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We develop inference for Hawkes processes. We assume that the inten-
sity has a parametric form and is nonlinear. We also assume that the kernel
is parametric and has a general form. The inference procedure is based on
maximum likelihood estimation. We show the central limit theorem of the in-
ference procedure for the Hawkes processes. In particular, we allow for non-
linear intensity under some Lipschitz continuity assumptions on the intensity
function. The main novelty in the proofs is to adapt the arguments from the
linear intensity case to the nonlinear intensity case.

1. Introduction. This paper concerns parametric inference for point processes. The
main stylized fact in this strand of literature, the presence of event clustering in time, mo-
tivates the so-called Hawkes mutually exciting processes (see Hawkes (1971a) and Hawkes
(1971b)). We define the point process IV; of dimension d as the cumulative number of events
from the starting time O to the final time ¢ and ) its intensity. A standard definition of Hawkes
mutually exciting processes with nonlinear intensity is given by

) )\t:f</0th(ts)d]\75>.

Here, the function f of dimension d is nonlinear and nonrandom. In addition, the exciting
kernel h is a matrix of dimension d x d. The point processes are mutually exciting in the
sense that the diagonal components 7" are self-exciting terms for the ith process and non-
diagonal components k() are cross-exciting terms for the ith process made by events from
the jth process. The particular case h = 0 corresponds to a classical Poisson process, so that
we can view Hawkes processes as a natural extension of Poisson processes.

The main application of Hawkes processes lies in seismology (see Rubin (1972), Ozaki
(1979), Vere-Jones and Ozaki (1982) Ogata (1978), Ogata (1988) and Ikefuji et al. (2022)).
There are also applications in quantitative finance (see Chavez-Demoulin, Davison and Mc-
Neil (2005), Embrechts, Liniger and Lin (2011), Bacry et al. (2013), Jaisson and Rosenbaum
(2015), Jaisson and Rosenbaum (2016) and Clinet and Yoshida (2017)). Some applications
are also in financial econometrics (see Chen and Hall (2013), Clinet and Potiron (2018),
Kwan, Chen and Dunsmuir (2023), Potiron and Volkov (2025)). We can also find some appli-
cations in biology (see Reynaud-Bouret and Schbath (2010), Donnet, Rivoirard and Rousseau
(2020) and Cai, Zhang and Guan (2024)). Finally, there are applications in social studies (see
Fox et al. (2016) and Fang et al. (2024)).

There are many theoretical results for Hawkes processes in statistics. Hawkes and Oakes
(1974) provide a Poisson cluster process representation for the Hawkes process. Brémaud
and Massoulié (1996) study stability of nonlinear Hawkes processes. Zhu (2013) and Zhu
(2015) consider central limit theorem and large deviations for Markovian nonlinear Hawkes
processes. Roueff, von Sachs and Sansonnet (2016), Roueff and Von Sachs (2019), Cheysson
and Lang (2022), Mammen and Miiller (2023) and Erdemlioglu et al. (2025) study locally sta-
tionary Hawkes processes. Potiron et al. (2025a) and Potiron et al. (2025b) introduce Hawkes
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processes with Itd semimartingale baseline. Potiron (2025a) introduces a more general base-
line. The microstructure of stochastic volatility models with self-excitation is investigated in
Horst and Xu (2022). Horst and Xu (2021) and Horst and Xu (2024) give functional limit
theorems for Hawkes processes. Xu (2024) studies diffusion approximations for self-excited
systems. Karim, Laeven and Mandjes (2025) introduce compound multivariate Hawkes pro-
cesses.

In this paper, we consider Hawkes processes in which the intensity is parametric and non-
linear. We also assume that the kernel is parametric and has a general form. The inference
procedure is based on maximum likelihood estimation. Ogata (1978) shows the central limit
theorem of the inference procedure for an ergodic stationary point process. However, the def-
inition of ergodicity is vague in that paper. Most of the papers on parametric inference for
Hawkes processes make this ergodicity assumption (see Bowsher (2007), Large (2007) and
Cavaliere et al. (2023), Assumption 1(b) and Remark 2.1).

Clinet and Yoshida (2017) exhibit the conditions required, i.e. ergodicity of the Hawkes
intensity process and its derivative jointly. They consider general point processes and derive
the central limit theorem of the inference procedure in Theorem 3.11 (p. 1809) under these
ergodicity assumptions. They also show these ergodicity assumptions in the case of a Hawkes
process with exponential kernel in Theorem 4.6 (p. 1821). The proofs rely heavily on the
Markov property of the exponential distribution.

Kwan (2023) and Kwan, Chen and Dunsmuir (2024) consider the non-exponential kernel
case but the authors mention that such case is challenging since the Hawkes intensity process
is non-Markovian. Thus, this renders standard Markov tools inapplicable. Consequently, the
authors can only show the ergodicity for the Hawkes intensity process and for its deriva-
tive (see Theorem 4.3.2 (p. 91) in Kwan (2023) and Theorem 2.1 (p. 4) in Kwan, Chen and
Dunsmuir (2024)), but not jointly. Thus, they can only show the consistency of the inference
procedure in Theorem 3.4.3 (p. 73) from Kwan (2023) and Theorem 3.2 (p. 9) from Kwan,
Chen and Dunsmuir (2024). When the kernel follows a generalized gamma distribution, Pot-
iron and Volkov (2025) can show that the ergodicity assumptions are satisfied and also obtain
the central limit theorem of the inference procedure. This is due to the exponentially decreas-
ing nature of the kernel. Potiron (2025b) weakens the assumptions from the point process
theory in Clinet and Yoshida (2017) by considering a different approach in the proofs. Under
ergodicity of the point process intensity and its derivative, he shows the central limit theorem
of the inference procedure (see Theorem 1). Second, he shows the ergodicity of the Hawkes
intensity process and its derivative, in case of a general kernel. Moreover, he shows the central
limit theorem of the inference procedure (see Theorem 2) for Hawkes processes with general
kernel. With a general kernel, Costa et al. (2020) (Theorem 1.2, p. 884) and Graham (2021)
(Theorem 5.4, p. 2856) shows the ergodicity of the Hawkes processes, but not its intensity.
See also Section 3.2 (p. 893) in Reynaud-Bouret and Roy (2007).

All these results are useful, but the obtained central limit theorems for the inference pro-
cedure are restricted to a linear intensity. In finance, there is empirical evidence that the
intensity is not linear (see Blanc, Donier and Bouchaud (2017)). Consequently, we consider
Hawkes processes in which the intensity is nonlinear. We show the central limit theorem of
the inference procedure for the Hawkes processes (see Theorem 1). This is the main result
of this paper. In particular, we allow for nonlinear intensity, under some Lipschitz continu-
ity assumptions on the intensity function. This extends Clinet and Yoshida (2017) (Theorem
4.6), Kwan (2023) (Theorem 3.4.3), Kwan, Chen and Dunsmuir (2024) (Theorem 3.2), Pot-
iron and Volkov (2025) (Theorem 1) and Potiron (2025b) (Theorem 2), who are restricted
to linear Hawkes processes. The proofs are based on an application of Theorem 1 in Potiron
(2025b). The main novelty in the proofs is to adapt the arguments from the linear intensity
case to the nonlinear intensity case.
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2. Parametric inference for point processes. In this section, we develop inference for
point processes in which its intensity has a parametric form. The inference procedure is based
on maximum likelihood estimation.

