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We give a general time-varying parameter model, where the multidimensional parameter possibly includes
jumps. The quantity of interest is defined as the integrated value over time of the parameter process
� = T−1 ∫ T

0 θ∗
t dt. We provide a local parametric estimator (LPE) of � and conditions under which we

can show the central limit theorem. Roughly speaking those conditions correspond to some uniform limit
theory in the parametric version of the problem. The framework is restricted to the specific convergence
rate n1/2. Several examples of LPE are studied: estimation of volatility, powers of volatility, volatility
when incorporating trading information and time-varying MA(1).

KEY WORDS: Integrated volatility; Market microstructure noise; Powers of volatility; Quasi-maximum
likelihood estimator

1. INTRODUCTION

Modeling dynamics is essential in various fields, including
finance, economics, physics, environmental engineering, geol-
ogy, and sociology. Time-varying parametric models can deal
with a specific problem in dynamics, namely, the temporal
evolution of systems. The extensive literature on time-varying
parameter models and local parametric methods include and are
not limited to Fan and Gijbels (1996), Hastie and Tibshirani
(1993), or Fan and Zhang (1999) when regression and gener-
alized regression models are involved, locally stationary pro-
cesses following the work of Dahlhaus (1997, 2000), Dahlhaus
and Rao (2006), or any other time-varying parameter models,
for example, Stock and Watson (1998) and Kim and Nelson
(2006).

In this paper, we propose to specify local parametric meth-
ods in the particular context of high-frequency statistics for a
broad class of problems. Local methods have been used exten-
sively in the high-frequency data literature, see, for example,
Mykland and Zhang (2009, 2011), Kristensen (2010), Reiß
(2011), or Jacod and Rosenbaum (2013), among many others.
If we define T as the horizon time, the (random) target quantity
in this monograph is defined as the integrated parameter

� := 1

T

∫ T

0
θ∗

s ds, (1)

which can be equal to the volatility, the covariation between
several assets, the variance of the microstructure noise, the
friction parameter of the model with uncertainty zones (see
Example 4.4 for more details), the time-varying parameters of
the MA(1) model, etc. To estimate the integrated parameter,
we estimate the local parameter on each block by using the
parametric estimator on the observations within the block and
take a weighted sum of the local parameter estimates, where

each weight is equal to the corresponding block length. We call
the obtained estimator the local parametric estimator (LPE).

In Section 3, we investigate conditions under which we can
establish the related central limit theorem with convergence rate
n1/2, where n is the (possibly expected) number of observations.
The framework is such that the local block length vanishes
asymptotically. Basically, we aim to provide the statistician
with a transparent and as simple as possible device to tackle
the time-varying parameter problem based on central limit
theory in the parametric version of the problem. The original
key probabilistic step of the proof, which formally allows for
switching from random to deterministic parameter, is the use
of regular conditional distribution theory (see, e.g., Breiman
1992). The price to pay is some kind of uniformity in the
parametric limit theory results, and to show that some deviation
between the parametric and the time-varying parameter model
vanishes asymptotically.

In Section 4, the technology is used on five distinct examples
to derive the related central limit theorems. As far as the authors
know, all those results are new. Depending on the considered
example, the LPE is useful for one or several of the following
reasons:

• Robustness: The LPE is robust to time-varying parameters
(such as the noise variance, η from the model with uncer-
tainty zones, the parameters of the MA(1) process) which
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are usually assumed constant. This is the case of all our
examples, except for Example 4.3.

• Efficiency: The LPE turns out to be more efficient than the
global estimator or existing concurrent approaches. This is
the case of Example 4.3. In addition, the LPE is conjectured
to be efficient in all our examples except for Example 4.4.

• Definition of new estimators: It can be the case that the
estimator does not work globally but that the LPE provides
a good candidate as in Examples 4.2 and 4.3.

We describe the five examples in what follows. To esti-
mate integrated volatility under noisy observations, Xiu (2010)
studied the quasi-maximum likelihood-estimator (QMLE) orig-
inally examined in Aı̈t-Sahalia, Mykland, and Zhang (2005),
showed the corresponding asymptotic theory when the variance
of the noise is fixed and obtained a convergence rate n1/4, which
is optimal (see Gloter and Jacod 2001). More recently, Aı̈t-
Sahalia and Xiu (2019) establish that it is robust to shrinking
noise satisfying Op(1/n3/4) and Da and Xiu (2017) obtain
central limit theorem with rate ranging from n1/4 to n1/2

depending on the magnitude of the noise. When assuming that
it is Op(1/

√
n), we show that the LPE of the QMLE is optimal

(with rate n1/2) and furthermore robust to time-varying noise
variance.

Another important problem, which goes back to Barndorff-
Nielsen and Shephard (2002), is the estimation of higher
powers of volatility. To do that, we define a LPE where the
local estimates are powers of the QMLE of volatility. Under
the assumption on small noise Op(1/

√
n), we show that this

estimator is optimal and robust to time-varying noise variance.
This is an example where the global approach does not work as
the QMLE is only consistent when estimating volatility.

A more recent problem is the estimation of volatility when
incorporating trading information. To do that, Li, Xie, and
Zheng (2016) assume that the noise is a parametric function
of trading information with a remaining noise component of
order Op(1/

√
n). Their strategy consists in first estimating the

parametric part of the noise, and then take the sum of square
pre-estimated efficient returns. They also advocate for the use
of the QMLE after price pre-estimation although they do not
provide the associated limit theory. We show that the latter
approach, when considering the LPE of QMLE, is optimal and
provides a better asymptotic variance (AVAR) than the former
technique. In addition, a modification of the local estimator as
in Example 2 allows us to estimate higher powers of volatility.

A concurrent ultrahigh frequency approach to model the
observed price was given in Robert and Rosenbaum (2011,
2012), who introduced the semiparametric model with uncer-
tainty zones where η is the one-dimensional friction parameter,
observation times are endogenous and observed prices lie on
a tick grid. As most likely correlated with the volatility, it is
natural to consider ηt as a time-varying parameter. We provide
a formal model extension and establish the according limit
theory of the LPE of the estimator considered in their work.
In addition, our empirical illustration available in the online
supplement seems to indicate that ηt is indeed time-varying.

In the last example, we consider an application in time
series and introduce a time-varying MA(1) model with null
mean. The time series is observed in high frequency on [0, T]

and θ∗
t corresponds to the two-dimensional parameter of the

MA(1) process. We show that the LPE of the MLE is optimal
and document that it outperforms the global MLE and other
concurrent approaches in finite sample.

The remaining of this article is organized as follows. The
LPM is introduced in the following section. Conditions for
the central limit theory are stated in Section 3. We give
the examples in Section 4. We investigate the finite sample
performance of the local QMLE of volatility and compares it
to the global approach in Section 5. We conclude in Section
6. Consistency in a simple model, proofs, additional numerical
simulations on MA(1) model, and an empirical illustration on
the model with uncertainty zones are gathered in an online
appendix.

2. THE LOCALLY PARAMETRIC MODEL (LPM)

2.1. Data-Generating Mechanism

We assume that we observe the d-dimensional vectors Z0,n,
. . . , ZNn,n, where Nn can be random, the observation times
satisfy τ0,n := 0 < τ1,n < · · · < τNn,n ≤ T . The
observations and the observation times are both related to the
latent parameter θ∗

t .
As an example, the observations can satisfy Zτi,n,n = Xτi,n +

εi,n, where Xt = σtdWt stands for the efficient price, Wt is
a standard Brownian motion, εi,n corresponds to the market
microstructure noise (which will be restricted to be of order
εi,n = Op(1/

√
n) due to the limitation of the technology

developed in Section 3), is iid and independent from Xt,
and the latent parameter is equal to the volatility, that is,
θ∗

t = σ 2
t .

We assume that the parameter process θ∗
t takes values in K,

a (not necessarily compact) subset of R
p. We do not assume

any independence between θ∗
t and the other quantities driving

the observations, such as the Brownian motion of the efficient
price process. In particular, there can be leverage effect (see,
e.g., Wang and Mykland 2014; Aı̈t-Sahalia et al. 2017). Also,
the arrival times τi,n and the parameter θ∗

t can be corre-
lated, that is, there is (some kind of) endogeneity in sampling
times.

