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Abstract: We develop inference for point processes when its intensity has
a parametric form. The inference procedure is based on maximum likeli-
hood estimation. Under ergodicity of the point process intensity and its
derivative, we show the central limit theorem of the inference procedure.
As an application, we consider Hawkes mutually exciting processes. We as-
sume that the kernel has a general form and is parametric. We show the
ergodicity of the Hawkes process intensity and its derivative. Moreover, we
obtain the central limit theorem of the inference procedure for Hawkes pro-
cesses. In particular, we allow for kernels with power distribution, under
some smoothness assumptions on the kernel shape. The proofs are based
on the application of Burkholder—Davis—Gundy inequalites.
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1. Introduction

This paper concerns parametric inference for point processes. The main stylized
fact in this strand of literature, the presence of event clustering in time, moti-
vates the so-called Hawkes mutually exciting processes (see Hawkes (1971a) and
Hawkes (1971b)). We define the point process Nt of dimension d as the number
of events from the starting time 0 to the time t and λt its intensity. A standard
definition of Hawkes mutually exciting processes is given by

λt = ν∗ +

∫ t

0

h(t− s) dNs. (1)

Here, ν∗ is a d dimensional Poisson baseline and h is a d× d dimensional kernel
matrix. The point processes are mutually exciting in the sense that the diagonal
components h(i,i) are self-exciting terms for the i-th process and non-diagonal
components h(i,j) are cross-exciting terms for the i-th process made by events
from the j-th process. The particular case h = 0 corresponds to a classical
Poisson process, so that we can view Hawkes processes as a natural extension
of Poisson processes.

The main application of Hawkes processes lies in seismology (see Rubin
(1972), Ozaki (1979), Vere-Jones and Ozaki (1982) and Ogata (1978), Ogata
(1988)). There are also applications in quantitative finance (see Chavez-Demoulin,
Davison and McNeil (2005), Embrechts, Liniger and Lin (2011), Bacry et al.
(2013), Jaisson and Rosenbaum (2015), Jaisson and Rosenbaum (2016), Clinet
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and Yoshida (2017)). Some applications are also in financial econometrics (see
Chen and Hall (2013), Clinet and Potiron (2018), Kwan, Chen and Dunsmuir
(2023), Potiron and Volkov (2025)). We can also find some applications in bi-
ology (see Reynaud-Bouret and Schbath (2010) and Donnet, Rivoirard and
Rousseau (2020)). See also Liniger (2009) and Hawkes (2018) with the refer-
ences therein.

There are many theoretical results for Hawkes processes in statistics. Hawkes
and Oakes (1974) provide a Poisson cluster process representation for the Hawkes
process. Brémaud and Massoulié (1996) study stability of nonlinear Hawkes pro-
cesses. Zhu (2015) considers large deviations for Markovian nonlinear Hawkes
processes. Roueff, von Sachs and Sansonnet (2016), Roueff and Von Sachs (2019),
Cheysson and Lang (2022), Mammen and Müller (2023), Erdemlioglu et al.
(2025a) study locally stationary Hawkes processes. Potiron et al. (2025a) and
Potiron et al. (2025b) introduce Hawkes processes with Itô semimartingale base-
line. Potiron (2025) consider a more general baseline. The microstructure of
stochastic volatility models with self-excitation is investigated in Horst and Xu
(2022). Horst and Xu (2021) and Horst and Xu (2024+) give functional limit
theorems for Hawkes processes. Xu (2024) studies diffusion approximations for
self-excited systems. Karim, Laeven and Mandjes (2025+) introduce compound
multivariate Hawkes processes.

In this paper, we consider Hawkes processes, where the kernel has a general
form and is parametric. The inference procedure is based on maximum likeli-
hood estimation (MLE). Ogata (1978) shows the central limit theorem (CLT)
of the inference procedure for an ergodic stationary point process. However, the
definition of ergodicity is vague in that paper. Most of the papers on parametric
inference for Hawkes processes make this ergodicity assumption (see Bowsher
(2007), Large (2007) and Cavaliere et al. (2023), Assumption 1(b) and Remark
2.1).

