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Abstract: The inverse first-passage time problem determines a boundary
such that the first-passage time of a Wiener process to this boundary has a
given distribution. An approximation of the boundary by a piecewise linear
boundary is given by equating the probability of the first-passage time to
a linear boundary and the increment of the distribution on each interval.
This is based on the boundary starting value, which is unknown in prac-
tice. We propose an approximation of the starting value of the boundary.
We consider asymptotics where the length of each interval decreases. We
first show that the approximation converges to the boundary starting value
when assuming that the boundary is absolutely continuous and with posi-
tive starting value. We also show that a subsequence of the approximation
uniformly converges to the boundary. A numerical study shows that the
approximation is sensitive to the boundary starting value and slope, but is
adequate.
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1. Introduction

This paper concerns the inverse first-passage time (IFPT) problem. The IFPT
problem determines the boundary function such that the first-passage time
(FPT) of a standard Wiener process to this boundary has a given distribution.
This problem was formulated by A. Shiryaev during a Banach center meet-
ing in 1976. More specifically, he considered the particular case of exponential
distribution, which is commonly referred as the inverse Shiryaev problem.

The primary application of the IFPT problem is in portfolio credit risk mod-
eling. Initially, the focus was on random walks (see Iscoe, Kreinin and Rosen
(1999)). A detailed analysis of the IFPT problem and an approximation is given
in Iscoe and Kreinin (1999). A model of default events with a randomized bound-
ary is proposed in Schmidt and Novikov (2008). Another field of application is in
pricing of credit derivatives (see Avellaneda and Zhu (2001) and Hull and White
(2001)). The process represents the so-called distance to default of an obligor,
while the FPT represents a default event. The boundary stands for a barrier
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separating the healthy states of the obligor from the default state. Another ap-
plication is in inventory-control problem, whose formulation can be equivalent
to the IFPT problem (see Song and Zipkin (2013)).

Despite their importance for applications, explicit solutions of the IFPT are
very limited. They first exist when the boundary is linear. More specifically,
Doob (1949) gives explicit formulae of crossing boundary probabilities (Equa-
tions (4.2)-(4.3), pp. 397-398) based on elementary geometrical and analytical
arguments. They are obtained when the final time is not finite. Malmquist (1954)
obtains an explicit formula conditioned on the starting and final values of the
Wiener process for a finite final time (Theorem 1, p. 526). This is obtained
with Doob’s transformation (Section 5, pp. 401-402). Anderson (1960) derives
an explicit formula conditioned on the final value of the Wiener process (The-
orem 4.2, pp. 178-179). Then, he integrates it with respect to the final value
of the Wiener process to get an explicit solution (Theorem 4.3, p. 180). For
square root boundaries, Breiman (1967) expresses the FPT problem as an FPT
of an Ornstein-Uhlenbeck process to a constant boundary. They are obtained
with Doob’s transformation. However, the boundary crossing probabilities of an
Ornstein-Uhlenbeck process to a constant boundary are only known in the form
of Laplace transform. Daniels (1969) uses the same technique and obtains an
explicit solution. Potiron (2024+) obtains non-explicit formulae by the Girsanov
theorem.

As explicit solutions are very limited, the literature related to the IFPT
problem relies heavily on approximations (see Zucca and Sacerdote (2009) and
Song and Zipkin (2011)). In Zucca and Sacerdote (2009), an approximation to
a continuous boundary by a piecewise linear boundary is given by equating the
probability of the FPT to a linear boundary and the increment of the cumulative
distribution function (cdf) on each interval. That approximation uses Wang and
Pötzelberger (1997) idea. That approximation is based on the starting value of
the boundary, which has to be guessed in practice since it is unknown.

We propose an approximation of the boundary starting value, which makes it
more suitable for applications. The idea is to equate the probability of the FPT
to a constant boundary and the increment of the cdf on a first interval. First,
we show that the approximation converges to the boundary starting value when
assuming that the boundary is absolutely continuous and with positive starting
value. Second, we show that a subsequence of the approximation uniformly
converges to the boundary when assuming that the boundary is differentiable
with uniformly bounded derivative. The results are obtained using Arzelà-Ascoli
theorem on any compact space.

We consider asymptotics where the length of each interval of linear approx-
imation goes to 0. These asymptotics are required to show that the approxi-
mation goes to the boundary asymptotically. The use of these asymptotics and
the convergence results are new to the literature on the IFPT problem. They
are important in practice, although we only obtain the convergence of a sub-
sequence. A numerical study shows that the approximation is sensitive to the
boundary starting value and slope, but is adequate. This also illustrates that
these asymptotics are adapted to obtain an adequate approximation.
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Since the formulation of the IFPT problem, many papers have investigated
its theoretical properties. Dudley and Gutmann (1977) show the existence of a
stopping time with respect to a general stochastic process, but this stopping time
is not a FPT. The existence of lower semi-continuous solutions was established
in Anulova (1981) for the FPT of a reflected Wiener process by compacity
arguments in a discrete approximation of the boundary and the distribution.
The IFPT problem is reformulated as a nonlinear Volterra integral equation in
Peskir (2002a). Peskir (2002b) study the behavior in the neighborhood of 0.
Abundo (2006) consider extensions to the general diffusion process case. When
the distribution is non-atomic, Cheng et al. (2006) and Chen et al. (2011) show
the existence and uniqueness of the IFPT problem for diffusions by a transfer
into a free boundary problem. Jaimungal, Kreinin and Valov (2014) consider a
connection between the Skorokhod embedding problem and the IFPT problem.
For a general distribution, Ekström and Janson (2016) show the existence and
uniqueness for Wiener processes by discretizing an optimal stopping problem.
Beiglböck et al. (2018) consider a more general optimal stopping problem which
yields existence and uniqueness as a by-product. Fukasawa and Obloj (2020)
consider efficient discretisation of stochastic differential equations based on FPT
of spheres. Chen, Chadam and Saunders (2022) study higher-order regularity
properties of the solution of the IFPT problem. The uniqueness for reflected
Wiener processes is shown by a discrete approximation argument along with
stochastic ordering in Klump and Kolb (2023). The existence and the uniqueness
for Levy processes and diffusions are studied in Klump and Savov (2023).

Our results also complement the theoretical results on continuous boundary
in Chen et al. (2011) (Proposition 6) and Ekström and Janson (2016) (Theorem
8.2). Compared to these two papers, our approach based on compacity requires
stronger assumptions. This is a price to pay as our approach is more direct and
circumvents the use of a free boundary problem or optimal stopping theory. The
results are also proved in the FPT problem of a reflected Wiener process, which
are also new.

One limitation in this paper is that we only obtain the convergence of a sub-
sequence. The reason is that we were not able to prove directly the convergence
by extending the proving techniques used in Zucca and Sacerdote (2009). More
specifically, their two main ideas are the use of concavity inequalities and the
implicit function theorem. Assuming that the FPT cdf is absolutely continuous
and the boundary is monotone concave, they prove in Theorem 4.3 (p. 1331)
that the error due to the approximation is of the order equal to the maximum of
the initial error and the squared interval length. We can weaken their assump-
tions on concavity by assumptions on differentiability with uniformly bounded
derivatives. The elementary idea of the proof consists in bounding the difference
between the approximation and the boundary value by a linear function on each
interval. However, we were not able to extend their direct use of the implicit
function theorem with the new asymptotics. The reason is that we need to use
the implicit function theorem with an increasing number of approximation in-
tervals, whereas they only use it with a finite number of approximation intervals.
Although we were not able to track down the calculation, we conjecture that
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the direct convergence holds.

2. Setting

We consider the complete stochastic basis B = (Ω,P,F ,F), where F is a σ-
field and F = (Ft)t∈R+ is a filtration. For A ⊂ R+ and B ⊂ R such that
0 ∈ A, we define the set of continuous functions with positive starting values
as C+

0 (A,B) = {h : A → B s.t. h is continuous and h(0) > 0}. We first give
the definition of the set of boundary functions. Since the approximation by
a piecewise linear boundary given in Wang and Pötzelberger (1997) requires
continuity of the boundary, we restrict ourselves to the continuous boundary
case. Moreover, we do not allow for h(0) = 0 since our techniques, unfortunately,
do not allow for that more complicated case.

Definition 1. We define the set of boundary functions as G = C+
0 (R+,R).

We now give the definition of the FPT. We assume that the stochastic process
is continuous since we consider a Wiener process or a reflected Wiener process
in this paper.