2.2. Asymptotics

There are commonly two choices of asymptotics in the liter-
ature: the high-frequency asymptotics, which makes the num-
ber of observations explode on [0, T], and the low-frequency
asymptotics, which takes T to infinity. We choose the former
one. Investigating the low-frequency implementation case is
beyond the scope of this article.1

2.3. Estimation

The approach taken here is frequent in high-frequency data.
We define the block size (i.e., the number of observations in a
block) as hn, and the number of blocks as Bn := �Nnh−1

n �. For

1If we set down the asymptotic theory in the same way as in Dahlhaus (1997,
p. 3), we conjecture that the results of this article would stay true.
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i = 1, . . . , Bn we define the parameter average on the ith block
as

�i,n :=
∫ Ti,n

Ti−1,n
θ∗

s ds

�Ti,n
, (2)

where Ti,n := min(τihn , T) and its corresponding parametric
estimator as �̂i,n. Then, we take the weighted sum of �̂i,n and
obtain an estimator of the integrated spot process

�̂n := 1

T

Bn∑
i=1

�̂i,n�Ti,n, (3)

where �Ti,n = Ti,n − Ti−1,n. We call (3) the LPE. We assume
that

hn/n → 0 (4)

so that when observations are regular the block size �Ti,n :=
Thn/n vanishes asymptotically. In view of Condition (T) and
Remark 4, we have similarly that E[�Ti,n] = O(hn/n) also
goes to 0 when observations are not regular.

3. THE CENTRAL LIMIT THEOREM

We present in this section the general technology of our
article.2 It is mainly based on Theorem 2-2 in Jacod (1997),
or similarly Theorem IX.7.3 and Theorem IX.7.28 in Jacod
and Shiryaev (2003) or Theorem 2.2.15 in Jacod and Protter
(2011), along with regular conditional distribution techniques
(see, e.g., Breiman 1992, sec. 4.3, pp.77–80). More specifically,
we provide sufficient conditions to the aforementioned theorem
in the particular context of this article. Those conditions are
based on the limit theory in the parametric version of the
problem, which we assume pre-obtained by the statistician.

The following methods are specified3 to the rate of conver-

gence n
1
2 . Formally, we aim to find the limit distribution of

n
1
2 T−1

Bn∑
i=1

(
�̂i,n − �i,n

)
�Ti,n. (5)

Specifically, we want to show that (5) converges stably4 to a
limit distribution. We first give the definition of stable conver-
gence.

Definition (Stable convergence). A sequence of random
variables Zn is said to converge JT -stably to Z, which is defined
on an extension (	′,F ′, P′) of (	,F , P), if for any E ∈ JT and
for any continuous bounded function f we have

E
[
f (Zn)1E

]→ E
′[f (Z)1E

]
.

2Note that the local approach in this article is related to the large-T-based-
approach and problem of Giraitis, Kapetanios, and Yates (2014).
3It is possible to specify the problem with a general rate of convergence, but all
the considered examples from this article are with convergence rate n1/2.
4One can look at definitions of stable convergence in Rényi (1963), Aldous and
Eagleson (1978), Chapter 3 (p. 56) of Hall and Heyde (1980), Rootzén (1980),
Section 2 (pp. 169–170) of Jacod and Protter (1998), Definition VIII.5.28 in
Jacod and Shiryaev (2003) or Definition 1 in Podolskij and Vetter (2010).

3.1. Regular Observation Case

We consider first the simple case when observations are
regular, that is, τi,n = iT/n and Nn = n. We assume that Jt is a
(continuous-time) filtration on (	,F , P) such that θ∗

t is adapted
to it. In the following of this paper, when using the conditional
expectation Eτ [Z],5 we will refer to the conditional expectation
of Z knowing Jτ . We define the discrete-time version of the
filtration as Ii,n = Jτi,n . Finally, if we denote the returns of the
observations as

Ri,n = Zτi,n,n − Zτi−1,n,n, (6)

we assume that the returns can be expressed as

Ri,n = Fn
({Ps,n}0≤s≤τi−1,n , Ui,n, {θ∗

s }τi−1,n≤s≤τi,n

)
, (7)

where Fn(x, y, z) is a R
d-dimensional nonrandom function,6

the random innovation Ui,n are iid (although with distribution
which can depend on n) adapted to Ii,n and independent of the
past information Ii−1,n, Pt,n is a (possibly multidimensional)
process adapted to Jt which stands for the past that matters in
the model. We further assume that Pt,n is independent from θ∗

t .
The key example stands as follows. We assume that the

observations are following the additive model Zτi,n,n = Xτi,n +
εi,n, where Xt = σtdWt is the efficient price and εi,n the (shrink-
ing) iid noise independent from Xt, and that the parameter is
θ∗

t = σ 2
t . In that case Ui,n = ({Ws}τi−1,n≤s≤τi,n − Wτi−1,n , εi,n),

and Ps,n = εi,n if τi,n ≤ s < τi+1,n. The function7 Fn takes on
the form

Fn =
∫ τi,n

τi−1,n

σsdWs + εi,n − εi−1,n. (8)

Crucial to the expression (8) is that the dependence in the past
is only through the past noise εi−1,n, that is, we do not need to
know the whole past of Pt,n, but rather only the current value.
This will be very useful in what follows.

We provide now the outline of the method. Our goal is to
investigate the limit distribution of (5) using prior limit result
on the parametric version of the problem. A common approach
in high frequency statistics proofs consists in decomposing(
�̂i,n − �i,n

)
into(

�̂i,n − ˆ̃
�i,n

)+ ( ˆ̃
�i,n − θ∗

Ti−1,n

)+ (θ∗
Ti−1,n

− �i,n
)
, (9)

where ˆ̃
�i,n stands for the estimator when we hold the parameter

constant on each block. Then, one can usually deal with the
first term and the third term (most likely using Burkholder–
Davis–Gundy and Markov type of inequalities) and eventually
show that they vanish asymptotically. The main work lies
in establishing the central limit theory of the second term
in (9). A typical proof consists in using locally parametric
results along with some Riemann sum argument. But this
can be cumbersome as the parameter on each block, although

5The related assumption is that τ is a Jt-stopping time.
6We assume that Fn(x, y, z) is jointly measurable, and that Pt,n is taking values
on a Borel space. Additionally, we assume that for any (Ps,n, Ui,n, θ∗

s ), we have
E | Fn(Ps,n, Un, θ∗

s ) |< ∞
7The advised reader will have noticed that Fn is not a function in the ordinary
sense. We still abusively refer to it as a “function.”
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constant, is random. Instead, we propose to look at the further

decomposition of
( ˆ̃
�i,n − θ∗

τi−1,n

)
into( ˆ̃

�i,n − ˆ̃
�P

i,n

)+ ( ˆ̃
�P

i,n − θ∗
τi−1,n

)
, where (10)

ˆ̃
�P

i,n := ˆ̃
�i,n | {Ps,n}0≤s≤τi−1,n = P, (11)

and P is a fixed nonrandom past. In the case of (8), we can
choose P = 0. From this new decomposition, it is expected as
relatively accessible to show that the first term goes to 0, so
that the central limit theory will be investigated on the second
term of the decomposition. By conditioning by one particular
past in (11), we got rid of some randomness, although the
parameter is still random. Using conditional regular distribution
results in our proofs, we actually show that we can also take
the parameter nonrandom. The price to pay for such method is
to show some kind of uniformity in the parameter value when
showing the limit results, and that the first term in (10) vanishes
asymptotically.

We introduce some definition. For i = 1, . . . , Bn we define
the returns on the ith block Rj

i,n := R(i−1)hn+j,n for j =
1, . . . , hn, and similarly Uj

i,n, τ
j
i,n, Wj

i,n and ε
j
i,n. We assume that

�̂i,n := θ̂hn,n(R
1
i,n; · · · ; Rhn

i,n), (12)

where θ̂hn,n is a function on R
dhn . The approximated returns and

the approximated estimates are defined as

R̃j
i,n := Fn

({Ps,n}0≤s≤τ
j−1
i,n

, Uj
i,n, θ∗

Ti−1,n

)
, (13)

ˆ̃
�i,n := θ̂hn,n(̃R

1
i,n; · · · ; R̃hn

i,n). (14)

Basically, those two expressions can be seen as the pendant of,
respectively, (7) and (12) when we hold the parameter constant
equal to its block initial value θ∗

Ti−1,n
. In the case of the key

example (8), we obtain that the approximated returns are of the
form

R̃j
i,n = σTi−1,n(W

j
i,n − Wj−1

i,n ) + (ε
j
i,n − ε

j−1
i,n ). (15)

We also introduce the conditional parametric version as

R̃j,P
i,n := E

[̃
Rj

i,n | {Uk
i,n}k≤j, {Ps,n}0≤s≤Ti−1,n = P

]
, (16)

ˆ̃
�P

i,n := θ̂hn,n(̃R
1,P
i,n ; · · · ; R̃hn,P

i,n ). (17)

Here, we fix the past equal to P in (16), which removes some
randomness compared with (13). In the key example, we can
(arbitrarily) choose P = 0, and this past will only “affect” the
first conditional parametric version of the return on the block
equal to

R̃1,P
i,n = σTi−1,n(W

1
i,n − W0

i,n) + ε1
i,n, (18)

whereas for j = 2, . . . , hn, we have R̃j,P
i,n = R̃j

i,n. This key
example is an instance where the model is 1-Markovian in the
sense that the past only affects the value of the first return on the
block. This is quite mild assumption, and we will see that more
sophisticated models, such as the model with uncertainty zones,
naturally exhibit longer past time-dependence. Moreover, we
introduce a parametric version of the returns and the estimators
when the parameter is equal to θ and the past fixed to P.

