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Mathematical statistics crosses a one or two-sided random constant boundary for a finite time interval. The boundary
Applied probability crossing probability of a continuous local martingale to a constant boundary is equal to the

First passage time problem
Inverse first passage time problem
Boundary crossing probabilities

boundary crossing probability of a standard Wiener process, which is time-changed by the
martingale quadratic variation, to a constant boundary. This paper also derives an explicit
solution to the inverse first passage time problem of quadratic variation. These results are
obtained by an application of the Dambis, Dubins-Schwarz theorem. The main elementary idea
of the proof is the scale invariant property of the time-changed Wiener process and thus the
scale invariant property of the first passage time. This is due to the constancy of the boundary.

1. Introduction

This paper first concerns the boundary crossing probabilities of the first passage time (FPT), i.e., the probability that a stochastic
process crosses a boundary. This paper also concerns an inverse first passage time (IFPT) problem. The IFPT problem determines
the increasing function such that the FPT of a standard Wiener process, which is time changed by this increasing function, to the
boundary has a given distribution. As far as the author knows, this IFPT is completely new to the literature. This problem differs
from the Shiryaev IFPT problem, which determines the boundary function such that the FPT of a standard Wiener process to this
boundary has a given distribution.

The application of the FPT in statistics can be traced back to the Kolmogorov-Smirnov statistic. The primary application of
the FPT can be found in sequential analysis. At first, the focus was on the FPT of a random walk. Due to the complexity of the
problem, the literature often relies on the FPT of a Wiener process (see Gut, 1974; Woodroofe, 1976, 1977; Lai and Siegmund,
1977, 1979; Siegmund, 1986). In survival analysis, Matthews et al. (1985) show that tests for constant hazard involve the FPT
of an Ornstein—Uhlenbeck process. Butler and Huzurbazar (1997) consider a Bayesian approach for the FPT of a semi-Markovian
process. Eaton and Whitmore (1977) study the application of the FPT for hospital stay. Aalen and Gjessing (2001) consider the FPT
of a Markovian process. Detailed reviews on the FPT can be found in Lee and Whitmore (2006) and Lawless (2011) (see Section
11.5, pp. 518-523). Finally, Roberts and Shortland (1997) and Borovkov and Novikov (2002) provide an application of the FPT for
the pricing of barrier options in mathematical finance.

Although the IFPT problem is new, it has useful applications in financial econometrics. More specifically, the FPT of a continuous
local martingale have applications when estimating the quadratic variation of a continuous local martingale based on endogenous
observations. In these models, endogenous observations are often generated by the FPT of a local martingale to a boundary
process. Fukasawa (2010) considers the FPT to a symmetric two-sided boundary. Robert and Rosenbaum (2011, 2012) (see also
Section 4.4 in Potiron and Mykland, 2020 for its extension) introduce the model with uncertainty zones in which the two-sided
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boundary is dynamic. Fukasawa and Rosenbaum (2012) consider the FPT to a two-sided boundary, which is non-symmetric. Abbring
(2012) studies the mixed FPT of a Levy process. Renault et al. (2014) consider the mixed FPT of the sum of a Wiener process and
a positive linear drift. Finally, Potiron and Mykland (2017) estimate the quadratic covariation between two local martingales.

In these examples, two natural questions remain. First, is there a process that generates a given distribution? Second, what is
the quadratic variation of this process? With the use of the IFPT problem, we can prove the existence and determine the quadratic
variation of the stochastic process. Kikuchi et al. (2026) consider nonparametric estimation of the explicit solution in the IFPT
problem. In their empirical application to financial data, they find that the quadratic variation is not linear. However, most of the
literature focuses on a standard Wiener process, which has by definition a linear quadratic variation. This is the reason why we
consider a continuous local martingale in this paper.

Explicit formulae of the boundary crossing probabilities mostly exist in the case of a Wiener process. Doob (1949) (Equations
(4.2)-(4.3), pp. 397-398) obtains explicit formulae, based on elementary geometrical and analytical arguments. Malmquist (1954)
(Theorem 1, p. 526) gives an explicit formula conditioned on the starting and final values of the Wiener process for a finite final
time. Anderson (1960) (Theorem 4.2, pp. 178-179) derives an explicit formula conditioned on the final value of the Wiener process
in the two-sided boundary case with linear drift. Then, he integrates it with respect to the final value of the Wiener process to
get an explicit formula (Theorem 4.3, p. 180). For square root boundaries, Breiman (1967) rewrites the problem as the FPT of an
Ornstein—Uhlenbeck process to a constant boundary. With the same technique, Daniels (1969) derives an explicit formula. Nobile
et al. (1985) investigate the asymptotic behaviour of the FPT by an Ornstein—Uhlenbeck process to a large constant boundary. Kou
and Wang (2003) derives, in the form of Laplace transform, the boundary crossing probabilities of a jump diffusion process with
linear drift to a constant boundary. Alili and Kyprianou (2005), Doney and Kyprianou (2006) and Kyprianou et al. (2010) study
a link between the FPT, last passage time, and overshoot above or below a fixed level of a Levy process. Borovkov and Novikov
(2008) find an explicit formula for the Laplace transform of the FPT of a Levy-driven Ornstein-Uhlenbeck process to a two-sided
constant boundary. Potiron (2025) derives non-explicit formulae of the FPT by a Wiener process, which has a stochastic drift and
random variance, to a stochastic boundary. For the inverse IFPT problem, there is as far as the author knows no related paper on
it, since this is a new problem.

In this paper, we first derive an explicit formula for the one-sided and two-sided boundary crossing probability of a continuous
local martingale to a constant boundary. We derive the results in two cases: (i) a nonrandom case when the boundary is nonrandom
constant and the quadratic variation of the continuous local martingale is a nonrandom time-dependent function and (ii) a random
case when the boundary is random constant and the quadratic variation of the continuous local martingale is a stochastic process.

We consider a continuous local martingale Z and its quadratic variation defined as (Z). We also consider two boundaries g and
h. We focus on the one-sided and two-sided boundary crossing probabilities defined as

PZ(t) = P(sup Z, > g), 1)
0<s<t
7 _ .
PZ(n) = ]P’(Os;;; Z,zgor inf Z < h). @

These boundary crossing probabilities correspond to the probability that the process Z crosses one of both boundaries between the
starting time 0 and the final time 7. To reexpress the IFPT problem, we can first reexpress Z as a standard Wiener process, which
is time-changed by the quadratic variation (Z). Then, we can focus on the following IFPT problem. We want to determine the
quadratic variation of Z, namely (Z), such that the FPT of Z to the boundary has a given cdf F.

We introduce a standard Wiener process W. We define the boundary crossing probabilities PgW(t) and Pg%(t) as a specification of
Egs. (1) and (2) in the Wiener process case. We consider first the one-sided nonrandom case. We obtain that the boundary crossing
probability of a continuous local martingale to a constant boundary is equal to the boundary crossing probability of a standard
Wiener process, which is time changed by the martingale quadratic variation, to a constant boundary. More specifically, we obtain
that (see Theorem 1)

PZ() =P} ((Z),).

This explicit formula is obtained by an application of the Dambis, Dubins-Schwarz theorem. The main elementary idea of the proof
is the scale invariant property of the time-changed Wiener process and thus the scale invariant property of the FPT. This is due to
the constancy of the boundary. In the two-sided nonrandom case, we obtain that (see Theorem 2)

Pfh(z) = P;‘;((Z),).

To apply the Dambis, Dubins-Schwarz theorem in the one-sided random case, the main elementary idea is to rewrite the FPT to
a random boundary as an equivalent FPT to a nonrandom boundary. This is obtained by considering the new stochastic process as
Y = £ and the new boundary as 1. We also define the set of functions which are nonrandom and nondecreasing from R* to R* as
P angl the cumulative distribution function (cdf) of (Y) as Fiyy. We obtain that (see Theorem 3)

P'n= /,, PY (y,)dFyy(»).

This is obtained by regular conditional probability, and using the explicit formula obtained in the nonrandom case.
To apply the Dambis, Dubins-Schwarz theorem in the two-sided random case, we cannot rewrite the FPT to a random two-sided
boundary as an equivalent FPT to a nonrandom two-sided boundary since there are two boundaries. However, we are able to adapt
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the arguments with a two-sided boundary. We define the triplet of two boundaries and quadratic variation as u = (g, h,{(Z)), and
its cdf as F,. We also define the product of the boundaries and functions which are nonrandom and nondecreasing from R* to R*
as S = J x P. If we assume that the stochastic process Z is independent from the two-sided boundary (g, ), we obtain that (see
Theorem 4)

P20 = /s ng(:/,ho (2:)d F,(8o: ho. 2). @

In this paper, we then derive an explicit solution for the IFPT problem. We consider the one-sided and two-sided boundary
with nonrandom case and random case. We also consider the explicit solution in the case when the quadratic variation is absolutely
continuous and in the case when the quadratic variation is not absolutely continuous. The proofs are based on the use of the explicit
formula of boundary crossing probability (1) and (2), and elementary topological arguments.

We first consider the one-sided and nonrandom case when the quadratic variation (Z) is absolutely continuous of the form
(zhy, = fo' 63, sds. Then, we can also define the pdf of F as f and focus on variance functions crf ;- We define the error function
and its inverse as erf(¢) = 2 f0’ ¢~**du and erfinv. We also introduce the notation h(t) = erfinv(1 — F(7)). We obtain that the explicit
solution of the variance fun’c[tion is equal to (see Theorem 5)

2 _ f@)

6, = —1 .
tf 2 h(t)3e*h(’)2 {0<F(n<1}
N

&z
In the case when the quadratic variation is not absolutely continuous, we obtain that the explicit solution is equal to (see Theorem
6)
2
g
zFy, =21 .
(Z7), I HO<F0<1)

We consider now the two-sided and nonrandom case when the quadratic variation is absolutely continuous. We obtain that the
explicit solution is equal to (see Theorem 7)
2 f@)
% o)
g&h* " g.h

When the quadratic variation is not absolutely continuous, we obtain that the explicit solution is equal to (see Theorem 8)

0<F(t)<1}-

(zFy, = (Pg'i‘;l)_l(F(’))l(0<F(x)<1)~

We consider now the one-sided and random case, in which we define F as the random cdf. When the random quadratic variation
is absolutely continuous of the form (Y/),(») = /0' Gsz f(a))ds, we can define its random pdf as f. We introduce the notation
h(t, w) = erfinv(1 — F(t,w)). We obtain that the explicit solution is equal to (see Theorem 9)

S, w)

1 .
h(t, ) e-htar OO

2 —
Gr%f(a)) =—

2\n

When the random quadratic variation is not absolutely continuous, we obtain that the explicit solution is equal to (see Theorem 10)

1
(Y = LTSE Lio<Fim<1}-

We consider now the two-sided random case. When the random quadratic variation is absolutely continuous, we obtain that the
explicit solution is equal to (see Theorem 11)

S, w)

1
A GARGE

2
O'tyf(w) = 0<F(t.w)<l1}"

When the random quadratic variation is not absolutely continuous, we obtain that the explicit solution is equal to (see Theorem 12)
(ZFy(w) = (P;I;,)_] (F(t, )0« prmy<1}-

The following of this paper is structured as follows. We derive an explicit formula for the boundary crossing probability in
Section 2. We obtain an explicit solution for the IFPT problem in Section 3. The proofs of the explicit formula are given in Appendix
A. The proofs of the explicit solution for the IFPT problem can be found in Appendix B.

2. Explicit formula of boundary crossing probability

In this section, we derive an explicit formula for the one-sided and two-sided boundary crossing probability (1)-(2) of a
continuous local martingale in the nonrandom case and random case.
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2.1. One-sided nonrandom case

In this part, we consider the case when the one-sided boundary is nonrandom and constant, and the quadratic variation of the
continuous local martingale is a nonrandom time-dependent function.

We consider the complete stochastic basis B = (2,P, X, F), where X is a o-field and 7 = (F,),cg+ is a filtration. We define the
set without 0 as S for any set S. Then, we define the set of nonrandom constant functions from the space R* to the space R, as
R,. By a constant function g € R,, we mean that g(r) = g(u) for any time € R* and any time s € R*. We first give the definition
of the set of boundary functions.

Definition 1. We define the set of boundary functions which are nonrandom, constant and one-sided as R,.