Definition 2. We define the FPT of an F-adapted continuous process (Zt)t∈R+

to a boundary g ∈ G as

TZg = inf{t ∈ R+ s.t. Zt ≥ g(t)}. (1)

We define an F-standard Wiener process as (Wt)t∈R+ . We will consider the two
cases in the following of this paper:

1. (Wiener process) Zt = Wt

2. (reflected Wiener process) Zt = |Wt|

We have that Z is a continuous and F-adapted stochastic process and inf{t ∈
R+ s.t. Zt ≥ g(t)} = inf{t ∈ R+ s.t. (t, Zt) ∈ G}, where G = {(t, u) ∈ R+ ×
R s.t. u ≥ g(t)} is a closed subset of R2. Thus, the FPT TZg is an F-stopping
time by Theorem I.1.27 (p. 7) in Jacod and Shiryaev (2003). We define the cdf
of Z as

PZg (t) = P(TZg ≤ t) for any t ≥ 0. (2)

The basic assumption for the approximation by a piecewise linear boundary
given in Zucca and Sacerdote (2009) is that PZg is absolutely continuous. Ac-
cordingly, the authors assume that all regularity assumptions ensuring the ex-
istence of the objects introduced and properties imposed are fulfilled. In the
following assumption, we consider a slightly more explicit form.

Assumption 1. We assume that g is absolutely continuous on R+.

When g is continuous, we know by Theorem 8.1 in Ekström and Janson (2016)
that PZg is continuous. When g is continuously differentiable, we know by Lemma

3.3 in Strassen (1967) that PZg is continuously differentiable. The following

lemma shows that when g is absolutely continuous, then PZg is absolutely con-
tinuous.
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Lemma 1. We assume that Assumption 1 holds. Then, PZg is absolutely con-
tinuous on R+.

Since PZg is absolutely continuous, there exists a pdf fZg : R+ → R+, defined as

fZg (t) =
dPZg (t)

dt
for any t ≥ 0 a.e.. (3)

We give the definition of possibly defective cdf. By Assumption 1, we naturally
restrict ourselves to the absolute continuous cdf case.

Definition 3. A function F : R+ → [0, 1] is a cdf if F is nondecreasing, absolutely

continuous, i.e., with pdf f : R+ → R+, defined as f(t) = dF (t)
dt for any t ≥ 0

a.e., and satisfies F (0) = 0 and lim
t→∞

F (t) = F∞ ≤ 1 where 0 < F∞ ≤ 1.

The IFPT problem determines a boundary g ∈ G such that

fZg (t) = f(t) for any t ≥ 0 a.e.. (4)

As explicit solutions are very limited, the literature related to the IFPT prob-
lem relies heavily on approximations. Based on Wang and Pötzelberger (1997)
idea, an approximation to a continuous boundary by a piecewise linear bound-
ary is given in Zucca and Sacerdote (2009). Their driving idea is to determine
recursively the slope of the linear approximation on an interval by equating the
probability of the FPT of Z to the approximation and the increment of the
cdf on the interval. That approximation is based on the starting value of the
boundary. Since the starting value of the boundary is unknown, it has to be
guessed in practice. Moreover, they do not propose any asymptotics when the
length of each interval of linear approximation goes to 0. These asymptotics are
required to show that the approximation goes to the boundary asymptotically.

In what follows, we consider a slight extension of their setting which approxi-
mates the starting value of the boundary, and with asymptotics where the length
of each interval of linear approximation goes to 0. We define tf ∈ R+

∗ as the
final time. For any n ∈ N and m ∈ {0, . . . , 2n}, we consider a time discretization
tnm = m∆n, where ∆n = 2−ntf is the length of each interval of linear approxi-
mation. We consider a nested time discretization as this will be required in the
proof of Theorem 4. We define the sequence of piecewise linear approximation
of the boundary gn recursively on m as

gn(0) = αn0 , (5)

gn(u) = gn(tnm) + αnm+1(u− tnm) for any u ∈ (tnm, t
n
m+1]. (6)

Here, we have that αn0 ∈ R+
∗ and αnm ∈ R for m ∈ {1, . . . , 2n} satisfy

PZαn
0
(δn∆n) =

∫ δn∆n

0

f(s)ds, (7)

P
(
TZgn ∈ [tnm−1, t

n
m]
)

=

∫ tnm

tnm−1

f(s)ds. (8)
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Equations (5)-(6) and Equation (8) correspond exactly to Equations (3.1)-(3.2)
in Zucca and Sacerdote (2009). The novelty in this paper is Equation (7), in
which we determine the approximation of the starting value of the boundary.
The idea is to equate the probability of the FPT of Z to a constant boundary,
equal to αn0 , and the increment of the cdf on a first interval of proportion 0 <
δn < 1. The reason why we introduce the tuning parameter δn is that there
are numerical problems if we use δn = 1. In practice, we recommend to use
δn = 0.25. There are no theoretical problems, since our main results do not
require any assumption on the tuning parameter.

Our next result establishes that the sequence αnm is well-defined. This is
a slight extension of Remark 3.2 in Zucca and Sacerdote (2009), which also
includes that αn0 is well-defined.

Proposition 2. We assume that Assumption 1 holds. For any n ∈ N, Equation
(7) defines a unique αn0 ∈ R+

∗ and Equation (8) defines a unique αnm ∈ R for
any m ∈ {0, . . . , 2n}.

3. Main results

We first show that the approximation converges to the boundary starting value.
The elementary idea of the proof consists in observing that the boundary can
be bounded below and above by positive constants for a very small time. Then,
we show that these constants converge to the boundary starting value as the
times goes to 0. This is possible since the boundary starting value is positive
and the boundary is continuous, with our assumptions.

Proposition 3. We assume that Assumption 1 holds. Then, the approximation
converges to the boundary starting value, i.e., gn(0)→ g(0) as n→∞.

We give our main result in the next theorem. This shows that a subsequence
of the approximation uniformly converges to the boundary. The elementary idea
of the proof consists in using Arzelà-Ascoli theorem on the compact space [0, tf ].
We first show that the αnm are uniformly bounded, which in turn implies that the
approximated boundary is uniformly bounded and uniformly equicontinuous.
For that purpose, we assume that the boundary is differentiable on [0, tf ] with
uniformly dominated derivative.

Assumption 2. We assume that g is differentiable on [0, tf ] with uniformly
bounded derivatives, i.e., sup

t∈[0,tf ]

| g′(t) |<∞.

One limitation in the next result is that we only obtain the convergence of a
subsequence, rather than a direct convergence.

Theorem 4. We assume that Assumption 2 holds. Then, there exists a sub-
sequence gnk of gn which converges uniformly to g on [0, tf ], i.e., sup

t∈[0,tf ]

|

gnk(t)− g(t) |→ 0 as n→∞.
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4. Numerical study

In this section, we conduct a numerical study. We first show that the starting
value approximation is sensitive to the boundary starting value and slope, but
is adequate. Then, we check the stability of the approximation presented in
Section 2 by means of some examples where a closed form solution is available.
We also show another example where the solution is numerically evaluated.

First, we report in Table 1 the normalized error of the starting value ap-
proximation for several linear boundaries with ∆n = 0.2 and δn = 0.25, 0.5.
The approximation is sensitive to the boundary starting value and slope. More
specifically, the quality of approximation depends on the ratio of slope over
value. When the slope is null, the absolute value of the normalized error is
systematically below 0.10%. This can be explained by the fact that the approx-
imated boundary is a constant. Overall, the normalized error is below 20.00%
and with a positive bias for most instances. The case δn = 0.25 reduces the
normalized error by half compared to the case δn = 0.5 for most instances. This
illustrates that our asymptotics are adapted to obtain an adequate approxima-
tion of the starting value.

