33).

With the same arguments as in the proofs of Lemmas 9, 10,11 and 12, we can
define for any nonnegative integer n ∈ N the function Hn

0 as Hn
0 : R+

∗ → R and
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the functions Hn
m as Hn

m : R→ R for any nonnegative integer m ∈ {1, . . . , 2n}.
The definition of these functions is adapted from the definition of the functions
Gnm to the reflected Wiener process case. As the obtained equations are longer
than in the Wiener process case, we do not report them.

The next lemma will be useful in showing the existence and unicity of the
first coefficient αn0 . More generally, this will be useful in the proof of Lemma
2. This basically states that the probability of the FPT started at time tn0 to a
constant boundary function on the interval [tn0 , t

n
1 ], i.e. the function Gn0 or the

function Hn
0 , is a strictly decreasing bijection from R+

∗ to (0, 1).

Lemma 13. For any nonnegative integer n ∈ N, we have that the function Gn0
and the function Hn

0 are continuous and strictly decreasing bijections from the
set R+

∗ to the set (0, 1).

Proof. From Equation (22), we can see that the function Gn0 is differentiable on
R+
∗ with negative derivatives for any nonnegative integer n ∈ N. Thus, we have

that the function Gn0 is continuous and strictly decreasing. We also have that
Gn0 (α) → 1 as α → 0 and Gn0 (α) → 0 as α → ∞, thus the function Gn0 is a
bijection from the set R+

∗ to the set (0, 1). Finally, we can prove the case Hn
0

with the same arguments.

The next lemma is the counterpart of Lemma 13 when considering the func-
tion Gnm and the function Hn

m for any nonnegative integer n ∈ N and any positive
integer m ∈ {1, . . . , 2n}.

Lemma 14. For any nonnegative integer n ∈ N and any positive integer m ∈
{1, . . . , 2n}, we have that the function Gnm and the function Hn

m are continuous

and strictly decreasing bijections from the set R to the set (0,
∫ +∞
tnm

f(s)ds).

Proof. From Equations (25), (28) and (31), we can see that the function Gnm
is differentiable on the set R with negative derivative for any nonnegative in-
teger n ∈ N and any positive integer m ∈ {1, . . . , 2n}. Thus, we have that the
function Gnm is continuous and strictly decreasing. We also have that Gnm(α)→∫ +∞
tnm

f(s)ds as α→ −∞ and Gnm(α)→ 0 as α→∞, thus the function Gnm is a

continuous bijection from the set R to the set (0,
∫ +∞
tnm

f(s)ds). Finally, we can

prove the case Hn
m with the same arguments.

The following lemma shows the positivity of the integral of the pdf f between
two approximation times when we assume that Assumption 1 holds.

Lemma 15. We assume that Assumption 1 holds. Then, we have for any non-
negative integer n ∈ N that

0 <

∫ δn∆n

0

f(s)ds. (35)

For any nonnegative integer n ∈ N and any positive integer m ∈ {1, . . . , 2n}, we
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also have that

0 <

∫ tnm

tnm−1

f(s)ds. (36)

Proof of Lemma 15. We define the supremum of the boundary absolute value g
on the interval [0, tf ] as

g+ = sup
t∈[0,tf ]

| g(t) | .

By Assumption 1, we have that the boundary function g is continuous on the
interval [0, tf ]. Since the interval [0, tf ] is a compact space, it implies that g+ <
∞. We have that g ∈ G, thus g+ > 0 by Definition 1. By Definition 2, we can
deduce that TZg ≤ TZg+ a.s. Thus, we can deduce that

P(TZg+ ∈ [0, δn∆n]) ≤ P(TZg ∈ [0, δn∆n]). (37)

Since P(TWg+ ∈ [0, δn∆n]) = Gn0 (g+) and P(T
|W |
g+ ∈ [0, δn∆n]) = Hn

0 (g+), we ob-

tain by Lemma 13 that P(TZg+ ∈ [0, δn∆n]) > 0. Then, we can deduce Equation

(35) since f is equal to the density of TZg by Equation (2) and Equation (4). Fi-
nally, Equation (36) follows by induction on the positive integer m ∈ {1, . . . , 2n}
with similar arguments.

We give now the proof of Lemma 2.

