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We develop nonparametric inference for Hawkes processes with a
rescaled stochastic and time dependent baseline. The inference procedure
is based on the average of the point process. We consider estimation for the
average over time of the intensity process. We first show the existence of
these point processes. We also show the central limit theorem of the infer-
ence procedure. This requires the assumption that the kernel does not have
a too fat tail. We also need that the baseline process is Lipschitz continuous
with bounded starting value. The main novelty in the proofs is to establish
the renewal equation for stochastic processes.

1. Introduction. This paper concerns nonparametric inference for point processes. The
main stylized fact in this strand of literature is the presence of event clustering in time. This
motivates to rely on the so-called Hawkes mutually exciting processes (see Hawkes (1971a)
and Hawkes (1971b)). We define the point processNt of dimension d as the number of events
from the starting time 0 to the final time t and λt its intensity. A standard definition of Hawkes
mutually exciting processes is given by

(1) λt = ν +

∫ t

0
h(t− s)dNs.

Here, ν is a Poisson baseline of dimension d and h is a kernel matrix of dimension d×d. The
point processes are mutually exciting in the sense that the diagonal components h(i,i) are self-
exciting terms for the ith process and non diagonal components h(i,j) are cross exciting terms
for the ith process made by events from the jth process. The particular case h= 0 corresponds
to a classical Poisson process, so that we can view Hawkes processes as a natural extension
of Poisson processes.

The main application of Hawkes processes lies in seismology (see Rubin (1972), Ozaki
(1979), Vere-Jones and Ozaki (1982) and Ogata (1978), Ogata (1988)). There are also ap-
plications in quantitative finance (see Chavez-Demoulin, Davison and McNeil (2005), Em-
brechts, Liniger and Lin (2011), Bacry et al. (2013), Jaisson and Rosenbaum (2015), Jaisson
and Rosenbaum (2016), Clinet and Yoshida (2017)). Some applications are also in financial
econometrics (see Chen and Hall (2013), Clinet and Potiron (2018), Kwan, Chen and Dun-
smuir (2023), Potiron and Volkov (2025+)). We can also find some applications in biology
(see Reynaud-Bouret and Schbath (2010) and Donnet, Rivoirard and Rousseau (2020)). See
also Liniger (2009) and Hawkes (2018) with the references therein.

There are many theoretical results for Hawkes processes in statistics. Hawkes and Oakes
(1974) provide a Poisson cluster process representation for the Hawkes process. Brémaud
and Massoulié (1996) study stability of nonlinear Hawkes processes. Zhu (2013) gives cen-
tral limit theorem for nonlinear Hawkes processes. Zhu (2015) considers large deviations
for Markovian nonlinear Hawkes processes. The microstructure of stochastic volatility mod-
els with self-excitation is investigated in Horst and Xu (2022). Horst and Xu (2021) and
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Horst and Xu (2024+) give functional limit theorems for Hawkes processes. Xu (2024) stud-
ies diffusion approximations for self-excited systems. Karim, Laeven and Mandjes (2025+)
introduce compound multivariate Hawkes processes. Potiron (2025+) consider parametric
inference.

Empirical evidence with financial applications suggests that the baseline is time dependent
during intraday trades. Chen and Hall (2013) report in their empirical study (see Section
5.2, pp. 7–10) that goodness-of-fit results are in favor of their time-varying baseline model
compared to a group of alternatives. In Figure 2 (p. 20), they document the time dependent
nonrandom function for both polynomial and exponential kernel. This nonrandom path is
also visible in Figure 2 (p. 3488) from Clinet and Potiron (2018).

There are also theoretical results in statistics of Hawkes processes with a baseline which
is time dependent and possibly random. Chen and Hall (2013), Roueff, von Sachs and San-
sonnet (2016), Clinet and Potiron (2018), Roueff and Von Sachs (2019), Cheysson and Lang
(2022), Kwan, Chen and Dunsmuir (2023), Mammen and Müller (2023) and Erdemlioglu
et al. (2025) study locally stationary Hawkes processes. Potiron et al. (2025a) and Potiron
et al. (2025b) introduce Hawkes processes with Itô semimartingale baseline.

In this paper, we consider Hawkes processes, where the kernel has a general form and is
nonparametric. We introduce a baseline which is rescaled stochastic and time dependent. The
inference procedure is based on the average of the point process. We consider estimation for
the rescaled integral of the intensity process λt between the starting time 0 and the final time
tT for any time t ∈ [0,1], namely

Λt,T =
1

T

∫ tT

0
λsds.(2)

We have applications in management science where the target quantity (2) can be interpreted
as the arrival rate in a queuing system (see Kao and Chang (1988) and Leemis (1991)). We
also have applications in computer networks for the expected internet traffic (see Kuhl and
Wilson (2001), and seismology for the expected number of earthquakes. Finally, we have
applications in finance where the intensity of a quote plays an inverse role to the volatility of
an asset price (see Potiron et al. (2025a)).

There are some research work on estimation of the target quantity (2). They are restricted
to the case when the intensity λt is nonrandom. A pioneer work for nonparametric estimation
is Leemis (1991). A different nonparametric approach based on kernel estimation is sug-
gested by Lewis and Shedler (1976). A wavelet based nonparametric method can be found
in Kuhl and Bhairgond (2000). Parametric methods are also available in Kao and Chang
(1988), Lee, Wilson and Crawford (1991), Kuhl, Wilson and Johnson (1997), Kuhl and Wil-
son (2000). Finally, a semiparametric framework is considered in Kuhl and Wilson (2001).

There are two contributions in this paper. First, we give an existence result in Proposition
1. This complements Theorem 5.1 (p. 3476) from Clinet and Potiron (2018) and Proposition
1 in Erdemlioglu et al. (2025). In particular, our nonparametric kernel framework allows for
more general kernels, which is useful for applications. Indeed, there is empirical evidence in
finance that the kernel decays as the power distribution (see Bacry, Dayri and Muzy (2012)
and Hardiman, Bercot and Bouchaud (2013)). The arguments used in the proofs slightly
extend the arguments from Brémaud and Massoulié (1996) and Clinet and Potiron (2018).

Second, our main contribution is the central limit theorem of the inference procedure in
Theorem 1. This extends Corollary 1 (p. 2481) from Bacry et al. (2013) which is restricted
to nonrandom constant baseline. This requires the assumption that the kernel does not have
a too fat tail. We also need that the baseline process is Lipschitz continuous with bounded
starting value.
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The main novelty in the proofs of the central limit theorem is to establish the renewal equa-
tion for stochastic processes. This extends Bacry et al. (2013) in which the function from the
renewal equation is nonrandom. Jaisson and Rosenbaum (2015) also uses the renewal equa-
tion with a different asymptotics. More generally, renewal techniques for Hawkes processes
are studied in Costa et al. (2020) and Graham (2021).

The remainder of this paper is organized as follows. We introduce Hawkes processes with
a rescaled stochastic and time dependent baseline and show their existence in Section 2. We
consider nonparametric inference for Hawkes processes and prove the central limit theorem
in Section 3. The proofs are gathered in Section 4. Finally, we provide concluding remarks
in Section 5.

2. Hawkes processes with a rescaled stochastic time dependent baseline. In this sec-
tion, we introduce Hawkes processes with a rescaled stochastic and time dependent baseline.
We give an existence result in Proposition 1. This complements the framework from Clinet
and Potiron (2018) and Erdemlioglu et al. (2025). In particular, our nonparametric kernel
framework allows for more general kernels, which is useful for applications. The arguments
used in the proofs slightly extend the arguments from Brémaud and Massoulié (1996) and
Clinet and Potiron (2018).

We start with an introduction to the point process Nt of dimension d. For any index i =
1, . . . , d, each component of the point process N (i)

t counts the number of events between 0
and t for the ith process. Here, we denote the ith component of a vector V by V (i). We define
N

(i)
t as a simple point process on the space R+, i.e. a family

(N (i)(C))C∈B(R+)

of random variables with values in the space N=N∪ {+∞}. Here, B(S) denotes the Borel
σ-algebra on the space S for any space S. Moreover,

N (i)(C) =
∑
k∈N

1C(T
(i)
k )

and {T (i)
k }k∈N is a sequence of event times, which are R+ valued and random.