Table 1
Normalized error of the starting value approximation for several linear boundaries with

∆n = 0.2 and δn = 0.25, 0.5

Boundary starting δn = 0.25

Value Slope 0 1 2 3 4

0.5 -0.10% 8.60% 17.38% 26.20% 35.04%
1 -0.10% 4.69% 9.49% 14.29% 19.10%
2 -0.10% 2.37% 4.84% 7.32% 9.79%
3 -0.10% 1.56% 3.22% 4.88% 6.54%
4 -0.10% 2.43% 4.92% 7.41% 9.89%

Boundary starting δn = 0.5

Value Slope 0 1 2 3 4

0.5 -0.06% 15.90% 32.14% 48.52% 64.92%
1 -0.05% 9.18% 18.47% 27.78% 37.10%
2 -0.05% 4.83% 9.73% 14.62% 19.52%
3 -0.05% 3.25% 6.55% 9.85% 13.15%
4 -0.05% 2.43% 4.92% 7.41% 9.89%

Second, we define the Daniels boundary and its pdf (see Daniels (1969)) for
any t ≥ 0 as

g(t) =
α

2
− t

α
log
(β

2
+

√
β2

4
+ γ exp

(
− α2

t

))
,

fg(t) =
1√

2πt3

(
exp

(
− g(t)2

2t

)
− 2

β
exp

( (g(t)− α)2

2t

))
.

Here, we have that α > 0, β ≥ 0 and γ > β/4. We also define the oscillating
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Fig 1. Daniels boundary with parameters α = 1, β = 1, γ = 0.5 compared with approximated
boundaries with ∆n = 0.2 and δn = 0.25, 0.5, 1

boundary for any t ≥ 0 as

g(t) = α+ β cos(γt).

Since there is no explicit formula for fg, we evaluate numerically its value by
Buonocore, Nobile and Ricciardi (1987). Figure 1 plots the Daniels boundary
with parameters α = 1, β = 1, γ = 0.5 compared with the approximated
boundaries with ∆n = 0.2 and δn = 0.25, 0.5, 1. As the starting slope of the
boundary is null, the three approximations are adequate. Figure 2 plots the
Daniels boundary with parameters α = 1, β = 0.5, γ = 0.5 compared with
the approximated boundaries with ∆n = 0.2 and δn = 0.25, 0.5, 1. The starting
slope is around unity. The approximation is adequate when δn = 0.25, but
not as accurate when δn = 0.5, and a bit off when δn = 1. As time increases,
the inaccurate approximation tends to oscillate around the boundary. This is
due to the fact that the approximation overcompensates by its own definition
(8). This also illustrates that the asymptotics are adapted to obtain an adequate
approximation. Figure 3 plots the oscillating boundary with parameters α = 0.5,
β = 0.2, γ = 8 compared with approximated boundaries with ∆n = 0.2 and δn =
0.25, 0.5, 1. This is a more complicated case as the boundary is not monotone. As
for Figure 2, The approximation is adequate when δn = 0.25, but not as accurate
when δn = 0.5, and a bit off when δn = 1. Moreover, all the approximations are a
bit off at points where the monotonicity changes. This documents the limitation
of the method of approximation. These results are confirmed by Table 2, which
reports the mean squared error of the approximations for several boundaries
with ∆n = 0.2 and δn = 0.25, 0.5, 1.
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Fig 2. Daniels boundary with parameters α = 1, β = 0.5, γ = 0.5 compared with approximated
boundaries with ∆n = 0.2 and δn = 0.25, 0.5, 1

5. Proofs from the setting

In this section, we give the proofs from the setting, which are elementary. We
start with the proof of Lemma 1, which slightly extends the arguments from the
proof of Lemma 3.3 in Strassen (1967).

Proof of Lemma 1. By Assumption 1, we have that g is absolutely continuous
on R+. Thus, g admits a derivative a.e. on R+, i.e., there exists a Lebesgue-
negligible set N ⊂ R+ such that g admits a derivative for any t ∈ R+ − N .
To show that PWg is absolutely continuous on R+, it is sufficient to show that

PWg admits a derivative for any t ∈ R+ − N , since N is a Lebesgue-negligible
set. By the definition of absolute continuity, we have that N is countable on
any compact space of R+. Indeed, if s ∈ R+ is an accumulation point of N ,
then g does not admit a derivative in the neighborhood of s and thus g is not
absolutely continuous. Thus, we have that N is countable on any compact space
of R+. To show that PWg is absolutely continuous on R+, it is then sufficient

to show that PWg admits a derivative on any open interval (u, v) where u ∈ R+

and v ∈ R+ satisfy u < v and (u, v) ∩ N = ∅. We can show this statement by
extending the arguments from the proof of Lemma 3.3 in Strassen (1967) along
with the assumption that g(0) > 0 by Definition 1. The reflected Wiener process
case follows since the FPT of a reflected Wiener process to a linear boundary
is equal to the FPT of a Wiener process to a symmetric upper linear boundary
and lower linear boundary when the boundary from the reflected Wiener process
and the upper boundary are equal.

In the next definition, we introduce the transition pdf of a stochastic process
constrained by an absorbing boundary.
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Fig 3. Oscillating boundary with parameters α = 0.5, β = 0.2, γ = 8 compared with approxi-
mated boundaries with ∆n = 0.2 and δn = 0.25, 0.5, 1

Definition 4. We define the transition pdf of the stochastic process Z at time
t constrained by the absorbing boundary g over [s, t] given that Zs = y as
pZg (t, x | s, y) such that

pZg (t, x | s, y) =
∂

∂x
P(Zt < x,TZg > t | Zs = y) (9)

with x < g(t), t > s ≥ 0 and y < g(s) given and fixed.

In the following lemma, we give the pdf and the transition pdf for the FPT of
a Wiener process to a linear boundary. This is a consequence to Doob (1949)
(Equation (4.2), p. 397), Malmquist (1954) (p. 526) and Durbin (1971) (Lemma
1).

Lemma 5. We assume that the boundary is linear

g(t) = α1t+ α0 for any t ≥ 0.

Here, t0 ≥ 0, α0 ∈ R+
∗ , α1 ∈ R, and x0 ∈ R are such that g(t0) > x0. We have

that the pdf for the FPT of a Wiener process is equal to

fWg (t | t0, x0) =
α0 − x0√
2π(t− t0)3

exp
(
− (α0 + α1(t− t0)− x0)2

2(t− t0)

)
. (10)

The transition pdf is equal to

pWg (t1, x1 | t0, x0) =
(

1− exp
(−2(g(t1)− x1)(g(t0)− x0)

t1 − t0

))
exp(− (x1−x0)2

2(t1−t0) )√
2π(t1 − t0)

. (11)
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Table 2
Mean squared error of the approximations for several boundaries with ∆n = 0.2 and

δn = 0.25, 0.5, 1

Daniels boundary with α = 1, β = 1, γ = 0.5

δn MSE

0.25 1.66 × 10−5

0.5 5.96 × 10−5

1 5.89 × 10−5

Daniels boundary with α = 1, β = 0.5, γ = 0.5

δn MSE

0.25 1.82 × 10−4

0.5 3.56 × 10−4

1 1.07 × 10−3

Oscillating boundary with α = 0.5, β = 0.2, γ = 8

δn MSE

0.25 7.09 × 10−2

0.5 6.96 × 10−2

1 7.21 × 10−2

Proof of Lemma 5. Equation (10) is obtained in Doob (1949) (Equation (4.2),
p. 397) or Malmquist (1954) (p. 526). Equation (11) follows from Durbin (1971)
(Lemma 1).

In the following lemma, we give the pdf and the transition pdf for the FPT of
a Wiener process to a continuous piecewise linear boundary. Equation (13) is
already available in Wang and Pötzelberger (1997) and Zucca and Sacerdote
(2009) (Section 2.1.3, pp. 1323-1324)

Lemma 6. We assume that the boundary is piecewise linear

g(t) = αit+ βi, for any t ∈ [ti−1, ti].

Here, we have that ti = i∆ + t0, where t0 ≥ 0, ∆ > 0 and αi, βi ∈ R satisfy
αi+1 + βi+1ti = αi + βiti, so that the boundary is continuous. We can express
the transition pdf as

pWg (t1, x1, . . . , tn, xn | t0, x0) =

n∏
i=1

pWg (ti, xi | ti−1, xi−1). (12)

Here, we have that (x1, x2, . . . , xn) ∈ Rn and xi ≤ g(ti) for i = 1, . . . , n and
x0 < g(t0) where t0 < t1 < t2 < . . . < tn are given and fixed. We can reexpress
the transition pdf with the following explicit expression

pWg (t1, x1, . . . , tn, xn | t0, x0) =

n∏
i=1

(
1− exp

(−2(g(ti)− xi)(g(ti−1)− xi−1)

ti − ti−1

))

×
exp

(
− (xi−xi−1)2

2(ti−ti−1)

)
√

2π(ti − ti−1)
. (13)



/Approximation in the inverse first-passage time problem 12

We can deduce that

P(Wt1 ∈ C1, . . . ,Wtn ∈ Cn,TWg > tn |Wt0 = x0) (14)

=

∫
C1

. . .