Proof of Lemma 2. For any nonnegative integer n ∈ N, we prove Lemma 2 by
induction on the nonnegative integer m ∈ {0, . . . , 2n}. We start with the m = 0
case. Namely, we show that the first coefficient αn0 ∈ R+

∗ is well-defined. We can
deduce by Lemma 15 along with Assumption 1 that

0 <

∫ δn∆n

0

f(s)ds < 1. (38)

From Expression (38) and Lemma 9, we can then deduce that

0 < Gn0 (αn0 ) < 1 and 0 < Hn
0 (αn0 ) < 1. (39)

Finally, an application of the intermediate value theorem together with Lemma
13 and Expression (39) provides the existence and uniqueness of the first coef-
ficient αn0 ∈ R+

∗ .
We consider now them > 0 case. Namely, we show that the coefficient αnm ∈ R

is well-defined. By Lemma 15 along with Assumption 1, we get

0 <

∫ tnm

tnm−1

f(s)ds <

∫ +∞

tnm−1

f(s)ds. (40)

From Expression (40), Lemmas 10, 11 and 12, we can deduce that

0 < Gnm(αnm) <

∫ +∞

tnm−1

f(s)ds and 0 < Hn
m(αnm) <

∫ +∞

tnm−1

f(s)ds. (41)
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To conclude, an application of the intermediate value theorem along with Lemma
14 and Equation (41) provides the existence and uniqueness of the coefficient
αnm ∈ R.

6. Proofs of the main results

In this section, we give the proofs of the main results, namely Proposition 3 and
Theorem 4. However, some ideas and notations used for the proofs of the main
results were introduced in Section 5. Thus, the reader interested in the proofs
of the main results should use Section 5 as a reference.

We first give the proof of Proposition 3. Namely, we show that the starting
value of the piecewise-linear approximation converges to the starting value of the
boundary function. The elementary idea of the proof consists in observing that
the boundary function can be bounded below and above by positive constants
for a very small time interval. Then, we show that these constants converge to
the boundary starting value as the interval length goes to 0. This is possible
since the starting value of the boundary function is positive and the boundary
function is continuous with our assumptions.

Proof of Proposition 3. For any nonnegative integer n ∈ N, we define the infi-
mum of the boundary function g on the interval [0, δn∆n] as

gn−(0) = inf
t∈[0,δn∆n]

g(t).

We also define the supremum of the boundary function g on the interval [0, δn∆n]
as

gn+(0) = sup
t∈[0,δn∆n]

g(t).

By Assumption 1, we have that the boundary function g is continuous on
the interval [0, δn∆n]. Since the interval [0, δn∆n] is a compact space, it implies
that −∞ < gn−(0) ≤ gn+(0) < ∞ for any nonnegative integer n ∈ N. We have
that g ∈ G, thus gn+(0) > 0 for any nonnegative integer n ∈ N and gn−(0) > 0
for any positive integer n big enough by Definition 1. By Definition 2, we can
deduce that TZgn−(0) ≤ TZg ≤ TZgn+(0) a.s. for any positive integer n big enough.

Thus, we can deduce for any positive integer n big enough that

P(TZgn+(0) ∈ [0, δn∆n]) ≤ P(TZg ∈ [0, δn∆n]) ≤ P(TZgn−(0) ∈ [0, δn∆n]).

By Equations (2) and (3), the above inequalities can be reexpressed as

P(TZgn+(0) ∈ [0, δn∆n]) ≤
∫ δn∆n

0

fZg (s)ds ≤ P(TZgn−(0) ∈ [0, δn∆n]).

By Equation (4), the above inequalities can be reexpressed as

P(TZgn+(0) ∈ [0, δn∆n]) ≤
∫ δn∆n

0

f(s)ds ≤ P(TZgn−(0) ∈ [0, δn∆n]).



/On convergence of approximation in the inverse first-passage time problem 26

By Equation (7), the above inequalities can be reexpressed as

P(TZgn+(0) ∈ [0, δn∆n]) ≤ P(TZαn
0
∈ [0, δn∆n]) ≤ P(TZgn−(0) ∈ [0, δn∆n]).