Accordingly, the randomness is further reduced in the following
expressions. This will be useful in Condition (E).

Rj,P,θ
i,n := E

[̃
Rj

i,n | {Uk
i,n}k≤j, θ

∗
Ti−1,n

= θ , {Ps,n}0≤s≤Ti−1,n = P
]
,

(19)

ˆ̃
�

P,θ
i,n := θ̂hn,n(R

1,P,θ
i,n ; · · · ; Rhn,P,θ

i,n ). (20)

We provide now the assumptions on θ∗
t . The first assumption

considers the continuous Itô-semimartingale case.

Condition (P1). The parameter θ∗
t is of the form

dθ∗
t := aθ

t dt + σθ
t dWθ

t , (21)

where aθ
t is adapted locally bounded (of dimension p) and σθ

t is
a nonnegative continuous Itô-process adapted locally bounded
(of dimension p × p), and Wθ

t is a standard p-dimensional
Brownian motion.

We introduce a norm for

u ∈ R
p as | u |=

√
(u(1))2 + · · · + (u(p))2.

The following assumption allows for a more general process
than semi-martingales. Nonetheless, this assumption is quite
restrictive, in particular since hn does not show up on the right
hand-side of (22). In practice this is useful when considering a
smooth parameter which cannot be expressed as a “pure drift.”

Condition (P2). θ∗
t satisfies uniformly in i = 1, . . . , Bn that

ETi−1,n

[
sup

Ti−1,n≤s≤Ti,n

| θ∗
s − θ∗

Ti−1,n
|2 ] = op(n

−1). (22)

As the uniformity of limit results on the whole space K
might be impossible to obtain, we allow to work on the compact
subspace KM , which grows to K as M increases. Accordingly,
we assume that θ∗

t is locally bounded on a compact set KM in

the sense that there exists τm
P→ T such that for any m, there

exists Mm > 0 which satisfies θ∗
t ∈ KMm for any t ∈ [0, τm].

We provide in what follows sufficient conditions to the
bias condition (3.10), the increment condition (3.11) and the
Lindeberg condition (3.13) in Theorem 3-2 from Jacod (1997).
(Almost) equivalently, Theorem IX.7.3 and Theorem IX.7.28
in Jacod and Shiryaev (2003) or Theorem 2.2.15 in Jacod and
Protter (2011) could have been used. Those conditions are
based on the parametric version of the problem.

Condition (E). For any (nonrandom) parameter θ ∈ K, we
assume that there exists a (nonrandom) covariance matrix Vθ

positive definite such that for any M > 0, we have Vθ is
bounded for any θ ∈ KM and uniformly in θ ∈ KM and in
i = 1, . . . , Bn we have

E
[( ˆ̃

�
P,θ
i,n − θ

)] = o(n− 1
2 ) (23)

var
[
h

1
2
n
( ˆ̃
�

P,θ
i,n − θ

)] = Vθ T + o(1) (24)

E
[
hn | ˆ̃

�
P,θ
i,n − θ |2 1{hnn− 1

2 | ˆ̃
�

P,θ
i,n − θ |> ε}]

= o(1) , ∀ε > 0. (25)
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We let Bn(t) be the number of blocks before t, and Mb the
set of all bounded martingales. We now provide the central limit
theorem.

Theorem 1 (Central limit theorem with regular observation
times). We assume Condition (E). Moreover, we assume Con-
dition (P1) and that the block size hn is such that

n− 1
2 hn = o(1), (26)

or Condition (P2). Let Mt be a p-dimensional square-integrable
continuous martingale. Furthermore, we assume that for all t ∈
[0, T] we have

n− 1
2 hn

Bn(t)∑
i=1

ETi−1,n

[( ˆ̃
�P

i,n − θ∗
τi−1,n

)(
MTi,n − MTi−1,n

)T] P→ 0,

(27)

n− 1
2 hn

Bn(t)∑
i=1

ETi−1,n

[( ˆ̃
�P

i,n − θ∗
τi−1,n

)(
NTi,n − NTi−1,n

)] P→ 0,

(28)

for all N ∈ Mb(M⊥), where Mb(M⊥) is the class of all ele-
ments of Mb which are orthogonal to M (i.e., to all components
of M). Finally, we assume that

n− 1
2 hn

Bn∑
i=1

(
�̂i,n − ˆ̃

�P
i,n

) P→ 0. (29)

Then, stably in law as n → ∞, we have

n
1
2
(
�̂n − �

)→ Z̃, (30)

where 〈̃Z, Z̃〉t = T−1
∫ t

0 Vθ∗
s
ds, and 〈̃Z, M〉t = 0. In particular,

we have

n
1
2
(
�̂n − �

)→
(

T−1
∫ T

0
Vθ∗

s
ds
) 1

2 N (0, 1). (31)

Remark 1 (Parametric model). Note that in the case where
the time-varying parameter model is equal to the parametric
model with parameter equal to θ∗, the AVAR of �̂n is equal
to the variance of the parametric model, that is,

n
1
2
(
�̂n − �

)→ V
1
2
θ∗ N (0, 1).

Remark 2 (Estimating the AVAR). If the statistician does
not have a (parametric) variance estimator at hand and that her
parametric estimator can be written as in Mykland and Zhang
(2017), one can use the techniques of the cited paper to obtain a
variance estimate. Investigating if such techniques would work
in our setting is beyond the scope of this paper. If she has a vari-
ance estimator v̂hn,n, then for any i = 1, . . . , Bn she can estimate
the ith block variance V̂i,n as V̂i,n := v̂hn,n(R1

i,n; · · · ; Rhn
i,n), and

the AVAR as the weighted sum

V̂n = T−1
Bn∑
i=1

V̂i,n�Ti,n. (32)

This estimator will be consistent under mild uniformity
assumptions.

Remark 3 (Nonzero asymptotic bias). If we further assume
that in place of condition (27) there is a nonzero continuous
process Gt such that

n− 1
2 hn

Bn(t)∑
i=1

ETi−1,n

[( ˆ̃
�P

i,n − θ∗
τi−1,n

)(
MTi,n − MTi−1,n

)T] P→ Gt,

(33)

then (30) still holds, where 〈̃Z, Z̃〉t = T−1
∫ t

0 Vθ∗
s
ds and

〈̃Z, M〉t = Gt, but (31) no longer holds.

3.2. Nonregular Observation Case

We consider now the case when observations can be random
(even endogenous). We define the increment of time as �τi,n :=
τi,n − τi−1,n and make the first natural assumption.

Condition (T). The observation times are such that

E
[
Nn
] = O(n), (34)

sup
1≤i≤Nn

Eτi−1,n

[
(�τi,n)

3] = Op(n
−3). (35)

Remark 4 (Block length). As an obvious consequence of
(35), we have that the block length satisfies E

[
�Ti,n

] =
O(hnn−1).

The observation times are related to θ∗
t , as are the returns.

We assume that (Ri,n, �τi,n) satisfies (7), and that all the
definitions (12)–(20) follow. Finally, we define �T̃P

i,n = τ̃P
hni,n −

τ̃P
(hn−1)i,n and �TP,θ

i,n = τ
P,θ
hni,n − τ

P,θ
(hn−1)i,n. We adapt Condition

(E) in this case.