The definition of simple point process requires some specific assumptions on the point
process. We assume that the time of the first event T (i)

0 is equal to 0 a.s. and the following
times are increasing for each process a.s. Namely, we assume that

P(T (i)
0 = 0 and T (i)

k < T
(i)
k+1 for k ∈N∗ and i= 1, · · · , d) = 1.(3)

Here, we define for any space S such that 0 ∈ S the space without zero as S∗. We also assume
that no events happen at the same time for different processes a.s., i.e.

P(T (i)
k ̸= T

(j)
l for k, l ∈N∗ and i, j = 1, · · · , d s.t. i ̸= j) = 1.

We introduce the stochastic basis B =
(
Ω,F , (Ft)t∈R+ ,P

)
, namely a probability space

equipped with a filtration. The filtration Ft represents the information available at the time
t ∈ R+. We assume that the stochastic basis B satisfies the usual conditions. We denote the
natural filtration generated by some stochastic process X for any time t ∈R as FX

t = σ{Xs :
0≤ s≤ t}. We first introduce the definition of the Ft-intensity for the point process Nt.

DEFINITION 1. Any stochastic process λt defined on the real positive numbers R+ and
satisfying the following properties is called an Ft intensity of the point process Nt. First, we
have that

E[N((a, b]) | Fa] = E
[∫ b

a
λsds | Fa

]
a.s.(4)
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for all intervals (a, b]⊂R+. Second, the stochastic process λt is Ft progressively measurable,
of dimension d where each component λ(i)t takes its values in the space of nonnegative real
numbers R+.

Intuitively, the intensity corresponds to the expected number of events given the past in-
formation, i.e.

λt = lim
u→0

E
[Nt+u −Nt

u

∣∣∣Ft

]
a.s.

Moreover, we have that the compensated point process defined as

Mt =Nt −
∫ t

0
λsds.(5)

is an Ft martingale a.s. Finally, we note that N((a, b]) is a.s. finite if and only if
∫ b
a λsds is

a.s. finite. For background on point processes, the reader can consult Jacod (1975), Jacod and
Shiryaev (2003), Daley and Vere-Jones (2003), and Daley and Vere-Jones (2008).

The present work is concerned with Hawkes processes featuring a stochastic and time
dependent baseline. More specifically, the intensity λt of the point process Nt for any time
t ∈ [0, T ] follows

λt = bt +

∫ t

0
h(t− s)dNs.(6)

Here, the kernel h is a matrix of dimension d× d. The point processes are mutually exciting
in the sense that the diagonal components h(i,i) are self-exciting terms for the ith process and
non-diagonal components h(i,j) are cross-exciting terms for the ith process made by events
from the jth process. Moreover, the baseline bt is a stochastic process of dimension d.

We introduce a rescaled baseline which satisfies bt = νt/T for any time t ∈ [0, T ]. Here, νt
is a stochastic process of dimension d defined on the time interval [0,1]. Then, the intensity
λtT of the point process with rescaled baseline NtT for any time t ∈ [0,1] and any final time
T > 0 follows

λtT = νt +

∫ tT

0
h(tT − s)dNs.(7)

Here, the point process NtT and its intensity λtT implicitly depend on the time T . Moreover,
the baseline process νt is rescaled from the time interval [0,1] to the time interval [0, T ].

We denote the spectral radius of any matrix ϕ by ρ(ϕ). Then, we define the L1 norm matrix
for the kernel h of dimension d× d as

∥h∥1 =
∫ ∞

0
h(s)ds.

We first introduce assumptions required for the existence of Hawkes processes with a
rescaled stochastic and time dependent baseline.

ASSUMPTION 1. (a) For any index i= 1, . . . , d, the ith component of the baseline pro-
cess is a.s. positive on the time interval [0,1] a.e. , i.e.

P
(
ν
(i)
t > 0 ∀t ∈ [0,1] a.e.

)
= 1.

(b) For any index i= 1, . . . , d, the ith component of the baseline process is a.s. integrable on
the time interval [0,1], i.e.

P
(∫ 1

0
ν(i)s ds <∞

)
= 1.
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(c) We have that the point process Nt is generated by a stochastic process N , which is an Ft

adapted Poisson process of intensity 1 and dimension 2d. Namely, we have for any index
i= 1, . . . , d, any time t ∈ [0,1] and any final time T ∈R+ that

N
(i)
tT =

∫
[0,tT ]×R

1[0,λ(i)
s ](x)N

(2i−1) ∗N (2i)(ds× dx).

Moreover, we have that the baseline process νt is independent from the Poisson process
N . Finally, we have that the filtration is equal to FtT = Fν

t ∨ FN
tT for any time t ∈ [0,1]

and any final time T ∈R+.
(d) For any index i= 1, . . . , d, any index j = 1, . . . , d and any time t ∈ R+, the component

with ith raw and jth column of the kernel is nonnegative at time t, i.e. h(i,j)(t)≥ 0.
(e) The spectral radius of the L1 norm matrix for the kernel is strictly less than one, i.e.,
ρ(∥h∥)< 1.

Assumption 1 (a) implies that the point process is well-defined. Assumption 1 (b) takes
its roots in the simpler case of heterogeneous Poisson processes without a kernel (see Daley
and Vere-Jones (2003)). Assumption 1 (c) introduces Poisson imbedding and is already re-
quired with traditional Hawkes processes (see Brémaud and Massoulié (1996), Section 3, pp.
1571-1572). In particular, the point process Nt is generated by a Poisson process N . More
specifically, the stochastic process Nt is defined as the point process counting the points of
the Poisson process N below the intensity curve t→ λt. Assumption 1 (c) also considers
independence between the the baseline process νt and the Poisson process N . Moreover, we
can deduce from Assumption 1 (c) that for any time t ∈ [0,1] and any final time T ∈ R+

the natural filtration generated by the point process Nt is included in the main filtration,
i.e. FN

tT ⊂ FtT . Assumption 1 (d) is restrictive for kernels with inhibitory effects. Finally,
Assumption 1 (e) is necessary to obtain a stationary intensity with finite first moment (see
Lemma 1 (p. 495) in Hawkes and Oakes (1974) and Theorem 1 (p. 1567) in Brémaud and
Massoulié (1996)).

Overall, the constraints on the kernel shape are weaker than the constraints on the kernel
shape from Theorem 5.1 in Clinet and Potiron (2018). More specifically, our framework
only requires the nonnegativity of the kernel whereas Clinet and Potiron (2018) considers
exponential kernels, which are very restrictive for applications. However, Clinet and Potiron
(2018) consider locally parametric Hawkes processes, where the baseline and the parameters
of the kernels are stochastic and time dependent. See also Condition 1 in Erdemlioglu et al.
(2025) for the extension to generalized gamma kernels.

In the proposition that follows, we state the existence of Hawkes processes with a rescaled
stochastic and time dependent baseline. The kernel has a general form and is nonparametric.
This complements Theorem 5.1 in Clinet and Potiron (2018) and Proposition 1 in Erdemli-
oglu et al. (2025). In particular, our nonparametric kernel framework allows for more general
kernels, which is useful for applications. The arguments used in the proof slightly extends
the arguments from Brémaud and Massoulié (1996) and Clinet and Potiron (2018).

PROPOSITION 1. We assume that Assumption 1 holds. Then, there exists an FtT -adapted
point process NtT with an FtT -intensity of the form (7) for any time t ∈ [0,1] and any final
time T ∈R+. Moreover, the intensity process λtT is a.s. integrable on the space t ∈ [0,1].

3. Nonparametric inference for Hawkes processes. In this section, we develop non-
parametric inference for Hawkes processes with a rescaled stochastic and time dependent
baseline. The inference procedure is based on the average of the point process. As this is use-
ful for applications, we extend the framework from Bacry et al. (2013) which is restricted to
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nonrandom constant baseline. We show the central limit theorem of the inference procedure
in Theorem 1. This requires the assumption that the kernel does not have a too fat tail. We
also need that the baseline process is Lipschitz continuous with bounded starting value. The
main novelty in the proofs is to establish the renewal equation for stochastic processes. This
extends Bacry et al. (2013) in which the function from the renewal equation is nonrandom.