By Equation (22) and Lemma 9, the above inequalities can be reexpressed as

Gn0 (gn+(0)) ≤ Gn0 (αn0 ) ≤ Gn0 (gn−(0)) or Hn
0 (gn+(0)) ≤ Hn

0 (αn0 ) ≤ Hn
0 (gn−(0)). (42)

Since we have that the function Gn0 and the function Hn
0 are continuous and

strictly decreasing bijections from the set R+
∗ to the interval (0, 1) by Lemma

13, we can invert the six sides of Expression (42) by Gn0 when Z = W and
Hn

0 when Z = |W |. We obtain that gn−(0) ≤ αn0 ≤ gn+(0). By continuity of the
boundary function g on the interval [0, tf ] and Equation (5), we can conclude
αn0 = gn(0)→ g(0) as the number of intervals n→∞.

Now, we aim to prove Theorem 4 in what follows. Namely, we show that a
subsequence of the piecewise-linear approximation uniformly converges to the
boundary function when the length of each interval of linear approximation
goes to 0 asymptotically. The proof goes in two steps. First, we show that the
piecewise-linear approximation uniformly converges to some boundary function
g̃ ∈ G using Arzelà-Ascoli theorem on any compact space [0, tf ]. Second, we
show that g̃(t) = g(t) for any time t ∈ [0, tf ].

We first give the definition of the piecewise linear boundary functions.

Definition 5. For any nonnegative integer n ∈ N, we define the set of piecewise
linear boundary functions as

Gn =
{
g ∈ G s.t. g is linear on each interval

[
tnm, t

n
m+1

]
for m ∈ {0, . . . , 2n}

}
.

In what follows, we give the definition of uniform boundedness.

Definition 6. The sequence of boundary functions gn ∈ Gn defined on the in-
terval [0, tf ] is uniformly bounded if there is a constant M > 0 such that

sup
t∈[0,tf ],n∈N

|gn(t)| ≤M. (43)

The following definition introduces the notion of uniform equicontinuity.

Definition 7. The sequence of boundary functions gn ∈ Gn defined on the inter-
val [0, tf ] is uniformly equicontinuous if it satisfies the following property. For
any ε > 0, there exists a δ > 0 such that

sup
t,s∈[0,tf ],|t−s|<δ,n∈N

|gn(t)− gn(s)| ≤ ε. (44)

We recall now the Arzelà-Ascoli theorem.

Theorem 16 (Arzelà-Ascoli theorem). We assume that the sequence of bound-
ary functions gn ∈ Gn defined on the interval [0, tf ] is uniformly bounded in the
sense of Definition 5 and uniformly equicontinuous in the sense of Definition 6.
Then, there exists a subsequence which converges uniformly to some boundary
function g̃ ∈ G defined on the interval [0, tf ].
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In the following proposition, we show that if we assume that the coefficients
αnm are uniformly bounded, then the sequence of boundary functions gn is uni-
formly bounded and uniformly equicontinuous.

Proposition 17. We assume that Assumption 1 holds and that the coefficients
αnm are uniformly bounded, namely

sup
n∈N

m=0,··· ,2n

|αnm| ≤ K. (45)

Then, the sequence of boundary functions gn is uniformly bounded in the sense
of Definition 5 and uniformly equicontinuous in the sense of Definition 6.

Proof. We start with the proof of Equation (43) from Definition 5. By algebraic
manipulation, we can rewrite Equations (5) and (6) for any positive integer
m ∈ {1, . . . , 2n − 1} as

gn(u) = αn0 + ∆n

m∑
i=1

αni + αnm+1(u− tnm) for any u ∈ (tnm, t
n
m+1]. (46)

We obtain that for any time u ∈ (tnm, t
n
m+1] with m ∈ {1, . . . , 2n − 1} that

|gn(u)| ≤ |αn0 |+ ∆n

m∑
i=1

|αni |+
∣∣αnm+1

∣∣ (u− tnm)

≤ |αn0 |+ ∆n

m+1∑
i=1

|αni |

≤ |αn0 |+ ∆n

2n∑
i=1

|αni |

≤ |αn0 |+ tf sup
n∈N

i=1,··· ,2n

|αni |

≤ (1 + tf ) sup
n∈N

i=0,··· ,2n

|αni |

≤ (1 + tf )K.