Condition (E*). For any (nonrandom) parameter θ ∈ K, we
assume that there exists a (nonrandom) covariance matrix Vθ >

0 such that for any M > 0, we have Vθ is bounded for any
θ ∈ KM and uniformly in θ ∈ KM and in i = 1, . . . , Bn we
have

E
[( ˆ̃

�
P,θ
i,n − θ

)
�TP,θ

i,n

] = o(hnn− 3
2 ), (36)

var
[
h

1
2
n
( ˆ̃
�

P,θ
i,n − θ

)
�TP,θ

i,n

] = VθE
[
�TP,θ

i,n

]
Thnn−1 (37)

+ o(h2
nn−2),

E
[
n2h−1

n (AP,θ
i,n )21{n 1

2 AP,θ
i,n >ε}

] = o(1) , ∀ε > 0, (38)

where AP,θ
i,n =| ˆ̃

�
P,θ
i,n − θ | �TP,θ

i,n .

We also adapt the central limit theorem.

Theorem 2 (Central limit theorem with nonregular obser-
vation times). We assume Condition (T) and Condition (E*).
Moreover, we assume Condition (P1) and (26), or Condition
(P2). Let Mt be a p-dimensional square-integrable continuous
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martingale. Furthermore, we assume that for all t ∈ [0, T] we
have

n
1
2

T

Bn(t)∑
i=1

ETi−1,n

[( ˆ̃
�P

i,n − θ∗
τi−1,n

)
�T̃P

i,n

(
MTi,n − MTi−1,n

)T] P→ 0,

(39)

n
1
2

Bn(t)∑
i=1

ETi−1,n

[( ˆ̃
�P

i,n − θ∗
τi−1,n

)
�T̃P

i,n

(
NTi,n − NTi−1,n

)] P→ 0,

(40)

for all N ∈ Mb(M⊥). Finally, we assume that

n
1
2

Bn∑
i=1

(
�̂i,n�Ti,n − ˆ̃

�P
i,n�T̃P

i,n

) P→ 0, (41)

n
1
2

Bn∑
i=1

ETi−1,n

[∣∣�T̃P
i,n − �Ti,n

∣∣] P→ 0, (42)

uniformly in i = 1, . . . , Bn. Then, stably in law as n → ∞, we
have

n
1
2
(
�̂n − �

)→ Z̃, (43)

where 〈̃Z, Z̃〉t = T−1
∫ t

0 Vθ∗
s
ds, and 〈̃Z, M〉t = 0. In particular,

we have

n
1
2
(
�̂n − �

)→
(

T−1
∫ T

0
Vθ∗

s
ds

) 1
2

N (0, 1). (44)

Remark 5 (Nonzero asymptotic bias). More generally, if we
assume that there is a nonzero continuous process Gt such that
for all t ∈ [0, T] we have

n
1
2

T

Bn(t)∑
i=1

ETi−1,n

[( ˆ̃
�P

i,n − θ∗
τi−1,n

)
�T̃P

i,n

(
MTi,n − MTi−1,n

)T] P→ Gt,

(45)

instead of (39), then (43) still holds, where 〈̃Z, Z̃〉t =
T−1

∫ t
0 Vθ∗

s
ds, and 〈̃Z, M〉t = Gt, but (44) no longer holds.

3.3. Bias Correction

As the parametric estimator must satisfy the bias condition
(36), it is useful to consider in some instances a bias-corrected
(BC) version of it which provides the estimate on the ith block
�̂

(BC)
i,n . The BC LPE is then constructed as

�̂(BC)
n = 1

T

Bn∑
i=1

�̂
(BC)
i,n �Ti,n.

4. EXAMPLES

This section provides some applications of the theory intro-
duced in Section 3. The central limit theorems provided in this
section are all new. We choose four examples with regular
observations in which it is sufficient to show the conditions
of Theorem 1. We further consider the model with uncertainty
zones where there is endogeneity in observation times implying
that we have to verify the more general conditions of Theo-
rem 2.

4.1. Estimation of Volatility With the QMLE

4.1.1. Central Limit Theorem. We assume that the noise
has the form

εi,n := n−αv
1
2
τi,nγτi,n ,

where α ≥ 1/2, the noise variance vt is time-varying, and γt are
iid with null-mean and unity variance. In other words we have
εi,n = Op(1/

√
n). The parameter process is defined as the two-

dimensional volatility and noise variance process θ∗
t = (σ 2

t , vt)

and thus � = (T−1
∫ T

0 σ 2
t dt, T−1

∫ T
0 vtdt

)
. Correspondingly we

work locally with the QMLE considered in Xiu (2010, p. 236)
and we introduce the notation for the corresponding LPE �̂n =
(̂σ 2

n , v̂n).
We also consider the bias-corrected version of the QMLE

�̂
(BC)
n , where the procedure to construct the unbiased estimator

is given in Section 4.1.2. In numerical simulations under a
realistic framework, this bias is not observed even with small
values of n (see Section 6 in Xiu (2010) and Section 5 in Clinet
and Potiron (2018b)), and thus it is safe to use �̂n = (̂σ 2

n , v̂n) in
practice.

The assumption of α ≥ 1/2 is quite restrictive in view of
the related literature on the QMLE. Unfortunately in the case
α < 1/2, the techniques of this article do not apply. Xiu (2010)
showed the CLT of the QMLE when vt is non time-varying
and α = 0. In the same setting, Clinet and Potiron (2018b)
showed that the AVAR can be smaller when using the LPE
with Bn = B fixed and documented that in finite sample the
LPE was advantageous over the global QMLE. Aı̈t-Sahalia and
Xiu (2019) actually establish that the MLE is robust to noise
of the form Op(1/n3/4). Da and Xiu (2017) show the central
limit theory with rate of convergence ranging from n1/2 to n1/4

depending on the magnitude of the noise.
However, the techniques allow us to investigate how the

LPE behaves in a different asymptotics, that is, when the noise
variance is Op(1/

√
n) and Bn tends to +∞. Moreover, we allow

for heteroscedasticity in noise variance. Finally, in the case
where the noise variance goes to 0 at the same speed as the
variance of the returns, that is, α = 1/2, we can also retrieve
the integrated variance noise. In accordance with the setting of
this paper, the convergence rate of both the volatility and the
noise is n1/2.

To verify the conditions for the CLT, we use heavily the
asymptotic results of the QMLE (see Theorem 6 in Xiu (2010))
and the MLE in the low-frequency asymptotics (see Proposition
1 in p. 369 of Aı̈t-Sahalia, Mykland, and Zhang (2005)). The
result is formally embedded in the following theorem.

Theorem 3 (QMLE). We define FX
t the filtration generated

by Xt.

(i) We assume that α > 1
2 . Then, FX

T -stably in law as n → ∞,

n
1
2

(
σ̂ 2

n − T−1
∫ T

0
σ 2

s ds

)
→
(

6T−1
∫ T

0
σ 4

s ds

) 1
2

N (0, 1).

(46)

(ii) When α = 1
2 , we have FX

T -stable convergence in law of

n
1
2
(
�̂

(BC)
n − �

)
to a mixed normal random variable with
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zero mean and AVAR given by

T−1

(
A − ∫ T

0

(
σ 4

s + 2σ 2
s vs + 4σ 3

s

√
4vs + σ 2

s

)
ds

• 1
2

∫ T
0

(
2vs + σ 2

s

)(
σ 2

s + 2vs + σs
√

4vs + σ 2
s

)
ds

)
,

(47)

where A = ∫ T
0

(
2σ 4

s + 4σ 3
s

√
4vs + σ 2

s

)
ds.

Remark 6 (Estimation of high-frequency covariance with
the QMLE). To estimate integrated covariance under noisy
observations and asynchronous observations, Aı̈t-Sahalia, Fan,
and Xiu (2010) introduced a QMLE based on a synchronization
of observation times. It is clear that their generalized synchro-
nization method can be expressed as a LPM. In view of the
close connection between their proposed estimator (2) on p.
1506 and the QMLE studied in Section 4.1, the conditions of
our work can be verified and thus Theorem 2 (p. 1506) of the
authors can be adapted with the LPE in a framework similar to
Section 4.1, that is, when the noise variance is O(n−1/2) and
time-varying.

4.1.2. Algorithm to Construct the Unbiased Estimator.
We describe here the algorithm to obtain �̂

(BC)
n . Note that the

bias-correction is only required when α = 1/2.

1. We compute the local QMLEs.
2. From Theorem 6 (p. 241) in Xiu (2010), we compute the

corresponding W1 and W2.
3. We change some entries of the matrices to ensure unbiased

estimates when using formulas (21) and (22) in the afore-
mentioned theorem.

4. We compute the unbiased local QMLE using the formulas
(21) and (22) with the corrected matrices.

5. The bias-corrected LPE �̂
(BC)
n is taken as the mean of local

bias-corrected estimates.