We consider estimation for the rescaled integral of the intensity process λt between the
starting time 0 and the final time tT for any time t ∈ [0,1], namely

Λt,T =
1

T

∫ tT

0
λsds.(8)

We have applications in management science where the target quantity (8) can be interpreted
as the arrival rate in a queuing system. We also have applications in computer networks for
the expected internet traffic, and seismology for the expected number of earthquakes. Finally,
we have applications in finance where the intensity of a quote plays an inverse role to the
volatility of an asset price.

This estimation procedure is in the sense of a stochastic process starting from the time
interval [0,1]. In the particular case when t = 1, the target quantity (8) corresponds to esti-
mation for the average of the intensity process λt between the starting time 0 and the final
time T . We denote the limit process of Λt,T for any time t ∈ [0,1] as the time T increases,
i.e. T →∞, by

Λt = (I − ∥h∥1)−1

∫ t

0
νsds.(9)

We propose estimation of the limit process Λt for any time t ∈ [0,1] by

Λ̂t =
NtT

T
.(10)

Then, we introduce some quantities required to establish the form of the asymptotic covari-
ance matrix. We define wt as the stochastic process which is a diagonal matrix of dimension
d× d for any time t ∈ [0,1]. More specifically, we have that the ith diagonal component of
the stochastic process wt at the time t ∈ [0,1] is equal to

w
(i,i)
t =

(
(I − ∥h∥1)−1νt

)(i)
.

Then, we define ct as the stochastic process of dimension d × d for any t ∈ [0,1] which
satisfies

ct = (I − ∥h∥1)−1w
1/2
t .

We have now all the ingredients to derive the form of the asymptotic covariance matrix. We
define the asymptotic covariance matrix for any time t ∈ [0,1] as

Σ2
t =

∫ t

0
csc

T
s ds.

We deliver in what follows the assumptions used for the central limit theorem of the non-
parametric inference procedure. This is based on Hawkes processes with a rescaled stochastic
and time dependent baseline.

ASSUMPTION 2. (a) The kernel satisfies
∫∞
0 th(t)dt <∞.

(b) The starting point of the baseline is a.s. bounded, i.e. there is a nonrandom constant
satisfying C0 ≥ 0 and

P
(
ν0 ≤C0

)
= 1.
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(c) The baseline is a.s. Lipschitz-continuous with nonrandom constant satisfying C > 0 on
the time interval [0,1], i.e.

P
(
|νt − νs| ≤C|t− s|∀(t, s) ∈ [0,1]2

)
= 1.

Assumption 2 (a) puts some restrictions on the kernel shape h(t). This corresponds ex-
actly to Assumption (A2) in Bacry et al. (2013) (p. 2480). This is required to obtain a martin-
gale form of the intensity process. Assumption 2 (a) is also used in Jaisson and Rosenbaum
(2015). Assumptions 2 (b) and (c) put restrictions on the baseline process νt. More specif-
ically, Assumption 2 (b) relies on an starting point which is bounded a.s. and Assumption
2 (c) considers a baseline process νt which is Lipschitz-continuous a.s. Assumptions 2 (b)
and (c) are mainly used to obtain a locally bounded baseline process νt. This is needed to
establish the renewal equation. Finally, Assumption 2 (c) is also used in the proofs based on
local estimation.

Overall, the assumptions on the kernel shape from this paper are exactly the same as the
assumptions used for Corollary 1 in Bacry et al. (2013). Moreover, the assumptions on the
baseline process are novel to the literature. This allows the baseline to be random and time
dependent, which is useful for applications.

In the theorem that follows, we state the central limit theorem of the nonparametric in-
ference procedure. This is based on Hawkes processes with a rescaled stochastic and time
dependent baseline. The kernel has a general form and is nonparametric. The inference pro-
cedure is based on the average of the point process. We consider asymptotics when the final
time diverges to infinity, i.e. T → +∞. This is the main result of this paper. This extends
Corollary 1 in Bacry et al. (2013) which is restricted to nonrandom constant baseline. The
main novelty in the proofs is to establish the renewal equation for stochastic processes. This
extends Bacry et al. (2013) in which the function from the renewal equation is nonrandom.
Moreover, the convergence rate is

√
T . Finally, we denote by D−s−→ the Ft-stable weak con-

vergence for the Skorokhod space D([0,1],Rd) equipped with its topology.

THEOREM 1. We assume that Assumptions 1 and 2 hold. Then, there is a canonical d-
dimensional standard Brownian extension of the stochastic basis B. This extension includes
the canonical standard Brownian motion Wt which satisfies as T →∞ that

√
T
(
Λ̂t −Λt)

D−s−→
∫ t

0
csdWs.(11)

4. Proofs. We begin this section with some general guidelines that we use extensively
during the proofs. First, we use C for any generic constant, and the value of the constant can
change from one line to the next. In addition, any operation with two vectors of the same
dimension means the operation component by component.

4.1. Proof of existence. In this part, we focus on the proof of the existence of Hawkes
processes with a rescaled stochastic and time dependent baseline. This corresponds to the
proof of Proposition 1.

Prior to the first lemma, we introduce some notation. First, we define the point process
NtT conditioned by the information from the baseline process for any time t ∈ [0,1] and any
final time T ∈R+ as

NtT,ν = E
[
NtT

∣∣Fν
1

]
.(12)

We also define the intensity process λtT conditioned by the information from the baseline
process for any time t ∈ [0,1] and any final time T ∈R+ as

λtT,ν = E
[
λtT
∣∣Fν

1

]
.(13)
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Finally, we define the filtration FtT conditioned by the information from the baseline process
for any time t ∈ [0,1] and any final time T ∈R+ as

FtT,ν = E
[
FtT

∣∣Fν
1

]
.(14)

This first lemma shows that the stochastic process λtT,ν is the FtT,ν intensity of the point
process NtT,ν in the sense of Definition 1. This extends Lemma 10.1 (p. 2) from the supple-
mentary materials of Clinet and Potiron (2018).

LEMMA 1. We assume that Assumption 1 (c) hold. Then, the stochastic process λtT,ν is
the FtT,ν intensity of the point process NtT,ν in the sense of Definition 1.

PROOF OF LEMMA 1. To prove the lemma, we verify that the properties from Definition
1 are satisfied. First, we have for any interval (a, b]⊂ [0, T ], any time t ∈ [0,1] and any final
time T ∈R+ by Definitions (12) and (14) that

E
[
NtT,ν((a, b])

∣∣Fa,ν

]
= E

[
E
[
N((a, b])

∣∣Fν
1

]∣∣∣E[Fa

∣∣Fν
1

]]
.(15)

Then, we can rewrite the right side of Equation (15) by conditional expectation properties for
any interval (a, b]⊂ [0, T ], any time t ∈ [0,1] and any final time T ∈R+ as

E
[
E
[
N((a, b])

∣∣Fν
1

]∣∣∣E[Fa

∣∣Fν
1

]]
= E

[
E
[
N((a, b])

∣∣Fa

]∣∣∣Fν
1

]]
.(16)

In addition, we obtain by Equation (4) from Definition 1 for any interval (a, b]⊂ [0, T ], any
time t ∈ [0,1] and any final time T ∈R+ that

E
[
E
[
N((a, b])

∣∣Fa

]∣∣∣Fν
1

]]
= E

[
E
[∫ b

a
λsds

∣∣∣Fa

]∣∣∣Fν
1

]]
a.s.(17)

Moreover, we get by conditional expectation properties for any interval (a, b] ⊂ [0, T ], any
time t ∈ [0,1] and any final time T ∈R+ that

E
[
E
[∫ b

a
λsds

∣∣∣Fa

]∣∣∣Fν
1

]]
= E

[
E
[∫ b

a
λsds

∣∣∣Fν
1

]∣∣∣E[Fa

∣∣Fν
1

]]
.(18)

Finally, we deduce by Tonelli’s theorem, Definitions (13) and (14) for any interval (a, b] ⊂
[0, T ], any time t ∈ [0,1] and any final time T ∈R+ that

E
[
E
[∫ b

a
λsds

∣∣∣Fν
1

]∣∣∣E[Fa

∣∣Fν
1

]]
= E

[∫ b

a
λs,νds

∣∣∣Fa,ν

]
.(19)

Thus, Equations (15), (16), (17), (18) and (19) for any interval (a, b] ⊂ [0, T ], any time t ∈
[0,1] and any final time T ∈R+ yield

E
[
NtT,ν((a, b])

∣∣Fa,ν

]
= E

[∫ b

a
λs,νds

∣∣∣Fa,ν

]
a.s.(20)

This means that we have shown Equation (4). Second, the process λtT,ν is FtT,ν -progressively
measurable, of dimension d where each component λ(i)t,ν takes its values in the space of non-
negative real numbers R+. Thus, we have shown Definition 1.