∫
Cn

pWg (t1, x1, . . . , tn, xn | t0, x0)dx1 . . . dxn

for any Borel set Ci ⊂ (−∞, g(ti)] with i = 1, . . . , n.

Proof of Lemma 6. Equation (12) is obtained by Definition (9) and follows by
induction with conditional probability formula. Then, Equation (13) can be
deduced by plugging Equation (11) into Equation (12). Finally, Equation (14)
is a direct consequence of Equation (13).

We define φ as the standard Gaussian cdf. In the following lemma, we give the
pdf for the FPT of a reflected Wiener process to a linear boundary. This is based
on the explicit solution from Anderson (1960) (Theorem 5.1, p. 191) for the FPT
to an upper linear boundary and a lower linear boundary. This is due to the fact
that the FPT of a reflected Wiener process to a linear boundary is equal to the
FPT of a Wiener process to a symmetric upper linear boundary and lower linear
boundary when the boundary from the reflected Wiener process and the upper
boundary are equal. Although we can deduce the transition pdf and transition
pdf for the piecewise linear boundary with the same arguments as in the proofs
of Lemma 5 and Lemma 6, we do not report them in the following of this paper.

Lemma 7. We assume that the boundary is linear

g(t) = α1t+ α0 for any t ≥ 0.

Here, we have that t0 ≥ 0, α0 ∈ R+
∗ , α1 ∈ R, and x0 ∈ R are such that

g(t0) > x0. We have that the pdf for the FPT of a reflected Wiener process is
equal to

f |W |g (t0 | t0, x0) = 0, (15)

f |W |g (t | t0, x0) =
2

(t− t0)3/2
φ
(α1(t− t0) + α0 − x0√

t− t0
) ∞∑
r=0

{
(4r + 1)(α0 − x0)

× exp
(−(8r(r + 1)(α0 − x0))(α1(t− t0) + α0 − x0)

t− t0

)
−(4r + 2)(α0 − x0)

× exp
(−(4(r + 1)(2r + 1)(α0 − x0)(α1(t− t0) + α0 − x0)

t− t0

)}
for any t > t0. (16)

Proof of Lemma 7. We first consider the FPT of a Wiener process to an upper
linear boundary and a lower linear boundary. We first assume that the boundary
is upper linear and lower linear, i.e., that g(t) = (γ2 + δ2t, γ1 + δ1t), where
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γ1 > 0, γ2 < 0, δ1 ≥ δ2 and we do not have that δ1 = δ2 = 0. By Anderson
(1960) (Theorem 5.1, p. 191), we have that the pdf of the FPT is equal to

fWg (t0) = 0, (17)

fWg (t) =
1

(t− t0)3/2

[
φ
(δ1(t− t0) + γ1√

t− t0

) ∞∑
r=0

{(
(2r + 1)γ1 − 2rγ2

)
(18)

× exp
(−2r(rγ1 − (r + 1)γ2)(δ1(t− t0) + γ1 − (δ2(t− t0) + γ2))

t− t0

)
−
(
2(r + 1)γ1 − 2rγ2

)
exp

(−2(r + 1)((r + 1)γ1 − rγ2)(δ1(t− t0) + γ1 − (δ2(t− t0) + γ2))

t− t0

)}
+φ
(δ2(t− t0) + γ2√

t− t0

) ∞∑
r=0

{(
2rγ1 − (2r + 1)γ2

)
× exp

(−2(r + 1)((r + 1)γ1 − rγ2)(δ1(t− t0) + γ1 − (δ2(t− t0) + γ2))

t− t0

)
−
(
2(r + 1)γ1 − 2rγ2

)
exp

(−2r(rγ1 − (r + 1)γ2)(δ1(t− t0) + γ1 − (δ2t+ γ2))

t− t0

)}]
,

for any t > t0. Now, we assume that the boundaries are symmetric, i.e., that
g(t) = (−α1t − α0, α1t + α0) where α1 ∈ R and α0 ∈ R+

∗ . From Equations
(17)-(18), we can deduce that

fWg (t0) = 0, (19)

fWg (t) =
2

(t− t0)3/2
φ
(α1(t− t0) + α0√

t− t0

)
(20)

∞∑
r=0

{
(4r + 1)α0 exp

(−(8r(r + 1)α0)(α1t− t0 + α0)

t− t0

)
−(4r + 2)α0 exp

(−(4(r + 1)(2r + 1)α0(α1(t− t0) + α0)

t− t0

}
for any t > t0.

We have the FPT of a reflected Wiener to a linear boundary is equal to the
FPT of a Wiener process to a symmetric upper linear boundary and lower
linear boundary when the boundary from the reflected Wiener process and the
upper boundary are equal. From the previous sentence and Equations (19)-(20),
we can deduce Equations (15)-(16).

The next lemma gives the transition pdf for a FPT of a Wiener process W at
time tnm+1 constrained by the absorbing boundary gn over [tnm, t

n
m+1] given that

Wtm = xm.
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Lemma 8. For any n ∈ N∗ and m ∈ {0, . . . , 2n − 1}, we have

pWgn
(
tnm+1, xm+1 | tnm, xm

)
=

(
1− exp

(−2(gn(tnm+1)− xm+1)(gn(tnm)− xm)

∆n

))
×

exp
(
− (xm+1−xm)2

∆n

)
√
π∆n

. (21)

Proof of Lemma 8. Equation (21) can be obtained directly from Equation (11)
in Lemma 5.

We define the probability of the FPT to a constant boundary equal to α ∈ R+
∗

on [0, δn∆n] as Gn0 : R+
∗ → R such that

Gn0 (α) = 1−
∫ α

−∞

(
1− exp

(−2(α− x1)α

δn∆n

))exp
(
− x2

1

δn∆n

)
√
πδn∆n

dx1. (22)

The next lemma gives a more explicit form to αn0 .

Lemma 9. For any n ∈ N, Equation (7) can be reexpressed as

Gn0 (αn0 )−
∫ δn∆n

0

f(s)ds = 0. (23)

Proof of Lemma 9. We have that

PWαn
0
(δn∆n) = P

(
TWαn

0
∈ [0, δn∆n]

)
= P

(
(TWαn

0
> δn∆n

)C
)

= 1− P
(
TWαn

0
> δn∆n

)
= 1− P

(
Wδn∆n ∈ (−∞, αn0 ], TWαn

0
> δn∆n

)
= 1−

∫ αn
0

−∞
pWαn

0
(δn∆n, x1 | 0, 0)dx1

= 1−
∫ αn

0

−∞

(
1− exp

(−2(αn0 − x1)αn0
δn∆n

))exp
(
− x2

1

δn∆n

)
√
πδn∆n

dx1.(24)

Here, we use Equation (2) in the first equality, the fact that TWαn
0
≥ 0 a.s.

by Definition 2 along with the completeness of the filtration F in the second
equality, elementary probability facts in the third equality, the fact that TWαn

0
⊂

{Wδn∆n
∈ (−∞, αn0 ]} in the fourth equality, Equation (14) from Lemma 6 in

the fifth equality and Equation (21) from Lemma 8 in the sixth equality. Finally,
we can deduce Equation (23) by plugging Equation (7) into Equation (24).

We define the probability of the FPT to a linear boundary started from αn0 with
trend α ∈ R on [0, tn1 ] as Gn1 : R→ R such that

Gn1 (α) = 1−
∫ αn

0 +α∆n

−∞

(
1− exp

(−2(αn0 + α∆n − x1)αn0
∆n

))exp(− x2
1

∆n
)

√
π∆n

dx1. (25)
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In the next lemma, we give a more explicit form to αn1 based on the known value
αn0 .