4.2. Estimation of Powers of Volatility

Here the parameter is θ∗
t = g(σ 2

t ) with g not being the iden-
tity function. We are concerned with the estimation of powers
of volatility � = T−1

∫ T
0 g(σ 2

t )dt under microstructure noise
with variance O(1/

√
n) in the same setting as in Section 4.1.

The problem was introduced in Barndorff-Nielsen and Shep-
hard (2002). They showed that the case g(x) = x2 is related
to the asymptotic variance of the realized volatility. One can
also consult Barndorff-Nielsen et al. (2006), Mykland and
Zhang (2017, Proposition 2.17, p. 138) and Renault, Sarisoy,
and Werker (2017) for related developments. All those studies
assume no microstructure noise.

When there is microstructure noise, Jacod, Podolskij, and
Vetter (2010) used the pre-averaging method. In the special case
of quarticity, one can also look at Mancino and Sanfelici (2012)
and Andersen, Dobrislav, and Schaumburg (2014). In the case
of tricicity, see Altmeyer and Bibinger (2015).

Under no microstructure noise, block estimation (Mykland
and Zhang 2009, sec. 4.1, pp. 1421–1426) has the ability to
make the mentioned estimators approximately or fully efficient.
The path followed to do that is to first estimate locally the
volatility σ̂ 2

i,n and then take a Riemann sum of g(̂σ 2
i,n). See also

Jacod and Rosenbaum (2013) for an extended version of the
method in some ways.

In the same spirit when allowing for microstructure noise,
we propose to use locally the estimation g(̂σ 2

i,n), where σ̂ 2
i,n is

the QMLE estimate of the volatility on the ith block. As pointed
out in Jacod and Rosenbaum (2013), even if we use locally
the bias-corrected estimator

(
σ̂

(BC)
i,n

)2, we will pay a price for
the fact that we use the function g in front. In particular, an
asymptotic bias quite challenging to correct for will appear in
the asymptotic limit theory, as seen in Theorem 3.1 in the cited
paper. To get rid of most parts of this bias, we follow the idea
at the beginning of Section 3.2 of the cited work and choose hn

such that

n−1/2h3/2
n → ∞. (48)

Note that this is not incompatible with the other condition (26),
that is, n−1/2hn → 0, that will be assumed in what follows.
With (48), the part of the bias that does not vanish grows to the
extent that it explodes asymptotically. This leads us to consider
the following two bias-corrected estimators

�̂(BC,1)
n = B−1

n

Bn∑
i=1

(
g(̂σ 2

i,n) − 3

hn
σ̂ 4

i,ng′′(̂σ 2
i,n)
)
. (49)

�̂(BC,2)
n = B−1

n

Bn∑
i=1

(
g
((

σ̂
(BC)
i,n

)2)

−
(̂σ

(BC)
i,n )4 + 2(̂σ

(BC)
i,n )3

√
4̂v(BC)

i,n + (̂σ
(BC)
i,n )2

hn
g′′

×
((

σ̂
(BC)
i,n

)2)). (50)

The theorem is given in what follows. The proof uses a local
delta method and then follows the proof of Theorem 3.

Theorem 4 (Powers of volatility). Let g a nonnegative
function such that

| g(j)(x) |≤ K(1+ | x |p−j), j = 0, 1, 2, 3, (51)

for some constants K > 0, p ≥ 3.

(i) We assume that α > 1
2 . Then, FX

T -stably in law as n → ∞,

n
1
2
(
�̂(BC,1)

n − �
)→

(
6T−1

∫ T

0

(
g′(σ 2

s )
)2

σ 4
s ds

) 1
2

×N (0, 1). (52)

(ii) When α = 1
2 , we have FX

T -stably in law that

n
1
2
(
�̂(BC,2)

n − �
)→

(
T−1

∫ T

0

(
g′(σ 2

s )
)2

×(2σ 4
s + 4σ 3

s

√
4vs + σ 2

s

)
ds

) 1
2

N (0, 1).

To reflect on the powerfulness of the local approach, the
reader can note that the global QMLE is estimating the wrong
quantity when g is different from the identity function, except
when the volatility is constant. To see why this is the case, we
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consider the estimation of quarticity (i.e., with g(x) = x2) and
we note that a global QMLE would estimate g(

∫ T
0 σ 2

t dt), which

is except when volatility is constant different from
∫ T

0 σ 4
t dt.

The extensive empirical work in Andersen, Dobrislav, and
Schaumburg (2014) also indicates that the two quantities are
very different in practice.

4.3. Estimation of Volatility and Higher Powers of Volatil-
ity Incorporating Trading Information

To incorporate all the information available in high fre-
quency data (e.g., in addition to transaction prices, we also
observe the trading volume, the type of trade, that is, buyer
or seller initiated, more generally bid/ask information from
the limit order book), Li, Xie, and Zheng (2016) considered
the model where the noise is partially observed through a
parametric function

Zτi,n,n = Xτi,n + εi,n = Xτi,n + h(Ii,n, ν) + ε̃i,n,

where Ii,n is the vector of information at time τi,n and ε̃i,n is the
noisy part of the original noise εi,n. See also the related papers
Chaker (2017) and Clinet and Potiron (2017, 2018c, 2018d).
Here again the observation times are assumed to be regular, that
is, τi,n = iT/n.

The authors assumed that ε̃i,n is with mean 0, finite SD
and that n var[ε̃i,n] → v, which in turn implies that ε̃i,n =
Op(1/

√
n). To embed this assumption in our LPM framework,

there is no harm assuming that

ε̃i,n = n−αv
1
2 γτi,n ,

where α ≥ 1/2 and γt are iid with null-mean and unity
variance. They estimated ν and the underlying price as

ν̂ = arg min
ν

1

2

Nn∑
i=1

((Zτi,n,n − Zτi−1,n,n)

−(h(Ii,n, ν) − h(Ii−1,n, ν)))2,

X̂τi,n = Zτi,n,n − h(Ii,n, ν̂).

The authors then estimated the integrated volatility with

ERVext =
Nn∑
i=1

(�X̂τi,n)
2 + 2

Nn∑
i=2

�X̂τi,n�X̂τi−1,n ,

where �X̂τi,n = X̂τi,n − X̂τi−1,n , and show the according central
limit theory. Under suitable assumptions, they obtain the opti-
mal convergence rate n1/2 and the AVAR when T = 1

AVAR(ERV) = 6
∫ 1

0
σ 4

t dt + 8v
∫ 1

0
σ 2

t dt + 8v2.

They also considered another estimator (which they call E-
QMLE) which consists in using the QMLE from Xiu (2010),
which we considered as a local estimator in Example 4.1, on the
estimated observations X̂τi,n . They indicated that the E-QMLE
might yield a smaller AVAR (see their discussion on p. 38),
and they report in their numerical study that its finite sample
performance is comparable to ERVext (see Table 2 in p. 41).
They did not investigate the corresponding central limit theory.

With the theory provided in our article, we cannot investigate
the E-QMLE, but rather the E-(LPE of QMLE), that is, we
apply Example 4.1 on X̂τi,n . To keep notation of our paper, we
denote �̂n the E-(LPE of QMLE) estimator of volatility and
�̂

(BC)
n its bias-corrected version (i.e., E-(BC LPE of QMLE)).

The AVARs obtained in Theorem 5 are the same as in Theo-
rem 3. This is due to the fact that the estimation of ν is very
accurate featuring n as a rate of convergence and thus the pre-
estimation does not impact the AVAR. This was already the case
for the ERVext (see the proof of Theorem 3 in pp. 46–47 of Li,
Xie, and Zheng (2016)).

Recalling that the LPE of QMLE is conjectured to be more
efficient than the QMLE, in particular this implies that E-
(LPE of QMLE) is also conjectured to be more efficient than
E-QMLE. In Figure 1, we can see that E-(LPE of QMLE)
highly improves the AVAR compared to the ERVext. The
improvement gets bigger as the noise of ε̃i,n increases. When
setting the volatility and the noise variance as in the setting
of the numerical study in Li, Xie, and Zheng (2016), the ratio
of AVARS is equal to 0.7. When we further assume no jumps
in volatility, this ratio goes to 0.2. When choosing a bigger
noise variance 1.44e−07 which remains reasonable, this ratio
is lower than 0.01. The overall picture is clearly in favor of the
E-(LPE of QMLE). We provide the theorem of this estimator in
what follows.

Theorem 5 (E-(LPE of QMLE)). Under Assumption A in Li,
Xie, and Zheng (2016, p. 7):

(i) We assume that α > 1
2 . Then, stably in law8 as n → ∞,

n
1
2

(
�̂n − T−1

∫ T

0
σ 2

s ds

)
→
(

6T−1
∫ T

0
σ 4

s ds

) 1
2

N (0, 1).