In fact, Clinet and Yoshida (2017) exhibit the conditions required, i.e. ergod-
icity of the Hawkes intensity process and its derivative jointly. They consider
general point processes and derive the CLT of the inference procedure in The-
orem 3.11 (p. 1809) under these ergodicity assumptions. They also show these
ergodicity assumptions in the case of a Hawkes process with exponential kernel
in Theorem 4.6 (p. 1821). The proofs rely heavily on the Markov property of
the exponential distribution.

Kwan (2023) considers the non-exponential kernel case but the author men-
tions that such case is challenging since the Hawkes intensity process is non-
Markovian, thus rendering standard Markov tools inapplicable. Consequently,
the author can only show the ergodicity for the Hawkes intensity process and
for its derivative (see Theorem 4.3.2, p. 91), but not jointly. Thus, he can only
show the consistency of the inference procedure in Theorem 3.4.3 (p. 73). When
the kernel follows a generalized gamma distribution, Potiron and Volkov (2025)
can show that the ergodicity assumptions are satisfied and also obtain the CLT
of the inference procedure. This is due to the exponentially decreasing nature
of the kernel. With a general kernel, Costa et al. (2020) (Theorem 1.2, p. 884)
and Graham (2021) (Theorem 5.4, p. 2856) shows the ergodicity of the Hawkes
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processes, but not its intensity. See also Section 3.2 (p. 893) in Reynaud-Bouret
and Roy (2007).

All these results are useful, but the obtained CLT for the inference procedure
are restricted to exponentially decreasing kernels, which are restrictive for ap-
plications. In finance, there is empirical evidence that the kernel decays as the
power distribution (see Bacry, Dayri and Muzy (2012) and Hardiman, Bercot
and Bouchaud (2013)). Consequently, we extend the literature in two directions.
First, we weaken the assumptions from the point process theory in Clinet and
Yoshida (2017), since they do not allow for kernels with power distribution.
More specifically, we consider a different approach in the proofs that circum-
vents the use of the Sobolev embedding theorem (see Theorem 4.12 (p. 85) in
Adams and Fournier (2003)). This new approach is based on the application of
Burkholder—Davis—Gundy inequalites (see Expression (2.1.32) in Jacod and
Protter (2012) (p. 39)). Under ergodicity of the point process intensity and its
derivative, we show the CLT of the inference procedure (see Theorem 1). Sec-
ond, we show the ergodicity of the Hawkes intensity process and its derivative,
in case of a general kernel. Moreover, we show the CLT of the inference proce-
dure (see Theorem 2). This is the main result of this paper. This extends Clinet
and Yoshida (2017) and Potiron and Volkov (2025), who obtain ergodicity by
proving first that the Hawkes intensity process and its derivative is mixing by
Markov arguments. In particular, we allow for kernels with power distribution,
under some smoothness assumptions on the kernel shape.

The remainder of this paper is organized as follows. We consider inference
for point processes in Section 2. We study the Hawkes processes with a general
kernel case in Section 3. The proofs of the CLT for point processes are gathered
in Section 4. The proofs of the CLT for Hawkes processes with a general kernel
are given in Section 5. Finally, we provide concluding remarks in Section 6.

2. Parametric inference for point processes

In this section, we develop inference for point processes when its intensity has a
parametric form. The inference procedure is based on MLE. Under ergodicity of
the point process intensity and its derivative, we show the CLT of the inference
procedure. In particular, we weaken the assumptions from the point process
theory in Clinet and Yoshida (2017), since they do not allow for kernels with
power distribution. More specifically, we consider a different approach in the
proofs that circumvents the use of the Sobolev embedding theorem. This new
approach is based on the application of Burkholder—Davis—Gundy inequalites.