We now give the proof of the existence of Hawkes processes with a rescaled stochastic
and time dependent baseline. It extends the proof of Theorem 7 (pp. 1585-1587) in Brémaud
and Massoulié (1996). It complements the proof of Theorem 5.1 (pp. 3-4) in the supplement
of Clinet and Potiron (2018) and the proof of Proposition 1 in Erdemlioglu et al. (2025).
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PROOF OF PROPOSITION 1. The strategy of the proof consists in defining a suitable se-
quence of point processes and intensity (NtT,k, λtT,k)k∈N for any time t ∈ [0,1] and any final
time T ∈R+. Then, we show that their limit defined as (NtT , λtT ) = limk→∞(NtT,k, λtT,k)
exists and that the point process NtT admits λtT as an FtT -intensity given by Equation (7).

We first introduce for any time t ∈ [0,1], any final time T ∈R+ and any index i= 1, . . . , d
the ith component of the initial intensity process

λ
(i)
tT,0 = ν

(i)
t .

We also introduce the ith component of the initial point process N (i)
tT,0 for any time t ∈ [0,1],

any final time T ∈R+ and any index i= 1, . . . , d. It is defined as the point process counting
the points of the Poisson process N (2i−1) ∗N (2i) below the curve t→ λ

(i)
tT,0, namely

N
(i)
tT,0 =

∫
[0,tT ]×R

1[0,λ(i)
s,0]

(x)N (2i−1) ∗N (2i)(ds× dx).

We then define recursively the sequence of point process and its intensity (N
(i)
tT,k, λ

(i)
tT,k) for

any time t ∈ [0,1], any final time T ∈R+ and any index as

λtT,k+1 = νt +

∫ tT

0
h(tT − s)dNs,k,(21)

N
(i)
tT,k+1 =

∫
[0,tT ]×R

1[0,λ(i)
s,k+1]

(x)N (2i−1) ∗N (2i)(ds× dx) for any i= . . . , d.

First, we have that the stochastic process λ(i)tT,k is positive for any time t ∈ [0,1], any fi-
nal time T ∈ R+ and any index i = 1, . . . , d a.s. by Assumptions 1 (a) and (d). Thus, the
stochastic process λtT,k is a well-defined intensity. Then, an extension to the stochastic time
dependent baseline case of the arguments from Lemma 3 and Example 4 (pp. 1571-1572)
in Brémaud and Massoulié (1996) yields that the point process NtT,k is FtT -adapted. It also
gives that the stochastic process λtT,k is FtT -predictable and an FtT -intensity of NtT,k in
the sense of Definition 1. Moreover, Assumption 1 (d) implies that (N (i)

tT,k, λ
(i)
tT,k) is compo-

nentwise increasing with k and thus converges to some limit (N (i)
tT , λ

(i)
tT ) a.s. for any time

t ∈ [0,1], any final time T ∈R+ and any index i= 1, . . . , d.
We now introduce the sequence of vector processes ρtT,k for any time t ∈ [0,1] and any

final time T ∈R+ defined as

ρtT,k = E[λtT,k − λtT,k−1|Fν
1 ].(22)

First, we get by its definition (22) for any time t ∈ [0,1] and any final time T ∈R+ that

ρtT,k+1 = E[λtT,k+1 − λtT,k|Fν
1 ].(23)

Then, we obtain by inserting the intensity definition (7) into Equation (23) for any time
t ∈ [0,1] and any final time T ∈R+ that

ρtT,k+1 = E
[∫ tT

0
h(tT − s)(dNs,k+1 − dNs,k)

∣∣∣Fν
1

]
.(24)

Moreover, we get by an application of Lemma 1 with point process properties for any time
t ∈ [0,1] and any final time T ∈R+ that

ρtT,k+1 = E
[∫ tT

0
h(tT − s)(λs,k+1 − λs,k)ds

∣∣∣Fν
1

]
.(25)
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In addition, we can deduce by Tonelli’s theorem and Definition (22) that

ρtT,k+1 =

∫ tT

0
h(tT − s)ρs,kds.(26)

We define ΦtT,k as the integral of the stochastic process ρs,k from the starting time 0 to the
final time tT for any time t ∈ [0,1] and any time T ∈ R+, namely ΦtT,k =

∫ tT
0 ρksds. Then,

we have by another application of Tonelli’s theorem that for any time t ∈ [0,1] and any final
time T ∈R+ a.s. that

ΦtT,k+1 =

∫ tT

0

(∫ tT−s

0
h(u)du

)
ρs,kds.(27)

Then, Assumption 1 (e) implies that |ΦtT,k+1| ≤ r|ΦtT,k| a.s. in which r = ρ(∥h∥). Thus,
we can deduce that G : ΦtT,k →ΦtT,k+1 is a.s. a contraction function. It turns out that the
limit of the telescopic series (

∑k
l=0ΦtT,l)k∈N exists by arguments used in Banach fixed-

point theorem. Working with the telescopic series and applying the monotone convergence
theorem to the series yield for any time t ∈ [0,1] and any final time T ∈R+ that

E
[∫ tT

0
λsds

∣∣∣Fν
1

]
≤
∫ t

0
νsds+ rE

[∫ tT

0
λsds

∣∣∣Fν
1

]
.(28)

By rearranging the terms in Expression (28), we get for any time t ∈ [0,1] and any final time
T ∈R+ that

E
[∫ tT

0
λsds

∣∣∣Fν
1

]
≤ (1− r)−1

∫ t

0
νsds.(29)

Given Condition 1 (b), the expression in the right side of Expression (29) is finite a.s. As
its conditional expectation is finite, we can deduce that

∫ tT
0 λsds is finite a.s. for any time

t ∈ [0,1] and any final time T ∈R+. Moreover, the stochastic process λtT is FtT -predictable
as a limit of such processes. The point process N (i)

tT counts the points of the Poisson process
N (2i−1) ∗ N (2i) under the curve t 7→ λ

(i)
tT by an application of the monotone convergence

theorem. Thus, the point process NtT admits the stochastic process λtT as an FtT -intensity
in the sense of Definition 1 by an extension to the stochastic time dependent baseline case of
the arguments from Lemma 3 (p. 1571) in Brémaud and Massoulié (1996). It implies that the
point process Nt is finite a.s. for any time t ∈ [0,1] and any final time T ∈R+.

Finally, it remains to show that the intensity process λtT is of the form (7) for any time
t ∈ [0,1] and any final time T ∈R+. The monotonicity properties of the point process N (i)

tT,k

and the intensity process λ(i)tT,k ensure for any index k ∈N, any time t ∈ [0,1], any final time
T ∈R+ and any index i= 1, . . . , d that

λ
(i)
tT,k ≤ ν

(i)
t +

(∫ tT

0
h(tT − s)dNs

)(i)
,

λ
(i)
tT ≥ ν

(i)
t +

(∫ tT

0
h(tT − s)dNs,k

)(i)
.(30)

This gives Equation (7) by taking the limit k→+∞ in both inequalities.