We start with an introduction to the point process. We assume that the point process Ny is
of dimension d. For any index ¢ =1, ..., d, each component of the point process Nt(z) counts
the cumulative number of events between the starting time 0 and the final time ¢ for the ith
process. Here, we denote the ith component of a vector V by V(). We define Nt(z) as a point
process on the space of nonnegative real numbers R, i.e. a family

(NO(C))cen)

of random variables with values in the space of natural numbers N = NU {+o00}. Here, B(S)
denotes the Borel o-algebra on the space S for any space S. Moreover, the point process
N®(C) can be expressed as

NOEC) =Y 101
keN

Finally, the sequence of event times (T,gz)) ken takes its values in the space of nonnegative
real numbers R and is random.
The definition of point process requires some specific assumptions on the event times.

We assume that the time of the first event Téi) is equal to O a.s. and the following times are
increasing for each process a.s. Namely, we assume that

) P(TS) =0and T < T for ke N, andi =1,...,d) = 1.

Here, we define for any space .S such that 0 € .S the space without zero as S,. We also assume
that no events happen at the same time for different processes a.s., i.e.

P(T 2T for k,leN,andi,j=1,...,dst.i#j) = 1.

We define the probabilistic tools in what follows. We introduce the stochastic basis B =
(Q, F, (Ft)ier+, IP’), namely a probability space equipped with a filtration. The filtration JF;
represents the information available at the time ¢ € RT. We assume that the stochastic basis
B satisfies the usual conditions. We first introduce the definition of the F; intensity for the
point process N;.

DEFINITION 1.  Any stochastic process A; defined on the space of real nonnegative num-
bers R™ and satisfying the following properties is called an F; intensity of the point process
N;. First, the stochastic process \; is JF; progressively measurable. Secondly, the stochas-
tic process A; is of dimension d where each component )\gz) takes its values in the space of
nonnegative real numbers R™. Moreover, we have for any interval (a,b] C RT that

3) E[N((a,b]) | Fa] = E[/ab Asds | fa} as.

Intuitively, the intensity corresponds to the expected number of events given the past in-
formation, i.e.

Nity — N,
)\t = hmE[M‘}}} a.s.

u—0 u
Moreover, we have that the compensated point process defined as

t
@) M:M—/&@
0
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is an JF; martingale a.s. Finally, we note that N ((a,b]) is a.s. finite if and only if f; Asds is
a.s. finite. For background on point processes, the reader can consult Jacod (1975), Jacod and
Shiryaev (2003), Daley and Vere-Jones (2003), and Daley and Vere-Jones (2008).

The present work is concerned with point processes N; admitting an J; intensity which
has a parametric form. More specifically, we introduce the parameter space © which consists
of n parameters. We also introduce the family of intensities A;(#) for any parameter 6 € O.

We assume that the intensity process A\¢(#) is of dimension d where each component /\gi) (9)
takes its value in the space of nonnegative real numbers R™ for any parameter 6 € © and any
w € (. Finally, we assume the existence of the true parameter 8* € © such that

5) A = Ma(67).

For any parameter 6 € ©, we rely on the log likelihood process (see Ogata (1978) and Daley
and Vere-Jones (2003))

(6) Z / log(\(0))dN{ — Z /

Here, 0 is the starting time and T is the final time. Then, the maximum likelihood estimator
is defined as a maximizer of the log likelihood process between the starting time 0 and the
final time T, i.e.

Or € argmaxyecg l7(6).

The form of the asymptotic covariance matrix relies on the ergodicity conditions in para-
metric inference for point processes. More specifically, we focus on the stochastic process
= (Ae(0%), Ae(0), 09 ¢ (0)) taking values in the space £ where E = Rt x Rt x R™. We
denote by X,' @ ¢ E the ith component of the stochastic process X;. Here, 0pGG(#) denotes
the vector of partial derivatives for any function G(6), i.e. 0pG(0) = %g (#). Moreover, we
denote by Cy(E, F') the space of bounded and continuous functions from the starting space
E to the final space F'. In what follows, we provide the definition of ergodicity. This corre-
sponds to Definition 3.1 (p. 1805) in Clinet and Yoshida (2017). See also Definition C1 in

Supplement C of Potiron and Volkov (2025) and Definition 1 in Potiron (2025b).

DEFINITION 2. We say that the stochastic process X is ergodic if for any index i =
1,...,d there exists a limit function 7 : Cy(E,R) — R such that for any function ¢ €
Cy(E,R) we have as the final time 7" — oo that

/ WX ds S 70 ().

Lemma 7 states that the stochastic process X; is stable, i.e. for any parameter § € © and

any index 7 = 1,. .., d there exists an R’ valued random variable )\l(i) (0) such that as the final
time 7" — oo we have

X B (A 0).20),000 0)).
From Lemma 8, the stochastic process X; is also ergodic in the sense of Definition 2 for any

parameter € ©. Moreover, we have the more explicit expression of the limit function for
anyindexi=1,...,d as

() =E[N (07,47 (0), 8017 0))].

Since the space of bounded functions is not large enough to establish the central limit
theorem, we introduce a bigger space in the following definition. We denote this bigger space
by C4+(E,R). This corresponds to Definition 3.7 (p. 1806) in Clinet and Yoshida (2017) and
Definition 2 in Potiron (2025b).
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DEFINITION 3. We denote by C(E, R) the set of continuous functions ) : (u,v,w) —
¥ (u,v,w) from the starting space E to the final space R that satisfy

(a) 1 is continuous on R} x R} x R™.
(b) 1 is of polynomial growth in u, v, w, 1“;;”} and 1{”;”} .
(c) For any (u,v,w) € E, we have ¢(0,v,w) = 1(u,0,w) = 0.

Lemma 10 extends the starting space of the limit function 7 from C(E,R) to C}(E,R)
and gives a more explicit form. More specifically, it shows that for any index ¢ =1,...,d and
any parameter § € O there exists a probability measure W(SZ) on the space E such that for any
function ¢ € C4(E,R) we have

71'(")(1/)):/ w(u,v,w)ﬂéi)(du,dv,dw).
E

Moreover, Lemma 11 ensures that the family of intensities A;(¢) does not explode on any
compact space based on these ergodicity assumptions.

We have now all the ingredients to derive the form of the asymptotic covariance matrix.
Namely, we define the asymptotic Fisher information matrix I" of dimension n X n as

d
1 .
_ ®21 (9
@) I'= ;_1 /Ew 70" (du,dv, dw).

Here, we define the tensor product of a vector z € R™ as 2%2 = 22T € R"*". The Fisher
information matrix measures the amount of information that the intensity \; carries about
the parameter 6*. Formally, it is the expected value of the observed information. We use
the Fisher information matrix to calculate the covariance matrices associated with maximum
likelihood estimation. Namely, the inverse information matrix I'~! is the asymptotic covari-
ance matrix. We show in the proof of Theorem 1 from Potiron (2025b) that we can reexpress
the asymptotic Fisher information matrix as

! \
I'=— lim TE[ang(e )]

T—o0

Here, 07G(0) denotes the Hessian matrix for any function G(0), i.e. 95G(6) = %22% (0).

3. Parametric inference for nonlinear Hawkes processes. In this section, we consider
inference for Hawkes mutually exciting processes. We assume that the intensity is parametric
and nonlinear. We also assume that the kernel is parametric and has a general form. We
show the central limit theorem of the inference procedure for the Hawkes processes. This
is the main result of this paper. In particular, we allow for nonlinear intensity, under some
Lipschitz continuity assumptions on the intensity function. This extends Clinet and Yoshida
(2017) (Theorem 4.6), Kwan (2023) (Theorem 3.4.3), Kwan, Chen and Dunsmuir (2024)
(Theorem 3.2), Potiron and Volkov (2025) (Theorem 1) and Potiron (2025b) (Theorem 2),
who are restricted to linear Hawkes processes. The proofs are based on an application of
Theorem 1 in Potiron (2025b). The main novelty in the proofs is to adapt the arguments from
the linear intensity case to the nonlinear intensity case.