We start with an introduction to the point process Nt of dimension d. For

any index i = 1, . . . , d, each component of the point process N
(i)
t counts the

number of events between 0 and t for the i-th process. Here, we denote the i-th

component of a vector V by V (i). We define N
(i)
t as a simple point process on

the space R+, i.e. a family {N (i)(C)}C∈B(R+) of random variables with values

in the space N = N ∪ {+∞}. Here, B(S) denotes the Borel σ-algebra on the

space S for any space S. Moreover, N (i)(C) =
∑

k∈N 1C(T
(i)
k ) and {T (i)

k }k∈N is
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a sequence of event times, which are R+-valued and random. We assume that

the time of the first event T
(i)
0 is equal to 0 a.s. and the following times are

increasing for each process a.s. Namely, we assume that

P(T (i)
0 = 0 and T

(i)
k < T

(i)
k+1 for k ∈ N∗ and i = 1, . . . , d) = 1. (2)

Here, we define for any space S such that 0 ∈ S the space without zero as S∗.
We also assume that no events happen at the same time for different processes

a.s., i.e. P(T (i)
k ̸= T

(j)
l for k, l ∈ N∗ and i, j = 1, . . . , d s.t. i ̸= j) = 1.

Let B = (Ω,F , {Ft}t∈R+ ,P) be a filtered probability space which satisfies the
usual conditions. For any t ∈ R, we denote the filtration generated by some
stochastic process X as FX

t = σ{Xs : 0 ≤ s ≤ t}. We assume that, for any
t ∈ R+, the filtration generated by the point process Nt is included in the main
filtration, i.e. FN

t ⊂ Ft. Any stochastic process {λt}t∈R+ which satisfies the
following properties is called an Ft-intensity of Nt. First, we have that

E[N((a, b]) | Fa] = E
[ ∫ b

a

λsds | Fa

]
a.s.

for all intervals (a, b] ⊂ R+. Second, the process λt is Ft-progressively measur-

able, of dimension d where each component λ
(i)
t takes its values in the space

of nonnegative real numbers R+. Intuitively, the intensity corresponds to the
expected number of events given the past information, i.e.

λt = lim
u→0

E
[Nt+u −Nt

u
| Ft

]
a.s.

We note that N((a, b]) is a.s. finite if and only if
∫ b

a
λsds is a.s. finite. For

background on point processes, the reader can consult Jacod (1975), Jacod and
Shiryaev (2003), Daley and Vere-Jones (2003), and Daley and Vere-Jones (2008).

The present work is concerned with multidimensional point processes Nt

admitting an Ft-intensity which has a parametric form. More specifically, we
introduce the parameter space Θ, consisting of n parameters. We also introduce
the family of intensities λt(θ) for any parameter θ ∈ Θ. We assume that the

intensity process λt(θ) is of dimension d where each component λ
(i)
t (θ) takes its

value in the space of nonnegative real numbers R+ for any parameter θ ∈ Θ.
Finally, we assume the existence of the true parameter θ∗ ∈ Θ such that

λt = λt(θ
∗). (3)

For any parameter θ ∈ Θ, we rely on the log likelihood process (see Ogata (1978)
and Daley and Vere-Jones (2003))

lT (θ) =

d∑
i=1

∫ T

0

log(λ
(i)
t (θ))dN

(i)
t −

d∑
i=1

∫ T

0

λ
(i)
t (θ)dt. (4)

Here, 0 is the starting time and T is the final time. Then, the MLE is defined
as a maximizer of the log likelihood process between 0 and T, i.e.

θ̂T ∈ argmaxθ∈Θ lT (θ).
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In this paper, we focus on the stochastic processesXt = (λt(θ
∗), λt(θ), ∂θλt(θ))

taking values in the space Ed where E = R+×R+×Rn. We denote by X
(i)
t ∈ E

the i-th component of Xt. Here, ∂θG(θ) denotes the vector of partial derivatives
for any function G(θ), i.e. ∂θG(θ) =

∂G
∂θ (θ). We denote by Cb(E,F ) the space of

bounded and continuous functions from E to F . In what follows, we provide the
definition of ergodicity. This corresponds to Definition 3.1 (p. 1805) in Clinet
and Yoshida (2017). See also Definition C1 in Supplement C of Potiron and
Volkov (2025).

Definition 1. We say that X is ergodic if for any i = 1, . . . , d there exists a
function π(i) : Cb(E,R) → R such that for any ψ ∈ Cb(E,R) we have

1

T

∫ T

0

ψ(X(i)
s )ds

P→ π(i)(ψ).