4.2. Proof of the central limit theorem. In this part, we focus on the proof of the central
limit theorem to estimate the rescaled integral of the intensity process based on Hawkes
processes. This corresponds to the proof of Theorem 1.
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We start with the discretization in time of the statistical problem. For any final time T ∈
R+, we consider M = ⌊1/∆⌋ intervals with equal length ∆ = 1/T such that

⋃M
i=1[(i −

1)∆, i∆)⊂ [0,1). Here, ⌊·⌋ denotes the floor function. For any index i= 1, . . . ,M , we define
an estimator for local Poisson estimates on the ith interval [(i− 1)∆, i∆) as

λ̂i =
1

∆
(Ni∆− −N(i−1)∆).(31)

Before giving the first lemma in the proof of Theorem 1, we introduce some definition.
First, we define the Laplace transform of the kernel h of dimension d× d at the frequency
s ∈R+ as

ĥ(s) =

∫ ∞

0
e−sth(t)dt.(32)

Then, we define the convolution of f and g for f and g two integrable functions defined on
the space of positive real numbers R+ at time t ∈R+ as

f ∗ gt =
∫ t

0
f(t− s)g(s)ds.(33)

Moreover, we define recursively f∗k for k ∈N as f∗1 = f and f∗k is the convolution product
of f∗(k−1) and the function f for k ≥ 2. Similarly, we define the convolution of f and X
for an integrable function f and a stochastic process X defined on the space of positive real
numbers R+ at time t ∈R+ as

f ∗ dXt =

∫ t

0
f(t− s)dXs.(34)

Furthermore, we denote by ψ : R+ →R+
d the resolvent kernel at the time t ∈R+ of the kernel

h which satisfies

ψ(t) = h(t) + h ∗ψt.(35)

Then, we define the integral of the resolvent kernel ψ from the starting time 0 to the final
time t as

Ψ(t) =

∫ t

0
ψ(s)ds.(36)

We also define the integral of ψ(s− tT ) between the starting time (i−1)∆ and the final time
i∆ for any time t ∈ [0,1], any final time T ∈R+ and any index i= 1, . . . ,M as

∆iΨ(−tT ) =
∫ i∆

(i−1)∆
ψ(s− tT )ds.(37)

Moreover, we denote the uniform big O by O. It is defined through

f(tT ) =O
(
g(tT )

)
⇐⇒ |f(tT )| ≤Cg(tT )

for any time t ∈ [0,1], any final time T ∈ R+ and some constant C ∈ R+ which does not
depend on the final time T and the time t. Finally, we introduce a∧ b which is the minimum
between two real numbers a ∈R and b ∈R.

The first lemma gives the asymptotic properties of the resolvent kernel, which can be
expressed as a Laplace transform of the kernel.
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LEMMA 2. We assume that Assumption 1 holds. Then, we have for any time t ∈ [0,1]
and any final time T ∈R+ that

ψ(tT )≥ 0.(38)

We also assume that Assumption 2 (a) holds. Then, we have that

Ψ(tT ) = ĥ(0) +O

(
1∧ 1

tT

)
.(39)

Moreover, we have for any index i= 1, . . . ,M that

∆iΨ(−tT ) =O

(
1∧ 1

((i− 1)∆− tT )

)
.(40)

PROOF OF LEMMA 2. Since ρ(∥h∥1)< 1 by Assumption 1 (e), the function

θ : f(tT ) 7→ (νt + h ∗ ftT )

is a contraction function for any final time T ∈ R+. Thus, we can apply Banach fixed-point
theorem to get a fixed-point ψ = f∞ with recursion fk = θ(fk−1). Then, we obtain recur-
sively by the definitions of the function θ and the function fk that

fk(tT ) = θ(fk−1(tT )) = νt + h ∗ (fk−1)tT = νt + h ∗ θ(fk−2)tT

= νt + h ∗ (νt + h ∗ (fk−2)tT )tT

= νt +

k−2∑
l=1

h∗l ∗ νt + h∗(k−1) ∗ (f1)tT .

For the initial value, we can choose f1 = 0. Then, fk(tT ) is nonnegative for any k ∈N such
that k > 1, any time t ∈ [0,1] and any final time T ∈ R+. This is due to the fact that the
baseline is a.s. positive on the time interval [0,1] a.e. by Assumption 1 (a) and the kernel h is
nonnegative by Assumption 1 (d). Thus, we have shown Expression (38).

To show Equation (39), we first have for any time t ∈ [0,1] and any final time T ∈R+ that

ĥ(0)− ĥ

(
1

tT

)
=

∫ ∞

0

(
1− e−

s

tT

)
h(s)ds

≥
∫ ∞

tT

(
1− e−

s

tT

)
h(s)ds

≥ (1− e−1)

∫ ∞

tT
ψ(s)ds.(41)

Here, we use the definition of the Laplace transform in the equality, Assumption 1 (d) in the
first inequality, Definition (35) and Expression (38) in the last inequality.

From Assumption 2 (a), we obtain that the Laplace transform of the kernel ĥ is continu-
ously differentiable at the time 0 and that its derivative is equal to

ĥ′(0) =

∫ ∞

0
th(t)dt <∞.

Then, we can apply the mean value theorem for the function ψ̂(s) = ĥ(s)/(1− ĥ(s)) and we
obtain that

ψ̂(s) = ψ̂(0) + ψ̂′(0)s+ r(s)s.(42)

Here, r(s) is the remainder which satisfies lims→0 r(s) = 0.
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Then, we can deduce for any time t ∈ [0,1] and any final time T ∈R+ that

0≤ ψ̂(0)− ψ̂

(
1

tT

)
=−

(
ψ̂′(0) + r

(
1

tT

))
1

tT

≤
(
|ψ̂′(0)|+

∣∣r( 1

tT

)∣∣) 1

tT
1{tT≥1} + ψ̂(0)1{tT<1}.

Here, we use the fact that the function ψ̂ is decreasing in the first inequality, Equation (42) in
the equality and the definition of | | in the last inequality. As

sup
x∈[0,1]

|r(x)|<∞,

we obtain ∣∣∣∣ψ̂(0)− ψ̂

(
1

tT

)∣∣∣∣≤C

(
1∧ 1

tT

)
.(43)

Finally, we get for any time t ∈ [0,1] and any final time T ∈R+ that

Ψ(tT ) =

∫ tT

0
ψ(s)ds

= ψ̂(0)−
∫ ∞

tT
ψ(s)ds

≤ ψ̂(0) +
1

1− e−1

(
ψ̂(0)− ψ̂

(
1

tT

))
≤ ψ̂(0) +C

(
1∧ 1

tT

)
.

Here, we use Definition (36) in the first equality, the definition of ψ̂(0) in the second equality,
Expression (41) in the first inequality and Expression (43) in the last inequality. Thus, we
have proven Equation (39). With the same arguments, we can also show that Equation (40)
holds.

We next state the renewal equation for stochastic processes in the following lemma. This
extends Lemma 3 from Bacry et al. (2013) in which the function from the renewal equation
is nonrandom. This is required as the baseline νt is stochastic and time dependent.

LEMMA 3. We assume that Assumption 1 holds. We introduce an Ft adapted stochastic
process g :R+×Ω→Rd which is locally bounded a.s. Then, there exists a stochastic process
f :R+ ×Ω→Rd which is locally bounded a.s. and solution to the renewal equation for any
time t ∈R+ and a.s.

f(t) = g(t) + h ∗ ft.(44)

The solution is given for any time t ∈R+ and a.s. by

fg(t) = g(t) +ψ ∗ gt.(45)

Moreover, the solution fg(t) is unique in the a.s. and a.e. sense. Namely, we have

P
(
fg(t) = f(t) for any t ∈R+ a.e.

)
= 1(46)

for any stochastic process f satisfying the renewal equation (44).
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PROOF OF LEMMA 3. First, we have that the resolvent kernel of the kernel ψ is integrable
by Assumption 1 (e) and resolvent kernel properties. We also have that the stochastic process
g is locally bounded a.s. by assumption of the lemma. Thus, we can deduce that the stochastic
process fg defined in (45) is locally bounded a.s.

Moreover, we show in what follows that fg satisfies the renewal equation (44). It is suffi-
cient to prove for any time t ∈R+ and a.s. that

h ∗ (fg)t = ψ ∗ gt(47)

First, we get by Definition (45) for any time t ∈R+ and a.s. that

h ∗ (fg)t = h ∗ (g(t) +ψ ∗ gt)t.(48)

Moreover, we obtain by the definition of the resolvent kernel (35) for any time t ∈R+ that

h(t) = ψ(t)− h ∗ψt.(49)

Finally, Equations (48) and (49) yield Equation (47).
We show now that the solution fg(t) is unique in the a.s. and a.e. sense. Namely, we show

Equation (46) for any stochastic process f(t) satisfying the renewal equation (44). First, we
get as both processes fg(t) and f(t) satisfy the renewal equation (44) for any time t ∈ R+

and a.s. that

f(t)− fg(t) = h ∗ (f − fg)t.(50)

We introduce the stochastic process v of dimension d such that its ith component for any
index i= 1, . . . , d is equal to

v(i)(t) = |f (i)(t)− f (i)g (t)|.