We consider Hawkes mutually exciting processes in which the intensity is parametric and
nonlinear. Also, the kernel is parametric and has a general form. More specifically, we intro-
duce for any parameter 6 € © the family of intensities

) A(8) = f(y, /Oth(t— 5, k) dNS>.



6

Here, the function f of dimension d is nonlinear and nonrandom. Also, the kernel A is a ma-
trix of dimension d x d. The point processes are mutually exciting in the sense that the diago-
nal components 4 are self exciting terms for the ith process and non diagonal components
h(7) are cross exciting terms for the ith process made by events from the jth process. More-
over, the baseline v consists of g parameters, while s consists of n — g kernel parameters. We
assume that the parameter 6 has the form 6 = (v, k), and that they belong to the parameter
space © = (©,,0,). We also assume that n > ¢ + d. Finally, we assume the existence of the
true parameter §* € © such that

)] At = M\e(07).
Here, we assume that the parameter 6* has the form 6* = (v*,k*) in which v* € ©, and
K* € O.

Before introducing the assumptions, we first need to introduce some notation. First, we
define the space © as the closure space of ©. We also define the sum of the absolute values
of its components as || = ), |x;| when x is a real number, a vector, a matrix or a tensor.
We denote the spectral radius of any matrix ¢ as p(¢). Then, we denote by «; the maximum

argument parameter of the spectral radius function p(h(t,)) for any time ¢ € R*. More
specifically, the kernel parameter ;" is defined implicitly for any time ¢t € R as

(10) p(h(t,Kf)) = sué) (h(t,K)).

R "

Moreover, we define the matrix ¢ of dimension d x d as the integral of h(t, ;") over time,
ie.

b= /OOO h(t, K} )dt.

In addition, we denote by /@: 5 the maximum argument parameter of the spectral radius func-
tion p(h%(t,x)) for any time ¢ € R*. More specifically, the kernel parameter /-i:f , is defined
implicitly for any time ¢t € R™ as

(11) p(h2(t,/<z2)) = seug p(h2(t, K)).

Then, we define the matrix ¢o of dimension d x d as the integral of h?(t, n;f ,) over time, i.e.
o
by = / B (¢, it )dt.
0

We denote by k:géj) the maximum argument of }6Kh(i’j) (t, Iﬁ?)(k) ! foranyindexi=1,...,d,
any index j = 1,...,d and any time ¢t € R™. More specifically, the kernel index kt(féj ) is
defined implicitly for any index i = 1,...,d, any index j = 1,...,d and any time t € R™ as
(12) EXEIn K)(kifé,”)’ = sup  [9.hED(E )W),

k=1,...n—q
Moreover, we define the matrix ¢3(x) of dimension d x d for any kernel parameter k € O,
any index i = 1,...,d and any index j = 1,...,d as the integral of |0,,h(") (¢, /i)(kivlé]))‘ over
time, 1.e.

A ) = [ 10hlo) (1)),
0

In addition, we denote by (kgf )Jt(,izlj )) the maximum argument of 0219 (¢, 1) kD] for

any kernel parameter x € O, any index ¢ = 1,...,d, any index j = 1,...,d and any time
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t € R*. More specifically, the kernel indices (k:gif ) , lt(i’lj )) are defined implicitly for any index
i=1,...,d,anyindex j =1,...,d and any time t € R as
(13) m}ghw)(t,H)(kiff%lifa”)‘: sup  [02R0) (£, k)R],

k,l=1,...n—

Moreover, we define the matrix ¢4(x) of dimension d x d for any kernel parameter x € O,
any index 7 =1,...,d and any index j = 1,...,d as the integral of }agh(i’j)(t, n)(ki )
over time, 1.€.

qb(w ( / }82 )(ki 4])71,514” }dt
We define the matrix ¢5 of dimension d x d for any index ¢ =1,...,d and any index
j=1,...,d as the integral of |0,,h(") (¢, k) (ki) ‘2 over time, i.e.

() / |0, (£, %) K5 2t

Finally, we define the matrix ¢g of dimension d x d for any index i =1, ..., d and any index
j=1,...,d as the integral of [02h("7) (¢, g ke ) ‘2 over time, i.e.

¢é@,]) :/ |62h(7,,] t K )(k;t 4J>,l( ]) ‘ ds.

We now introduce a set of assumptions required for the central limit theorem of the para-
metric inference procedure for Hawkes processes. In particular, we allow for nonlinear inten-
sity under some Lipschitz continuity assumptions on the intensity function.

ASSUMPTION 1. (a) The family of nonlinear functions f : ©, X Rﬂerd — Ri is
B(6,) ® R¥*? measurable.

(b) There exists a positive real number f_ > 0 such that for any index i = 1,...,d, any
kernel parameter v € ©,, and any matrix x € RdXd we have f()(v,z) > f_.
(c) For any kernel parameter x € O, any time ¢ € ]R+ any index ¢ =1,...,d and any index

j=1,...,d, we have that the kernel function is positive, i.e. h(»7)(t, k) > 0.

(d) The parameter space © C R™ is such that its closure © is a compact space.

(e) We have f(0,0) = 0. The nonlinear function f is Lipschitz continuous with a real con-
stant such that f; > 0, namely for any kernel parameter v; € ©,, any kernel parameter
vy € ©,, any matrix z € RiXd and any matrix zo € R‘fd we have

|f(vr,21) = f(va, w9)| < fy(Jv1 — ol + |21 — 22]).

(f) We have f1p(¢) < 1.
(g) We have p(¢2) < +00.
(h) We have the nonlinear function f: ©, X is twice continuously differen-

tiable and there exists a continuous extension to the space ©, x R,

(i) We have df(0,0) = 0 and d?f(0,0) = 0. The nonlinear function derivatives df and d?f
are Lipschitz continuous with real constants such that f; > 0 and f2_ > 0, namely for
any kernel parameter 1y € ©,, any kernel parameter v5 € ©,,, any matrix z; € RiXd and
any matrix xa € ]RdXd we have

\df (v1,21) — df (v2, m2)| < fi4([v1 — vl + |21 — 22|),
|d® f (1, 21) — d* f(v2,22)] < fo i (I1 — vo| + |21 — 2.

() We have p(¢5) < +00 and p(¢s) < +oc.

dxd dxd
R — RY
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(k) There exists a positive real number ¢4 € (0, 1) such that for any kernel parameter x € ©,
we have f1 4 p(¢3(k)) < ¢ and fo 1 p(da(r)) < d.

(1) We have P(\;(6*) = A(0)) = 1 implies that 6* = 6.

(m) For any time ¢ € R a.e., we have the kernel function xk — h(t, k) is twice continuously
differentiable from the kernel parameter space ©, to the space RiXd and there exists a
continuous extension to the space O.

Assumption 1 (a) is a novel assumption of measurability on the nonlinear function f.
Assumption 1 (b) is also a novel assumption to bound below the nonlinear function f. In par-
ticular, Assumption 1 (b) imply that the point processes are well-defined and is also required
in the simpler case of heterogeneous Poisson processes without a kernel (see Daley and Vere-
Jones (2003)). In addition, Assumption 1 (c) is restrictive for kernels with inhibitory effects
and already appears in Assumption 2 (b) from Potiron (2025b). These three assumptions are
used to prove Assumption 1 (a) in Potiron (2025b). Moreover, Assumption 1 (d) corresponds
exactly to Assumption 1 (b) in Potiron (2025b).