We introduce an F-adapted continuous stochastic process Z with starting time 0. With these assumptions, we can even consider
a stochastic process which does not start from the origin 0 and a boundary which is nonpositive, if they satisfy Z, < g with a
nonrandom Z. Then, we can reexpress the new process, with starting value 0, as Z, — Z,, for any time ¢ > 0. We can also reexpress
the new positive boundary as g — Z,. We now give the definition of the FPT.
Definition 2. We define the FPT of the stochastic process Z to a boundary g € R, as
TgZ=inf{teR+ st. Z, > g} for w € Q. @
We have that Z is a continuous and F-adapted stochastic process and inf{t € Rt s.t. Z, > g} = inf{t € R* s.t. (¢, Z,) € G}, where

G = {(t.u) e R* xR s.t. u > g} is a closed subset of R?. Thus, the FPT ng is an F-stopping time by Theorem 1.1.27 (p. 7) in Jacod
and Shiryaev (2003). We can rewrite the boundary crossing probability P/ as the cdf of TZ, i.e.,

PZ(t)=P(TZ <1) for > 0. ©

If the cdf is absolutely continuous, we can also define its pdf f’ gZ : Rt > R as

PZ(t
fgz(t) = fort >0 a.e.. 6)
We introduce an F-adapted standard Wiener process W. We define the standard normal cdf as
! 1 u?
D) = / exp(——)du for t € R. )
—o \/2x 2

We first consider the case when the stochastic process is a standard Wiener process, i.e., when Z, = W, for any time t € R*. The
next lemma gives an explicit formula of P* and f gW, namely a Levy distribution. These are known results by integrating the explicit
formula conditioned on the final value of the Wiener process (see Malmquist, 1954, p. 526) with respect to the Wiener process final
value (see Wang and Potzelberger, 1997, Equations (3), p. 55).

Lemma 1. We obtain a Levy distribution with PgW ©)=0, f ;V (0) = 0. We also obtain

PPo=1-o E)io( L) forr>o, (8)
: (w) (w !

W g =
fo @) = e fort>0. ©
¢ 2713

The explicit formula in the one-sided nonrandom case, i.e. Theorem 1, states that the boundary crossing probability of a
continuous local martingale to a constant boundary is equal to the boundary crossing probability of a standard Wiener process,
which is time-changed by the martingale quadratic variation, to a constant boundary. We get a time-changed Levy cdf. This is
obtained by an application of the Dambis, Dubins-Schwarz theorem for continuous local martingale (see, Revuz and Yor, 2013,
Th. V.1.6). Accordingly, we provide the assumption on the continuous local martingale which is required to apply the Dambis,
Dubins-Schwarz theorem.

Assumption 1. We assume that Z is a continuous F-adapted local martingale with nonrandom quadratic variation (Z) and such
that Z, =0 a.s. and (Z), = » a.s.

For a function 4 : Rt - R*, a — h(a) and a set A C R*, we define the restriction of 2 to A as 4 |, such that 4 | ,: A > R* with
a — h(a). For a measurable set A C R* and p € R with p > 1, we define the set of p-integrable and nonrandom functions as

L,(A)={h: A— R" measurable s.t. / |(x)|? dx < +oo}.
A

For a measurable A ¢ R* and p € R with p > 1, we define the set of locally p-integrable and nonrandom functions as

L,jc(4) = {h : A > R* measurable s.t.
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h g€ LK) VK C A, K compact}.
In the following example, we show that a continuous F-It6 process satisfies Assumption 1.
Example 1. We can consider a continuous F-Itd process with no trend, i.e.
t
Z, = / o,dW, for 1 > 0. 10)
0

Here, the standard deviation ¢ : R* — R* is a nonrandom function. If we assume that ¢ € L, ,.(R"), then Z is an 7-local martingale
with nonrandom quadratic variation (Z), = fot alfdu by Theorem 1.4.40 (p. 48) in Jacod and Shiryaev (2003). If we further assume
that the variance integral satisfies a.s. /ot ngu — o0 as t — oo, we have that Z satisfies Assumption 1.

We state Theorem 1 in what follows.
Theorem 1. Under Assumption 1, we have that
Prt) =PV ((Z),) for 1> 0. (1n)

As a corollary, we obtain the pdf from the FPT in the one-sided nonrandom case if we assume that the quadratic variation is
absolutely continuous. Then, there exists a derivative, which we define as (Z)] for 1 > 0 a.e.

Corollary 1. Under Assumption 1 and if we assume that the quadratic variation {Z) is absolutely continuous on R*, we have that

80 =12),1) ((Z),) fort 20 ae (12)

2.2. Two-sided nonrandom case

In this part, we consider the case when the two-sided boundary is nonrandom constant and the quadratic variation of the
continuous local martingale is a nonrandom time-dependent function.
We first give the definition of the set of boundary functions.

Definition 3. We define the set of boundary functions which are nonrandom, constant and two-sided as (R}, RR7).

We consider an F-adapted continuous stochastic process Z, started at the origin point 0. With these assumptions, we can even
consider a process which does not start from 0 and boundaries which are nonpositive and nonnegative if they satisfy h < Z;, < g
with a nonrandom Z,. Then, we can reexpress the new process started at 0 as Z, — Z, for any time ¢ > 0. We can also reexpress the
new positive boundary as g — Z, and the new negative boundary as h — Z,. We now give the definition of the FPT.

Definition 4. We define the FPT of the process Z to a boundary (g, h) € R}, R7) as
TZ, =inf{r € R* s.t. Z, > g or Z, < h} for w € Q. 13)
We have that Z is a continuous and F-adapted stochastic process and inf{t € R* s.t. Z, > g or Z, < h} =inf{r e R* s.t. (1, Z,) €

G}, where G = {(t,u) € Rt x Rs.t. u > g or u < h} is a closed subset of R2. Thus, the FPT ng is an F-stopping time by Theorem
1.1.27 (p. 7) in Jacod and Shiryaev (2003). We can rewrite the boundary crossing probability Pfh as the cdf of ng o 1-e

PZ,()=P(T7, <1 for>0. 14
If the cdf is absolutely continuous, we can also define its pdf f gZh : Rt > Rt as

dPZ, (1)
Zt fort >0 a.e. (15)

Moreover, we define ss,(v, w) for any 0 < v < w as

MOE

ss, (v, w) = 2 W= 0+ 2K —w-vr2kw 21 (16)

k=—00 \/513/2

We first consider the case when the stochastic process is a standard Wiener process, i.e. when Z, = W, for any time r € R*. The
next lemma gives an explicit formula of P;‘;‘ and fg”;l which are respectively known results from Theorem 4.3 (p. 180) in Anderson
(1960).
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Lemma 2. We obtain that Pg”;l(O) =0, fg";(O) = 0. We also obtain that

Phm = Y (4- 7)
k=—c0
w(w) _2¢<w>>for,> 0
Vi Vi
J@® = s5,(g.8 = )+ 55, (h,g — h) for 1> 0. (18)

The explicit formula in the two-sided nonrandom case, namely Theorem 2, is obtained by an application of the Dambis, Dubins—
Schwarz theorem. Indeed, the arguments used in the one-sided boundary case extend directly to this two-sided boundary case.

Theorem 2. Under Assumption 1, we have that
Pfh(z) = P;;((Z),) fort>0. (19)
As a corollary, we obtain the pdf from the FPT of a continuous local martingale to a constant boundary if we assume that the
quadratic variation is absolutely continuous.
Corollary 2. Under Assumption 1 and if we assume that the quadratic variation {Z) is absolutely continuous on R*, we have that

FL0 =2 % ((2),) for 120 ae. o0

2.3. One-sided random case

In this part, we consider the case when the one-sided boundary is random constant and the quadratic variation of the continuous
local martingale is a stochastic process.
We first give the definition of the set of boundary functions which are random variables.

Definition 5. We define the set of boundary functions which are random, constant, one-sided and F-adapted as g(w) € R, for any
w € Q.

We consider an F-adapted continuous stochastic process Z started from the origin 0. With these assumptions, we can even
consider a stochastic process which does not start from 0 and a boundary which is nonpositive, if they satisfy P(Z, < g) = 1. Then,
we can reexpress the new stochastic process, started from the origin 0, as Z, — Z, for any time ¢ > 0 a.s. We can also reexpress the
new positive boundary as g — Z;, a.s. We now give the definition of the FPT.

Definition 6. We define the FPT of the stochastic process Z to a random boundary g as
TgZ =inf{t € R* s.t. Z, > g}. (21
We have that Z/g is a continuous and F-adapted stochastic process and inf{r € R* s.t. Z, > g} = inf{r € R* s.t. (t, Z,/g) € G},

where G = {(t,u) € R* x Rs.t. u > 1} is a closed subset of R?. Thus, the FPT T? is an F-stopping time by Theorem 1.1.27 (p. 7)
in Jacod and Shiryaev (2003). We can rewrite the boundary crossing probability PgZ as the cdf of TgZ , i.e.,

sz(t) = ]P’(ng <1 fort>0. (22)

If the cdf is absolutely continuous, we can also define its pdf f gz : Rt > R as
, dPZ(t
fg ) = 0 for t > 0 a.e.. 23)

The explicit formula in the one-sided random case, namely Theorem 3, is obtained by an application of the Dambis, Dubins—
Schwarz theorem. To apply the theorem in the random case, the main elementary idea is to rewrite the FPT to a random boundary
as an equivalent FPT to a nonrandom boundary. This is obtained by dividing both the stochastic process and the boundary by the
boundary value. More specifically, we define the new process as Y = Z and the new boundary as 1. Then, we observe that the FPT
(21) may be rewritten as ¢

TS =T). 24)

In what follows, we give the assumption on the stochastic process Y.

Assumption 2. We assume that Y is a continuous F-local martingale with random quadratic variation (Y') and such that ¥, = 0 a.s.
and (Y),, = o a.s.
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We introduce a stochastic process i : RT x 2 — R* defined as a — h(a). For any A C Rt x Q, we define the restriction of 4 to A
ash ,suchthath [,: A— R* and & 4 (a) = h(a) for any a € A. For A C R* x 2 measurable and p € R satisfying p > 1, we define
the set of stochastic processes which are p-integrable as

L,(A)={h: A— R" measurable s.t. / |R(x)|? dx < +o0}.
A

For A C Rt x Q measurable and p € R satisfying p > 1, we define the set of stochastic processes which are locally p-integrable as

(A) = {h: A - R" measurable s.t.
h 1€ LK) for any K C A, K compact}.

p loc

In the following example, we rely on a continuous Itd process.
Example 2. We can consider a continuous F-Itd process with no trend, i.e.
t
Y, = / o, dW, fort > 0. (25)
0

Here, o : R x Q2 — R* is an F-predictable stochastic process such that the integral defined in Eq. (25) is well-defined. If we assume
that ¢ € Ly;,(R* x Q), then Y is a local martingale with random quadratic variation (Y), = /O’ 62du by Theorem 1.4.40 (p. 48)
in Jacod and Shiryaev (2003). If we further assume that the variance integral satisfies a.s. /O' afdu — 00 as t — oo, we have that Y
satisfies Assumption 2.

We define the set of functions which are nonrandom and nondecreasing from R* to R* as 7. When seen as a function of w, the
arrival space of (Y) is P. We define the distribution of (Y) as Fy,. We get PIY in the next theorem by regular conditional probability,
and using the explicit formula obtained in the nonrandom case.

In what follows, we state Theorem 3.

Theorem 3. Under Assumption 2, we have that
Pt = /PPIW () Fyy(y) for t > 0. (26)

As a corollary, we obtain the pdf from the FPT of a continuous local martingale to a constant boundary if we assume that the
quadratic variation (Y') is absolutely continuous a.s. Then, there exists derivatives to (Y) = y which we define as y, for > 0 a.e.
and a.s.

Corollary 3. Under Assumption 2 and if we assume that the quadratic variation (Y) is absolutely continuous on R* a.s., we have that

ffay= /Py;ff"(y,)dF<Y)(y) fort>0ae. 27)

2.4. Two-sided random case

In this part, we consider the case when the two-sided boundary is random constant and the quadratic variation of the continuous
local martingale is a stochastic process.
We first give the definition of the set of boundary functions which are random variables.

Definition 7. We define the set of boundary functions which are random, constant, two-sided and F-adapted as g(w) € R} and
hw) € R for any o € Q.

We consider an F-adapted continuous stochastic process Z, started from the origin 0. With these assumptions, we can even
consider a stochastic process which does not start from 0 and boundaries which are nonpositive and nonnegative, if they satisfy
P(h < Z, < g) = 1. Then, we can reexpress the new process, started from 0, as Z, — Z, for any time ¢ > 0 a.s. We can also reexpress
the new positive boundary as g — Z, a.s. and the new negative boundary as 4 — Z; a.s. We give the definition of the FPT in what
follows.