Then, we can deduce from Equation (50) for any time t ∈R+ and a.s. that

v(t) = h ∗ vt.(51)

This yields for any time t ∈R+ and a.s. that∫ ∞

0
v(t)dt≤ ||h||1

∫ ∞

0
v(t)dt.(52)

Finally, we get by Assumption 1 (d) for any time t ∈R+ and a.s. that∫ ∞

0
v(t)dt <

∫ ∞

0
v(t)dt.(53)

Thus, we have shown Equation (46) for any stochastic process f(t) satisfying the renewal
equation (44).

Before introducing the next lemma, we give some definition. First, we denote the sum of
the baseline and the convolution of the resolvent kernel and the baseline for any time t ∈ [0,1]
by

µt = νt + (ψTt) ∗ νt.(54)

We have that the stochastic process µt is Fν adapted by Definition (34). Moreover, we define
the limit of the stochastic process µt for any time t ∈ [0,1] as

µt,L =
(
(I − ∥h∥1)−11{t∈(0,1]} + 1{t=0})νt(55)
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Finally, we define the notation small tau in probability as YT = oP(ZT ), which means that
YT

ZT
1{ZT ̸=0}

P→ 0 as T →∞ for YT and ZT which are random variables.
The following lemma exhibits a martingale representation of the intensity λtT . It is based

on the convolution of the resolvent kernel and the martingale MtT defined in (5). The proof
is based on the application of the renewal equation obtained in Lemma 3. It extends Lemma
4 in Bacry et al. (2013) and Proposition 2.1 (p. 606) in Jaisson and Rosenbaum (2015), who
consider a constant nonrandom baseline.

LEMMA 4. We assume that Assumptions 1 and 2 hold. Then, we have for any time t ∈
[0,1] and any final time T ∈R+ that the intensity λtT has the martingale representation

λtT = µt +ψ ∗ dMtT .(56)

We also have for any time t ∈ [0,1] when the final time T →∞ that

sup
T− 1

2 ≤t≤1

√
T
(
µt − µt,L

) P→ 0.(57)

PROOF OF LEMMA 4. We first reexpress the intensity process as the renewal equation.
We have for any time t ∈ [0,1] and any final time T ∈R+ that

λtT = νt + h ∗ dNtT

= νt + h ∗ (λtT + dMtT )

=
(
νt + h ∗ dMtT

)
+ h ∗ λtT .(58)

Here, we use Definition (7) and Definition (34) in the first equality, Definition (5) in the
second equality and algebraic manipulation in the third equality.

Thus, the intensity λtT is solution to the renewal equation (44) a.s. by Equation (58). More
specifically, we consider the stochastic processes g(tT ) defined as

g(tT ) = νt + h ∗ dMtT

for any time t ∈ [0,1] and a fixed T ∈ R+. To obtain the form of the intensity λtT , we
apply Lemma 3. First, we have that g(tT ) are FtT adapted stochastic processes which are
locally bounded a.s. by Definition 1, Assumptions 2 (b) and 2 (c). Then, we have for any time
t ∈ [0,1] and any final time T ∈R+ that

λtT = g(tT ) +ψ ∗ gtT
= νt + h ∗ dMtT + (ψTt) ∗ (νt + h ∗ dMtT )

= (νt + (ψTt) ∗ νt) + (h+ψ ∗ htT ) ∗ dMtT .

Here, we use Equation (45) from Lemma 3 in the first equality, the definition of the stochastic
process g(tT ) in the second equality, algebraic manipulation in the third equality. Then, we
have for any time t ∈ [0,1] and any final time T ∈R+ that

λtT = (νt + (ψTt) ∗ νt) + (h+ψ ∗ htT ) ∗ dMtT

= (νt + (ψTt) ∗ νt) +ψ ∗ dMtT .

= µt +ψ ∗ dMtT .

Here, we use Definition (35) in the second equality and Definition (54) in the third equality.
Thus, we can obtain Equation (56).
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We show now Equation (57). First, we get for any time t ∈ (0,1] and any final time T ∈R+

that

µt − µt,L = νt + (ψTt) ∗ νt − (I − ∥h∥1)−1νt

= νt + (ψTt) ∗ νt − (1 + ψ̂(0))νt

= (ψTt) ∗ νt − ψ̂(0)νt

=

∫ tT

0
ψ(s)νt− s

T
ds− ψ̂(0)νt.

Here, we use Definition (54) and Definition (55) in the first equality, Definition (35) in the
second equality, algebraic manipulation in the third equality and Definition (33) in the fourth
equality. Then, we have for any time t ∈ (0,1] and any final time T ∈R+ that

µt − µt,L =

∫ tT

0
ψ(s)νt− s

T
ds− ψ̂(0)νt

=

∫ tT

0
ψ(s)νt− s

T
ds−

∫ ∞

0
ψ(s)dsνt

=

∫ tT

0
ψ(s)

(
νt− s

T
− νt

)
ds−

∫ ∞

tT
ψ(s)ds.(59)

Here, we use Definition (32) in the second equality and algebraic manipulation in the third
equality. Moreover, we obtain that

sup
T− 1

2 ≤t≤1

√
T
∣∣µt − µt,L

∣∣= sup
T− 1

2 ≤t≤1

√
T
∣∣∣ ∫ tT

0
ψ(s)(νt− s

T
− νt)ds−

∫ ∞

tT
ψ(s)ds

∣∣∣
≤ sup

T− 1
2 ≤t≤1

√
T
(∣∣∣∫ tT

0
ψ(s)(νt− s

T
− νt)ds

∣∣∣+ ∣∣∣ ∫ ∞

tT
ψ(s)ds

∣∣∣)

≤ sup
T− 1

2 ≤t≤1

√
T
∣∣∣ ∫ tT

0
ψ(s)(νt− s

T
− νt)ds

∣∣∣
+ sup

T− 1
2 ≤t≤1

√
T
∣∣∣ ∫ ∞

tT
ψ(s)ds

∣∣∣.(60)

Here, we use Equation (59) in the first equality, the triangular inequality in the first inequality
and supremum properties in the second inequality.

We introduce

I = sup
T− 1

2 ≤t≤1

√
T
∣∣∣ ∫ tT

0
ψ(s)(νt− s

T
− νt)ds

∣∣∣.
First, we can deduce from integral and norm properties that

I ≤ sup
T− 1

2 ≤t≤1

√
T

∫ tT

0
ψ(s)

∣∣νt− s

T
− νt

∣∣ds.
Then, we get from Assumption 2 (c) a.s. that

I ≤ sup
T− 1

2 ≤t≤1

√
T

∫ tT

0
ψ(s)

Cs

T
ds.
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We also obtain from algebraic manipulation a.s. that

I ≤ sup
T− 1

2 ≤t≤1

C√
T

∫ tT

0
ψ(s)sds.

Moreover, supremum properties yield a.s. that

I ≤ C√
T

∫ ∞

0
ψ(s)sds.

Finally, we obtain by Assumption 2 (a) and Definition (35) when the final time T →∞ that

I
P→ 0.(61)

We introduce now

II = sup
T− 1

2 ≤t≤1

√
T
∣∣∣ ∫ ∞

tT
ψ(s)ds

∣∣∣.
First, we can deduce from supremum properties and Expression (38) from Lemma 2 that

II =
√
T
∣∣∣ ∫ ∞

√
T
ψ(s)ds

∣∣∣.
Then, we obtain by algebraic manipulation that

II =
∣∣∣ ∫ ∞

√
T

√
Tψ(s)ds

∣∣∣.
In addition, we get by supremum properties that

II ≤
∣∣∣ ∫ ∞

√
T
sψ(s)ds

∣∣∣.
Finally, we obtain by Assumption 2 (a) and Definition (35) when the final time T →∞ that

II
P→ 0.(62)

Thus, Expressions (60), (61) and (62) yield Equation (57).

We introduce some notation prior to the next lemma. First, we denote by Xi the process X
evaluated at the end of the ith interval for any interval number i= 1, . . . ,M , i.e. Xi =Xi∆.
We also define X̄i as the average of Xt on the ith interval, i.e.