Lemma 10. For any n ∈ N and m = 1, Equation (8) can be reexpressed as

Gn1 (αn1 )−
∫ tn1

0

f(s)ds = 0. (26)

Proof of Lemma 10. We have that

P
(
TWgn ∈ [0, tn1 ]

)
= P

(
(TWgn > tn1

)C
)

= 1− P
(
TWgn > tn1

)
= 1− P

(
Wtn1

∈ (−∞, gn(tn1 )], TWgn > tn1
)

= 1−
∫ gn(tn1 )

−∞
pWgn(tn1 , x1 | 0, 0)dx1

= 1−
∫ gn(tn1 )

−∞

(
1− exp

(−2(gn(tn1 )− x1)gn(0)

∆n

))
exp

(
− x2

1

∆n

)
√
π∆n

dx1

= 1−
∫ αn

0 +αn
1 ∆n

−∞

(
1− exp

(−2(αn0 + αn1 ∆n − x1)αn0
∆n

))
exp

(
− x2

1

∆n

)
√
π∆n

dx1. (27)

Here, we use the fact that TWgn ≥ 0 a.s. by Definition 2 along with the complete-
ness of the filtration F in the first equality, elementary probability facts in the
second equality, the fact that TWgn ⊂ {Wtn1

∈ (−∞, gn(tn1 )]} in the third equality,
Equation (14) from Lemma 6 in the fourth equality, Equation (21) from Lemma
8 in the fifth equality and Equations (5)-(6) in the sixth equality. Finally, we
can deduce Equation (26) by plugging Equation (8) into Equation (27).

We define the probability of the FPT to a continuous piecewise linear boundary
gn on [0, tn1 ] and with trend α ∈ R on [tn1 , t

n
2 ] as Gn2 : R→ R such that

Gn2 (α) = 1−Gn1 (αn1 )−
∫ αn

0 +αn
1 ∆n

−∞

∫ αn
0 +(αn

1 +α)∆n

−∞
(28)(

1− exp
(−2(αn0 + (αn1 + α)∆n − x2)(αn0 + αn1 ∆n − x1)

∆n

))
exp(− (x2−x1)2

∆n
)

√
π∆n

×
(

1− exp
(−2(αn0 + αn1 ∆n − x1)αn0

∆n

))exp(− x2
1

∆n
)

√
π∆n

dx1dx2.
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In the next lemma, we give a more explicit form to αn2 based on the known
values αn1 and αn0 .

Lemma 11. For any n ∈ N and m = 2, Equation (8) can be reexpressed as

Gn2 (αn2 )−
∫ tn2

tn1

f(s)ds = 0.

Proof of Lemma 11. We have that

P
(
TWgn ∈ [tn1 , t

n
2 ]
)

= P
(
(TWgn < tn1 ,T

W
gn > tn2 )C

)
= 1− P

(
TWgn < tn1 ,T

W
gn > tn2

)
= 1− P

(
TWgn < tn1

)
− P

(
TWgn > tn2

)
= 1− P

(
0 ≤ TWgn < tn1

)
− P

(
TWgn > tn2

)
= 1−

∫ tn1

0

f(s)ds− P
(
TWgn > tn2

)
= 1−Gn1 (αn1 )− P

(
TWgn > tn2

)
. (29)

Here, we use elementary probability facts in the first and second equalities, the
fact that {TWgn < ∆n} and {TWgn > 2∆n} are disjoint events in the third equality,

the fact that TWgn ≥ 0 a.s. by Definition 2 along with the completeness of the
filtration F in the fourth equality, Equation (8) in the fifth equality, and Lemma
10 in the sixth equality. Also, we have that

P
(
TWgn > tn2

)
= P

(
Wtn1

∈ (−∞, gn(tn1 )],Wtn2
∈ (−∞, gn(tn2 )],TWgn > tn2

)
=

∫ gn(tn1 )

−∞

∫ gn(tn2 )

−∞
pWgn(tn1 , x1, t

n
2 , x2 | 0, 0)dx1dx2

=

∫ gn(tn1 )

−∞

∫ gn(tn2 )

−∞
pWgn(tn2 , x2 | tn1 , x1)pWgn(tn1 , x1 | 0, 0)dx1dx2

=

∫ gn(tn1 )

−∞

∫ gn(tn2 )

−∞(
1− exp

(−2(gn(tn2 )− x2)(gn(tn1 )− x1)

∆n

))exp
(
− (x2−x1)2

∆n

)
√
π∆n
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×(1− exp(
−2(gn(tn1 )− x1)gn(tn0 )

∆n
))

exp(− x2
1

∆n
)

√
π∆n

dx1dx2

=

∫ αn
0 +αn

1 ∆n

−∞

∫ αn
0 +(αn

1 +αn
2 )∆n

−∞
(30)(

1− exp
(−2(αn0 + (αn1 + αn2 )∆n − x2)(αn0 + αn1 ∆n − x1)

∆n

))
exp(− (x2−x1)2

∆n
)

√
π∆n

×
(

1− exp
(−2(αn0 + αn1 ∆n − x1)αn0

∆n

))exp(− x2
1

∆n
)

√
π∆n

dx1dx2.

Here, we use the fact that

{TWgn > tn2} ⊂ {Wtn1
∈ (−∞, gn(tn1 )],Wtn2

∈ (−∞, gn(tn2 )]}

in the first equality, Equation (14) in the second equality, Equation (12) in the
third equality, Equation (21) from Lemma 8 in the fourth equality and Equations
(5)-(6) in the fifth equality. Finally, we can deduce Equation (29) by plugging
Equation (30) and Equation (8) into Equation (29).

For any m ∈ {3, . . . , 2n − 1}, we define x0 = 0 and the probability of the FPT
to a continuous piecewise linear boundary gn on [0, tnm−1] and with trend α ∈ R
on [tnm−1, t

n
m] as Gnm : R→ R such that

Gnm(α) = 1−
m−1∑
k=1

Gnk (αnk )−
∫ αn

0 +αn
1 ∆n

−∞

∫ αn
0 +(αn

1 +αn
2 )∆n

−∞
. . .

∫ αn
0 +(

∑m
k=1 α

n
k+α)∆n

−∞(
1−

exp
(−2(αn0 + (

∑m
i=1 α

n
i + α)∆n − xm+1)(αn0 +

∑m
i=1 α

n
i ∆n − xm)

∆n

))
×

exp
(
− (xm+1−xm)2

∆n

)
√
π∆n

m−1∏
k=0

(
1− exp(

−2(αn0 +
∑k+1
i=1 α

n
i ∆n − xk+1)(αn0 +

∑k
i=1 α

n
i ∆n − xk)

∆n

))

×
exp

(
− (xk+1−xk)2

∆n

)
√
π∆n

dx1dx2 . . . dxm. (31)

In the lemma that follows, we give a more explicit form to αnm based on known
values (αnk )k=0,...,m−1.
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Lemma 12. For any n ∈ N and any m ∈ {3, . . . , 2n − 1}, Equation (8) can be
reexpressed as

Gnm(αnm)−
∫ tnm

tnm−1

f(s)ds = 0. (32)

Proof of Lemma 12. We have that

P
(
TWgn ∈ [tnm−1, t

n
m]
)

= P
(
(TWgn < tnm−1,T

W
gn > tnm)C

)
= 1− P

(
TWgn < tnm−1,T

W
gn > tnm

)
= 1− P

(
TWgn < tnm−1

)
− P

(
TWgn > tnm

)
= 1− P

(
0 ≤ TWgn < tnm−1

)
− P

(
TWgn > tnm

)
= 1−

∫ tnm−1

0

f(s)ds− P
(
TWgn > tnm

)
= 1−

m−1∑
k=1

Gnk (αnk )− P
(
TWgn > tnm

)
. (33)

Here, we use elementary probability facts in the first and second equalities, the
fact that {TWgn < tnm−1} and {TWgn > tnm} are disjoint events in the third equality,

the fact that TWgn ≥ 0 a.s. by Definition 2 along with the completeness of the
filtration F in the fourth equality, Equation (8) in the fifth equality, Lemmas 10
and 11 in the sixth equality. Also, we have that

P
(
TWgn > tnm

)
= P

(
Wtn1

∈ (−∞, gn(tn1 )],Wtn2
∈ (−∞, gn(tn2 )], . . . ,

Wtnm
∈ (−∞, gn(tnm)],TWgn > tnm

)
=

∫ gn(tn1 )

−∞

∫ gn(tn2 )

−∞
. . .

∫ gn(tnm)

−∞
pWgn(tn1 , x1, t

n
2 , x2, . . . ,

tnm, xm | 0, 0)dx1dx2 . . . dxm

=

∫ gn(tn1 )

−∞

∫ gn(tn2 )

−∞
. . .

∫ gn(tnm)

−∞

m−1∏
k=0

pWgn(tnk+1, xk+1 | tnk , xk)

dx1dx2 . . . dxm
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=

∫ gn(tn1 )

−∞

∫ gn(tn2 )

−∞
. . .