Definition 8. We define the FPT of the stochastic process Z to a boundary (g, ) as

TZ, =inf{r eR* s.t. Z, > g or Z, < h}. (28)

We can rewrite T 1 as the infimum of two F-stopping times, namely TZ inf(TgZ s T:f ). Thus, it is an F-stopping time. We can
rewrite the boundary crossing probability PZ as the cdf of T

P2, =P(TZ, <1 fort>0. 29)
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If the cdf is absolutely continuous, we can also define its pdf f gZh : Rt > Rt as

dPZ, (1)
dt
The explicit formula in the one-sided random case, namely Theorem 4, is obtained by an application of the Dambis, Dubins-Schwarz
theorem. To apply the theorem in the two-bounded random case, we cannot rewrite the FPT to a random two-sided boundary as an
equivalent FPT to a nonrandom two-sided boundary since there are two boundaries. However, we are able to adapt the arguments

with a two-sided boundary. We now give the assumption on the stochastic process Z.

OE (30)

Assumption 3. We assume that Z is a continuous F-local martingale with random quadratic variation (Z) and such that Z, = 0
a.s. and (Z),, = o a.s.

We define the triplet of two boundaries and quadratic variation as u = (g, 4, (Z)), and its cdf as F,. We also define the product
of the boundaries and functions which are nonrandom and nondecreasing from R* to R* as S = J x P. We get Pfh in the next
theorem by regular conditional probability, and using the explicit formula obtained in the nonrandom case.

We state Theorem 4 in what follows.

Theorem 4. Under Assumption 3, we have that
Pg?h(z) = /s P;(Kho (2,)d F,(gy. ho. 2) for t > 0. (31)

As a corollary, we obtain the pdf from the FPT of a continuous local martingale to a constant boundary if we assume that the
quadratic variation (Z) is absolutely continuous a.s. Then, there exists derivatives to (Z) = z, which we define as z| for r > 0 a.e.
and a.s.

Corollary 4. Under Assumption 3 and if we assume that the quadratic variation {Z) is absolutely continuous on R* a.s., we have that

150 = / z:f;‘;ho(z,)dﬂl(go,ho,z) fort>0ae. (32)
S

3. Explicit solution of the IFPT problem

In this section, we derive an explicit solution of the IFPT problem for the one-sided and two-sided boundary and in the nonrandom
case and random case.

3.1. One-sided nonrandom case

In this part, we consider the case when the one-sided boundary is nonrandom constant and the quadratic variation of the
continuous local martingale is a nonrandom time-dependent function.

3.1.1. Case when the quadratic variation is absolutely continuous
To define the IFPT problem, we first introduce the set of cdfs. Since the stochastic process Z is continuous and thus its quadratic
variation (Z) is also continuous, we accordingly consider the set of continuous cdfs.

Definition 9. A function F : R* — [0, 1] is a cdf if F is nondecreasing, continuous, satisfies F(0) = 0 and lim,_, ., F(r) = 1.

Since we consider the particular case when the quadratic variation (Z) is absolutely continuous, we restrict to the set of absolutely
continuous cdfs. Then, we can also define the pdf of F as f : Rt — R* which satisfies

F(1) = / f(s)ds for t > 0. (33)
0

The IFPT problem determines the increasing function such that the FPT of a standard Wiener process, which is time changed by this
increasing function, to the boundary has a given cdf of the form (33). Since we consider increasing functions which are absolutely
continuous, we can focus on variance functions.

Definition 10. For a given pdf f, we say that a variance function a?. : R* > R* which is the quadratic variation derivative a.e. of
a continuous local martingale Z/, i.e.

t
(z1), =/ aifds for t >0, (34)
0

is solution if it satisfies

PgZ’ (t) = F(1) for t > 0. (35)
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Eq. (34) in Definition 10 implicitly requires the existence of a continuous local martingale with quadratic variation '/01 af fds.
This existence can be shown with It6 processes considered in Example 1.
We define the infimum time such that F is positive and the infimum time such that F equals unity as

K9 = inf{r > 0 such that F(r) > 0} and (36)

inf {¢ > 0 such that F(t) = 1}. (37)

1
K
Let us give a set of assumptions sufficient to obtain the explicit solution of the IFPT problem.

Assumption 4. We assume that there exists ;12 > 0 s.t. the explicit solution of the IFPT problem is locally integrable on [K?, K%+ng],
ie.

2 0 0 , .0
Gf [[Kg’Kg_‘_r’(l):]e Ll,loc([KF’KF+'7F])' (38)
Moreover, we assume that K ; is not finite.

We define the error function and its inverse as

t
erf(r) = i/ e duforteR, (39)
\r Jo
erf(erfinv(t)) = ¢ for t € (-1, 1). (40)

We also introduce the notation A(¢) = erfinv(1 — F(¢)). We now give the explicit solution of the IFPT problem. The proof is based on
an application of Theorem 1, and the use of elementary topological arguments.

Theorem 5. Under Assumption 4, the variance function defined as

S
e I Spvrel Py Locrwey fort20 (41)
Favas ¢

is the explicit solution of the IFPT problem.

3.1.2. Case when the quadratic variation is not absolutely continuous
By Eq. (11) from Theorem 1, we have that sz ) = PgW((Z );) for t > 0. We first give the definition of a solution in the IFPT
problem.

Definition 11. For a given cdf F, we say that a nonrandom and nondecreasing function vy : Rt — R* which is the quadratic
variation of a continuous local martingale ZF, i.e.

(ZFy, = vp(t) for 1 > 0, (42)
is solution if it satisfies

PZ"(t)= F(1) for 1 > 0. (43)

Eq. (42) in Definition 11 implicitly implies the existence of a continuous local martingale with quadratic variation vj. This is

true since a standard Wiener process, which is time-changed by UFT(’), will have v as quadratic variation.

Let us give an assumption sufficient to obtain the explicit solution of the IFPT problem.

Assumption 5. We assume that K}, is not finite.

We now give the explicit solution of the IFPT problem. The proof is based on an application of Theorem 1 and the use of
elementary analysis.
Theorem 6. Under Assumption 5, the function defined as
g2
vp() = W1(0<F(z)<l) for t 2 0. (44)
is the explicit solution of the IFPT problem.

3.2. Two-sided nonrandom case

In this part, we consider the case when the two-sided boundary is nonrandom constant and the quadratic variation of the
continuous local martingale is a nonrandom time-dependent function.
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3.2.1. Case when the quadratic variation is absolutely continuous
We give the definition of a solution in the IFPT problem.

2

I R* — R* which is the quadratic variation derivative a.e. of

Definition 12. For a given pdf f, we say that a variance function o
a continuous local martingale Z/, i.e.

'
(Zf>, =/ o—ifds fort >0, “
0

is solution if it satisfies

PZ) (1) = F(1) for 1 > 0, (46)

Let us give a set of assumptions sufficient to obtain the explicit solution of the IFPT problem.
Assumption 6. We assume that the explicit solution of the IFPT problem is locally integrable in K%, i.e. there exists '1(} > 0 such
that
2 0 %0, .0

o7 k0, k0+,01€ L ([Kp, K +1p]). 47)

Moreover, we also assume that K'F is not finite.

We now give the explicit solution of the IFPT problem.

Theorem 7. Under Assumption 6, the variance function defined as

2 f@)

ol = —7——I1
SRR Fo)

0<Fi<1y Jfort>0 (48)
is the explicit solution of the IFPT problem.

3.2.2. Case when the quadratic variation is not absolutely continuous
We first give the definition of a solution in the IFPT problem.

Definition 13. For a given cdf F, we say that a nonrandom and nondecreasing function vy : R* — R* which is the quadratic
variation of a continuous local martingale ZF, i.e.

zZFy, = vp@ fort >0, (49)
t = UF
is solution if it satisfies

sz_[ (t) = F(t) for t > 0. (50)
We now give the explicit solution of the IFPT problem.

Theorem 8. Under Assumption 5, the function defined as
vp(t) = (Pg%)_l(F(t))I{kF(,)d) fort>0 (51)

is the explicit solution of the IFPT problem.
3.3. One-sided random case

In this part, we consider the case when the one-sided boundary is random constant and the quadratic variation of the continuous
local martingale is a stochastic process.

3.3.1. Case when the quadratic variation is absolutely continuous
To define the IFPT problem, we introduce the set of random cdfs. Since the stochastic process Y has its quadratic variation (Y)
which is continuous and random, we accordingly consider the set of random continuous cdfs.

Definition 14. A function F : Rt x 2 — [0,1] is a random cdf if F(w) is nondecreasing, continuous, satisfies F(0,w) = 0 and
lim,_,  F(t,@) = 1 for € Q.

Since the quadratic variation (Y') is a stochastic process which is absolutely continuous, we restrict to the set of random absolutely
continuous cdfs.

10
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Definition 15. A function f : Rt x 2 — R is a random pdf if it satisfies

'
F(t,w)=/ f(s,w)ds for t >0 and w € Q. (52)
0

We define the regular conditional cdf of ng as PgZ (Jw). We give the definition of a solution in the IFPT problem. Since the
quadratic variation is a stochastic process which is absolutely continuous, we can focus on variances which are a stochastic process.

Definition 16. For a given random pdf f, we say that a variance process 0';

derivative a.e. of a continuous local martingale Y7/, i.e.

: RY x 2 - R* which is the quadratic variation

1
(Yf),(a)) = / Uif(a))ds fort>0and w € 22, (53)
0

is solution if it satisfies

PY" (tlw) = F(t,0) for > 0 and w € 2. (54)

Eq. (53) in Definition 16 implicitly requires the existence of a continuous local martingale with random quadratic variation
/0’ af 7ds. This existence can be shown with Ité processes considered in Example 2.
Let us give a set of assumptions sufficient to obtain the explicit solution of the IFPT problem.

Assumption 7. We assume that the explicit solution is locally integrable on R* x €, i.e.
07 € Lo (RF x Q). (55)
Moreover, we also assume that K } is not finite.

We introduce the notation A(t, w) = erfinv(l — F(t,w)). We now give the explicit solution of the IFPT problem.

Theorem 9. Under Assumption 7, the variance process defined as

S w)

1 ort>0and w € Q )
h(t, a))3e—h(t,(u)2 {0<F(t,w)<1} f > @ -

2 —
0@ =—

&\
is the explicit solution of the IFPT problem.

3.3.2. Case when the quadratic variation is not absolutely continuous
We first give the definition of a solution in the IFPT problem.

Definition 17. For a given random cdf F, we say that a nondecreasing stochastic process vy : Rt X 2 — R* which is the quadratic
variation of a continuous local martingale Y ¥, i.e.
(Y, (w) = vp(t,w) for t > 0 and w € 2, (57)

is solution if it satisfies

P! (tlw) = F(t,w) for t > 0 and w € 2. (58)

Eq. (57) in Definition 17 implicitly implies the existence of a continuous local martingale with quadratic variation vy. This is

true since a standard Wiener process, which is time-changed by "FT('), will have vy as quadratic variation.

For w € @, we define the infimum time such that F(7,®) is positive and the infimum time such that F(z, w) equals unity as
K%(@) = inf{t > 0 such that F(t,®) > 0} and (59)
K} (») = inf{t > 0 such that F(t,w) = 1}. (60)

Let us give an assumption sufficient to obtain the explicit solution of the IFPT problem.
Assumption 8. We assume that K }(w) is not finite for w € Q.
We now give the explicit solution of the IFPT problem.

Theorem 10. Under Assumption 8, the stochastic process defined as

vp(t,w) = Liocrim<1y fort>20and w € Q2 (61)

1
2h(t, w2
is the explicit solution of the IFPT problem.

11
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3.4. Two-sided random case

In this part, we consider the case when the two-sided boundary is random constant and the quadratic variation of the continuous
local martingale is a stochastic process.

3.4.1. Case when the quadratic variation is absolutely continuous

We define the regular conditional cdf of TgZ S PgZh(lw). We give the definition of a solution in the IFPT problem.
Definition 18. For a given random pdf f, we say that a variance process a%
derivative a.e. of a continuous local martingale Z/, i.e.

: Rt x @ - R* which is the quadratic variation

t
(Z1y(w) = / aff(w)ds fort>0and w € 2, (62)
RS
is solution if it satisfies

P2 (t|w) = F(t,w) for 1 > 0 and o € Q. 63)

Eq. (62) in Definition 18 implicitly requires the existence of a continuous local martingale with random quadratic variation
/0’ ‘752 fd s. This is true since we can consider It6 processes from Example 2.
We now give the explicit solution of the IFPT problem.