Assumption 1 (e) is a novel assumption which states that the nonlinear function f is Lip-
schitz continuous. This is the most important assumption to adapt the proofs from the linear
intensity to the nonlinear intensity case. A similar assumption is used in Brémaud and Mas-
soulié (1996) and Assumption 1 from Zhu (2013) in a different framework. Assumption 1 (f)
states that the spectral radius of the kernel integral when evaluated at the maximum argument
parameter of p(h(t,«)) is strictly smaller than the Lipschitz constant inverse 1/ f.. This is
slightly stronger than the assumption which is necessary to obtain a stationary intensity with
finite first moment (see Lemma 1 (p. 495) in Hawkes and Oakes (1974) and Theorem 1 (p.
1567) in Brémaud and Massoulié (1996)). In the case when f, = 1, this corresponds exactly
to the case p(¢) < 1 in Assumption 2 (d) from Potiron (2025b). Assumption 1 (g) ensures that
the spectral radius of the kernel integral, when squared and evaluated at the maximum argu-
ment parameter of p(h2(t, k)), is finite. This is exactly the case p(¢2) < +0oc in Assumption
2 (d) from Potiron (2025b). These three assumptions are mainly used to prove Assumption 1
(d) in Potiron (2025b).

Assumption 1 (h) is a novel regularity assumption on the nonlinear function f which is
twice continuously differentiable. This implies Assumption 1 (g) in Potiron (2025b) which
requires that the intensity is twice continuously differentiable. Assumption 1 (i) assumes
that the nonlinear function derivatives df and d?f are Lipschitz continuous. This is a novel
assumption which is mainly used to get Assumption 1 (h) in Potiron (2025b). In addition,
the case p(¢5) < +0o0 in Assumption 1 (j) ensures that the spectral radius of the kernel
derivative integral, when squared and evaluated at the maximum argument parameter of
|0, h (%9 (t, 1) (F)|, is finite. When p(¢) < 400 in Assumption 1 (j), we have that the spectral
radius of the kernel second derivative integral, when squared and evaluated at the maxi-
mum argument parameter of ‘agh(i’j ) (¢, m)(k’l) , 1s finite. This corresponds to Assumption 2
(g) in Potiron (2025b). Assumption 1 (j) implies Assumption 1 (h) in Potiron (2025b). It is
necessary since Assumption 1 (h) in Potiron (2025b) considers the product of the intensity
derivatives 9y (6*) and the intensity Hessian matrix 95\ (6*).

The case fi 1 p(¢3(k)) < ¢4 in Assumption 1 (k) states that the spectral radius of the
kernel derivative integral when evaluated at the maximum argument of |8Kh(i’j )(t, /{)(k’)’ is
strictly smaller than ¢ / f1 1 uniformly in the space parameter value. The case fa 4 p(¢4(k)) <
¢+ in Assumption 1 (k) ensures that the spectral radius of the kernel second derivative inte-
gral when evaluated at the maximum argument of [92h(7) (¢, k)(®] is strictly smaller than
¢+/f1,+ uniformly in the space parameter value. This extends Assumption 2 (g) in Pot-
iron (2025b). Assumption 1 (k) yields Assumption 1 (g) in Potiron (2025b). It is required
since Assumption 1 (g) in Potiron (2025b) considers the intensity derivatives dg\;(6) and
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Hessian matrix of the intensity, i.e. 892 At(0). Moreover, Assumption 1 (1) is required for the
non-degeneracy of the parametric inference procedure and gives Assumption 1 (e) in Potiron
(2025b). This is exactly Assumption 2 (h) in Potiron (2025b). Finally, Assumption 1 (m)
requires some smoothness assumptions on the kernel shape and is used to show Assumption
1 (f) in Potiron (2025b). This is Assumption 2 (e) in Potiron (2025b).

In the theorem that follows, we state the central limit theorem of the parametric inference
procedure for Hawkes processes. The intensity is parametric and nonlinear. The kernel is
parametric and has a general form. The inference procedure is based on maximum likelihood
estimation. We consider asymptotics when the final time diverges to infinity, i.e. T — +o0.
This is the main result of this paper. In particular, we allow for nonlinear intensity under some
Lipschitz continuity assumptions on the intensity function. This extends Clinet and Yoshida
(2017) (Theorem 4.6), Kwan (2023) (Theorem 3.4.3), Kwan, Chen and Dunsmuir (2024)
(Theorem 3.2), Potiron and Volkov (2025) (Theorem 1) and Potiron (2025b) (Theorem 2),
who are restricted to linear Hawkes processes. The proofs are based on an application of
Theorem 1 in Potiron (2025b). The main novelty in the proofs is to adapt the arguments from
the linear intensity case to the nonlinear intensity case. In the theorem and what follows, £ is
defined as a standard normal vector of dimension an n.

THEOREM 1. We assume that Assumption 1 holds. As the final time T — +o00, we have
the central limit theorem of the inference procedure for Hawkes processes in which the inten-
sity is parametric and nonlinear, i.e.

(14) VT (0 —6%) B2

4. Proofs. In this section, we give the proofs of the central limit theorem for Hawkes
processes in which the intensity is parametric and nonlinear, i.e. Theorem 1. The proofs are
based on an application of Theorem 1 in Potiron (2025b). The main novelty in the proofs is
to adapt the arguments from the linear intensity case to the nonlinear intensity case.

In what follows, the constant C' refers to a generic constant, which can differ from line to
line. We first show the following lemma, which corresponds to Assumption 1 (a) in Potiron
(2025b).

LEMMA 1. We assume that Assumptions 1 (a), (b) and (c) hold. Then, the family of
intensities A : O x RY x © — RY defined in Equation (8) is F ® B(RT) @ B(©) measurable.

PROOF OF LEMMA 1. First, we get by Definition (8), Assumptions 1 (b) and (c) that the
intensity process is nonnegative, namely )\; > 0 for any time ¢ € R™ and any w € 2. Then,
we can deduce that the intensity process A is F @ B(R1) ® B(©) measurable by Definition
(8) and Assumption 1 (a). ]

We now prove the following lemma, which corresponds to Assumption 1 (b) in Potiron
(2025b).

LEMMA 2. We assume that Assumption 1 (d) holds. Then, the parameter space © C R"™
is such that its closure © is a compact space.

PROOF OF LEMMA 2. The statement of the lemma corresponds exactly to Assumption 1
(d). O

The next lemma is Lemma A.2 (p. 1825) from Clinet and Yoshida (2017) and Lemma 9
in Potiron (2025b). Although the general statement holds for a stochastic process g;, we will
only require the particular case when g; is a nonrandom function.
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LEMMA 3. We assume that Assumptions 1 (a), (b) and (c) hold. Let an integer p € N,
and g, be a stochastic process such that g?" is a.s. locally integrable on the space R*. Then,
we have for any index 1 =1,...,d that

QP*I}

E H / ' guaN @[’ } < E[ / ! 7 Af)dzvﬂ +E H / ' PADaN®
0 0 0

PROOF OF LEMMA 3. This is a direct application of Lemma A.2 (p. 1825) from Clinet
and Yoshida (2017). ]

We define the LP norm of a random variable Y as ||Y'||, = E[|Y'|P]}/P for any positive
real number p. We now show the following lemma, which corresponds to Assumption 1 (d)
in Potiron (2025b). This complements Lemma C4 in Supplement C of Potiron and Volkov
(2025) and Lemma 10 in Potiron (2025b).