∫ gn(tnm)

−∞

m−1∏
k=0

(
1−

exp
(−2(gn(tnk+1)− xk+1)(gn(tnk )− xk)

∆n

))
×

exp
(
− (xk+1−xk)2

∆n

)
√
π∆n

dx1dx2 . . . dxm,

=

∫ αn
0 +αn

1 ∆n

−∞

∫ αn
0 +(αn

1 +αn
2 )∆n

−∞
. . .

∫ αn
0 +

∑m
k=1 α

n
k∆n

−∞

m−1∏
k=0(

1− exp
(−2(αn0 +

∑k+1
i=1 α

n
i ∆n − xk+1)(αn0 +

∑k
i=1 α

n
i ∆n − xk)

∆n

))
×

exp
(
− (xk+1−xk)2

∆n

)
√
π∆n

dx1dx2 . . . dxm. (34)

Here, we use the fact that

{TWgn > tnm} ⊂ {Wtn1
∈ (−∞, gn(tn1 )],Wtn2

∈ (−∞, gn(tn2 )], . . . ,

Wtnm
∈ (−∞, gn(tnm)]}

in the first equality, Equation (14) in the second equality, Equation (12) in the
third equality, Equation (21) from Lemma 8 in the fourth equality and Equations
(5)-(6) in the fifth equality. Finally, we can deduce Equation (32) by plugging
Equation (34) and Equation (8) into Equation (33).

With the same arguments as in the proofs of Lemmas 9, 10,11 and 12, for any
n ∈ N we can define Hn

0 as Hn
0 : R+

∗ → R and Hn
m as Hn

m : R → R for
any m ∈ {1, . . . , 2n}, which are defined in the same way as Gnm for the reflected
Wiener process. As the obtained equations are longer than in the Wiener process
case, we do not report them. The next lemma will be useful in showing the
existence and unicity of αn0 , i.e., in the proof of Proposition 2. This basically
states that the probability of the FPT started at time tn0 to a constant boundary
on [tn0 , t

n
1 ], i.e., Gn0 or Hn

0 , is a strictly decreasing bijection from R+
∗ to (0, 1).

Lemma 13. For any n ∈ N we have that Gn0 and Hn
0 are continuous and strictly

decreasing bijections from R+
∗ to (0, 1).

Proof. From Equation (22), we can see that Gn0 is differentiable on R+
∗ with

negative derivatives for any n ∈ N. Thus, we have that Gn0 is continuous and
strictly decreasing. We also have that Gn0 (α) → 1 as α → 0 and Gn0 (α) → 0 as
α → ∞, thus Gn0 is a bijection from R+

∗ to (0, 1). We can prove the case Hn
0

with the same arguments.

The next lemma is the counterpart of Lemma 13 when considering Gnm and Hn
m

for any n ∈ N and any m ∈ {1, . . . , 2n}.

Lemma 14. For any n ∈ N and any m ∈ {1, . . . , 2n}, we have that Gnm and

Hn
m are continuous and strictly decreasing bijections from R to (0,

∫ +∞
tnm

f(s)ds).
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Proof. From Equations (25), (28) and (31), we can see that Gnm is differentiable
on R with negative derivative for any n ∈ N and any m ∈ {1, . . . , 2n}. Thus, we
have that Gnm is continuous and strictly decreasing. We also have that Gnm(α)→∫ +∞
tnm

f(s)ds as α → −∞ and Gnm(α) → 0 as α → ∞, thus Gnm is continuous

a bijection R to (0,
∫ +∞
tnm

f(s)ds). We can prove the case Hn
m with the same

arguments.

The following lemma shows the positivity of the integral of f between two
approximation times when we assume that Assumption 1 holds.

Lemma 15. We assume that Assumption 1 holds. Then, we have for any n ∈ N
that

0 <

∫ δn∆n

0

f(s)ds. (35)

For any n ∈ N and any m ∈ {1, . . . , 2n}, we also have that

0 <

∫ tnm

tnm−1

f(s)ds. (36)

Proof of Lemma 15. We define the supremum of the boundary absolute value g
on [0, tf ] as

g+ = sup
t∈[0,tf ]

| g(t) | .

By Assumption 1, we have that g is continuous on [0, tf ]. Since [0, tf ] is a
compact space, it implies that g+ < ∞. We have that g ∈ G, thus g+ > 0 by
Definition 1. By Definition 2, we can deduce that TZg ≤ TZg+ a.s.. Thus, we can
deduce that

P(TZg+ ∈ [0, δn∆n]) ≤ P(TZg ∈ [0, δn∆n]). (37)

Since P(TWg+ ∈ [0, δn∆n]) = Gn0 (g+) and P(T
|W |
g+ ∈ [0, δn∆n]) = Hn

0 (g+), we ob-

tain by Lemma 13 that P(TZg+ ∈ [0, δn∆n]) > 0. Then, we can deduce Equation

(35) since f is equal to the density of TZg by Equation (2) and Equation (4).
Equation (36) follows by induction on m ∈ {1, . . . , 2n} with similar arguments.

We give now the proof of Proposition 2.

Proof of Proposition 2. For any n ∈ N, we prove Proposition 2 by induction on
m ∈ {0, . . . , 2n}. We start with the m = 0 case, i.e., we show that αn0 ∈ R+

∗ is
well-defined. By Lemma 15 along with Assumption 1 we can deduce that

0 <

∫ δn∆n

0

f(s)ds < 1. (38)
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From Expression (38) and Lemma 9, we can then deduce that

0 < Gn0 (αn0 ) < 1 and 0 < Hn
0 (αn0 ) < 1. (39)

Finally, an application of the intermediate value theorem together with Lemma
13 and Expression (39) provides the existence and uniqueness of αn0 ∈ R+

∗ . We
consider now the m > 0 case, i.e., we show that αnm ∈ R is well-defined. By
Lemma 15 along with Assumption 1 we get

0 <

∫ tnm

tnm−1

f(s)ds <

∫ +∞

tnm−1

f(s)ds. (40)

From Expression (40), Lemmas 10, 11 and 12, we can deduce that

0 < Gnm(αnm) <

∫ +∞

tnm−1

f(s)ds and 0 < Hn
m(αnm) <

∫ +∞

tnm−1

f(s)ds. (41)

To conclude, an application of the intermediate value theorem along with Lemma
14 and Equation (41) provides the existence and uniqueness of αnm ∈ R.

6. Proofs of the main results

In this section, we first show that the approximation converges to the boundary
starting value, i.e., Proposition 3. The elementary idea of the proof consists
in observing that the boundary can be bounded below and above by positive
constants for a very small time.

Proof of Proposition 3. For any n ∈ N, we define the infimum and the supre-
mum of the boundary g on [0, δn∆n] as

gn−(0) = inf
t∈[0,δn∆n]

g(t) , gn+(0) = sup
t∈[0,δn∆n]

g(t).

By Assumption 1, we have that g is continuous on [0, δn∆n]. Since [0, δn∆n] is
a compact space, it implies that −∞ < gn−(0) ≤ gn+(0) <∞ for any n ∈ N. We
have that g ∈ G, thus gn+(0) > 0 for any n ∈ N and gn−(0) > 0 for n big enough
by Definition 1. By Definition 2, we can deduce that TZgn−(0) ≤ TZg ≤ TZgn+(0) a.s.

and for n big enough. Thus, we can deduce for n big enough that

P(TZgn+(0) ∈ [0, δn∆n]) ≤ P(TZg ∈ [0, δn∆n]) ≤ P(TZgn−(0) ∈ [0, δn∆n]).

By Equations (2) and (3), the above inequalities can be reexpressed as

P(TZgn+(0) ∈ [0, δn∆n]) ≤
∫ δn∆n

0

fZg (s)ds ≤ P(TZgn−(0) ∈ [0, δn∆n]).

By Equation (4), the above inequalities can be reexpressed as

P(TZgn+(0) ∈ [0, δn∆n]) ≤
∫ δn∆n

0

f(s)ds ≤ P(TZgn−(0) ∈ [0, δn∆n]).
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By Equation (7), the above inequalities can be reexpressed as

P(TZgn+(0) ∈ [0, δn∆n]) ≤ P(TZαn
0
∈ [0, δn∆n]) ≤ P(TZgn−(0) ∈ [0, δn∆n]).