Here, we use the triangular inequality in the first inequality and the fact that u ∈
(tnm, t

n
m+1] in the second inequality. We also use the fact that m ∈ {1, . . . , 2n−1}

in the third equality and the definition of ∆n in the fourth equality. Moreover,
we use Equation (45) in the last inequality. We have thus shown that Equation
(45) =⇒ Equation (43).

We now prove Equation (44) from Definition 6. We consider any positive real
number ε > 0. Accordingly, we set

δ =
ε

2K
. (47)
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For any time t ∈ [0, tf ], we define the corresponding index mn
t such that t ∈

[tnmn
t
, tnmn

t +1]. From Equation (46), we can deduce that

gn(t) = αn0 + ∆n

mn
t∑

i=1

αni + αnmn
t +1(t− tnmn

t
). (48)

For any time 0 ≤ s ≤ t ≤ tf which satisfies

|t− s| < δ, (49)

we have that

|gn(t)− gn(s)| =
∣∣∣αn0 + ∆n

mn
t∑

i=1

αni + αnmn
t +1(t− tnmn

t
)−

(αn0 + ∆n

mn
s∑

i=1

αni + αnmn
s +1(s− tnmn

s
))
∣∣∣

=
∣∣∣∆n

mn
t∑

i=mn
s

αni + αnmn
t +1(t− tnmn

t
)− αnmn

s +1(s− tnmn
s
)
∣∣∣

≤ |t− s| sup
n∈N

i=0,··· ,2n

|αni |

≤ K |t− s| ,
≤ ε.

Here, we use Equation (48) in the first equality, algebraic manipulation in the
second equality and the first inequality. We also use Equation (45) in the second
inequality. In addition, we use Equation (47) and Expression (49) in the last
inequality. We have thus shown that Equation (45) =⇒ Equation (44).

In the following proposition, we show that if we assume that Assumption 2
holds, then we have that the coefficients αnm are uniformly bounded.

Proposition 18. We assume that Assumption 2 holds. Then, we have that the
coefficients αnm are uniformly bounded, namely Equation (45) is satisfied.

Proof. We define the supremum of the boundary derivative absolute value g′ on
the interval [0, tf ] as

g′+ = sup
t∈[0,tf ]

| g′(t) | .

Then, we define the bounding constant K as

K = 2 sup(g+, g
′
+). (50)

By Assumption 2, we have that the boundary function g is continuous on the
interval [0, tf ]. Since the interval [0, tf ] is a compact space, it implies that g+ <
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∞. We can also obtain by Assumption 2 that g′+ < ∞. Thus, we can deduce
that the bounding constant is finite, namely K <∞.

Then, it is sufficient to show that Equation (45) is satisfied with K defined in
Equation (50) to prove Proposition 18. For any nonnegative integer n ∈ N, we
consider a proof by induction on the nonnegative integer m ∈ {0, . . . , 2n}. We
start with the case m = 0, namely we show that αn0 ≤ K. We have that g ∈ G,
thus g+ > 0 by Definition 1. By Definition 2, we can deduce that TZg ≤ TZg+ a.s.

Thus, we can deduce that

P(TZg+ ∈ [0, δn∆n]) ≤ P(TZg ∈ [0, δn∆n]).

By Equations (2) and (3), the above inequality can be reexpressed as

P(TZg+ ∈ [0, δn∆n]) ≤
∫ δn∆n

0

fZg (s)ds.

By Equation (4), the above inequality can be reexpressed as

P(TZg+ ∈ [0, δn∆n]) ≤
∫ δn∆n

0

f(s)ds.

By Equation (7), the above inequality can be reexpressed as

P(TZg+ ∈ [0, δn∆n]) ≤ P(TZαn
0
∈ [0, δn∆n]).