Theorem 11. Under Assumption 7, the variance process, defined as
S, w)
W (pW -
Ton (B Y(F(t,®)))
fort>0and w € Q,

Gz.f(a)) =

Liocrim<1) (64)

is the explicit solution of the IFPT problem.

3.4.2. Case when the quadratic variation is not absolutely continuous
We first give the definition of a solution in the IFPT problem.

Definition 19. For a given random cdf F, we say that a nondecreasing stochastic process vy : Rt X 2 — R* which is the quadratic
variation of a continuous local martingale ZF, i.e.

(ZFY (@) = vp(t.w) for t > 0 and o € 2, (65)
is solution if it satisfies

Pg%hF(”w) = F(t,w) for t >0 and o € Q. ©6)

Eq. (65) in Definition 19 implicitly implies the existence of a continuous local martingale with quadratic variation vj. This is

true since a standard Wiener process, which is time-changed by UFT“), will have v as quadratic variation.

We now give the explicit solution of the IFPT problem.

Theorem 12. Under Assumption 8, the stochastic process defined as
vp(t,@) = (P (Ft,o)ljgcpwy<ty  fort=0and o € 2 (67)

is the explicit solution of the IFPT problem.
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Appendix A. Proofs of the explicit formula

In this section, we prove the explicit formula for the one-sided and two-sided boundary crossing probability (1) and (2) of a
continuous local martingale in the nonrandom case and random case.

12
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A.1. One-sided nonrandom case

We start with the proof of Lemma 1, which are well-known results from Malmquist (1954) (Theorem 1, p. 526) and Wang and
Potzelberger (1997) (Equations (3), p. 55).

Proof of Lemma 1. By Malmquist (1954) (Theorem 1, p. 526), we have that the probability that a standard Wiener process crosses
a constant boundary g conditioned on its final value x at the final time ¢ is given for x € R by

28(g = x)
[P’(T;V <t|W, =x) =exp <_f>l{x<g + 1 (68)

Wang and Potzelberger (1997) (Equations (3), p. 55) integrate Eq. (68) with respect to the Wiener process final value s and derive
the cdf as PW(O) =0 and Eq. (8). Then, we can deduce the pdf for r > 0 as

= PWm

di(w(%)d’(f))

where we use Eq. (6) in the first equality, Eq. (8) in the second equality, Eq. (7) in the third equality, the fundamental theorem of
calculus with the chain rule in the fourth equality. We have thus shown Eq. (9). [

We define the inverse function of the quadratic variation for 1 > 0 and w € Q2 as
(Z)7' =inf{s 2 0s.t. (Z), > 1}.
We also define the canonical filtration of a stochastic process Z as F,Z = a(Z (C),C € BR*),C c [0, t]) for t > 0, where B(R*) is the
Borel o-field generated by the open sets of R*. Finally, we define the process Z, which is time changed by its quadratic variation
inverse, as B, = Z, 2)7! for t+ > 0 and w € Q. The following lemma states that B is a Wiener process. This is obtained by a direct
application of the Dambls, Dubins-Schwarz theorem for continuous local martingale (see Revuz and Yor, 2013, Th. V.1.6).

Lemma 3. Under Assumption 1, we have that B is a F-Wiener process and

Z, = Bz, fort>0as. (69)

Proof of Lemma 3. This is obtained by a direct application of the Dambis, Dubins-Schwarz theorem for continuous local martingale
(see Revuz and Yor, 2013, Th. V.1.6) with Assumption 1. [J

We introduce Proposition 1 in what follows. It states that the FPT of Z and B are equal, if we make a time change equal to the
quadratic variation of Z. The main elementary idea of the proof is the scale invariant property of the time-changed Wiener process
and thus the scale invariant property of the FPT. This is due to the constancy of the boundary.

Proposition 1. Under Assumption 1, we have for any o € Q satisfying Z,(w) = Bz, (w) that

(17 =1} ={T{ =(2),} for 1 > 0. (70)

Proof of Proposition 1. We have for t > 0 and any w € (2 satisfying Z,(») = Bz, (w) that
(17 =1} = {inf(s20s.t. Z, > g} =1}
= {inf{s > 0s.t. Bz >g}=1}, 71)

where we use Eq. (4) in the first equality, and Eq. (69) from Lemma 3 with Assumption 1 in the second equality. Since B is a
FB-Wiener process, W is an F-Wiener process and the boundary is constant, we can make a time change equal to the quadratic
variation (Z), and obtain that

{inf{s >0s.t. Bz, >g}=1}={inf{s>0s.t B >g}=(Z)}. (72)
Then, we can calculate by Eq. (4) that

{inf(s > 0s.t. By 2 g} =(2Z),} = {T} =(Z),}. (73)
By Egs. (71), (72) and (73), we can deduce Eq. (70). [

In what follows, we give the proof of Theorem 1. The proof is mainly based on Proposition 1.

13
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Proof of Theorem 1. We have that for 1 > 0

sz(z) = P(ng <1
= P(inf{s >0s.t. Z, > g} <1t
= P(inf{s > 0 s.t. Bz, 28} < 1), 74)

where we use Eq. (5) in the first equality, Eq. (4) in the second equality, and Eq. (69) from Lemma 3 with Assumption 1 in the
third equality. By Proposition 1 with Assumption 1, we obtain that for r > 0

]P’(inf{s >05.t By 2g) < z) = P(inf{s >0s.t B, >g} < <Z>,). (75)
Then, we can calculate that for t > 0

P(inf{s >0st B, >g) < <z>,) - P(inf{s >0st W, >g) < <z>,)
P(TV <(2),).

PV ((Z),). (76)

Here, we use the fact that B and W have the same distribution in the first equality, Eq. (4) in the second equality, and Eq. (5) in
the third equality. By Eqgs. (74), (75) and (76), we can deduce Eq. (11). []

Finally, we give the proof of Corollary 1.

Proof of Corollary 1. We have for > 0 a.e.
dPX(n)
dt
d(PY (Z)))
—
(201 ((Z),).

where we use Eq. (6) in the first equality, Eq. (11) from Theorem 1 with Assumption 1 in the second equality, and the fundamental
theorem of calculus with the chain rule and the assumption that the quadratic variation (Z) is absolutely continuous on R* in the
third equality. [

rro

A.2. Two-sided nonrandom case

We start with the proof of Lemma 2, which is well-known results from Anderson (1960) (Theorem 4.3, p. 180).

Proof of Lemma 2. Eq. (18) is a more compact form of Theorem 4.3 (p. 180) in Anderson (1960). Then, we derive the integral of
ss(v,w) for 0 < v < w as

0 1
Z w—v+2kw x—3/2€‘—(w—v+2kw)2/2xdx

t
s, (v, w)dx _
/0 e Var o
5 (=)
k=—o0 t

. . . oW . . .
wher: we use Eq. (16) in the first equality. Then, we can obtain Pg’h(O) =0 and Eq. (17) by integrating Eq. (18) with the use of Eq.
(77) fort>0. O

We introduce Proposition 2 in what follows. It states that the FPT of Z and B are equal, if we make a time change equal to the
quadratic variation of Z.

Proposition 2. Under Assumption 1, we have for any o € Q satisfying Z,(w) = Bz, (w) that

(T2, =1} = {18, =(2),} for 1 > 0. -

Proof of Proposition 2. We have for t > 0 and any w € Q satisfying Z,(») = B, ) () that
(17, =1} = {inf(s 2 0s.t. Z, > gor Z, < h} =1}

= {inf{s > 0 s.t. Bz 2g0r Bizy <h)= 1}, (79)

14
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where we use Eq. (13) in the first equality, and Eq. (69) from Lemma 3 with Assumption 1 in the second equality. Since B is a
FB-Wiener process, W is an F-Wiener process and the boundary is constant, we can make a time change equal to the quadratic
variation (Z), and obtain that

{inf{s > 0s.t. Bz, 2gor B <h}=t} (80)
= {inf{s > 0s.t. B, > g or B, < h} =(Z),}.
Then, we can calculate by Eq. (13) that
{inf{s >0s.t. B> g or B, <h}=(Z),} ={T2, =(Z),}. (81)
By Egs. (79), (80) and (81), we can deduce Eq. (78). [

In what follows, we give the proof of Theorem 2.

Proof of Theorem 2. We have that for 7 > 0
z zZ
P70 = P(TZ, <1)
= P(inf{s > 0s.t. Z, > gor Z < h} <1)
= P(inf(s > 0s.t. Bizy >gor Bz <h}<1), (82)

where we use Eq. (14) in the first equality, Eq. (13) in the second equality, and Eq. (69) from Lemma 3 with Assumption 1 in the
third equality. By Proposition 2 with Assumption 1, we obtain that

P(inf(s 2 0'5.t. Bz, > g or Bz, <h) <1) (83)
= IP’(inf{s >0st B, >gor B, <h}< <z>,).
Then, we can calculate that
]P’(inf{s >0s.t B,>gor B,<h} < <z>,)
- IP’(inf{s >0s.t W,>gor W, <h}< <z>,)
B, 22,
= P} ((Z)). (84)

where we use the fact that B and W have the same distribution in the second equality, Eq. (13) in the third equality, and Eq. (14)
in the fourth equality. By Egs. (82), (83) and (84), we can deduce Eq. (19). [

Finally, we give the proof of Corollary 2.

Proof of Corollary 2. We have for ¢ > 0 a.e.
dPX, (1)
dt
d(P}(Z))
dt
= (215 (2)),

where we use Eq. (15) in the first equality, Eq. (19) from Theorem 2 with Assumption 1 in the second equality, and the fundamental
theorem of calculus with the chain rule and the assumption that the quadratic variation (Z) is absolutely continuous on R* in the
third equality. [

50 =

A.3. One-sided random case

We define the inverse function of the quadratic variation for 1 > 0 and w € Q2 as
(Y)7'=inf{s 2 0s.t. (Y), > 1}.

Finally, we define the process Y, which is time changed by its quadratic variation inverse, as B, = Yiyy-i for 7 > 0 and w € Q. The
1
following lemma states that B is a Wiener process.

Lemma 4. Under Assumption 2, we have that B is a FB-Wiener process and

Y, = By, fort1 20 as.. (85)

15
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Proof of Lemma 4. This is obtained by a direct application of the Dambis, Dubins-Schwarz theorem for continuous local martingale
(see Revuz and Yor, 2013, Th. V.1.6) with Assumption 2. []

We introduce Proposition 3 in what follows. The main elementary idea of the proof is the scale invariant property of the time-
changed Wiener process and thus the scale invariant property of the FPT which adapts to the one-sided random case by using the
new process.

Proposition 3. Under Assumption 2, we have for any w €  satisfying Y,(w) = By, (w) that

TV =1} = {T8 =(¥),} fort > 0. (86)
1 1

Proof of Proposition 3. We have that for 1 > 0 and any o € Q satisfying Y;(w) = By, (®)
{TV =1} = {inf{s>0st ¥, 21} =1}
= {inf{s > 0s.t. By, =1} =1}, (87)

where we use Eq. (21) in the first equality, and Eq. (85) from Lemma 4 with Assumption 2 in the second equality. Since B is a
FB-Wiener process, W is an F-Wiener process and the boundary is constant, we can make a time change equal to the quadratic
variation (Y'), and obtain that

{inf{s > 0 s.t. By, 21} = 1} (88)
= {inf{s > 0s.t. By > 1} =(Y),}.

Then, we can calculate by Eq. (21) that
{inf{s > 0s.t. B, > 1} =(¥),} = {TF =(¥),}. (89)
By Egs. (87), (88) and (89), we can deduce Eq. (86). [

In what follows, we give the proof of Theorem 3. The proof is mainly based on Proposition 3. We get Ply in the proof of Theorem
3 by regular conditional probability, and using the explicit formula obtained in the nonrandom case.