By Equation (22) and Lemma 9, the above inequalities can be reexpressed as

Gn0 (gn+(0)) ≤ Gn0 (αn0 ) ≤ Gn0 (gn−(0)) or Hn
0 (gn+(0)) ≤ Hn

0 (αn0 ) ≤ Hn
0 (gn−(0)). (42)

Since we have that Gn0 and Hn
0 are continuous and strictly decreasing bijections

from R+
∗ to (0, 1) by Lemma 13, we can invert the six sides of Expression (42) by

Gn0 when Z = W and Hn
0 when Z = |W |. We obtain that gn−(0) ≤ αn0 ≤ gn+(0).

By continuity of g on [0, tf ] and Equation (5), we can conclude αn0 = gn(0) →
g(0) as n→∞.

Now, we show that a subsequence of the approximation uniformly converges to
the boundary when the length of each interval of linear approximation goes to 0
asymptotically. The proof goes in two steps. First, we show that the approxima-
tion uniformly converges to some boundary g̃ ∈ G using Arzelà-Ascoli theorem
on any compact space [0, tf ]. Second, we show that g̃(t) = g(t) for any t ∈ [0, tf ].
We first give the definition of the piecewise linear boundary functions.

Definition 5. For any n ∈ N, we define the set of piecewise linear boundary
functions as

Gn =
{
g ∈ G s.t. g is linear on each interval

[
tnm, t

n
m+1

]
for any m ∈ {0, . . . , 2n}

}
.

In what follows, we give the definition of uniform boundedness.

Definition 6. The sequence gn ∈ Gn defined on the interval [0, tf ] is uniformly
bounded if there is a constant M > 0 such that

sup
t∈[0,tf ],n∈N

|gn(t)| ≤M. (43)

The following definition introduces the notion of uniform equicontinuity.

Definition 7. The sequence gn ∈ Gn defined on the interval [0, tf ] is uniformly
equicontinuous if, for every ε > 0, there exists a δ > 0 such that

sup
t,s∈[0,tf ],|t−s|<δ,n∈N

||gn(t)− gn(s)|| ≤ ε. (44)

We give now the Arzelà-Ascoli theorem.

Theorem 16 (Arzelà-Ascoli theorem). If the sequence gn ∈ Gn defined on the
interval [0, tf ] is uniformly bounded and uniformly equicontinuous, then there
exists a subsequence which converges uniformly to some g̃ ∈ G defined on the
interval [0, tf ].

In the following proposition, we show that if we assume that the αnm are uni-
formly bounded, then the sequence gn is uniformly bounded and uniformly
equicontinuous.
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Proposition 17. We assume that Assumption 1 holds and that the αnm are
uniformly bounded, i.e.,

sup
n∈N

m=0,··· ,2n

|αnm| ≤ K. (45)

Then, the sequence gn is uniformly bounded and uniformly equicontinuous, i.e.,
it satisfies Equations (43) and (44).

Proof. We start with the proof of Equation (43). By algebraic manipulation, we
can rewrite Equations (5) and (6) for m ∈ {1, . . . , 2n − 1} as

gn(u) = αn0 + ∆n

m∑
i=1

αni + αnm+1(u− tnm), u ∈ (tnm, t
n
m+1]. (46)

We obtain that for u ∈ (tnm, t
n
m+1] where m ∈ {1, . . . , 2n − 1} that

|gn(u)| ≤ |αn0 |+ ∆n

m∑
i=1

|αni |+
∣∣αnm+1

∣∣ (u− tnm)

≤ |αn0 |+ ∆n

m+1∑
i=1

|αni |

≤ |αn0 |+ ∆n

2n∑
i=1

|αni |

≤ |αn0 |+ tf sup
n∈N

i=1,··· ,2n

|αni |

≤ (1 + tf ) sup
n∈N

i=0,··· ,2n

|αni |

≤ (1 + tf )K.

Here, we use the triangular inequality in the first inequality, the fact that u ∈
(tnm, t

n
m+1] in the second inequality, the fact that m ∈ {1, . . . , 2n−1} in the third

equality, the definition of ∆n in the fourth equality, and Equation (45) in the
last inequality. We have thus shown that Equation (45) =⇒ Equation (43). We
now prove Equation (44). We consider any arbitrarily small ε > 0. Accordingly,
we set

δ =
ε

2K
. (47)

For any t ∈ [0, tf ], we define the corresponding mn
t such that t ∈ [tnmn

t
, tnmn

t +1].

From Equation (46), we can deduce that

gn(t) = αn0 + ∆n

mn
t∑

i=1

αni + αnmn
t +1(t− tnmn

t
). (48)
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Thus, for any 0 ≤ s ≤ t ≤ tf such that

|t− s| < δ, (49)

we have that

|gn(t)− gn(s)| =
∣∣∣αn0 + ∆n

mn
t∑

i=1

αni + αnmn
t +1(t− tnmn

t
)−

(αn0 + ∆n

mn
s∑

i=1

αni + αnmn
s +1(s− tnmn

s
))
∣∣∣

=
∣∣∣∆n

mn
t∑

i=mn
s

αni + αnmn
t +1(t− tnmn

t
)− αnmn

s +1(s− tnmn
s
)
∣∣∣

≤ |t− s| sup
n∈N

i=0,··· ,2n

|αni |

≤ K |t− s| ,
≤ ε.

Here, we use Equation (48) in the first equality, algebraic manipulation in the
second equality and the first equality, Equation (45) in the second inequality,
Equation (47) and Expression (49) in the last inequality. We have thus shown
that Equation (45) =⇒ Equation (44).

In the following proposition, we show that if we assume that Assumption 2
holds, then we have that the αnm are uniformly bounded.

Proposition 18. We assume that Assumption 2 holds. Then, we have that the
αnm are uniformly bounded, i.e., Equation (45) is satisfied.

Proof. We define the supremum of the boundary derivative absolute value g′ on
[0, tf ] as

g′+ = sup
t∈[0,tf ]

| g′(t) | .

We define the bound, which does not depend on n or m, as

K = 2 sup(g+, g
′
+). (50)

By Assumption 2, we have that g is continuous on [0, tf ]. Since [0, tf ] is a
compact space, it implies that g+ < ∞. We can also obtain by Assumption 2
that g′+ <∞. Thus, we can deduce that K <∞. Then, to prove Proposition 18
it is sufficient to show that Equation (45) is satisfied with K defined in Equation
(50). For any n ∈ N, we consider a proof by induction on m ∈ {0, . . . , 2n}. We
start with the case m = 0, i.e., we show that αn0 ≤ K. We have that g ∈ G, thus
g+ > 0 by Definition 1. By Definition 2, we can deduce that TZg ≤ TZg+ a.s..
Thus, we can deduce that

P(TZg+ ∈ [0, δn∆n]) ≤ P(TZg ∈ [0, δn∆n]).
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By Equations (2) and (3), the above inequality can be reexpressed as

P(TZg+ ∈ [0, δn∆n]) ≤
∫ δn∆n

0

fZg (s)ds.

By Equation (4), the above inequality can be reexpressed as

P(TZg+ ∈ [0, δn∆n]) ≤
∫ δn∆n

0

f(s)ds.

By Equation (7), the above inequality can be reexpressed as

P(TZg+ ∈ [0, δn∆n]) ≤ P(TZαn
0
∈ [0, δn∆n]).

By Equation (22) and Lemma 9, the above inequality can be reexpressed as

Gn0 (g+) ≤ Gn0 (αn0 ) or Hn
0 (g+) ≤ Hn

0 (αn0 ). (51)

Since we have that Gn0 and Hn
0 are continuous and strictly decreasing bijections

from R+
∗ to (0, 1) by Lemma 13, we can invert the four sides of Expression (51)

by Gn0 when Z = W and Hn
0 when Z = |W |. We can deduce that αn0 ≤ g+

which implies that αn0 ≤ K.
We consider now the case m = 1, i.e., we show that | αn1 |≤ K. For t ≥ 0, we

define the linear boundary started at g(0) with trend g′+ and −g′+ as respectively
g(t) = g(0) + g′+t and g(t) = g(0) − g′+t. By Definition 2, we can deduce that

TZg ≤ TZg ≤ TZg a.s.. Thus, we can deduce that

P(TZg ∈ [0, tn1 ]) ≤ P(TZg ∈ [0, tn1 ]) ≤ P(TZg ∈ [0, tn1 ]).