Since the space of bounded functions is not large enough to establish CLT,
we introduce a bigger space in the following definition. We denote this bigger
space by C↑(E,R). This corresponds to Definition 3.7 (p. 1806) in Clinet and
Yoshida (2017).

Definition 2. We denote by C↑(E,R) the set of continuous functions ψ : (u, v, w) →
ψ(u, v, w) from E to R that satisfy

(a) ψ is continuous on R+
∗ × R+

∗ × Rn.

(b) ψ is of polynomial growth in u, v, w,
1{u>0}

u and
1{v>0}

v .
(c) For any (u, v, w) ∈ E, we have ψ(0, v, w) = ψ(u, 0, w) = 0.

Lemma 1 extends the starting space of the limit function π from Cb(E,R) to
C↑(E,R) and gives a more explicit form. More specifically, it shows that, for any
index i = 1, . . . , d and any parameter θ ∈ Θ, there exists a probability measure

π
(i)
θ on the space E such that, for any ψ ∈ C↑(E,R), we have

π(i)(ψ) =

∫
E

ψ(u, v, w)π
(i)
θ (du, dv, dw).

Moreover, Lemma 2 ensures that the family of intensities λt(θ) does not explode
on any compact space based on these ergodicity assumptions.

We have now all the ingredients to derive the form of the asymptotic covari-
ance matrix. If we consider a vector z ∈ Rn, we define the tensor product as
z⊗2 = zzT ∈ Rn×n. Then, we define the asymptotic Fisher information matrix
Γ of dimension n× n as

Γ =

d∑
i=1

∫
E

w⊗2 1

u
π
(i)
θ∗ (du, dv, dw). (5)

The Fisher information matrix measures the amount of information that the
intensity λt carries about the parameter θ∗. Formally, it is the expected value
of the observed information. The Fisher information matrix is used to calcu-
late the covariance matrices associated with MLE. In other words, Γ−1 is the
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asymptotic covariance matrix. In Expression (37) from the proof of Theorem
1, we show that we can reexpress the asymptotic Fisher information matrix as
Γ = − limT→∞

1
T E

[
∂2θ lT (θ

∗)
]
. Here, ∂2θG(θ) denotes the Hessian matrix for any

function G(θ). i.e. ∂2θG(θ) =
∂2G
∂2θ (θ).

Before introducing the assumptions, we first need to introduce some notation.
We define Θ as the closure space of Θ. If x is a real number, a vector, a matrix
or a tensor, we define the sum of the absolute values of its components as |x| =∑

i |xi|. If Y is a random variable, we define its Lp norm as ||Y ||p = E[|Y |p]1/p.
Then, we define the limit of the normalized deviation between the log likelihood
at the parameter value θ ∈ Θ and the log likelihood at the true parameter value
θ∗ as

Y (θ) =

d∑
i=1

∫
E

(
log

( v
u

)
u− (v − u)

)
1{u>0,v>0}π

(i)
θ (du, dv, dw). (6)

As the true parameter value θ∗ is a maximum argument of the log likelihood
limit, we have by definition that Y (θ) ≤ 0 for any parameter θ ∈ Θ. Finally, we
define F for any i = 1, . . . , d and any parameter θ ∈ Θ as

F
(i)
t (θ) =

(∂θλ
(i)
t )⊗2(θ)

λ
(i)
t (θ)2

.

We now introduce a set of assumptions required for the CLT of the parametric
inference procedure based on MLE. In particular, we weaken the assumptions
from the point process theory in Clinet and Yoshida (2017), since they do not
allow for kernels with power distribution.

Assumption 1. (a) The family of intensities λ : Ω × R+ × Θ → Rd
+ is F ⊗

B(R+)⊗ B(Θ)-measurable.
(b) We assume that Θ ⊂ Rn is such that its closure Θ is a compact space.
(c) For any θ ∈ Θ, the stochastic processes X are ergodic in the sense of

Definition 1.
(d) We have supt∈R+ || supθ∈Θ |λt(θ)| ||2 < +∞.
(e) For any θ ∈ Θ− {θ∗} , we have Y (θ) ̸= 0.
(f) For any time s ∈ R+ a.e., we have a.s. that the intensity process θ → λs(θ)

is twice continuously differentiable from the parameter space Θ to the
space Rd

+ and there exists a continuous extension to Θ.