By Equation (22) and Lemma 9, the above inequality can be reexpressed as

Gn0 (g+) ≤ Gn0 (αn0 ) or Hn
0 (g+) ≤ Hn

0 (αn0 ). (51)

Since we have that Gn0 and Hn
0 are continuous and strictly decreasing bijections

from R+
∗ to (0, 1) by Lemma 13, we can invert the four sides of Expression (51)

by Gn0 when Z = W and Hn
0 when Z = |W |. We can deduce that αn0 ≤ g+

which implies that αn0 ≤ K.
We consider now the case m = 1, namely we show that | αn1 |≤ K. For any

time t ≥ 0, we define the linear boundary started at g(0) with trend g′+ and
−g′+ as respectively g(t) = g(0) + g′+t and g(t) = g(0) − g′+t. By Definition 2,

we can deduce that TZg ≤ TZg ≤ TZg a.s. Thus, we can deduce that

P(TZg ∈ [0, tn1 ]) ≤ P(TZg ∈ [0, tn1 ]) ≤ P(TZg ∈ [0, tn1 ]).

For any time t ≥ 0, we define now the linear boundary started at αn0 with
trend K and −K as respectively gn(t) = αn0 +Kt and gn(t) = αn0 −Kt. When
the positive integer n is big enough, we obtain that

P(TZgn ∈ [0, tn1 ]) ≤ P(TZgn ∈ [0, tn1 ]) ≤ P(TZgn ∈ [0, tn1 ]).

By Equation (25) and Lemma 10, the above inequalities can be reexpressed as

Gn1 (K) ≤ Gn1 (αn1 ) ≤ Gn1 (−K) or Hn
1 (K) ≤ Hn

1 (αn1 ) ≤ Hn
1 (−K). (52)
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By Lemma 14, we have that the function Gn1 and the function Hn
1 are continuous

and strictly decreasing bijections from the set R to the interval (0,
∫ +∞
tn1

f(s)ds).

Thus, we can invert the six sides of Expression (52) by the function Gn1 when
Z = W and the function Hn

1 when Z = |W |. Finally, we can deduce that
| αn1 |≤ g′+ which implies | αn1 |≤ K.

We consider now the case m = 2, namely we show that | αn2 |≤ K. We
introduce the boundary function g(t) which is equal to the boundary function
g on the interval [0, tn1 ] and linear with trend g′+ for any time t ≥ tn1 . More
specifically, it is defined as g(t) = g(t) for any time t ∈ [0, tn1 ] and g(t) =
g(tn1 ) + g′+(t− tn1 ) for any time t ≥ tn1 . We also introduce the boundary function
g(t) which is equal to the boundary function g on the interval [0, tn1 ] and linear
with trend −g′+ for any time t ≥ tn1 . More specifically, it is defined as g(t) = g(t)
for any time t ∈ [0, tn1 ] and g(t) = g(tn1 )− g′+(t− tn1 ) for any time t ≥ tn1 .

By Definition 2, we can deduce that TZg ≤ TZg ≤ TZg a.s. Thus, we can deduce

that

P(TZg ∈ [tn1 , t
n
2 ]) ≤ P(TZg ∈ [tn1 , t

n
2 ]) ≤ P(TZg ∈ [tn1 , t

n
2 ]).

Then, we introduce the boundary function gn(t) which is equal to the boundary
function gn on [0, tn1 ] and linear with trend K for any time t ≥ tn1 . It is defined
as gn(t) = gn(t) for any time t ∈ [0, tn1 ] and gn(t) = g(tn1 ) + K(t − tn1 ) for any
time t ≥ tn1 . We also introduce the boundary function gn(t) which is equal to
the boundary function gn on the interval [0, tn1 ] and linear with trend −K for
any time t ≥ tn1 . This is defined as gn(t) = gn(t) for any time t ∈ [0, tn1 ] and
gn(t) = gn(tn1 )−K(t− tn1 ) for any time t ≥ tn1 .

When the positive integer n is big enough, we obtain that

P(TZgn ∈ [tn1 , t
n
2 ]) ≤ P(TZgn ∈ [tn1 , t

n
2 ]) ≤ P(TZgn ∈ [tn1 , t

n
2 ]).

By Equation (28) and Lemma 11, the above inequalities can be reexpressed as

Gn2 (K) ≤ Gn2 (αn2 ) ≤ Gn2 (−K) or Hn
2 (K) ≤ Hn

2 (αn2 ) ≤ Hn
2 (−K). (53)

We have by Lemma 14 that the function Gn2 and the function Hn
2 are continuous

and strictly decreasing bijections from the set R to the interval (0,
∫ +∞
tn2

f(s)ds).