For t ≥ 0, we define now the linear boundary started at αn0 with trend K and
−K as respectively gn(t) = αn0 + Kt and gn(t) = αn0 −Kt. If n is big enough,
we obtain that

P(TZgn ∈ [0, tn1 ]) ≤ P(TZgn ∈ [0, tn1 ]) ≤ P(TZgn ∈ [0, tn1 ]).

By Equation (25) and Lemma 10, the above inequalities can be reexpressed as

Gn1 (K) ≤ Gn1 (αn1 ) ≤ Gn1 (−K) or Hn
1 (K) ≤ Hn

1 (αn1 ) ≤ Hn
1 (−K). (52)

Since by Lemma 14 we have that Gn1 and Hn
1 are continuous and strictly de-

creasing bijections from R to (0,
∫ +∞
tn1

f(s)ds), we can invert the six sides of

Expression (52) by Gn1 when Z = W and Hn
1 when Z = |W |. We can deduce

that | αn1 |≤ g′+ which implies | αn1 |≤ K.
We consider now the case m = 2, i.e., we show that | αn2 |≤ K. We define

the boundary which is equal to g on [0, tn1 ] and linear with trend g′+ for t ≥ tn1
as g(t) = g(t) for any t ∈ [0, tn1 ] and g(t) = g(tn1 ) + g′+(t − tn1 ) for any t ≥ tn1 .
We also define the boundary which is equal to g on [0, tn1 ] and linear with trend
−g′+ for t ≥ tn1 as g(t) = g(t) for any t ∈ [0, tn1 ] and g(t) = g(tn1 )− g′+(t− tn1 ) for
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any t ≥ tn1 . By Definition 2, we can deduce that TZg ≤ TZg ≤ TZg a.s.. Thus, we

can deduce that

P(TZg ∈ [tn1 , t
n
2 ]) ≤ P(TZg ∈ [tn1 , t

n
2 ]) ≤ P(TZg ∈ [tn1 , t

n
2 ]).

We define the boundary which is equal to gn on [0, tn1 ] and linear with trend
K for t ≥ tn1 as gn(t) = gn(t) for any t ∈ [0, tn1 ] and g(t) = g(tn1 ) + K(t − tn1 )
for any t ≥ tn1 . We also define the boundary which is equal to gn on [0, tn1 ]
and linear with trend −K for t ≥ tn1 as gn(t) = gn(t) for any t ∈ [0, tn1 ] and
gn(t) = gn(tn1 )−K(t− tn1 ) for any t ≥ tn1 . If n is big enough, we obtain that

P(TZgn ∈ [tn1 , t
n
2 ]) ≤ P(TZgn ∈ [tn1 , t

n
2 ]) ≤ P(TZgn ∈ [tn1 , t

n
2 ]).

By Equation (28) and Lemma 11, the above inequalities can be reexpressed as

Gn2 (K) ≤ Gn2 (αn2 ) ≤ Gn2 (−K) or Hn
2 (K) ≤ Hn

2 (αn2 ) ≤ Hn
2 (−K). (53)

Since by Lemma 14 we have that Gn2 and Hn
2 are continuous and strictly de-

creasing bijections from R to (0,
∫ +∞
tn2

f(s)ds), we can invert the six sides of

Expression (53) by Gn2 when Z = W and Hn
2 when Z = |W |. We can deduce

that | αn2 |≤ K. The case with m > 2 follows with similar arguments.

The following corollary is an application of Arzelà-Ascoli theorem.

Corollary 19. We assume that Assumption 2 holds. Then, there exists a sub-
sequence gnk of gn which converges uniformly to some g̃ ∈ G defined on the
interval [0, tf ].

Proof. This is an application of Theorem 16 along with Propositions 17 and
18.

The following lemma gives a.s. convergence of TZhn1{TZ
hn≤tf} to TZh 1{TZ

h ≤tf}
when hn converges uniformly to h on [0, tf ]. For the proof of Theorem 4, we
only need the convergence in distribution.

Lemma 20. For any sequence hn ∈ Gn which converges uniformly on [0, tf ] to
some h ∈ G satisfying Assumption 1, we have that TZhn1{TZ

hn≤tf} converges a.s.

to TZh 1{TZ
h≤tf}

. As a by-product, we deduce that TZhn converges in distribution

to TZh on [0, tf ].

Proof. To prove that TZhn1{TZ
hn≤tf} converges a.s. to TZh 1{TZ

h≤tf}
, it is sufficient

to show that for any arbitrarily small ε > 0 there exists Nε ∈ N such that for
any n ∈ N∗ with n ≥ Nε we have a.s.∣∣∣TZhn1{TZ

hn≤tf} − TZh 1{TZ
h≤tf}

∣∣∣ ≤ ε. (54)

As hn converges uniformly to h on [0, tf ], we have that for any εh > 0, there
exists Nεh ∈ N such that for any n ∈ N∗ with n ≥ Nεh we have

sup
t∈[0,tf ]

| hn(t)− h(t) |≤ εh. (55)
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We set the value of εh as

εh =
1

2
sup

TZ
h≤t≤TZ

h +ε≤tf
|Zt − h(t)| . (56)

First, we can see that εh defined in Equation (56) is positive. Second, we have
that a.s. Zt first hits hn on [TZh − ε, TZh + ε], i.e., we have shown that TZhn ∈
[TZh − ε,TZh + ε] whenever Expression (55) holds with εh from Equation (56).
Thus, we have shown Expression (54) with Nε = Nεh .

We consider a discretization length in the order ∆n so that we obtain that the
time discretization is nested, i.e., for any tnm and any l ≥ m there exists a time tlk
such that tnm = tlk. This is required to prove the following lemma which in turn
will be used to prove that the limit of a subsequence obtained by Arzelà-Ascoli
theorem satisfies Equation (4).

Lemma 21. We assume that Assumption 1 holds. For any n ∈ N, any l ∈ N
with l ≥ n and any m ∈ {0, . . . , 2n}, the approximated boundary satisfies

P
(

TZgl ∈ [tnm, t
n
m+1]

)
=

∫ tnm+1

tnm

f(s)ds. (57)

Proof. For any n ∈ N, any l ∈ N with l ≥ n and any m ∈ {0, . . . , 2n}, we have

P
(

TZgl ∈ [tnm, t
n
m+1]

)
=

∑
i∈N s.t.

tnm≤tl
i
≤tl

i+1
≤tn

m+1

P
(

TZgl ∈ [tli, t
l
i+1]

)

=
∑

i∈N s.t.
tnm≤tl

i
≤tl

i+1
≤tn

m+1

∫ tli+1

tli

f(s)ds

=

∫ tnm+1

tnm

f(s)ds.

Here, we use the fact that

[tnm, t
n
m+1] =

⋃
i∈N s.t.

tnm≤tl
i
≤tl

i+1
≤tn

m+1

[tli, t
l
i+1]

since the time discretization is nested in the first equality, and Equations (7)
and (8) in the second equality.

We provide in what follows the proof of the main result of our paper, which
shows that a subsequence of the new approximation uniformly converges to the
boundary when the length of each interval of linear approximation goes to 0
asymptotically. This proof is based on application of previously obtained results
and shows that g̃(t) = g(t) for any t ∈ [0, tf ].
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Proof of Theorem 4. By Corollary 19 along with Assumption 2, there exists
a subsequence gnk of gn which converges uniformly to some g̃ ∈ G defined
on the interval [0, tf ]. We first show that the density of fZg̃ (t) = f(t) for any
t ∈ [0, tf ]. By Borel arguments, it is sufficient to show that for any p ∈ N and
any k ∈ {0, . . . , 2p − 1} we have

P
(
TZg̃ ∈ [k∆p, (k + 1)∆p]

)
=

∫ (k+1)∆p

k∆p

f(s)ds. (58)

We have that

P
(
TZg̃ ∈ [k∆p, (k + 1)∆p]

)
= lim

n→∞
P
(
TZgnk ∈ [k∆p, (k + 1)∆p]

)
=

∫ (k+1)∆p

k∆p

f(s)ds.

Here, the first equality corresponds to the convergence in distribution of TZgnk

to TZg̃ by Lemma 20 along with Assumption 2, and we use Lemma 21 along
with Assumption 2 in the second equality. Thus, we have shown Equation (58),
which implies that fZg̃ (t) = f(t) for any t ∈ [0, tf ]. Since there is uniqueness of
the IFPT problem, we can deduce that g̃(t) = g(t) for any t ∈ [0, tf ].
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