LEMMA 4. We assume that Assumptions 1 (a), (b), (c), (d), (e), (f) and (g) hold. Then,
we have

sup|)\t(9)|H < 400.
PSE] 2

sup
teR+

PROOF OF LEMMA 4. We first prove that

(15) sup sup|)\t(0)|H < +o0.
teR+ ' 9O 1
We have
[sup M (@)I[], =E[sup 2 (0)]
€O Loco
=l (3100
e[ {3 ’}d}/oth”’%-S:@dNé”)}]-

Here, we use the definition of the norm || ||; in the first equality, the definition of | | in the
second equality, and Definition (8) in the third equality.
Then, we have that

Hsup|)\t(9)|H1 :E[Sup{Zf ,]zi;/oth(i’j)(t— 5,K) st(j))H

0cO fco

E[z‘;g{f+(\V‘+j§i}/ot’“‘”’”<t—SﬂMNs“’)H
= f+E[;gg{‘y} +j2i;/0t R (¢ — s,ﬁ)ngj)}].

Here, we use Assumption 1 (e) in the inequality and expectation properties in the second
equality.
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Moreover, we have

Hgggp\t(@)ML = f+E[glelg{|V‘ +é/oth(i’j)(t— 57/{)st(j)}:|

§f+E[C+sup Z/ p i) t—m)dNUH

0cO

—C—I—fﬂE sup Z/ R9) (¢ — s /{)dN()}]

0cO

Here, we use Assumption 1 (d) in the inequality and expectation properties in the equality.
Then, we obtain

Hzlelglx\t(ﬁ)lul§C+f+E_sup Z/ ROI) (¢t — s /ﬁ)dN(J)H

0cO
' [t g ()
=C+ f+E Kseugp {;/0 Rt — s, k)dNG’ H

_d t
<C+f4E Z/ h(i’j)(t—s,nj)st(j)]
L :1 0

Here, we use the fact that the kernel depends only on the parameter « in the equality, and
Definition (10) in the second inequality.
In addition, we obtain

t

|s @], <c+pE ]Zd;/()h (¢ 5,57 )ANY|

4

d t
—C+fy Z/O (9 (¢
7j=1

| / ) (t — s, 7 )ds.

Here, we use martingale properties in the equality and supremum properties in the second

<C+ f + 2 sup
7 teR+

inequality.

By Assumption 1 (f), there exists a real positive number /. which satisfies 0 < fLhy < 1.
In particular, this real positive number h satisfies forany ¢t =1,...,dand any j =1,...,d
that

t
(16) / RO (8 — 5, kF)ds < hy.
0

Then, we have

sup |\ (0 H <C+ sup
s @], f+Zt 1p

H / )t —s,k7)ds
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d
<C AW H h
S +z_;%}£ t 1f+ +
<C+ sup ||sup (O)] || fihs
teR+ 'l gcO 1

Here, we use Expression (16) in the second inequality, the definition of | | and supremum
properties in the third inequality. By taking the supremum over the time ¢ € R™ on the left
side of the expression, we can deduce that

(17) sup
teR+

sup \/\t(9)\H <C+ fyhy sup
6co 1 teR+

up (@) |-

Since 0 < f1hy < 1, Expression (17) implies

C
sup | A¢(0 H <
aee’ (6 17 1= fihy

Thus, we have shown Expression (15). Finally, the lemma can be shown by an application of
Lemma 3 in the case g; = h(m)(t s,k ) with Assumption 1 (g). O

(18) sup
teR+

We define the function F for any index ¢ = 1,...,d, any parameter § € © and any time
teR" as

(89)\(1))(@2(9)
O

We now show the following lemma, which corresponds to Assumption 1 (h) in Potiron
(2025b). This extends Lemma 13 in Potiron (2025b) to the nonlinear intensity case.

F( )(9)

LEMMA 5. We assume that Assumptions I (a),(b), (c), (e), (h), (i) and (j) hold. Then, we
have for any index i =1,...,d that

AN
tSél%Iz ‘ag(/\()(>‘)\ 0 {/\ii)>0} 2<+OO,
(@) g (@) g+
3 F70%)IN (091, ¢
sup || [0 ) N0y |, < oo
(i) (g
o\ (D) oy | | O8N (07) ,
tselﬁg ‘(%At )(6%) ’)\gi)(e*) Lo 1<+c>o.

PROOF OF LEMMA 5. We define [ for any index ¢ =1,...,d as

(2 ) s

By Assumptions 1 (b) and (c), we can deduce for any index ¢ =1, ..., d that

)‘)\( (6%)

I = sup
teR+

{A§1)>0} ‘ )2'

I = sup
teR+

69/\(
Ce

By derivative formula, we obtain for any index 1= 17 ..., d that
)83&”(9*) — (03")*(6")
)\EZ) (9*)2

‘ B

)l

I=sup )\gi)(H*)

teR*

’2'
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This can be reexpressed for any index ¢ =1,...,d as
23 (D) gy _ ()\®2 (p*
1= wp ||| A - @AYy
A7) :

By Assumptions 1 (b) and (c), we can deduce for any index ¢ =1, ..., d that

I8

82 (07) — (@A) (0")

1
I <—5 sup
Z ter+

Moreover, we get by Definition (8) for any index ¢ =1, ..., d that

I< étsetlllg ‘83 (f(i) (V*,/()t h(t — S,/i*)dN5>>
(19) (a0 (v, [ - swran))} o) ||
0 2
By Assumptions 1 (e), (i) and (j), we obtain for any index ¢ =1, ..., d that
(20) I < +o0.
We define 1] for any index ¢ =1,...,d as
1= aup || [oeE 0 A 0 0

By definition of Ft(i) (0*), we can deduce for any index ¢ = 1,...,d that

(@) * ]
‘89 (W) ‘/\gl)(g*)1{A§,i>>0} ‘ )1.

By Assumptions 1 (b) and (c), we get for any index ¢ =1,...,d that

an( (@e0")**(0°)
)\EZ) (9*)2

Moreover, we get by Definition (8) for any index i =1, ..., d that

Il = sup
teR+

Il = sup
teRT

)

!

II = sup
teR+

1@ (y*, fg h(t — s, K,*)dNS)

x @) (y*, /Ot ht— s, n*)st)

. <{<99 (s (v’:féh(tsm*)st))}m(e*))
(7 2

13

By extending the arguments from the proof of the case I < +oo with Assumption 1 (b), we

obtain for any index ¢ =1,...,d that
2D IT < +o0.
We define /11 for any index ¢ =1,...,d as

II] = sup

teR+

‘ oo\ (0)
N (07)

@A) @)

{A">0} Hl
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11T = sup

By Assumptions 1 (b) and (c), we get for any index ¢ =1, ..., d that
| N (6)
tER+

By Assumptions 1 (b) and (c), we obtain for any index ¢ =1, ..., d that

’ ‘1'
Moreover, we get by Definition (8) for any index ¢ =1, ..., d that
1
11T < — sup

s | (10 [ ey
<fon (19, L e =serav ) ||

By extending the arguments from the proof of the case I < 400, we obtain for any index
1=1,...,dthat

[C2NI08

1
11T < — sup
f- ter+

[C2AI08

e

(22) IIT < +o0.
Finally, we can prove the lemma with Expressions (20), (21) and (22). ]
We introduce the covariance supremum for any index ¢ =1, ...,d and any time 7" > 0 as
(23) py = sup | Cov [(X), p(X )] |
se

The following definition introduces the notion of mixing for stochastic processes. This cor-
responds to the definition from Section 3.4 in Clinet and Yoshida (2017). See also Definition
C2 in Supplement C of Potiron and Volkov (2025) and Definition 3 in Potiron (2025b).