(53)

(ii) When α = 1
2 , we have stable convergence in law of

n
1
2
(
�̂(BC)

n − �
)→(

T−1
∫ T

0

(
2σ 4

s + 4σ 3
s

√
4v + σ 2

s

)
ds

) 1
2

N (0, 1).

We discuss now briefly how to estimate the higher powers of
volatility, that is, when θ∗

t = g(σ 2
t ) with g not being the identity

function. We consider the estimators from Example 4.2. The
difference with Example 4.2 is that this estimator is used on the
estimated price X̂τi,n based on the information rather than on the
raw price. The related theorem is given in what follows.

Theorem 6 (Powers of volatility). Under Assumption A in
Li, Xie, and Zheng (2016, p.7):

(i) We assume that α > 1
2 . Then, stably in law as n → ∞,

n
1
2
(
�̂(BC,1)

n − �
)→

(
6T−1

∫ T

0

(
g′(σ 2

s )
)2

σ 4
s ds

) 1
2

N (0, 1).

(54)

8Here and in the following statements, the stable convergence in law is with
respect to the filtration considered in Li, Xie, and Zheng (2016).
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Figure 1. AVAR of ERVext and E-(LPE of QMLE) as a function of the noise variance, that is, the variance of ε̃i,n. The horizon time is set to
T = 1 (which corresponds to 6.5 hr of intraday trading). On the left hand-side, we follow exactly the setting of the numerical study in Li, Xie,
and Zheng (2016), where σ 2

t = 0.000125 if 0.05 ≤ t < 0.95 and σ 2
t = 15 ∗ 0.000125 otherwise. There is on average one observation a second,

which corresponds to n = 23,400. On the right-hand side, the setting is the same except that we remove the jumps in volatility and consider
σ 2

t = 0.000125 for 0 ≤ t ≤ 1.

(ii) When α = 1
2 , we have

n
1
2
(
�̂(BC,2)

n − �
)→

(
T−1

∫ T

0
(g′(σ 2

s ))2

×(2σ 4
s + 4σ 3

s

√
4v + σ 2

s

)
ds

) 1
2

N (0, 1).

4.4. Estimation of Volatility Using the Model With Uncer-
tainty Zones

We introduce a time-varying friction parameter extension
to the model with uncertainty zones introduced in Robert and
Rosenbaum (2011). To incorporate microstructure noise in the
model, we define αn as the tick size, and the related asymptotics
is such that αn → 0. Correspondingly we assume that the
observed price Zτi,n,n takes values on the tick grid (i.e., modulo
of size αn).

We discuss first a simple version of the model with uncer-
tainty zones, which features endogeneity in arrival times. In a
frictionless market, we can assume that all the returns (which
we recall to be defined as Ri,n = Zτi,n,n − Zτi−1,n,n) have a
magnitude of exactly one tick, and that the next transaction
will occur when the latent price process crosses the mid-tick
value Xτi,n + αn

2 in case of the price goes up (or Xτi,n − αn
2

when the price goes down). We extend this toy model in what
follows.

The authors introduced the discrete variables Li,n that stands
for the absolute size, in tick number, of the next return. In
other words, the next observed price has the form Zτi+1,n,n =
Zτi,n,n ± αnLi,n. They also introduced a continuous (possibly
multidimensional) time-varying parameter χt, and assume that
conditional on the past, Li,n takes values on {1, . . . , m} with

Pτi,n(Li,n = k) = pk(χτi,n)

for some unknown positive differentiable with bounded deriva-
tive functions pk such that

∑m
k=1 pk = 1.

Also, the frictions induce that the transactions will not occur
exactly when the efficient process crosses the mid-tick values.
For this purpose, in the notation of Robert and Rosenbaum
(2012), let 0 < η < 1 be the parameter that quantifies the
aversion to price change. The frictionless scenario corresponds
to η = 0. Conversely, the agents are very averse to trade when
η is closer to 1. If we define X(α)

t as the value of Xt rounded
to the nearest multiple of α, the sampling times are defined
recursively as τ0,n := 0 and for any positive integer i as

τi,n := inf

{
t > τi−1,n : Xt = X(αn)

τi−1,n
− αn

(
Li−1,n − 1

2
+ η

)
or Xt = X(αn)

τi−1,n
+ αn

(
Li−1,n − 1

2
+ η

)}
.

(55)

Correspondingly, the observed price is assumed to be equal to
the rounded efficient price Zτi,n,n := X(αn)

τi,n .



688 Journal of Business & Economic Statistics, July 2020

In the extension of (55) when ηt is time-varying, we assume
that the sampling times are defined recursively as τi,n := 0 and
for any positive integer i as

τi,n := inf

{
t > τi−1,n : Xt = X(αn)

τi−1,n
− αn

(
Li,n − 1

2
+ ητi−1,n

)
or Xt = X(αn)

τi−1,n
+ αn

(
Li,n − 1

2
+ ητi−1,n

)}
.

(56)

The idea behind the time-varying friction model with uncer-
tainty zones is that we hold the parameter ηt constant between
two observations.

To express the model with uncertainty zones as a LPM, we
consider that θ∗

t := (σ 2
t , ηt, χt). Following the definition (p.

11) in Robert and Rosenbaum (2012), we further introduce a
Brownian motion W ′

t independent of all the other quantities,
and let � denote the cumulative distribution function of a
standard Gaussian random variable. We specify the definition
of Li,n related to W ′

t as

gt,n = sup{τj,n : τj,n < t},

L′
t =

m∑
k=1

k1

⎧⎨⎩�

(
W ′

t − Wgt,n√
t − gt,n

)
∈
⎡⎣k−1∑

j=1

pj(χt),
k∑

j=1

pj(χt)

⎤⎦⎫⎬⎭ ,

and Li,n = L′
τi,n. If we set the random innovation as the two-

dimensional process Ui,n := ((Wt − Wτi−1,n)t≥τi−1,n , ((W ′
t −

W ′
τi−1,n

)t≥τi−1,n), and the past as Pτi,n = (Li,n, sign(Ri,n)), we can

deduce the form of Fn in the model.9

We provide in what follows the definition of the estimators.
We are not interested in estimating directly χt and thus we
consider the subparameter � := (

∫ T
0 σ 2

t dt,
∫ T

0 ηtdt) to be
estimated. For k = 1, . . . , m, we define

N(a)
t,k,n =

Nn(t)∑
i=1

1{Ri,nRi−1,n<0 , |Ri,n|=kαn},

N(c)
t,k,n =

Nn(t)∑
i=1

1{Ri,nRi−1,n>0 , |Ri,n|=kαn}

as, respectively, the number of alternations and continuations of
k ticks. By alternation (continuation) of k ticks, we mean that
the return magnitude is of k ticks with a direction opposite to
(with the same direction as) the previous return. We define the
estimator of η as10

η̂t,n :=
m∑

k=1

λt,k,nut,k,n, (57)

9The advised reader will have noticed that a priori, sign(Ri,n) and ηt are
not independent, so that the assumptions of the LPM do not hold entirely.
This problem can be circumvented as the former is actually conditionally
independent from the latter.
10Actually, the estimator considered here slightly differs from the original
definition (p. 8) in Robert and Rosenbaum (2012) as it provides smaller
theoretical finite sample bias. Asymptotically, both estimators are equivalent
and thus all the theory provided in Robert and Rosenbaum (2012) can be used
to prove Theorem 7.

with

λt,k,n := N(a)
t,k,n + N(c)

t,k,n∑m
j=1

(
N(a)

t,j,n + N(c)
α,t,j

) ,

ut,k,n := max

{
0, min

{
1,

1

2

(
k

(
N(c)

t,k,n

N(a)
t,k,n

− 1

)
+ 1

)}}
,

where Nn(t) is defined as the integer satisfying ZτNn(t),n < t <

ZτNn(t)+1,n , we assume that C/0 := ∞, and in particular uα,t,k =
1 when N(a)

α,t,k = 0. The key idea is that uα,t,k are consistent
estimators of η. Based on the friction parameter estimate, we
can construct a consistent latent price estimator as

X̂τi,n = Zτi,n,n − αn(1/2 − η̂t,n)sign(Ri,n).

The estimator of integrated volatility is obtained using the usual
realized volatility estimator on the estimated price defined as

R̂Vt,n =
Nn(t)∑
i=1

(X̂τi,n − X̂τi−1,n)
2.