X̄i =∆−1

∫ i∆

(i−1)∆
Xt dt.(63)

In addition, we define the increment of the martingale Mt on the ith interval as

εi =
1

∆

∫ i∆

(i−1)∆
dMt.(64)

Moreover, we denote the increment related to the Hawkes component on the ith interval by

ϵi =
1

∆

(∫ (i−1)∆

0
∆iΨ(−t)dMt +

∫ i∆

(i−1)∆
Ψ(i∆− t)dMt

)
.(65)

Finally, we define the sum of εi and ϵi as ui, namely

ui = εi + ϵi.(66)

The following lemma is a decomposition of the estimation error ui as the sum of the error
originating from the martingale εi and another related to the Hawkes component ϵi.
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LEMMA 5. We assume that Assumptions 1 and 2 hold. Then, we have for any final time
T ∈R+ and any interval index i= 1, . . . ,M the decomposition

λ̂i = µ̄i + ui.(67)

We also have when the final time T →∞ that

sup
i∈N s.t. ⌊

√
T ⌋<i≤M

√
T
(
λ̂i − µ̄i,L − ui

) P→ 0.(68)

PROOF OF LEMMA 5. First, we have by Definition (31) for any index i= 1, . . . ,M that

λ̂i =
1

∆
(Ni∆− −N(i−1)∆).

Then, we obtain by Definition (5) for any index i= 1, . . . ,M that

λ̂i =
1

∆
(Mi∆− −M(i−1)∆) + λ̄i.

In addition, we get by Definition (64) for any index i= 1, . . . ,M that

λ̂i = εi + λ̄i.

Moreover, we get by Equation (56) from Lemma 4 for any index i= 1, . . . ,M that

λ̂i = εi + µ̄i +
1

∆
ψ ∗ (Mi∆− −M(i−1)∆).

Furthermore, we can deduce by Definitions (34) , (36) and (37) for any index i= 1, . . . ,M
that

λ̂i = εi + µ̄i +
1

∆

(∫ (i−1)∆

0
∆iΨ(−t)dMt +

∫ i∆

(i−1)∆
Ψ(i∆− t)dMt

)
.

This yields Equation (67) with the use of Definition (65). Finally, we obtain Equation (68)
by Equation (57) from Lemma 4.

We introduce the rescaled error process Xt which for any time t ∈ [0,1] and any final time
T ∈R+ satisfies

Xt =
√
T
(
Λ̂t −Λt).(69)

We also introduce ξi which is a random vector of dimension d defined for any interval index
i= 1, . . . ,M by

ξi =
√
Tui.(70)

Moreover, we define the time discretized filtration for any time t ∈ [0,1] and any final time
T ∈R+ as

Ft =F∆⌊tT ⌋.

Furthermore, we use Ei−1, Vari−1 and Covi−1 instead of E[·|F(i−1)∆], Var[·|F(i−1)∆] and
Cov[·|F(i−1)∆n

] for any interval number i= 1, . . . ,M . Finally, we define the notation small
tau in probability uniformly for any time t ∈ [0,1] as YT (t) = ouP(ZT (t)), which means that

sup
0≤t≤1

∣∣∣∣YT (t)ZT (t)
1{ZT (t) ̸=0}

∣∣∣∣ P→ 0

when the final time T →∞ for YT (t) and ZT (t) which are stochastic processes.
The following lemma gives a discretization in time of the rescaled error process Xt based

on the random vectors ξi. It also reexpresses the rescaled error process Xt as the sum of an
Ft-martingale and another random variable. To get the Ft-martingale, we compensate the
random variables ξi by their conditional expectations Ei−1[ξi].
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LEMMA 6. We assume that Assumptions 1 and 2 hold. Then, we can discretize the
rescaled error process Xt for any time t ∈ [0,1] when the final time T →∞ as

Xt =

⌊tT ⌋∑
i=1

ξi + ouP(1).(71)

We can also reexpress the rescaled error process Xt for any time t ∈ [0,1] when the final time
T →∞ as

Xt =

⌊tT ⌋∑
i=1

(
ξi −Ei−1[ξi]

)
+

⌊tT ⌋∑
i=1

Ei−1[ξi] + ouP(1).(72)

PROOF OF LEMMA 6. First, we get by Definition (69) for any time t ∈ [0,1] and any final
time T ∈R+ that

Xt =
√
T
(
Λ̂t −Λt).

We also can deduce by Definition (10) for any time t ∈ [0,1] and any final time T ∈R+ that

Xt =
√
T

(
NtT

T
−Λt

)
.

Then, this can be rewritten by an algebraic manipulation for any time t ∈ [0,1] and any final
time T ∈R+ as

Xt =
√
T

( ⌊tT ⌋∑
i=1

(Ni∆− −N(i−1)∆)

T
−Λt

)
.

In addition, we obtain by Definition (31) for any time t ∈ [0,1] and any final time T ∈ R+

that

Xt =
√
T

( ⌊tT ⌋∑
i=1

λ̂i −Λt

)
.

Moreover, we get by an algebraic manipulation for any time t ∈ [0,1] and any final time
T ∈R+ that

Xt =
√
T

( ⌊
√
T ⌋∑

i=1

λ̂i +

⌊tT ⌋∑
i=⌊

√
T ⌋+1

λ̂i −Λt

)
.

Finally, we get by another algebraic manipulation for any time t ∈ [0,1] and any final time
T ∈R+ that

Xt =
√
T

( ⌊
√
T ⌋∑

i=1

λ̂i −Λ√
T

)
+
√
T

( ⌊tT ⌋∑
i=⌊

√
T ⌋+1

λ̂i −Λt +Λ√
T

)
.

Now, this yields as 1/
√
T is negligible when the final time T →∞ for any time t ∈ [0,1]

that

Xt =
√
T

( ⌊tT ⌋∑
i=⌊

√
T ⌋+1

λ̂i −Λt +Λ√
T

)
+ ouP(1).
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This can be rewritten by Definitions (9) and (55) when the final time T →∞ for any time
t ∈ [0,1] as

Xt =
√
T

⌊tT ⌋∑
i=⌊

√
T ⌋+1

(
λ̂i − µ̄i,L

)
+ ouP(1).

Then, we can deduce by Expression (68) from Lemma 5 when the final time T →∞ for any
time t ∈ [0,1] that

Xt =
√
T

⌊tT ⌋∑
i=⌊

√
T ⌋+1

ui + ouP(1).

Moreover, this yields as 1/
√
T is negligible when the final time T →∞ for any time t ∈ [0,1]

that

Xt =
√
T

⌊tT ⌋∑
i=1

ui + ouP(1).

Finally, we get Equation (71) from Definition (70). Then, we can deduce Equation (72) by
algebraic manipulation and since ui is integrable from Lemma 2, Assumptions 2 (b) and
(c).

As the rescaled error process Xt takes a martingale form in Equation (72) from Lemma 6,
we can use the toolkit from central limit theorems relying on martingales. More specifically,
the proof of Theorem 1 is based on an application of Theorem IX.7.28 (pp. 590-591) in Jacod
and Shiryaev (2003).

We first show that Condition (7.27) holds with Bt = 0 in the following proposition. This
proves that the sum of the conditional expectations Ei−1[ξi] converges to 0 in probability and
uniformly in time.