DEFINITION 4. We say that the stochastic process X; is mixing if for any function ¢,
any function ¢ € Cy(E,R) and any index ¢ = 1, ..., d we have as the final time 7" — oo that

ug) — 0.

The following lemma states that the stochastic process X; is mixing in the sense of Def-
inition 4. This extends Lemma A.6 (p. 1834) in Clinet and Yoshida (2017), Proposition C1
(i) in Supplement C of Potiron and Volkov (2025) and Lemma 14 in Potiron (2025b) to the
nonlinear intensity case.

LEMMA 6. We assume that Assumptions 1 (a), (b), (c), (d), (e), (f), (g), (h), (i), (j) and (k)
hold. Then, the stochastic process X, is mixing in the sense of Definition 4 for any parameter

0eco.

PROOF OF LEMMA 6. We first define the truncation of the stochastic process X:(Fi) at the
time t <7 for any index ¢ =1,...,d as

~(q , d r 4T N |
Xir= (AE)(H*LJZI /t h“’”(T—uﬂ)dNé’),jZl /t 89(h(”])(T—u,9))qugl)).
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Then, we can reexpress the covariance supremum ug,f) forany index ¢ =1,...,d as
,ug) = sup | Cov [gb(Xs(i))ﬂb(XgT)] |
sERT
_ Cov [6(XD), (XD ) — (XD x%
sup ‘ OV[¢( s )7w( s+T) ¢( 5+VT£+T)%_¢( S+VT£+THI‘

seERT

Here, we use Definition (23) in the first equality and an algebraic manipulation in the second

equality. Using the triangular inequality, covariance and supremum properties, we can bound
(4)

the covariance supremum ujf forany index ¢ =1,...,d as
(4) () @ N _ v
(24) ur' < sup [ Cov [6(XD) (X er) =X, 7, )|
. (%) v ()
+ sup | Cov [6(XI), (X 7 )]

We define I}i) for any index ¢ =1,...,d and any time 7" > 0 as

1) = sup | Cov [6(X), (X 8p) —w(XY - ]|

seERt

We also define II:(Fi) for any index i =1,...,d and any time 7" > 0 as

(1) _ (i) v (0
11 = sup | Cov [¢(X5) (X[ )]
By the definition of I (i), Cauchy-Schwarz inequality and supremum properties, we can de-
duce for any index ¢ =1, ...,d and any time 7" > 0 that
(4) (@) @) N _ o xv®
(25) I}V < sup Var [¢(X{)] sup Var [ (X)) — (X7 ﬁ}HT)] :
By an extension to Lemma 4 with Assumptions 1 (i), (k) and (j), we get for any index ¢ =
1,...,d that

(26) sup Var [¢(X{")] < C.
SERT
Then, we obtain since v/T — oo as the final time 7' — oo for any index i = 1, ..., d that
(%) v (@)
(27) Sseuﬂg Var [¢(X %) — w(Xs+\/T,s+T)} — 0.

By Expressions (25), (26) and (27), we can deduce for any index ¢ =1, ..., d that
(28) ) —o.

Moreover, we obtain by similar arguments to the case Ig) — 0 as the final time 7" — oo for
any index ¢ =1,...,d that

(29) 1) —o.

By Expressions (24), (28) and (29), we can deduce as the final time 7' — oo for any index
i=1,...,d that

ug) — 0.
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The following lemma states that the stochastic process X; is stable. This extends Lemma
A.6 (p. 1834) in Clinet and Yoshida (2017), Proposition C1 (ii) in Supplement C of Potiron
and Volkov (2025) and Lemma 15 in Potiron (2025b) to the nonlinear intensity case.

LEMMA 7. We assume that Assumptions 1 (a), (b), (c), (d), (e) (f), (h), (i), (j), (k) and
(m) hold. Then, the stochastic process X, is stable, i.e. for any index i =1,...,d and any

parameter 6 € © there exists an R’ valued random variable )\gi) (0) such that we have as the
final time T — oo that

X5 B (0.0 (0), 000 (6)).

PROOF OF LEMMA 7. The proof is obtained by extending the arguments from the proof

of Theorem 1 in Brémaud and Massoulié (1996) and Lemma 4 in Brémaud and Massoulié
(1996). O

The following lemma states that the stochastic process X; is ergodic in the sense of Def-
inition 2. Moreover, it delivers a more explicit expression of the limit function 7(¢)). This
shows Assumption 1 (c) in Potiron (2025b). This extends Lemma 3.16 (p. 1815) in Clinet
and Yoshida (2017), Proposition C1 (iii) in Supplement C of Potiron and Volkov (2025) and
Lemma 16 in Potiron (2025b) to the nonlinear intensity case.

LEMMA 8. We assume that Assumptions 1 (a), (b), (c), (d), (e), (f), (g), (h), (i), (j) and (k)
hold. Then, the stochastic process Xy is ergodic in the sense of Definition 2 for any parameter
0 € ©. Moreover, we have for any index i =1,...,d and any parameter 6 € O that

7O () =E[p(\(6),A7(8), 91" (8))].

PROOF OF LEMMA 8. For any function ¢ € Cy(E,R), any index i = 1,...,d and any
final time 7" > 0, we define V() (1)) as

T
(30) vOy) =7 /0 $(X{)ds.

To show that the stochastic process X; is ergodic, it is sufficient to show for any function

Y € Cy(F,R) and any index i = 1,.. ., d as the final time T — oo that V(?) (¢)) 5 7@ (4) in
which

7 () =E[p(\(67), A7 (8), 90" (8))]..

Since L? convergence implies convergence in probability, it is sufficient to show L? conver-
gence. Since for any random variable X and any nonrandom real number a € R we have
E[(X — a)?] = Var[X] + (E[X] — a)?, we can deduce for any function ) € C,(E,R), any
index ¢ =1,...,d and any final time 7" > 0 that

3D E[(V@(y) =7 ())*] = Var [V ()] + BV ()] - 7@ (9))*.

We define I for any function ¢ € Cy(E,R), any index i = 1,...,d and any final time
T >0as

IO = Var[VO ().

We also define 17 for any function ¢ € Cy(E,R), any index i = 1,...,d and any final time
T >0as

110 = B[V ()] - 7 ()2,
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We have for any function ¢ € Cy(E,R), any index ¢ = 1, ..., d and any final time 7" > 0 that
10 = Var[V ()]

= Var [% /()T¢(Xs(i))ds]

= %Var [/OTqﬁ(Xgi))ds].

Here, we use the definition of I(*) in the first equality, the definition of V(!)(1)) in the second
equality. We also use the fact that for any nonrandom real number a € R and any random
variable X we have Var[aX] = a? Var[X] in the third equality.

Then, we have for any function ¢) € Cy(FE,R), any index ¢ = 1,...,d and any final time

T > 0 that
_ 1 (@)
= —5 Var [/0 (X V)ds

-1

1 T
= 7z Jim Var |7 ZO Cvem]

1 T K-1
g P oty ]

Here, we use the approximation of the Riemann sum in the second equality as the random

function (X s(l)) is Riemann integrable for any w € §2 and an application of the dominated
convergence theorem in the third equality.

Then, we have for any function ¢ € Cy(E,R), any index i = 1,...,d and any final time
T > 0 that

W_ L T e[S
10 = 3 i g Var [ 32 v
k=0
1 T2 K-1K-1 @) (4)
T2 R Cov [(X10 (X0
k=0 =0

/ / Cov )w(x@)}dsdu.