The related local estimators �̂i,n := (̂σ 2
i,n, η̂i,n) are constructed

from local versions of
(
R̂Vt,n, η̂t,n

)
.

Theorem 7 (Time-varying friction parameter model with
uncertainty zones). Let Gt be the filtration generated by Xt, χt,
and ηt. GT -stably in law as n → ∞,

α−1
n

(
�̂n − �

)→
(

T−1
∫ T

0
Vθ∗

s
ds

) 1
2

×N (0, 1), (58)

where Vθ can be straightforwardly inferred from the definition
of Lemma 4.19 in p. 26 of Robert and Rosenbaum (2012).

Remark 7 (Convergence rate). Note that, equivalently, the

convergence rate in (58) is n
1
2 when n corresponds to the

expected number of observations. One can consult Remark 4
in Potiron and Mykland (2017) for more details about this.

4.5. Application in Time Series: The Time-Varying
MA(1)

We first specify the LPM for a general one-dimensional time
series. In that case, we assume that the observation times are
regular. We further assume that the returns Ri,n stand for time
series observations. Finally, we assume that the time-varying
time series can be expressed as the interpolation of θ∗

t via

Ri,n = Fn
({Ps,n}0≤s≤τi−1,n , Ui,n, θ∗

τi−1,n

)
, (59)

where θ∗
t is assumed to be independent of all the innovations.

When θ∗
t is constant, numerous time series11 are of the form

(59).

11We can actually show that any time series in state space form can be expressed
with a corresponding Fn function.
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We now discuss the specific MA(1) representation. Several
time-varying extensions are possible and we choose to work
with the time-varying parameter model

Ri,n = μτi−1,n +√κτi−1,nλi,n + βτi−1,n

√
κτi−1,nλi−1,n,

where λi,n are standard normally-distributed white noise
error terms, and κt is the time-varying variance. The three-
dimensional parameter is defined as θ∗

t := (μt, βt, κt) ∈
R

2 × R
+∗ . We fix both the innovation and the past equal to

the white noise Ui,n = λi,n and Pτi,n,n = λi,n. We have thus
expressed the MA(1) as a LPM.

We discuss how to estimate the parameters in what follows.
For simplicity, we assume that μt = 0. The target quantity is
thus equal to � = (

∫ T
0 βtdt,

∫ T
0 κtdt). The local estimator is the

MLE (see Hamilton 1994, sec. 5.4). On each block (of size hn),
the MLE bias is of order h−1

n (Tanaka 1984) and thus the bias
condition (23) is not satisfied. Nonetheless, we can correct for
the bias up to the order O(h−2

n ) as follows. We define the bias-
corrected estimator as

�̂
(BC)
i,n = �̂i,n − b(�̂i,n, hn),

where the bias function b(θ , h) can be derived following the
techniques in Tanaka (1984). In particular this implies that
the bias-corrected estimator satisfies the bias condition if hn

is chosen such that n1/4 = o(hn). In practice this bias can
be obtained by Monte Carlo simulations (see our simulation
study).

In the parametric case and in a low frequency asymptotics
where T → ∞ and observations times are 0, �, . . . , T = n�

with � > 0, known results (see, e.g., the proof of Proposition
I in pp. 391–393 of Aı̈t-Sahalia, Mykland, and Zhang (2005))
show that the AVAR of the MLE is such that

n1/2((β̂, κ̂) − (β, κ)
)→

(
1 − β2 0

0 2κ2

)1/2

N (0, 1).

The following theorem provides the time-varying version of the
asymptotic theory when T is fixed.

Theorem 8 (Time-varying MA(1)). Let Fθ
t the filtration

generated by θ∗
t . We assume that n1/4 = o(hn) and Condition

(P2). Then, Fθ
T -stably in law as n → ∞,

n
1
2
(
�̂(BC)

n − �
)→

(
T−1

(∫ T
0 (1 − β2

s )ds 0
0

∫ T
0 2κ2

s ds

)) 1
2

×N (0, 1).

4.6. Further Examples

Two further examples include our own recent work. Potiron
and Mykland (2017) introduced a bias-corrected Hayashi–
Yoshida estimator (Hayashi and Yoshida 2005) of the high-
frequency covariance and showed the corresponding CLT under
endogenous and asynchronous observations. To model dura-
tion data, Clinet and Potiron (2018a) built a time-varying
Hawkes self-exciting process, derived the bias-corrected MLE
and showed the CLT of the corresponding LPE.

4.7. Discussion

We provide in what follows a discussion on the efficiency
and robustness of the specific examples considered in this
section. The subsequent techniques may also be useful to tackle
other examples from the literature.

4.7.1. Efficiency. There are many problems where n1/2

is rate-optimal from Gloter and Jacod (2001), such as all the
examples considered in this section. In addition, the local
feature of the technology should yield efficiency in case the
parametric estimator is efficient itself. This is the case of (47)
in Example 4.1, Theorem 4(ii) in Example 4.2, Theorem 5(ii)
and Theorem 6(ii) in Example 4.3, Theorem 8 in Exam-
ple 4.5, where the parametric estimator achieves the Cramér–
Rao bound of efficiency locally.

In the case of (46) in Example 4.1, that is, when estimating
volatility assuming that the noise is very small εi,n = op(1/

√
n),

the AVAR is equal to 6T−1
∫ T

0 σ 4
s ds, whereas the efficient

bound 2T−1
∫ T

0 σ 4
s ds is attained by the RV. This increases the

variance by a factor of 3, which is also observed on the MLE
(when assuming the volatility is constant) when misspecified on
a model which does not incorporate microstructure noise (see,
e.g., Barndorff-Nielsen et al. 2008, sec. 2.4, pp. 1486–1487).

4.7.2. Robustness to Drift and Jumps in the Latent Price
Process. We focus on the specific case where the observa-
tions are related to a latent continuous-Itô price model dXt =∫ t

0 σudWu, as in Examples 4.1–4.4 (Example 4.5 considers a
time series without any underlying price process). We discuss
how we can add a drift and jumps in Xt in those examples.

We first show how to add a drift component. By Girsanov
theorem, in conjunction with local arguments (see, e.g., Myk-
land and Zhang 2012, pp. 158–161), we can weaken the price
and volatility local-martingale assumption by allowing them to
follow an Itô-process (of dimension 2 in case of volatility or
powers of volatility estimation), with a volatility matrix locally
bounded and locally bounded away from 0, and drift which is
also locally bounded.

It is also easy to see that we can allow for finite activity
jumps in Xt. To do that, we assume that �̂i,n is taking values on
a compact set.12. Consider Jn ⊂ {1, . . . , Bn} the set of blocks
where there is at least one jump in Xt. As the number of blocks
Bn → ∞, the cardinality of Jn is at most finite, and thus we
have that

1

T

Nn∑
i=1

�̃i,n�Ti,n ≈ 1

T

∑
i/∈Jn

�̃i,n�Ti,n.

It is then immediate to adapt the proof of the CLT. On the
other hand, if infinitely many jumps are possible in both the
price process and the parameter, the theoretical development is
beyond the scope of this paper.

4.7.3. Robustness to Jumps in θ∗
t . By a similar reason-

ing as for when adding jumps in Xt, the techniques of this article
are robust to jumps (of finite activity) in θ∗

t in all our examples.

12The MLE is always performed on a compact set, so the assumption is trivially
satisfied in that case, which corresponds to Examples 4.1–4.3. Moreover, the
estimator of η in Example 4.4 is bounded by definition, but one would need to
bound the volatility estimator to apply the technique.
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4.7.4. Nonregular Observation Times. We also assume
here that there is a latent price process and reason about the type
of observation times which falls into the LPM. We consider first
the time deformation of Barndorff-Nielsen et al. (2008, sec. 5.3,
pp. 1505–1507). To express their setting as a LPM, we assume
that the observation times are of the form

τi,n = �i/(nT), (60)

where �t is a stochastic process satisfying �t = ∫ t
0 �̃2

udu,
with �̃t a strictly positive parameter of the LPM. We can then
construct a (change of time) process X̃t = X�t so that for X̃t the
observations are regular. In view of Dambis Dubins-Schwarz
theorem (see, e.g., Revuz and Yor 1999, Theorem 1.6, p. 181)
we have that [X]T = [X̃]�T . In addition, it is immediate to see
that Condition (T) and (42) hold in that case.

Alternatively one can assume that the quadratic variation of
time (see, e.g., Mykland and Zhang 2006, Assumption A, p.
1939) exists and that observation times are independent of the
price process. Under suitable assumptions, we can also show
that Condition (T) and (42) hold.