Proof of Theorem 3. We have that for 7 > 0
Pty =P <1)
- /P BT < 1(Y) = WdFyy ()
= /PJP(inf{s >0s.t Y, > 1} <1(Y) =y)dFyy(»
= /PIP’(inf{s >0st B, >1} <1)dFy,»), (90)

where we use Eq. (22) in the first equality, regular conditional probability in the second equality, Eq. (21) in the third equality,
and Eq. (85) in the fourth equality. By Proposition 3 with Assumption 2, we obtain that

P(inf{s > 0 s.t. B, > 1} <t)dFy,(») (91)

S~

P(inf{s > 0 s.t. B > 1} < y,)d Fyy(»)-
Then, we can calculate that
P(inf{s > 0 s.t. By > 1} < y,)d Fyy()

P(inf{s > 0 s.t. W, > 1} <y,)d Fy)(»)

S—3—

Il
S—3—

P(TY <y,)dFyy()
PV (y)dF iy, (92)

where we use the fact that B and W have the same distribution in the first equality, Eq. (21) in the second equality, and Eq. (22)
in the third equality. By Egs. (90), (91) and (92), we can deduce Eq. (26). [

Finally, we give the proof of Corollary 3.
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Proof of Corollary 3. We have for ¢ > 0 a.e.
dpP) (1)
dt
d(f» P (v))dFyy(»)
dt

/ dP¥ (v,))
P

dt

o=

dFy)(»)

= /p wrl (%) d Fiyy (),

where we use Eq. (23) in the first equality, Eq. (26) from Theorem 3 with Assumption 2 in the second equality, Tonelli’s theorem
in the third equality, and the fundamental theorem of calculus with chain rule and the assumption that the quadratic variation (Y)
is absolutely continuous on R* a.s. in the fourth equality. []

A.4. Two-sided random case

We define the inverse function of the quadratic variation for > 0 and w € Q2 as
(Z)7' =inf(s 2 0 s.t. (Z) > 1}.

Finally, we define the process Z, which is time changed by its quadratic variation inverse, as B, = Z, (z)7! fort > 0 and w € Q. The
1
following lemma states that B is a Wiener process.

Lemma 5. Under Assumption 3, we have that B is a F-Wiener process and

Z, = B(z), for 120 as.. (93)

Proof of Lemma 5. This is obtained by a direct application of the Dambis, Dubins—Schwarz theorem for continuous local martingale
(see Revuz and Yor, 2013, Th. V.1.6) with Assumption 3. [

We introduce Proposition 4 in what follows.

Proposition 4. Under Assumption 3, we have for any o € Q satisfying Z,(w) = Bz, (w) that

(17, =1} ={T2, =(2),} for1>0. on

Proof of Proposition 4. We have for # > 0 and any w € (2 satisfying Z,(») = Bz, () that
{17, =1} = {inf(s 20s.t. Z, 2 gor Z, <h} =1}
= {inf{s 2 0s.t. Bz, 2gor B <h}=t}, (95)

where we use Eq. (28) in the first equality, and Eq. (93) from Lemma 5 with Assumption 3 in the second equality. Since B is a
FB-Wiener process, W is an F-Wiener process and the boundary is constant, we can make a time change equal to the quadratic
variation (Z), and obtain that

{inf{s >0s.t. Bizy >gor Bz <h}=t} (96)
= {inf{s > 0s.t. B, > g or B, < h} =(Z),}.

Then, we can calculate by Eq. (28) that
{inf(s > 0s.t. By2gor By<h)=(Z),} ={T2, =(Z),}. (97)
By Egs. (95), (96) and (97), we can deduce Eq. (94). [

In what follows, we give the proof of Theorem 4. The proof is mainly based on Proposition 4. We get PgZh in the next theorem
by regular conditional probability, and using the explicit formula obtained in the nonrandom case.

Proof of Theorem 4. We have that for 7 > 0
z Z
P70 = (T, <1)
= /P(Tih < tlu = (gy, hy, 2))d F,(gy, hy, 2)
s

B /]P’ ( inf{s>0s.t. Z; > gor Z, <h} <tlu=(gy,hy,2))
K

17
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dF,,(g07 ho, Z)
= /P(inf{sZOs.t. Bz 2gor By <h}<t (98)
s s s
[u = (8o, ho, 2))d F, (8o Py 2),

where we use Eq. (29) in the first equality, regular conditional probability in the second equality, Eq. (28) in the third equality,
and Eq. (93) from Lemma 5 with Assumption 3 in the fourth equality. Since the stochastic process Z is independent from the
two-sided boundary (g, 4), we obtain that

/]P’ (inf{s>0s.t. By >gor By, <h}<tlu= (g, hy2) (99)
< :
dF,(gy, hy, 2)
= /IP’ (inf{s>0s.t. B, >g,or B, <hy} <ndF,(g,hg, 2).
< : :

By Proposition 4 with Assumption 3, we obtain that
/IP’ (inf{s>0s.t. B, >g or B, <hy}<ndF,gy.hy2) (100)
s

P (inf{s>0s.t. B > g, or By < hy} < z,)d F,(gy, hy, 2).

1]
—

Then, we can calculate that

P (inf{s > 0s.t. By > g, or By < hy} < z,)d F, (g, hy, 2)

P (inf{s > 0s.t. W, > g, or W, < hy} < z,)dF, (g, hy, 2)

———

P(T?(jsho = Zf)dFu(gO’ hy, z)

PV, (2,)dF, (8 ho. 2), (101)

oo
where we use the fact that B and W have the same distribution in the first equality, Eq. (28) in the second equality, and Eq. (29)
in the third equality. By Egs. (98), (99), (100) and (101), we can deduce Eq. (31). [

Finally, we give the proof of Corollary 4.

Proof of Corollary 4. We have for > 0 a.e.
z
dPZ,(0)
dt
d(fs Py, (2)dF,(8. ho.2)
dt

d(P;KhU (z:)
_/5 dt

15 =

dF,(gy. hy. 2)

w
S R CITIC !

where we use Eq. (30) in the first equality, Eq. (31) from Theorem 4 with Assumption 3 and the assumption that the stochastic
process Z is independent from the two-sided boundary (g, ») in the second equality, Tonelli’s theorem in the third equality, and the
fundamental theorem of calculus with chain rule and the assumption that the quadratic variation (Z) is absolutely continuous on
R* a.s. in the fourth equality. []

Appendix B. Proofs of the explicit solution in the IFPT problem

In this section, we prove the explicit solution of the IFPT problem for the one-sided and two-sided boundary in the case (i) and
(ii).
B.1. One-sided nonrandom case
B.1.1. Case when the quadratic variation is absolutely continuous

When PgW is invertible, we define its inverse as (PgW)‘1 : [0,1) - R*. The first lemma shows that there exists an inverse of

PgW, and gives explicit formulae of (PgW)‘l(t) and fgW((PgW)‘l(t)) for 0 <t < 1, all of which are new results which will be useful to
express the explicit solution of the IFPT problem. The proof relies on Lemma 1.
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Lemma 6. There exists an inverse of PgW which is strictly increasing such that (PgW)’l(O) =0 and

_ &
2erfinv(l — t)?
Finally, we have f ;" ((PgW)‘1 () =0 and

(PgW)‘l(t) = foro<r<1. (102)

2
g/

erfinv(l — 1)e=erfiva=0% for 0 <1 < 1. (103)

ARG

Proof of Lemma 6. Using Eq. (8) from Lemma 1, Eq. (7) with Eq. (39), we can express the relation between the cdf of the standard
normal and the error function as

1 X
Hx) = -(1+erf(—)). (104)
2 NG

We can rewrite Eq. (8) as

=1- %(1 +el’f(%)) + %(1 —erf(%))

=1 —erf(-5),
NG,

We note that PgW : Rt - [0,1) is strictly increasing since fgW(t) > 0 for t > 0 by Eq. (9). Thus, there exists an inverse
(Pg"")‘1 : [0,1) —» R* which is strictly increasing. First, note that as PgW(O) = 0, this implies that (PgW)‘l(O) = 0. Using Eq. (8),
some algebraic manipulation leads to Eq. (102). Finally, applying Eq. (9) yields the form of f;" (Pg”"_l @), i.e., Eq. (103). O

We then give a lemma whose proof relies on Lemmas 1 and 6. For A ¢ R* and B c R*, we denote the space C; of functions
k : A - B with derivatives which are continuous as C,(A, B).
Lemma 7. We have
f¥ € Ci®R*,RY) and P} € C;(R*,[0,1)), (105)
(PY)™ € (10, 1),RY). (106)

Proof of Lemma 7. By Egs. (8) and (9) in Lemma 1, we obtain Eq. (105). By Eq. (102) in Lemma 6, we obtain Eq. (106). []

We now give the definition of an explicit solution.

2

Definition 20. For a given pdf f, we say that a variance function ¢ : R* - R* which is the quadratic variation derivative a.e. of

!
a continuous local martingale Z/, i.e.
t
zhy,= [ o2 .dsfort>0, (107)
t s.f
g
is an explicit solution if it is of the form
2 f@®
=—"—1 for 1 > 0. 108
T @ Ew) o (109

If we substitute (PgW)‘I in Eq. (108) with Eq. (102) from Lemma 6, we can reexpress the explicit solution as Eq. (41). The next
proposition shows that Assumption 4 implies that Z/ satisfies Assumption 1. The proof is mainly based on elementary topological
arguments in R¥.

Proposition 5. Under Assumption 4, we have that Z/ satisfies Assumption 1.

Proof of Proposition 5. To prove that Z/ satisfies Assumption 1, we first show that a} € Ljj.(RY), ie., we have to show by

definition that VK c R*, K compact, we have

/aff df < +oo. (109)
o

There is no loss of generality assuming that K has a closed interval form K = [K,, K;] where 0 < K, < K;, since if not we can
break K into a finite number of nonoverlapping closed intervals by the Bolzano-Weierstrass theorem and prove Eq. (109) for each
interval. We first consider the case where

0<KY <Ky <K, (110)
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Given the form of the explicit solution (108), Eq. (109) can be reexpressed as

0
—_— dt < +00. 111
/K E T Ea) (

We first show that the denominator in the integral of Eq. (111) is uniformly bounded away from 0 on K. By Definition 9, F is a
cdf and thus a nondecreasing function. We can deduce that

F(Ky) < F(1) < F(K,) for t € K. (112)

We also obtain by definition of K% in Eq. (36), definition of K ; in Eq. (37) and the assumption that K }, is not finite from Assumption
4 that

0 < F(K) < 1 for K € R such that K% < K. (113)
Combining Egs. (112) and (113), we can deduce that

0< F(Ky)) < F()<F(K) <1, forte K. (114)
By Lemma 6, we have that (Pg"")’1 is strictly increasing. Thus, applying (Pg"")’1 to each term of Inequality (114) yields

0 < (PY)""(F(Ky) < (PY )™ (F() < (PY)\(F(K))). for 1 € K. (115)
We have that (PgW)‘l(F(t)) takes its values in the closed interval

(B (F(Ko)), (P (F(K )]

of R* which is connected and compact by the Bolzano-Weierstrass theorem. Besides, it is known from topological properties that
the image of a compact and connected set of R* by a continuous function from R* to R* is a compact and connected set of R*.
Since f% is continuous by Eq. (9), we can deduce that fgW((PgW)‘l(F (1)) for t € K is included into a compact and connected space
of R*, e.g., a closed interval of R*. From Eq. (9), we get that there exists C > 0 such that

Cc< fgW((PgW Y L(F(@)) for r € K. (116)

This implies that the denominator in the integral of Eq. (111) is uniformly bounded away from 0 on K. Given that f is a pdf, we
obtain that

/ F(0)dt < +oo.
K

Thus, Eq. (111) holds. We now consider the general case when K is not necessarily of the form (110). We consider the case when
Ky < K. < K. If we introduce the notation K% = K9 + 49, then we can decompose [K, K,] as

[Ko. K11 = [Ko. K91U[KY, K01 U KO, K, 1.

We deduce that

2 2 2 2
or . dt =/ o dl+/ o dt+/ s, dt
/K s (Ko k) k0.0, O 7o g1y O

0z
F F] FF

2 2
= ol dr+ / o, o dr
/[K%,K?.] o ).k

c+/
1%

< +o0,

IA

2

or ,dt
0 g1, M
KEl

where the second equality is due to the fact that the variance function is null on [K|, K%] by Eq. (108), the first inequality with C > 0
follows by Expression (38) from Assumption 4, and the second inequality is due to Eq. (111). Finally, we have that the variance
function is null on by Eq. (108) in the case when Kg < K. We have thus shown Expression (109). Thus, we can deduce that Z I is
a local martingale with nonrandom quadratic variation

(z7), = /' o2 du 117)
o

by Theorem 1.4.40 (p. 48) from Jacod and Shiryaev (2003) with Expression (109). Finally, we show that (Z/), — o as t — co. We
can calculate that

(z), =(z"),

vp(1)

g2

— & , 118
2erfinv(l — F(r)? (0<FO<! (118)
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where we use the fact that Z/ = ZF in the first equality, Eq. (124) from Definition 21 in the second equality, and Eq. (44) in the
last equality. By definition we have that erfinv(z) — 0 as z — 0, and by Definition 9 we have that lim, , F(r) = 1. Thus, we can
deduce by the assumption that K}r is finite from Assumption 4 that

g2

_—1
2erfinv(l — F(1)? !
as t — oo. We can deduce by Egs. (117), (118) and (119) that (Z/), — co as t — co. This implies that Z/ satisfies Assumption 1. []

0<F()<1} 0 (119)

The next proposition states that if Z/ satisfies Assumption 1, then, the variance function is a solution if and only if it is an explicit
solution. The proof is based on an application of Theorem 1, and elementary analysis. More specifically, it is based on substituting
the left-hand side of Eq. (35) with Eq. (11) from Theorem 1 and Eq. (107), and then differentiating and inverting on both sides of
the equation to derive the explicit solution.