Thus, we can invert the six sides of Expression (53) by the function Gn2 when
Z = W and the function Hn

2 when Z = |W |. Moreover, we can deduce that
| αn2 |≤ K. Finally, the case with the positive integer m > 2 follows with similar
arguments.

The following corollary is an application of Arzelà-Ascoli theorem.

Corollary 19. We assume that Assumption 2 holds. Then, there exists a subse-
quence gnk of the piecewise-linear approximation gn which converges uniformly
to some boundary function g̃ ∈ G defined on the interval [0, tf ].

Proof. This is an application of Theorem 16 along with Propositions 17 and
18.
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In the lemma that follows, we give a.s. convergence of the random variable
TZhn1{TZ

hn≤tf} to the random variable TZh 1{TZ
h ≤tf}

when the piecewise-linear ap-
proximation hn converges uniformly to the boundary function h on the interval
[0, tf ]. For the proof of Theorem 4, we only need the convergence in distribution.

Lemma 20. For any sequence of piecewise-linear approximation hn ∈ Gn which
converges uniformly on the interval [0, tf ] to some boundary function h ∈ G sat-
isfying Assumption 1, we have that the random variable TZhn1{TZ

hn≤tf} converges

a.s. to the random variable TZh 1{TZ
h≤tf}

. As a consequence, we deduce that the

random variable TZhn1{TZ
hn≤tf} converges in distribution to the random variable

TZh 1{TZ
h≤tf}

.

Proof. To prove that the random variable TZhn1{TZ
hn≤tf} converges a.s. to the

random variable TZh 1{TZ
h≤tf}

, it is sufficient to show that for any positive real
number ε > 0 there exists a positive integer Nε ∈ N such that for any positive
integer n ∈ N∗ satisfying n ≥ Nε we have a.s.∣∣∣TZhn1{TZ

hn≤tf} − TZh 1{TZ
h≤tf}

∣∣∣ ≤ ε. (54)

As the piecewise-linear approximation hn converges uniformly to the boundary
function h on the interval [0, tf ], we can deduce the following property. For any
positive real number εh > 0, there exists a nonnegative integer Nεh ∈ N such
that for any positive integer n ∈ N∗ with n ≥ Nεh we have

sup
t∈[0,tf ]

| hn(t)− h(t) |≤ εh. (55)

Then, we set the value of the random variable εh as

εh =
1

2
sup

TZ
h≤t≤TZ

h +ε≤tf
|Zt − h(t)| . (56)

First, we can see that the random variable εh defined in Equation (56) is positive.
Second, we have that a.s. the stochastic process Zt first hits the piecewise-linear
approximation hn on the interval [TZh − ε, TZh + ε], namely we have shown that
TZhn ∈ [TZh − ε,TZh + ε] whenever Expression (55) holds with εh from Equation
(56). Thus, we have shown Expression (54) with Nε = Nεh .

We now consider a discretization length in the order ∆n so that we obtain
that the time discretization is nested. Namely, for any time tnm and any positive
integer l ≥ m there exists a time tlk such that tnm = tlk. This is required to prove
the following lemma which in turn will be used to prove that the limit of a
subsequence obtained by Arzelà-Ascoli theorem satisfies Equation (4).

Lemma 21. We assume that Assumption 1 holds. For any nonnegative integer
n ∈ N, any nonnegative integer l ∈ N satisfying l ≥ n and any nonnegative
integer m ∈ {0, . . . , 2n}, the piecewise-linear approximation satisfies

P
(

TZgl ∈ [tnm, t
n
m+1]

)
=

∫ tnm+1

tnm

f(s)ds. (57)
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Proof. For any nonnegative integer n ∈ N, any nonnegative integer l ∈ N satis-
fying l ≥ n and any nonnegative integer m ∈ {0, . . . , 2n}, we have

P
(

TZgl ∈ [tnm, t
n
m+1]

)
=

∑
i∈N s.t.

tnm≤tl
i
≤tl

i+1
≤tn

m+1

P
(

TZgl ∈ [tli, t
l
i+1]

)

=
∑

i∈N s.t.
tnm≤tl

i
≤tl

i+1
≤tn

m+1

∫ tli+1

tli

f(s)ds

=

∫ tnm+1

tnm

f(s)ds.