Here, we use Bienayme’s identity in the second equality.
By Definition (23), we obtain for any function i) € C,(E,R), any index i =1,...,d and

any final time 7" > 0 that
10 < T?/ / W) dsdu.

A split of the integral into two terms leads for any function ¢ € Cy(FE,R), any index i =
.,d and any final time 7" > 0 to

— (4)
JrTQ/O /o M|S*UI1{\s—u\>ﬁ}dsdu.
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For any function ¢ € Cy(F,R) and any index i = 1, ... ., d, there exists by Lemma 6 a positive

real number y(ﬁ > 0 such that for any time ¢ > 0 we have ug g < ,u(l)

Then, we obtain for any function ¢ € C,(E,R), any index ¢ = 1,...,d and any final time
T > 0 that

1 [T [T 0
(33) T2/0 /0 ,u|57u|1{‘sfu‘§ﬁ}dsdu
HS? T T

<77 /0 /0 Ljsmuj<ymydsdu.
Moreover, we can deduce for any function ¢ € Cj,(F,R), any index ¢ = 1,...,d and any final
time 7" > 0 that

Ky T

(34) e [ ] tievmdsti—o.

By Expressions (33) and (34), we can deduce for any function ¢ € Cy(FE,R), any index
t=1,...,d and any final time 7" > 0 that

L
(35) TQ/O /0 /L'Siu'l{‘sfu‘gﬁ}dsdu%&

We also have for any function ¢ € Cy(E,R), any index ¢ = 1,...,d and any final time
T > 0 that

1 T rT )
Syiu\PF”y T2/ / (Js—u|>vT} 450U

Then, we obtain for any function ¥ € Cy(E,R), any index i = 1,...,d and any final time
T > 0 that

(37) sup u( )/ / ydsdu < sup u()

y>VT ! Hsmul=v} y>VT
Since ug,f) — 0 as the final time 7" — oo by an application of Lemma 6, we can also deduce
for any function ¢ € Cy(F,R) and any index i = 1,...,d as the final time 7" — oo that

(38) sup ,ugf) — 0.
y>VT

Expressions (36), (37) and (38) imply for any function ¢ € Cy(E,R) and any index i =
., d as the final time T" — oo that

1 [T (T 0
39) TQ/O /0 /L'Siu'l{‘sfubﬁ}dsdu%&

Expressions (32), (35) and (39) yield for any function ¢ € Cy(E,R) and any index i =
., d as the final time T" — oo that

(40) 10 0.

By the definitions of 71() and V), we have for any function 1 € Cy(E,R), any index
1=1,...,d and any final time T > 0 that

17 = /'w —n )’
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By Fubini theorem with Lemmas 4 and 5, we obtain for any function ¢ € Cy(E,R), any
index ¢ =1,...,d and any final time 7" > 0 that

41) 119 = (% /TE[w(Xs(i))}ds - w(i>(¢))2.
0

By Lemma 7, we have for any function 1) € Cy(E,R) and any index ¢ = 1,...,d as the final
time T' — oo that
3) D () pxy (G i
X0 B (007,07 (0), 000 (6)).

Since convergence in distribution implies convergence in expectation of any bounded func-
tion, we obtain for any function ¢ € Cy(E,R) and any index ¢ = 1,...,d as the final time
T — oo that

E[p (X)) = E[p(A(0%), A7 (6), 000" (0))]..

By the definition of 7() (1)), we can deduce for any function 1) € C(E,R) and any index
i=1,...,d as the final time T — oo that

(42) E[p (X)) — 7@ ().

Moreover, Expressions (41) and (42) imply for any function ¢ € Cp(E,R) and any index
i=1,...,d as the final time T — oo that

(43) 1719 - 0.
Finally, we can deduce by Expressions (31), (40) and (43) for any function ¢ € Cy(E,R) and
any index i =1,...,d as the final time 7' — oo that

E[(V®(y) — =D ())?].
O

We define the limit of the normalized deviation between the log likelihood at the parameter
value 6 € O and the log likelihood at the true parameter value 6* as

d .
(44) Y(0)= Z /E <log (%)u —(v— u)) 1{U>U,v>0}ﬂ'éz) (du,dv, dw).
i=1

As the true parameter value 6* is a maximum argument of the log likelihood limit, we have
by definition that Y (6) < 0 for any parameter 6 € ©.

We now show the following lemma, which corresponds to Assumption 1 (e) in Potiron
(2025b). This complements Lemma A.7 (p. 1836) in Clinet and Yoshida (2017). This extends
Lemma C6 in Supplement C of Potiron and Volkov (2025) and Lemma 17 in Potiron (2025b)
to the nonlinear intensity case.

LEMMA 9. We assume that Assumptions 1 (aL(b), (c), (d), (e) (f), (h), (i), (j), (k), (m)
and (1) hold. Then, we have for any parameter 6 € © — 0* that Y (6) # 0.

PROOF OF LEMMA 9. We assume that the parameter § € © and that Y () = 0. By Defi-
nition (44), we can deduce that

d . A
0= ;/E (log <E>u —(v— ’U,))Wél*) (du, dv, dw).
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By Lemma 7, this can be reexpressed as

d (4)
N(0) o (0 (0
(45) 0= E|log (-t N7 0%) = (N(0) = XN (09) ].
3~ efin (200 e 0]
We also have by definition for any index ¢ =1,...,d and any w € () that
A0) N i i
(46) OZIOg( L ))Ag)(e*)—(A,”(@)—A,“(e*)).

A (07)
Moreover, Expressions (45) and (46) yield a.s.

0 | | .
0=log (;z(li) ((:*)) MA@ = (A 0) = A (6).

Thus, we can deduce that a.s.
M) = M (6).
Finally, we obtain 8* = 6 by Assumption 1 (1). O

We denote by L! (1) the space of functions that are integrable with respect to x for any
measure . The functions that we will be using in the proofs which follow will not necessarily
be bounded. Thus, we extend from the space Cy,(£,R) to the space C;(E,R) the space of
functions in which the ergodicity assumption holds. We also give a more explicit form to
the function 7(¢)). The following lemma is Proposition 3.8 (pp. 1806-1807) in Clinet and
Yoshida (2017). The proof follows the arguments from the proof of Proposition 3.8 (pp.
1822-1824) in Clinet and Yoshida (2017). See also Lemma 1 in Potiron (2025b).

LEMMA 10. We assume that Assumptions 1 (a), (b), (c), (d), (e), (f), (g), (h), (i), (j) and
(k) hold. Then, we have for any parameter 6 € © that

(@) The ergodicity assumption in the sense of Definition 2 still holds for any function ¢ €
Cy(E,R). In particular; the function 7() (1) can be extended to Cy(E,R) for any index

1 =1,...,d. Moreover, the convergence is uniform in the parameter 0 € © for any function
(NS CT(E ,R).
(b) Foranyindexi=1,...,d, there exists a probability measure 7757’) on the space E which

satisfies what follows. More specifically, we have 7\ (1)) = [ ¥(u,v, w)Tréi) (du, dv, dw)
for any function i € C4+(E,R). In particular, we have C4+(E,R) C Ll(wéi)),

PROOF OF LEMMA 10. We can use the arguments from the proof of Proposition 3.8 (pp.
1822-1824) in Clinet and Yoshida (2017). O

We introduce now the following lemma, which ensures that the family of intensities does
not explode on any compact space. Its proof is a direct consequence to Lemma 10. This
corresponds to Lemma 2 in Potiron (2025b).