Proposition 6. If we assume that Z/ satisfies Assumption 1, then, (i) o-% is a solution of Definition 10 < (ii) a? is an explicit solution
of Definition 20. '

Proof of Proposition 6. Proof of (i) => (ii). We assume that ¢2 is a solution of Definition 10. Given that Z/ satisfies Assumption
1, we can substitute the left-hand side of Eq. (35) with Eq. (11) to deduce

PY ((zf ),) = F(1) for 1 > 0. (120)

Using Eq. (107), Eq. (120) can be reexpressed as
t
PgW</O oifds> = F(t) for 1 > 0. (121)

By Lemma 6, there exists an inverse(Pg"V)‘1 1 [0,1) - R*. Applying (Pg"")‘1 on both sides of Eq. (121), Eq. (121) can be rewritten
as

t
/0 oy sds = (PY Y (F)ocpgyery for120. (122)

The left-hand side of Eq. (122) and F have a derivative a.e. for r > 0 by absolute continuity properties and since F is absolutely
continuous. (PgW)‘1 is differentiable on [0, 1) by Lemma 7. Thus, we can differentiate (122) a.e. on both sides, by using the chain
rule on the right-hand side. We obtain

o2 = FOPY )Y (FOocpyery  ace. for 12 0. (123)

Applying the inverse function theorem, Eq. (123) can be reexpressed as

2 _ PAQ)

cl,=——— 1 a.e. fort >0,
(P (PW Y I(F () PO

2

or equivalently of the form (108) as (PgW)’ () = f,(1) for t > 0 a.e.. Thus, we have shown that & 7

20.
Proof of (ii) = (i). We assume that o

is an explicit solution of Definition

2

f is an explicit solution of Definition 20. We have for 7 > 0

t
zl oy — pW 2
P (1) = P! (/0 o2 ds)

' fGs)
7, Ty e
g g

t
PY( /0 FOUPTYY (F) oeroreds)

PY (Y)Y O(F @)
F(),

where we use Eq. (11) with the assumption that Z/ satisfies Assumption 1 in the first equality, Eq. (108) in the second equality, the
inverse function theorem in the third equality, integration in the fourth equality and algebraic manipulation in the fifth equality.

We have thus shown that (7; satisfies Eq. (34), and thus that 0'; is a solution of Definition 10. [

The following theorem states that under Assumption 4, (a) Z/ satisfies Assumption 1 and (b) that variance function is solution
if and only if it is an explicit solution. The proof of Theorem 13 is a direct application of Propositions 5 and 6.

Theorem 13. Under Assumption 4, (a) Z/ satisfies Assumption 1(b) (i) ajz, is a solution of Definition 10 < (ii) a% is an explicit solution
of Definition 20.

Proof of Theorem 13. To obtain (a), we apply Proposition 5 with Assumption 4. Then, an application of Proposition 6 with (a)
yields (b). O
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Finally, we give the proof of Theorem 5, which is a direct consequence of Theorem 13.
Proof of Theorem 5. This is a direct consequence of Theorem 13 with Assumption 4. []

B.1.2. Case when the quadratic variation is not absolutely continuous
We first give the definition of the explicit solution.

Definition 21. For a given cdf F, we say that a nonrandom nondecreasing function v, which is the quadratic variation of a
continuous local martingale Z¥, i.e.
(ZFy, = vp(t) for t > 0, (124)

is an explicit solution if it is of the form

vp(t) = (PgW)"(F(t))l (0<F@<1y for1>0. (125)

If we substitute (PgW)‘1 in Eq. (125) with Eq. (102) from Lemma 6, we can reexpress the explicit solution as Eq. (44).
The next proposition shows that Assumption 5 implies that Z¥ satisfies Assumption 1.

Proposition 7. Under Assumption 5, we have that Z¥ satisfies Assumption 1.

Proof of Proposition 7. By Definition 21, Z¥ is defined as a continuous local martingale with quadratic variation (Z%), =
vp(t) for t > 0, which can be expressed by Eq. (44) as

g2

——1
2erfinv(l — F(n)2 (0<FO<b)

By definition we have that erfinv(r) — 0 as t — 0, and by Definition 9 we have that lim,_,, F(r) = 1. Thus, we can deduce by
Assumption 5 that lim,_, v (f) = co. This implies that (Zf)_ = co and thus that Z¥ satisfies Assumption 1. []

vp(t) = for t > 0.

The next proposition states that if a nondecreasing function satisfies Assumption 1, then it is a solution if and only if it is an
explicit solution. The proof is based on substituting the left-hand side of Eq. (43) with Eq. (11) from Theorem 1 and Eq. (124), and
then inverting on both sides of the equation to derive the explicit solution.

Proposition 8. If we assume that vy satisfies Assumption 1, then, (i) vp is a solution of Definition 11 < (ii) vy is an explicit solution
of Definition 21.

Proof of Proposition 8. Proof of (i) = (ii). We assume that v is a solution of Definition 11. Given that ZF satisfies Assumption
1, we can substitute the left-hand side of Eq. (43) with Eq. (11) to deduce

PV ((zF),) = F(1) for t > 0. (126)
Using Eq. (124), Eq. (126) can be reexpressed as

PgW<uF(t)> = F(1) for 1 > 0. (127)

By Lemma 6, there exists an inverse (Pg"")‘1 : [0,1) - R*. Applying (Pg"")‘1 on both sides of Eq. (127), Eq. (127) can be rewritten
as Eq. (125).
Proof of (ii) = (i). We assume that v is an explicit solution of Definition 21. We have
zF N _ pW F
P 0 = PV ((2"),)

PY (0p(1)
= P (PY ) (FO) <<ty
F@),

where we use Eq. (11) with the assumption that v, satisfies Assumption 1 in the first equality, Eq. (124) in the second equality,
Eq. (125) in the third equality, and algebraic manipulation in the fourth equality. []

The following theorem states that under Assumption 5, (a) Zf satisfies Assumption 1 and (b) that nondecreasing function is
solution if and only if it is an explicit solution. The proof is a direct application of Propositions 7 and 8.

Theorem 14. Under Assumption 5, (a) ZF satisfies Assumption 1(b) (i) v ¢ is a solution of Definition 11 < (ii) vy is an explicit solution
of Definition 21.

Proof of Theorem 14. To obtain (a), we apply Proposition 7 with Assumption 5. Then, an application of Proposition 8 with (a)
yields (b). O
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Finally, we give the proof of Theorem 5, which is a direct consequence of Theorem 13.
Proof of Theorem 6. This is a direct consequence of Theorem 14 with Assumption 4. []
B.2. Two-sided nonrandom case

B.2.1. Case when the quadratic variation is absolutely continuous

The first lemma shows that there exists an inverse of P¥

T which we denote (PW)‘1 and is strictly increasing such that
) 1) = 0 and (P AN 1(1) = o, all of which are new results which will be useful to prove the explicit solution of the inverse
problem The proof rehes on Lemma 2.

Lemma 8. There exists an inverse of Pg“;l which we denote (Pg”;)‘ [0,1) - R* and is strictly increasing such that (P W 10) = 0 and
that (P;";l)"(l) =00

Proof of Lemma 8. Using Eq. (17) from Lemma 2, we note that PW R* — [0,1) is strictly increasing since f @) >0 fort >0
by Eq. (18). Thus, there exists an mverse(PW)‘ [0,1) - R* Wthh is strictly increasing. First, note that as PW(O) 0, this implies
that (P AN 1(0) = 0. Using Eq. (17), some algebralc manipulation leads to (P W Ih=w. O

We then give another lemma whose proof relies on Lemma 2.

Lemma 9. We have
fW € ¢;(R",R"), PW € ¢;(R",[0, 1)) and (128)
(PP €10, 1),RY). (129)

Proof of Lemma 9. By Egs. (17) and (18) in Lemma 2, we obtain Egs. (128) and (129). [

We now give the definition of the explicit solution.

2

I R* — R* which is the quadratic variation derivative a.e. of

Definition 22. For a given pdf f, we say that a variance function o
a continuous local martingale Z/, i.e.

t
<Zf>,=/ crszfds fort >0, (130)
b s

is an explicit solution if it is of the form Eq. (48).
The next proposition shows that Assumption 6 implies that Z/ satisfies Assumption 1. The proof is mainly based on topological
argument in R* and the use of Assumption 6.

Proposition 9. Under Assumption 6, we have that Z/ satisfies Assumption 1.

Proof of Proposition 9. To prove that Z/ satisfies Assumption 1, we first show that o2

7 € Lyjc(RY), ie., we have to show by
definition that V K c R*, K compact, we have ’

/affdr<+oo. (131)
O

There is no loss of generality assuming that K has a closed interval form K = [K, K] where 0 < K, < K|, since if not we can
break K into a finite number of nonoverlapping closed intervals by the Bolzano-Weierstrass theorem and prove Eq. (109) for each
interval. We first consider the case where

0<KY <Ky<K,. (132)

Given the form of the explicit solution (48), Eq. (131) can be reexpressed as

/ J{0 i < too. (133)
FEPEY I FD)

We first show that the denominator in the integral of Eq. (133) is uniformly bounded away from 0 on K. By Definition 9, F is a
cdf and thus a nondecreasing function. We can deduce that

F(Ky) < F(t) < F(K)) fort € K. (134)

We also obtain by definition of Kg in Eq. (36), definition of K} in Eq. (37) and the assumption that K} is not finite from Assumption
6 that

0 < F(K) < 1 for K € R such that K% < K. (135)
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Combining Egs. (134) and (135), we can deduce that

0< F(Ky)) < Ft)< F(K)) <1, forte K. (136)
By Lemma 8, we have that (094 )‘] is strictly increasing. Thus, applying (PW)‘1 to each term of Inequality (136) yields

0 < (P, h) (F(Ky)) < (P, ;,) "(F@) < (P, h) I(F(Ky)), fort e K. (137)
We have that (PW)‘ (F (1)) takes its values in the closed interval

[P, h) '(F(Ky), (P, h) NFK))]

of R* which is connected and compact by the Bolzano-Weierstrass theorem. Besides, it is known from topological properties that
the image of a compact and connected set of R* by a continuous function from R* to R* is a compact and connected set of R*.
Since f,", W is continuous by Eq. (18), we can deduce that f ((P W I(F(t))) for t € K is included into a compact and connected
space o ]R+ e.g., a closed interval of R*. From Eq. (18), we get that there exists C > 0 such that

c<f h((Pg%-l(F(z))) fort e K. (138)

This implies that the denominator in the integral of Eq. (133) is uniformly bounded away from 0 on K. Given that f is a pdf, we
obtain that

/ F)dt < +oo.
K

Thus, Eq. (133) holds. We now consider the general case when K is not necessarily of the form (132). We consider the case when
Ky < K. < K. If we introduce the notation K. = K9 + 19, then we can decompose [K, K,] as

(Ko. K1 = [Ko, K9TU[KY, KO U KO, K, 1.