Here, we use the fact that

[tnm, t
n
m+1] =

⋃
i∈N s.t.

tnm≤tl
i
≤tl

i+1
≤tn

m+1

[tli, t
l
i+1]

since the time discretization is nested in the first equality. We also use Equations
(7) and (8) in the second equality.

We provide in what follows the proof of Theorem 4 which is the main re-
sult of our paper. This shows that a subsequence of the new approximation
uniformly converges to the boundary when the length of each interval of linear
approximation goes to 0 asymptotically. This proof is based on an application
of previously obtained results and shows that the boundary function g̃(t) = g(t)
for any t ∈ [0, tf ].

Proof of Theorem 4. By Corollary 19 along with Assumption 2, there exists
a subsequence gnk of the piecewise-linear approximation gn which converges
uniformly to some boundary function g̃ ∈ G defined on the interval [0, tf ]. We
first show that fZg̃ (t) = f(t) for any time t ∈ [0, tf ]. By Borel arguments, it is
sufficient to show that for any nonnegative integer p ∈ N and any nonnegative
integer k ∈ {0, . . . , 2p − 1} we have

P
(
TZg̃ ∈ [k∆p, (k + 1)∆p]

)
=

∫ (k+1)∆p

k∆p

f(s)ds. (58)

Then, we have that

P
(
TZg̃ ∈ [k∆p, (k + 1)∆p]

)
= lim

n→∞
P
(
TZgnk ∈ [k∆p, (k + 1)∆p]

)
=

∫ (k+1)∆p

k∆p

f(s)ds.

Here, the first equality corresponds to the convergence in distribution of the
random variable TZhn1{TZ

hn≤tf} to the random variable TZh 1{TZ
h≤tf}

by Lemma
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20 along with Assumption 2. Moreover, we use Lemma 21 along with Assump-
tion 2 in the second equality. Thus, we have shown Equation (58), which implies
that fZg̃ (t) = f(t) for any time t ∈ [0, tf ]. Since there is uniqueness of the IFPT
problem by the related papers mentioned in the introduction, we can deduce
that g̃(t) = g(t) for any time t ∈ [0, tf ].

7. Conclusion

In this paper, we have studied the inverse first-passage time problem. The prob-
lem determines a boundary function such that the first-passage time of a Wiener
process to this boundary function has a given distribution. An approximation
of the boundary function by a piecewise-linear boundary was given by equating
the probability of the first-passage time to a linear boundary and the increment
of the distribution on each interval. This was based on the starting value of the
boundary function, which is unknown in practice. We have proposed an approx-
imation for the starting value of the boundary function. We have considered
asymptotics where the length of each interval goes to 0.

We have first showed that the approximation for the starting value of the
boundary function converges to the starting value of the boundary function when
assuming that the boundary function is absolutely continuous and with positive
starting value. We have also showed that a subsequence of the piecewise-linear
approximation uniformly converges to the boundary function. The proofs were
based on an application of Arzelà-Ascoli theorem. A numerical study have shown
that the piecewise-linear approximation is sensitive to the starting value of the
boundary function and the starting value of the boundary function derivative.
The results obtained in the numerical study indicated that the piecewise-linear
approximation is adequate and relatively safe to use in practice.

One limitation in this paper is that we have only obtained the convergence for
a subsequence of the piecewise-linear approximation. The reason is that we were
not able to prove directly the convergence by extending the proving techniques
used in Zucca and Sacerdote (2009). More specifically, their two main ideas
are the use of concavity inequalities and the implicit function theorem. Assum-
ing that the FPT cdf is absolutely continuous and the boundary is monotone
concave, they prove in Theorem 4.3 (p. 1331) that the error due to the ap-
proximation is of the order equal to the maximum of the initial error and the
squared interval length. We were able to weaken their assumptions on concav-
ity by assumptions on differentiability with uniformly bounded derivatives. The
elementary idea of the proof consisted in bounding the difference between the
approximation and the boundary value by a linear function on each interval.
However, we were not able to extend their direct use of the implicit function
theorem with the new asymptotics. The reason is that we need to use the im-
plicit function theorem with an increasing number of intervals, whereas they
only use it with a finite number of intervals. Although we were not able to track
down the calculation, we conjecture that the direct convergence also holds. This
extension is left for future work.
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