LEMMA 11. We assume that Assumptions 1 (a), (b), (c), (d), (e), (), (g), (h), (i), (j) and
(k) hold. Then, the intensity process \i(0) is a.s. locally integrable on the space R™ for any
parameter 6 € ©.

PROOF OF LEMMA 11. This is a direct consequence to Lemma 10 with the function
¥(u,v,w) = v for any time (u,v,w) € E. O
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We now show the following lemma, which corresponds to Assumption 1 (f) in Potiron
(2025b). This extends Lemma 11 in Potiron (2025b) to the nonlinear intensity case.

LEMMA 12.  We assume that Assumptions 1 (a), (b), (c), (d), (e), (f), (g), (h), (i), (j), (k)
and (m) hold. Then, we have a.s. that the intensity 6 — \(0) is twice continuously differen-
tiable from the parameter space © to the space Ri for any time t € R™ a.e. Moreover, there
exists a continuous extension to ©.

PROOF OF LEMMA 12. By Definition (8), we have for any time t € R* and any parame-
ter 6 € O that

A(6) = f(y, /Oth(t —8,k) st).

First, the nonlinear function f: ©, x RT — ]Rff(d is twice continuously differentiable and
there exists a continuous extension to ©, x Rt by Assumption 1 (h). By function com-
position properties, it remains to show the lemma for any time t € R* a.e. and any kernel
parameter k € O, with

t
Atn(K) = / h(t — s,k)dNs.
0

The intensity can be rewritten for any index i = 1,...,d, any time ¢t € R" and any kernel
parameter x € O, as

M) =3 /0 RO (¢ — s, 5) AN,
j=1

By the assumption on the times of the point process (2), the intensity )\( )( ) can be reex-

pressed for any index i = 1,...,d, any time ¢t € R, any kernel parameter K € O and a.s.
as

A (k) Z 3 R (=T ).

J=1 ke, st 0<TY <t
By Lemma 11 and compacity of the segment [0, 7], we have that the number of terms in the
i)

sum and each term are a.s. finite. Then, we can deduce that )\g . (k) is a.s. finite. As the kernel

is differentiable a.e. by Assumption 1 (m), we can deduce that )\( )( ) is a.s. differentiable
and

d
= 3 0.0 (t =TV k).
J=Ll keN, st 0<TY <t

As the kernel is differentiable twice a.e. by Assumption 1 (m), we can deduce that )\EZ})Z(K') is
a.s. differentiable and

2N (k) Z S -1 k).
J=1 geN, st 0<TP <t

Thus, we have a.s. that the intensity process 6 — A\s(6) for any time s € R a.e. is twice
continuously differentiable from the parameter space © to the space R%, and there exists a

continuous extension to ©. O
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We now show the following lemma, which corresponds to Assumption 1 (g) in Potiron
(2025b). This extends Lemma 12 in Potiron (2025b) to the nonlinear intensity case.

LEMMA 13.  We assume that Assumptions 1 (a), (b), (c), (d), (e), (f), (g), (h), (i), (j), (k)
and (m) hold. Then, we have ]P’(fOT |0gA¢(0)|dt < 00) =1 and IP’(fOT |02\ (0)]dt < o0) =1
for any parameter 0 € © and any final time T > 0.

PROOF OF LEMMA 13. First, we have by Definition (8) for any parameter § € © and any
time ¢ > O that

A(0) = f(y, /Oth(t ~5,K) dNS>.

Then, the ith component of the intensity process \:(f) can be rewritten for any parameter
0 € ©, any time ¢ > 0 and any index i =1,...,d as

A9y = fO (VZ /0 hED (t — s, k) dNS(J)).
j=1

By the assumption on the times of the point process (2), the ith component of the intensity
process A¢(f) can be reexpressed for any parameter € ©, any time ¢ > 0 and any index
i=1,...,das

d
/\gl)(e) = f¥ <V; Z Z 1{0<Té1><t}h(i’j) (t— T]EJ),H)>.

j=1 keN,
By Lemma 11 and compacity of the segment [0,7], we have that the number of terms in
the sum and each term are a.s. finite for any parameter § € ©, any time ¢ > 0 and any index

i=1,...,d. Then, we can deduce that /\§Z) () is a.s. finite for any parameter f € ©, any time
t > 0and anyindex i =1,...,d. As the kernel is differentiable a.e. by Assumption 1 (m), we

can deduce that )\gi) (0) is a.s. differentiable for any parameter 6 € ©, any time ¢ > 0 and any
index ¢+ =1,...,d such that

0o\ (6 ( Z > 1{0<T(“<t}89h( De-17, ))

7=1keN,

d
*df(i) (V, Z Z 1{0<T,§j><t}h(i’j) (t _ T,ﬁj), H))

Jj=1keN,

By the assumption on the times of the point process (2), the intensity derivative Jy )\gz,)L (#) can

be reexpressed for any parameter § € O, any time ¢t > 0 and any index i =1,...,d as

ApA” Z/ Apht™) (t — s /@)dN(J df z/ R (t — s, /@)dN(J))

This can be rewritten in multidimensional notation for any parameter § € © and any time
t>0as

(47) B\ (0) /89h (t—s n)dN)df( /Ot (t—s,li)st).
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In addition, we obtain by Assumption 1 (e) for any parameter € © and any time ¢ > O that

t
|09 :(0)] §f+(1+/ Aph(t — s,k)dN,
0

Moreover, we can deduce by the triangular inequality for any parameter § € © and any time
t > 0 that

Furthermore, the triangular inequality with the assumption on the times of the point process
(2) yield for any parameter 6 € © and any time ¢ > O that

t
o2(0)] < 1 (1+ \/0 Doh(t — s, k) AN,

a2 (0)] < £ (14 /Ot [ph(t = 5, k)| AN).

Finally, we obtain IP( fOT |OgA(6)|dt < 00) =1 for any parameter # € © and any time ¢ > 0
by an extension of Lemma 4 with Assumptions 1 (i), (j) and (k).

As the kernel is differentiable twice a.e. by Assumption 1 (m), we can deduce that the
intensity process Ai’) (0) is a.s. differentiable twice for any parameter § € O, any time ¢ > 0
and any index ¢ = 1,...,d. Then, we obtain by Equation (47) for any parameter § € © and

any time ¢ > 0 that

92N (0) = a(,{ (1, /Ot Agh(t — s, n)dNS>df (y, /Ot h(t — s, ,@)st> }

In addition, we obtain by Assumptions 1 (e) and (i) for any parameter § € © and any time
t > 0 that

t t
\agxt(aﬂgc‘u/ 89h(t—s,m)st+/ 82h(t — 5, K)dN,
0 0

Moreover, we can deduce by the triangular inequality for any parameter § € © and any time

t > 0 that
t
n ‘/ 82h(t — 5, K)dN, )
0

Furthermore, the triangular inequality with the assumption on the times of the point process
(2) yield for any parameter § € © and any time ¢ > 0 that

t
105\ (0)| gc(1+‘/0 Oph(t — s,K)d N

t t
109At(9)y:c(1+/ lagh(t—s,fi)‘d]\fs—l—/ lagh(t—s,n)]st).
0 0

Finally, we obtain P( fOT |02\ (0)|dt < o0) =1 for any parameter § € © and any time ¢ > 0
by an extension of Lemma 4 with Assumptions 1 (i), (j) and (k). ]

We now give the proof of Theorem 1. This is based on an application of Theorem 1 in
Potiron (2025b) with the previous lemmas.

PROOF OF THEOREM 1. The proof is an application of Theorem 1 in Potiron (2025b)
with Lemmas 1,4 ,5, 8,9, 12 and 13. ]
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