We deduce that

o, dt = / o2 dt+/ o2 dt+/ dt

/ ot (KK (&9.R0) [RO,RL] %
62 dt+/ o2, dt

/mg,ko ot &9.Ry

C+/~ o
K%K

< o0,

IN

where the second equality is due to the fact that the variance function is null on [K,, Kg] by Eq. (48), the first inequality with C > 0
follows by Expression (47) from Assumption 6, and the second inequality is due to Eq. (133). Finally, we have that the variance
function is null on by Eq. (48) in the case when KOF < K. We have thus shown Expression (131). Thus, we can deduce that Z fis
a local martingale with nonrandom quadratic variation

t
<zf>,=/ oy rdu (139)
)

by Theorem 1.4.40 (p. 48) from Jacod and Shiryaev (2003) with Expression (131). Finally, we show that (Z/), — o as t — c0. We
can calculate that

<Zf>r

("),
UF(I)
(P )T FO ocp<r) o

where we use the fact that Z/ = ZF in the first equality, Eq. (146) from Definition 23 in the second equality, and Definition 23 in
the last equality. By Lemma 8 we have that (P”;)"(l) = o0, and by Definition 9 we have that lim,_,, F(¢) = 1. Thus, we can deduce
by the assumption that K }, is finite from Assumption 6 that

(P W (F(f))l (0<Fn<1) = 0 (141)

as t —» oo. We can deduce by Egs. (139), (140) and (141) that (Zf),du — o0 as t — oo. This implies that Z/ satisfies Assumption
1. O

The next proposition states that if Z/ satisfies Assumption 1, then, the variance function is a solution if and only if it is an
explicit solution. The proof is based on substituting the left-hand side of Eq. (46) with Egs. (19) from Theorem 2 and (130) and
then differentiating and inverting on both sides of the equation to derive the explicit solution.

Proposition 10. If we assume that Z/ satisfies Assumption 1, then, (i) o‘% is a solution of Definition 12 < (i) oi is an explicit solution
of Definition 22.
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Proof of Proposition 10. Proof of (i) = (ii). We assume that ¢2 is a solution of Definition 12. Given that Z/ satisfies Assumption
1, we can substitute the left-hand side of Eq. (46) with Eq. (19) to deduce

sz(@f),) = F(t) for t > 0. (142)

Using Eq. (130), Eq. (142) can be reexpressed as
t
Pg‘f;(/ o fds) = F(t) for 1 > 0. (143)

By Lemma 8, there exists an 1nverse(P )‘ : [0,1) - R*. Applying (P )‘1 on both sides of Eq. (143), Eq. (143) can be rewritten
as

t
/0 o sds = (P (F)ocpqary  for1>0. (144)

The left-hand side of Eq. (144) and F have a derivative a.e. for r+ > 0 by absolute continuity properties and since F is absolutely
continuous. (PW)‘1 is differentiable on [0, 1) by Lemma 9. Thus, we can differentiate Eq. (144) a.e. on both sides, by using the chain
rule on the I'lgilt hand side. We obtain

= FOWPY)™Y (FOgepey ace. for 120, (145)
Applymg the inverse function theorem, Eq. (145) can be reexpressed as
2 _ f@)

c 1 a.e. fort >0,
AT AT

or equivalently of the form (48) as (Pg”;)’ () = fy4(®) a.e. for t > 0. Thus, we have shown that ajz, is an explicit solution of Definition
22.
Proof of (ii) = (i). We assume that ¢

I
t
f
PZ 0 = P”;,(/ affds)

S -
g "(/ w iy <o

is an explicit solution of Definition 22. We have a.e. for 7 > 0

(/ O/ Y ()<< ds)

P (PP YO(F (1)
= F),

where we use Eq. (19) with the assumption that Z/ satisfies Assumption 1 in the first equality, Eq. (48) in the second equality, the
inverse function theorem in the third equality, integration in the fourth equality and algebraic manipulation in the fifth equality.

We have thus shown that o,z satisfies Eq. (45), and thus that ai is a solution of Definition 12. [

The following theorem in the particular case when the quadratic variation (Z) is absolutely continuous states that under
Assumption 6, (a) Z/ satisfies Assumption 1 and (b) that variance function is solution if and only if it is an explicit solution.

Theorem 15. Under Assumption 6, (a) Z/ satisfies Assumption 1(b) (i) o‘% is a solution of Definition 12 < (ii) 6}2{ is an explicit solution
of Definition 22. ’

Proof of Theorem 15. To obtain (a), we apply Proposition 9 with Assumption 6. Then, an application of Proposition 10 with (a)
yields (b). [

Finally, we give the proof of Theorem 7, which is a direct consequence of Theorem 15.
Proof of Theorem 7. This is a direct consequence of Theorem 15 with Assumption 6. []

B.2.2. Case when the quadratic variation is not absolutely continuous
We first give the definition of the explicit solution.

Definition 23. For a given cdf F, we say that a nonrandom nondecreasing function v, which is the quadratic variation of a
continuous local martingale ZF, i.e.

(ZF), = vp@ for 120, (146)
is an explicit solution if it is of the form

vp(®) = (P (FOocpyery  for 120, (147)
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The next proposition shows that Assumption 5 implies that Z¥ satisfies Assumption 1.
Proposition 11. Under Assumption 5, we have that Z¥ satisfies Assumption 1.

Proof of Proposition 11. By Definition 23, ZF is defined as a continuous local martingale with quadratic variation (Z¥), =
vp(t) for t > 0, which can be expressed as

vp(®) = (P (F)ocp<ry  for120.
By Lemma 8 we have that (Pg”;l)‘l(l) = o0, and by Definition 9 we have that lim,_, , F(r) = 1. Thus, we can deduce by Assumption 5

that lim,_, v (f) = co. This implies that (ZF)_, = co and thus that Z¥ satisfies Assumption 1. []

The next proposition states that if a nondecreasing function satisfies Assumption 1, then it is a solution if and only if it is an
explicit solution. The proof is based on substituting the left-hand side of Eq. (50) with Egs. (19) and (146) and then inverting on
both sides of the equation to derive the explicit solution.

Proposition 12. We assume that v satisfies Assumption 1. Then, (i) vy is a solution of Definition 13 < (ii) vy is an explicit solution
of Definition 23.

Proof of Proposition 12. Proof of (i) = (ii). We assume that v, is a solution of Definition 13. Given that Z¥ satisfies Assumption
1, we can substitute the left-hand side of Eq. (50) with Eq. (19) to deduce

Pg‘f;(<zF>,) = F(r) for 1 > 0. (148)
Using Eq. (146), Eq. (148) can be reexpressed as

P;‘;(u F(:)) = F(t) for 1 > 0. (149)

By Lemma 8, there exists an inverse(Pg”;,)‘1 : [0,1) - R*. Applying (Pg”;l)‘1 on both sides of Eq. (149), Eq. (149) can be rewritten
as Eq. (147).
Proof of (i) = (i). We assume that v is an explicit solution of Definition 23. We have
i (25)
Py (wp()
PI(PYY T (FO) ocrgyery)
= F(1),

F
Pfh )

where we use Eq. (19) with the assumption that v satisfies Assumption 1 in the first equality, Eq. (146) in the second equality,
Eq. (147) in the third equality, and algebraic manipulation in the fourth equality. []

The following theorem states that under Assumption 5, (a) ZF satisfies Assumption 1 and (b) that a nondecreasing function is
solution if and only if it is an explicit solution.

Theorem 16. We assume that Assumption 5 holds. Then, we have that (a) Z© satisfies Assumption 1 and (b) (i) vy is a solution of
Definition 13 < (ii) v is an explicit solution of Definition 2.3.

Proof of Theorem 16. To obtain (a), we apply Proposition 11 with Assumption 5. Then, an application of Proposition 12 with (a)
yields (b). [

Finally, we give the proof of Theorem 8, which is a direct consequence of Theorem 16.

Proof of Theorem 8. This is a direct consequence of Theorem 16 with Assumption 5. []
B.3. One-sided random case

B.3.1. Case when the quadratic variation is absolutely continuous

We now give the definition of the explicit solution.
Definition 24. For a given random pdf f, we say that a variance process a}
derivative a.e. of a continuous local martingale Y7/, i.e.

: R* x 2 —» Rt which is the quadratic variation

t
¥, () = / ol sl@yds forr>0and w € , (150)
0
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is an explicit solution if it is of the form

[, @) 1
(PP (Fr o))
a.e. forr >0 and w € Q.

GZf(w) = 0<F(t,w)<1} (151)

If we substitute (PIW y~!in Eq. (151) with Eq. (102) from Lemma 6, we can reexpress the explicit solution as Eq. (56).
The next proposition shows that Assumption 7 implies that Y/ satisfies Assumption 2. The proof is mainly based on the use of
Assumption 7.

Proposition 13. Under Assumption 7, we have that Y/ satisfies Assumption 2.
Proof of Proposition 13. We can deduce that Y/ is a local martingale with random quadratic variation
t
¥, () = / o2 sl@duforr>0and we Q (152)
0 W

by Theorem 1.4.40 (p. 48) from Jacod and Shiryaev (2003) with Expression (55) from Assumption 7. We show that (Y/ ) = oo as
t = oo0. We can calculate that

(Y (w) = (Y (w)

vi(t, @)

1

—2 erfinv(l — F(Z‘ a)))z 1(0<F(t,a1)<l} for t >0 and w € Q, (153)

where we use the fact that Y/ = Y¥ in the first equality, Eq. (159) from Definition 25 in the second equality, and Eq. (61) in the
last equality. By definition we have that erfinv(z) — 0 as z — 0, and by Definition 14 we have that lim,_, , F(t,w) = 1. Thus, we can
deduce by the assumption that K ,1: is finite from Assumption 7 that

1
I
2erfinv(l — F(t, w))?

as t — oco. We can deduce by Egs. (152), (153) and (154) that (Yf), — o0 ast — co. This implies that Y/ satisfies Assumption 2. []

{0<FGw<1) = 0 (154)

The next proposition states that if Y/ satisfies Assumption 2, then, the variance function is a solution if and only if it is an
explicit solution. The proof is based on substituting the left-hand side of Eq. (54) with Egs. (26) from Theorem 3 and (150) and
then differentiating and inverting on both sides of the equation to derive the explicit solution.

Proposition 14. We assume that Y/ satisfies Assumption 2. Then, (i) a? is a solution of Definition 16 <= (ii) aj% is an explicit solution
of Definition 24.

Proof of Proposition 14. Proof of (i) => (ii). We assume that o2 is a solution of Definition 16. Given that Y/ satisfies Assumption
2, we can substitute the left-hand side of Eq. (54) with Eq. (26) to deduce
PV ((zf>,(w)) = F(t,w) for 1> 0 and w € Q. (155)

Using Eq. (150), Eq. (155) can be reexpressed as
t
P1W</ 02 j(@)ds) = F(t.) for 1> 0 and w € . (156)
o S

By Lemma 6, there exists an inverse(PlW )~ : [0,1) - R*. Applying (PlW )~! on both sides of Eq. (156), Eq. (156) can be rewritten
as

t
/0 o (@)ds = (P (F(t, o) jgcpgwy<ty fort>0and o € Q. 157)

The left-hand side of Eq. (157) and F have a derivative a.e. for + > 0 by absolute continuity properties and since F is absolutely
continuous. (PIW )~! is differentiable on [0, 1) by Lemma 7. Thus, we can differentiate Eq. (157) a.e. on both sides, by using the chain
rule on the right-hand side. We obtain

sz(w) = f@, a))((PIW)_](w)),(F(t, N p <1y (158)
a.e. forr >0 and w € Q.
Applying the inverse function theorem, Eq. (158) can be reexpressed as

/() ;
PV Y(PY Y U(F(tw))

GZf(w) = 0<F(tw)<1} a.e. for ¢ >0 and w € .Q,
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or equivalently of the form (151) as (PIW)’ () = f,@) a.e. for t > 0. Thus, we have shown that 012, is an explicit solution of Definition
24,

Proof of (ii) => (i). We assume that ¢

; is an explicit solution of Definition 24. We have a.e. for r > 0 and w € Q that
t
Y/ _ pW 2
P/ (tlo) = P (/0 Gs’f(a))ds)

t
o / Seo)
Vo TR Gy oY

t
= P/( /0 F(s o) (P (F(s, )10 ps ap<1)49)
PV (PY Yy )(F(t )
F(t, w).

where we use Eq. (26) with the assumption that Y/ satisfies Assumption 2 in the first equality, Eq. (151) in the second equality, the
inverse function theorem in the third equality, integration in the fourth equality and algebraic manipulation in the fifth equality.
We have thus shown that o,z satisfies Eq. (53), and thus that U?‘ is a solution of Definition 16. []

The following theorem states that under Assumption 7, (a) Y/ satisfies Assumption 2 and (b) that variance function is solution
if and only if it is an explicit solution.

Theorem 17. We assume that Assumption 7 holds. Then, we have that (a) Y/ satisfies Assumption 2 and (b) (i) G; is a solution of
Definition 16 < (ii) a; is an explicit solution of Definition 24.