PROPOSITION 2. We assume that Assumptions 1 and 2 hold. Then, we have when the
final time T →∞ that

sup
0≤t≤1

∣∣∣∣ ⌊tT ⌋∑
i=1

Ei−1[ξi]

∣∣∣∣ P→ 0.(73)

PROOF OF PROPOSITION 2. We first obtain by Definition (70) that

sup
0≤t≤1

∣∣∣∣ ⌊tT ⌋∑
i=1

Ei−1[ξi]

∣∣∣∣= sup
0≤t≤1

∣∣∣∣ ⌊tT ⌋∑
i=1

Ei−1

[√
Tui

]∣∣∣∣.(74)

Then, we can deduce by Definition (66) that

sup
0≤t≤1

∣∣∣∣ ⌊tT ⌋∑
i=1

Ei−1

[√
Tui

]∣∣∣∣= sup
0≤t≤1

∣∣∣∣ ⌊tT ⌋∑
i=1

Ei−1

[√
T (εi + ϵi)

]∣∣∣∣.(75)

We introduce

I = sup
0≤t≤1

∣∣∣∣ ⌊tT ⌋∑
i=1

Ei−1

[√
Tεi

]∣∣∣∣
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and

II = sup
0≤t≤1

∣∣∣∣ ⌊tT ⌋∑
i=1

Ei−1

[√
Tϵi

]∣∣∣∣
We get by supremum properties that

sup
0≤t≤1

∣∣∣∣ ⌊tT ⌋∑
i=1

Ei−1

[√
Tui

]∣∣∣∣≤ I + II.(76)

For the first term I , we can deduce by Definition (64) that

I = sup
0≤t≤1

∣∣∣∣ ⌊tT ⌋∑
i=1

Ei−1

[√T
∆

∫ i∆

(i−1)∆
dMt

]∣∣∣∣.
This leads as Mt is an Ft-martingale to

I = 0.(77)

For the second term II , we can deduce by Definition (65) that

II = sup
0≤t≤1

∣∣∣∣ ⌊tT ⌋∑
i=1

Ei−1

[√T
∆

(∫ (i−1)∆

0
∆iΨ(−t)dMt +

∫ i∆

(i−1)∆
Ψ(i∆− t)dMt

)]∣∣∣∣.
This leads as Mt is an Ft-martingale and by Lemma 2 when the final time T →∞ to

II
P→ 0.(78)

Moreover, we get from Expressions (76), (77) and (78) when the final time T →∞ that

sup
0≤t≤1

∣∣∣∣ ⌊tT ⌋∑
i=1

Ei−1

[√
Tui

]∣∣∣∣ P→ 0.(79)

Finally, Expressions (74), (75) and (79) yield the proposition.

We show that Condition (7.28) holds in the following proposition. This proves that the
sum of the covariances converges to the asymptotic covariance in probability.

PROPOSITION 3. We assume that Assumptions 1 and 2 hold. Then, we have for any time
t ∈ [0,1] when the final time T →∞ that

⌊tT ⌋∑
i=1

Covi−1[ξi]
P→
∫ t

0
cuc

T
u du.(80)

PROOF OF PROPOSITION 3. First, the random vectors ξ2i are integrable from Lemma 2,
Assumptions 2 (b) and (c). Then, covariance properties yield for any time t ∈ [0,1] and any
final time T ∈R+ that

⌊tT ⌋∑
i=1

Covi−1[ξi] =

⌊tT ⌋∑
i=1

Ei−1[ξiξ
T
i ]−

⌊tT ⌋∑
i=1

Ei−1[ξi]Ei−1[ξ
T
i ].(81)
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In addition, we obtain for the first term in the right side of Equation (81) by an extension of
the arguments from the proof of Corollary 1 in Bacry et al. (2013) with Assumptions 1 (e)
and 2 for any time t ∈ [0,1] when the final time T →∞ that

⌊tT ⌋∑
i=1

Ei−1[ξiξ
T
i ]

P→
∫ t

0
cuc

T
u du.(82)

To deal with the second term in the right side of Equation (81), we use Burkholder-Davis-
Gundy inequalites (see Expression (2.1.32) in Jacod and Protter (2012) (p. 39)) with As-
sumptions 2 (b) and (c). This yields for any time t ∈ [0,1] when the final time T →∞ that

⌊tT ⌋∑
i=1

Ei−1[ξi]Ei−1[ξ
T
i ]

P→ 0.(83)

Finally, Expressions (81), (82) and (83) lead to the proposition.

We show now that Condition (7.30) holds in the proposition that follows. This proves the
Lindeberg condition for the central limit theorem.

PROPOSITION 4. We assume that Assumptions 1 and 2 hold. Then, we have for any time
t ∈ [0,1] and any u ∈R+ satisfying u > 0 when the final time T →∞ that

⌊tT ⌋∑
i=1

Ei−1

[
|ξi|21{|ξi|>u}

] P→ 0.(84)

PROOF OF PROPOSITION 4. Since convergence in L1 implies convergence in probability,
it is sufficient to show the convergence in L1. More specifically, we prove for any time t ∈
[0,1] and any u ∈R+ satisfying u > 0 when the final time T →∞ that

E
[ ⌊tT ⌋∑

i=1

Ei−1

[
|ξi|21{|ξi|>u}

]]
→ 0.(85)

First, we have by linearity of the expectation for any time t ∈ [0,1] and any u ∈R+ satisfying
u > 0 that

E
[ ⌊tT ⌋∑

i=1

Ei−1

[
|ξi|21{|ξi|>u}

]]
=

⌊tT ⌋∑
i=1

E
[
Ei−1

[
|ξi|21{|ξi|>u}

]]
.(86)

Then, we get by conditional expectation properties for any time t ∈ [0,1] and any u ∈ R+

satisfying u > 0 that

⌊tT ⌋∑
i=1

E
[
Ei−1

[
|ξi|21{|ξi|>u}

]]
=

⌊tT ⌋∑
i=1

E
[
|ξi|21{|ξi|>u}

]
.(87)

Moreover, we can deduce by Hölder’s inequality for any time t ∈ [0,1] and any u ∈ R+

satisfying u > 0 that

⌊tT ⌋∑
i=1

E
[
|ξi|21{|ξi|>u}

]
≤

⌊tT ⌋∑
i=1

E
[
|ξi|2+η

] 1

2+ηE
[
1{|ξi|>u}

] 1

q .(88)
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Here, we have that q ∈R which satisfies
1

2 + η
+

1

q
= 1.

Also, the random variables |ξi|2+η are integrable from Lemma 2, Assumptions 2 (b) and
(c). Finally, we can conclude by an application of Burkholder-Davis-Gundy inequalites with
Assumptions 2 (b) and (c).

We show that Condition (7.31) holds in the following proposition.

PROPOSITION 5. We assume that Assumptions 1 and 2 hold. Then, we have for any time
t ∈ [0,1] and for any bounded Ft-martingale M ′ of dimension d when the final time T →∞
that

⌊tT ⌋∑
i=1

Ei−1[ξ
T
i ∆iM

′]
P→ 0.(89)

PROOF OF PROPOSITION 5. We first have that the rescaled error process Xt is a purely
discontinuous Ft martingale a.s. in the sense of Definition I.4.11 (b) (p. 40) from Jacod
and Shiryaev (2003). This is obtained by Definition (69) and Definition 1. Thus, we can
deduce that the product of the martingales XtM

′
t is an Ft martingale a.s. for any bounded

Ft-martingale M ′ of dimension d by Definition I.4.11 (a) (p. 40) from Jacod and Shiryaev
(2003). Thus, we can deduce for any time t ∈ [0,1] and for any bounded Ft-martingale M ′

of dimension d a.s. that
⌊tT ⌋∑
i=1

Ei−1[∆iX
T∆iM

′] = 0.

Finally, this yields by Equation (71) from Lemma 6 for any time t ∈ [0,1] and for any
bounded Ft-martingale M ′ of dimension d when the final time T →∞ that

⌊tT ⌋∑
i=1

Ei−1[ξ
T
i ∆iM

′]
P→ 0.

Thus, the proposition is shown.

In what follows, we deliver the proof of Theorem 1, which is based on an application of
Theorem IX.7.28 (pp. 590-591) in Jacod and Shiryaev (2003).

PROOF OF THEOREM 1. This is based on an application of Theorem IX.7.28 (pp. 590-
591) in Jacod and Shiryaev (2003). We now verify that Conditions (7.27) to (7.31) are satis-
fied. First, we set the reference martingale Zt = 0 which is a square-integrable Ft-martingale.
Thus, Condition (7.29) is directly satisfied. In addition, we have that Condition (7.27) holds
by Proposition 2. Moreover, we can deduce that Condition (7.28) is satisfied with the use of
Proposition 3. We also get that Condition (7.30) holds by Proposition 4. Finally, we obtain
that Condition (7.31) is satisfied by an application of Proposition 5.

5. Conclusion. We have developed nonparametric inference for Hawkes processes with
a rescaled stochastic and time dependent baseline. The inference procedure was based on
the average of the point process. We have considered estimation for the average over time of
the intensity process. We have showed the existence of these point processes. We have also
showed the central limit theorem of the inference procedure.
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