Our setting can actually allow for (some kind of) endoge-
nous stopping times as in the case of the model with uncertainty
zones detailed in Example 4.4. The type of endogeneity is such
that there is no asymptotic bias in the related central limit
theorem.

Finally, the model allows for endogenous observation times
in the general multidimensional HBT model introduced in
Potiron and Mykland (2017). In that case, the central limit
theorem features an asymptotic bias.13

4.7.5. Estimating Time-Varying Functions of θ∗
t .

Another nice corollary about the introduced theory is that
we can obtain the central limit theorem of the powers of
the integrated parameter g(t, θ∗

t ) for g smooth enough when
using the local estimates g(Ti−1,n, �̂i,n). Essentially, the
proof uses on each block a Taylor expansion as in the delta
method. We apply the technique on the local QMLE in
Example 4.2 and on an adapted estimator from Li, Xie, and
Zheng (2016) in Example 4.3 to estimate the higher powers of
volatility.

5. NUMERICAL STUDY: ESTIMATION OF
VOLATILITY WITH THE QMLE

5.1. Goal of the Study

To investigate the finite sample performance of the LPE, we
consider the local QMLE introduced in Section 4.1. The goal
of the study is 2-fold. First, we want to investigate how the LPE
performs compared to the global QMLE. Second, we want to
discuss about the choice of the number of blocks Bn in practice.
Complementary simulation results can be found in Clinet and
Potiron (2018b).

13Details about the model can be found in a previous version of the manuscript
circulated under the name “Estimating the Integrated Parameter of the Locally
Parametric Model in High-Frequency Data.”

5.2. Model Design

We perform Monte Carlo simulations of M = 1000 days of
high-frequency observations where the related horizon time is
set to T = 1/252 (i.e., annualized). One working day stands for
6.5 hr of trading activity, which can also be expressed as 23,400
sec. We consider three high-frequency sampling frequency
scenarios: every second, every other second, and every 3 sec.

We perform local QMLE with number of blocks ranging
from Bn = 1 (i.e., the global QMLE case) to Bn = 20. The
corresponding number of observations per block ranges from
hn = 1170 to hn = 23,400 in the case of 1-sec sampling
frequency, from hn = 585 to hn = 11,700 if we sample
ever other second, and from hn = 390 to hn = 7800 when
subsampling every 3 sec. Note that the minimal number of
observations per block remains reasonable in view of the finite
sample performance of the global QMLE (see the numerical
study in Xiu (2010)).

We bring forward the Heston model with U-shape intraday
seasonality component and jumps in volatility as

dXt = bdt + σtdWt,

σt = σt−,Uσt,SV ,

where

σt,U = C + Ae−at/T + De−c(1−t/T) − βστ−,U1{t≥τ },
dσ 2

t,SV = α(σ̄ 2 − σ 2
t,SV)dt + δσt,SVdW̄t,

where the parameters are set to b = 0.03, C = 0.75, A =
0.25, D = 0.89, a = 10, c = 10, the volatility jump size
parameter β = 0.5, the volatility jump time τ follows a
uniform distribution on [0, T], α = 5, σ̄ 2 = 0.1, δ = 0.4,
W̄t is a standard Brownian motion such that d〈W, W̄〉t = φdt,
φ = −0.75, σ 2

0,SV is sampled from a Gamma distribution

of parameters (2ασ̄ 2/δ2, δ2/2α), which corresponds to the
stationary distribution of the CIR process. For further reference,
see Clinet and Potiron (2018b). The model is almost the same
as that of Andersen, Dobrev, and Schaumburg (2012). Finally,
the noise is assumed normally distributed with zero-mean and
constant variance v set so that the noise to signal ratio defined
as

ξ2 = a2
0√

T
∫ T

0 σ 4
u du

(61)

is equal to ξ2 = 0.0001.

5.3. Results

Table 1 reports the sample bias, SD, and the RMSE of
the local quasi maximum likelihood volatility estimator. The
number of blocks ranges from Bn = 1, which corresponds to
the global QMLE, to Bn = 20. Regardless of the sampling
frequency, the numerical experiment results are quite similar.
There is a very small sample bias (the bias to SD ratio
magnitude is around 0.03), which increases with the number
of blocks while staying very small, all of which hinting that
the it is not necessary to use a bias correction of the local
QMLE in practice. The SD decreases and then stays (roughly)
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Table 1. In this table, we report the sample bias (×107), the SD (×106) and the RMSE (×106) for local QMLE with number of blocks ranging
from Bn = 1 (i.e., the global QMLE case) to Bn = 20

Samp. freq. 1 sec. 1 sec. 1 sec. 2 sec. 2 sec. 2 sec. 3 sec. 3 sec. 3 sec.

No. blocks Bias SD RMSE Bias SD RMSE Bias SD RMSE

1 −2.398 8.158 8.162 −2.503 10.813 10.814 −0.492 11.798 11.798
2 −2.614 7.938 7.943 −3.604 10.634 10.640 −0.700 11.642 11.642
3 −2.882 7.820 7.825 −4.041 10.537 10.544 −0.600 11.615 11.615
4 −2.864 7.717 7.722 −4.295 10.500 10.508 −1.210 11.596 11.597
5 −3.181 7.720 7.727 −4.757 10.528 10.539 −1.882 11.587 11.589
6 −3.396 7.695 7.702 −4.918 10.502 10.514 −2.213 11.610 11.612
7 −3.662 7.665 7.674 −5.373 10.523 10.537 −2.919 11.567 11.571
8 −3.561 7.636 7.645 −5.561 10.474 10.489 −3.388 11.601 11.606
9 −4.225 7.636 7.648 −6.344 10.557 10.576 −3.372 11.571 11.576
10 −4.029 7.657 7.668 −6.646 10.536 10.557 −4.400 11.613 11.621
11 −4.503 7.593 7.607 −6.876 10.526 10.548 −5.072 11.638 11.649
12 −4.558 7.634 7.648 −7.495 10.522 10.549 −5.580 11.629 11.642
13 −4.769 7.644 7.659 −8.045 10.548 10.578 −6.485 11.618 11.636
14 −5.058 7.643 7.660 −8.340 10.495 10.529 −7.282 11.533 11.555
15 −5.416 7.591 7.610 −8.394 10.498 10.531 −7.589 11.680 11.704
16 −5.288 7.610 7.629 −8.752 10.491 10.527 −8.452 11.607 11.638
17 −5.638 7.608 7.629 −8.856 10.457 10.494 −8.963 11.619 11.653
18 −5.843 7.604 7.626 −10.093 10.517 10.564 −9.239 11.625 11.661
19 −6.283 7.568 7.594 −10.270 10.499 10.549 −10.611 11.658 11.706
20 −6.109 7.644 7.668 −10.488 10.568 10.620 −10.644 11.603 11.652

NOTE: The number of seconds for one working day is 23,400. The number of Monte Carlo simulations is 1000. Three sampling frequencies are considered: every second, every other
second, and every 3 sec.

stable. The picture for the RMSE is the same, all of this very
much in line with the fact that almost all the theoretical gain is
already obtained in the case of B = 8 blocks (see Clinet and
Potiron 2018b). Finally, the smallest RMSE is obtained with
Bn = 19 blocks when sampling at 1-sec frequency, Bn = 8 in
case of 2-sec frequency and Bn = 14 with 3-sec subsampling
observations indicating that the finer the sampling frequency
the larger the number of blocks should be used. The gains in
terms of RMSE goes almost up to 10% when sampling at the
finest frequency, whereas less than 5% in the other scenarios.

6. CONCLUSION

In this arcticle, we have introduced a general framework
to provide theoretical tools to build central limit theorems of
convergence rate n1/2 in a time-varying parameter model. We
have applied successfully the method to investigate estimation
of volatility (possibly under trading information), higher pow-
ers of volatility, the time-varying parameters of the model with
uncertainty zones and the MA(1). This allowed us to obtain
estimators robust to time-varying quantities, more efficient
and/or new estimators of quantities (such as in the case of
higher powers of volatility).

Subsequently, we believe that many other examples can be
solved using the framework of our article, which is simple
and natural. This was successfully done in our related papers
Potiron and Mykland (2017) and Clinet and Potiron (2018a).
In those instances, the regular conditional distribution trick
significantly simplified the work of the proofs.

SUPPLEMENTARY MATERIALS

The supplementary materials consist of four distinct sections. First, we
investigate consistency in a simple model. Second, the proofs are provided.
Third, an additional numerical study, i.e. time-varying MA(1), is explored.
Finally, one can find an empirical illustration in the model with uncertainty
zones.
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