Proof of Theorem 17. To obtain (a), we apply Proposition 13 with Assumption 7. Then, an application of Proposition 14 with (a)
yields (b). [

Finally, we give the proof of Theorem 9, which is a direct consequence of Theorem 17.

Proof of Theorem 9. This is a direct consequence of Theorem 17 with Assumption 7. []

B.3.2. Case when the quadratic variation is not absolutely continuous
We first give the definition of the explicit solution.

Definition 25. For a given random cdf F, we say that a nondecreasing stochastic process vy which is the quadratic variation of a
continuous local martingale Y ¥, i.e.

(Y, (w) = vp(t,w) for t > 0 and w € 2, (159)
is an explicit solution if it is of the form

vp(t,w) = (P Y (FE o)1 gepgamy<r; fort>0and we Q. (160)

If we substitute (PIW)‘1 in Eq. (160) with Eq. (102) from Lemma 6, we can reexpress the explicit solution as Eq. (61).
The next proposition shows that Assumption 8 implies that Y satisfies Assumption 2.

Proposition 15. Under Assumption 8, we have that Y ¥ satisfies Assumption 2.

Proof of Proposition 15. By Definition 25, Y¥ is defined as a continuous local martingale with quadratic variation (Y¥),(») =
vp(t,w) for 1 > 0 and @ € 2, which can be expressed by Eq. (61) as

1

)= ——— 1
vr(t. @) 2erfinv(l — F(t, )2

(0<Few<1} fort>0and w € Q.

By definition we have that erfinv(z) - 0 as z — 0, and by Definition 14 we have that lim,_,  F(t,w) = 1. Thus, we can deduce by
Assumption 8 that lim,_, vy (t,®) = co. This implies that (YF)_ = co and thus that Y* satisfies Assumption 2. []

The next proposition states that if a nondecreasing function satisfies Assumption 2, then it is a solution if and only if it is an
explicit solution. The proof is based on substituting the left-hand side of Eq. (58) with Egs. (26) and (159) and then inverting on
both sides of the equation to derive the explicit solution.

Proposition 16. We assume that v satisfies Assumption 2. Then, we have that (i) vy is a solution of Definition 17 < (ii) vy is an
explicit solution of Definition 25.
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Proof of Proposition 16. Proof of (i) = (ii). We assume that v is a solution of Definition 17. Given that Y ¥ satisfies Assumption
2, we can substitute the left-hand side of Eq. (58) with Eq. (26) to deduce

P1W<(YF),(a))) = F(t,w) for 1> 0 and w € 2. (161)
Using Eq. (159), Eq. (161) can be reexpressed as
PY (0r. @) = Ft.o) for 120 and € . (162)

By Lemma 6, there exists an inverse(P}")~! : [0,1) - R*. Applying (P}")~! on both sides of Eq. (162), Eq. (162) can be rewritten
as Eq. (160).
Proof of (ii)) = (i). We assume that v is an explicit solution of Definition 25. We have

P ) = PY (V@)

PIW(UF(I,CO))

PIW (PIW)_I(F(I» w))1{0<F(t,w)<l))
= F(t,w),

where we use Eq. (26) with the assumption that v satisfies Assumption 2 in the first equality, Eq. (159) in the second equality,
Eq. (160) in the third equality, and algebraic manipulation in the fourth equality. []

The following theorem states that under Assumption 8, (a) Y ¥ satisfies Assumption 2 and (b) that random nondecreasing function
is solution if and only if it is an explicit solution.

Theorem 18. We assume that Assumption 8 holds. Then, we have that (a) YT satisfies Assumption 2 and (b) (i) vy is a solution of
Definition 17 < (ii) vy is an explicit solution of Definition 25.

Proof of Theorem 18. To obtain (a), we apply Proposition 15 with Assumption 8. Then, an application of Proposition 16 with (a)
yields (b). [

Finally, we give the proof of Theorem 10, which is a direct consequence of Theorem 18.

Proof of Theorem 10. This is a direct consequence of Theorem 18 with Assumption 8. []
B.4. Two-sided random case

B.4.1. Case when the quadratic variation is absolutely continuous
We first give the definition of the explicit solution.

Definition 26. For a given random pdf f, we say that a variance process a/z, : Rt x @ - R* which is the quadratic variation
derivative a.e. of a continuous local martingale Z/, i.e.

t
(Z7)(w) = / o (@)ds for 120 and w € 2, (163)
0

is an explicit solution if it is equal to Eq. (64).

The next proposition shows that Assumption 7 implies that Z/ satisfies Assumption 2. The proof is mainly based on the use of
Assumption 7.

Proposition 17. Under Assumption 7, we have that Z/ satisfies Assumption 2.
Proof of Proposition 17. We can deduce that Z/ is a local martingale with random quadratic variation
t
(27 () = / aff(w)du fort>0and w € 2 (164)
o

by Theorem 1.4.40 (p. 48) from Jacod and Shiryaev (2003) with Expression (55) from Assumption 7. We show that (Z/), — o as
t — oo0. We can calculate that

(Z)(w) = (ZF)(»)

vp(t, o)

= (pgﬁ‘;)-l(F(t, O {o<rwy<1) fort >0 and w € 2, (165)
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where we use the fact that Z/ = ZF in the first equality, Eq. (159) from Definition 25 in the second equality, and Eq. (172) in the

last equality. By Lemma 8 we have that (P )~1(1) = oo, and by Definition 14 we have that lim,_, , F(t,w) = 1. Thus, we can deduce
gh o

by the assumption that K} is finite from Assumption 7 that

(P (F(t. o) gty = O (166)
as t — co. We can deduce by Egs. (164), (165) and (166) that (Zf), — co as t — co. This implies that Z/ satisfies Assumption 2. []

The next proposition states that if Z/ satisfies Assumption 2, then, the variance function is a solution if and only if it is an
explicit solution. The proof is based on substituting the left-hand side of Eq. (63) with Egs. (31) from Theorem 4 and (163) and
then differentiating and inverting on both sides of the equation to derive the explicit solution.

Proposition 18. We assume that Z/ satisfies Assumption 2. Then, we have that (i) 53 is a solution of Definition 18 < (ii) o‘? is an
explicit solution of Definition 26.

Proof of Proposition 18. Proof of (i) = (ii). We assume that ¢2 is a solution of Definition 18. Given that Z/ satisfies Assumption
2, we can substitute the left-hand side of Eq. (63) with Eq. (31) to deduce
PgWh((Zf),(a))) = F(t,w) for 1> 0 and » € Q. (167)

Using Eq. (163), Eq. (167) can be reexpressed as
t
P (/ 02 j@)ds) = F(t,) for 1> 0 and w € 2. (168)
A\ fy U

By Lemma 6, there exists an inverse (P;,I;,)_l : [0,1) - R*. Applying (P;‘;)" on both sides of Eq. (168), Eq. (168) can be rewritten
as

t
/0 aif(w)ds = (P;";l)’l(F(t, ONocraw<1y fort20and o € Q. (169)

The left-hand side of Eq. (169) and F have a derivative a.e. for + > 0 by absolute continuity properties and since F is absolutely

continuous. (Pg"‘;,)‘1 is differentiable on [0, 1) by Lemma 7. Thus, we can differentiate Eq. (169) a.e. on both sides, by using the chain

rule on the rigflt—hand side. We obtain

o7 (@) = f(t, @) (Pl (@) (Ft, o) {0< <) (170)
a.e. forr>0and w € Q.
Applying the inverse function theorem, Eq. (170) can be reexpressed as

62 (w) = AGTL) 1
o (P;‘,/,)'((Pg%)*l(F(fy ®))) (

0<Faw<1) ae forr>0andwe Q,

or equivalently of the form (151) as (Pg”;)’ (®) = fou(® a.e. for 1 > 0. Thus, we have shown that o‘% is an explicit solution of Definition
26.
Proof of (ii) => (i). We assume that ¢

f is an explicit solution of Definition 26. We have a.e. for r > 0 and w € Q that

Pg?,f (tlw) = P /O o2 (w)ds)

t
PW/ f(s, ) 1 d
A FE P ) O Y

t
P;’[;l(/() f(S)((P;I;,)_l)’(F(S’ w))1(0<F(S’w><”ds)

PRIt @)
F(t,w).

where we use Eq. (31) with the assumption that Z/ satisfies Assumption 2 in the first equality, Eq. (64) in the second equality, the
inverse function theorem in the third equality, integration in the fourth equality and algebraic manipulation in the fifth equality.

We have thus shown that of satisfies Eq. (62), and thus that U?‘ is a solution of Definition 18. []

The following theorem states that under Assumption 7, (a) Z/ satisfies Assumption 2 and (b) that variance function is solution
if and only if it is an explicit solution.

Theorem 19. We assume that Assumption 7 holds. Then, we have (a) Z/ satisfies Assumption 2 and (b) (i) a? is a solution of Definition
18 < (i) a; is an explicit solution of Definition 26.

30



Y. Potiron Journal of Statistical Planning and Inference 243 (2026) 106376

Proof of Theorem 19. To obtain (a), we apply Proposition 17 with Assumption 7. Then, an application of Proposition 18 with (a)
yields (b). [

Finally, we give the proof of Theorem 11, which is a direct consequence of Theorem 19.
Proof of Theorem 11. This is a direct consequence of Theorem 19 with Assumption 7. []

B.4.2. Case when the quadratic variation is not absolutely continuous
We first give the definition of the explicit solution.

Definition 27. For a given random cdf F, we say that a nondecreasing stochastic process v which is the quadratic variation of a
continuous local martingale ZF, i.e.

(ZTY (@) = vp(t.w) for t > 0 and w € 2, 171
is an explicit solution if it is of the form

vp(t, @) = (P (F(, )l jocpgayery for1>0and w € Q. 172)

The next proposition shows that Assumption 8 implies that Z¥ satisfies Assumption 2.

Proposition 19. Under Assumption 8, we have that Z¥ satisfies Assumption 2.
Proof of Proposition 19. By Definition 27, ZF is defined as a continuous local martingale with quadratic variation (ZF),(w) =
vp(t,w) for 1 > 0 and @ € 2, which can be expressed as

vplt, @) = (P (F(t, o)l ocpgwyery  fOr 120

By Lemma 8 we have that (Pg”;l)‘1 (1) = o0, and by Definition 14 we have that lim,_,, F(t, w) = 1. Thus, we can deduce by Assumption
8 that lim,_, v (t,w) = co. This implies that (Z¥),, = co and thus that Z¥ satisfies Assumption 2. []

The next proposition states that if a nondecreasing function satisfies Assumption 2, then it is a solution if and only if it is an
explicit solution. The proof is based on substituting the left-hand side of Eq. (66) with Egs. (31) and (171) and then inverting on
both sides of the equation to derive the explicit solution.

Proposition 20. We assume that vy satisfies Assumption 2. Then, we have that (i) v is a solution of Definition 19 < (ii) vy is an
explicit solution of Definition 27.

Proof of Proposition 20. Proof of (i) = (ii). We assume that v, is a solution of Definition 19. Given that Z¥ satisfies Assumption
2, we can substitute the left-hand side of Eq. (66) with Eq. (31) to deduce

P;‘Z,((Z‘”»(w)) = F(t,0) for t >0 and w € Q. 173)
Using Eq. (171), Eq. (173) can be reexpressed as
ng’l;z(vF(tv w)) = F(t,w) for 1 >0 and w € Q. 174)

By Lemma 6, there exists an inverse(Pg”;l)‘l : [0,1) - R*. Applying (Pg"';z)‘1 on both sides of Eq. (174), Eq. (174) can be rewritten
as Eq. (172).
Proof of (ii)) = (i). We assume that v is an explicit solution of Definition 27. We have

PZ W) = PY (25 @)

4 (u (, a)))
P;[;, (P;IZ)_1 (F(t, )0« prmy<1) )

(t, w),

where we use Eq. (31) with the assumption that v satisfies Assumption 2 in the first equality, Eq. (171) in the second equality,
Eq. (172) in the third equality, and algebraic manipulation in the fourth equality. []

~

The following theorem states that under Assumption 8, (a) Z¥ satisfies Assumption 2 and (b) that random nondecreasing function
is solution if and only if it is an explicit solution.

Theorem 20. We assume that Assumption 8 holds. Then, we have (a) Z* satisfies Assumption 2 and (b) (i) v r is a solution of Definition
19 < (ii) v is an explicit solution of Definition 27.

Proof of Theorem 20. To obtain (a), we apply Proposition 19 with Assumption 8. Then, an application of Proposition 20 with (a)
yields (b). O
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