(g) For any θ ∈ Θ and T > 0, we have P(
∫ T

0
|∂θλt(θ)|dt < ∞) = 1 and

P(
∫ T

0
|∂2θλt(θ)|dt <∞) = 1.

(h) For any i = 1, . . . , d, we have

sup
t∈R+

∣∣∣∣∣∣ ∣∣∣∂θ(∂θλ(i)t (θ∗)

λ
(i)
t (θ∗)

)∣∣∣λ(i)t (θ∗)1{λ(i)
t >0}

∣∣∣∣∣∣
2

< +∞,

sup
t∈R+

∣∣∣∣∣∣ ∣∣∣∂θF (i)
t (θ∗)

∣∣∣λ(i)t (θ∗)1{λ(i)
t >0}

∣∣∣∣∣∣
1

< +∞,

sup
t∈R+

∣∣∣∣∣∣ ∣∣∣(∂2θλ(i)t )(θ∗)
∣∣∣ ∣∣∣∂θλ(i)t (θ∗)

λ
(i)
t (θ∗)

∣∣∣1{λ(i)
t >0}

∣∣∣∣∣∣
1

< +∞.
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Assumption 1 (a) is natural and is equal to the first statement in Assump-
tion [A1] from Clinet and Yoshida (2017). Assumption 1 (b) is the assumption
about the parameter space and is weaker than the framework from Clinet and
Yoshida (2017) and Potiron and Volkov (2025) where the parameter space sat-
isfies the assumptions from the Sobolev embedding theorem. Assumption 1 (c)
corresponds exactly to Assumption [A3] from Clinet and Yoshida (2017). As-
sumptions 1 (d), (g) and (h) are weaker than Assumptions [A2] (i) and (ii) from
Clinet and Yoshida (2017), who requires the finiteness of the Lp norm of inten-
sity and some derivatives for any integer p ∈ N∗. Assumption 1 (e) is required
for the non-degeneracy of the inference procedure and is Assumption [A4] from
Clinet and Yoshida (2017). Namely, we have that the true parameter value θ∗ is
the only maximum argument of the log likelihood limit. Finally, Assumption 1
(f) only requires that the intensity is twice continuously differentiable whereas
Assumption [A1] (ii) in Clinet and Yoshida (2017) needs that the intensity is
continuously differentiable three times.

In the theorem that follows, we state the CLT of the inference procedure based
on MLE. We consider asymptotics when the final time diverges to infinity, i.e.
T → +∞. In particular, we weaken the assumptions from the point process
theory in Clinet and Yoshida (2017), since they do not allow for kernels with
power distribution. More specifically, we consider a different approach in the
proofs that circumvents the use of the Sobolev embedding theorem. This new
approach is based on the application of Burkholder—Davis—Gundy inequalites.
In the theorem and what follows, ξ is defined as an n dimensional standard
normal vector.

Theorem 1. We assume that Assumption 1 holds. As T → +∞, we have the
CLT of the inference procedure based on MLE, i.e.

√
T (θ̂T − θ∗)

D→ Γ−1/2ξ. (7)

3. Hawkes processes with a general kernel case

In this section, we consider Hawkes mutually exciting processes. We assume that
the kernel has a general form and is parametric. We show the ergodicity of the
Hawkes process intensity and its derivative. Moreover, we obtain the CLT of
the inference procedure for the Hawkes processes. This is the main result of this
paper. In particular, we allow for kernels with power distribution, under some
smoothness assumptions on the kernel shape.

We consider Hawkes processes, where the kernel has a general form and is
parametric. More specifically, we introduce for any θ ∈ Θ the family of intensities

λt(θ) = ν +

∫ t

0

h(t− s, κ) dNs. (8)

Here, h is a d× d dimensional kernel matrix. The point processes are mutually
exciting in the sense that the diagonal components h(i,i) are self-exciting terms
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for the i-th process and non-diagonal components h(i,j) are cross-exciting terms
for the i-th process made by events from the j-th process. Moreover, ν consists of
d baseline parameters, while κ consists of n− d kernel parameters. We assume
that the parameter θ has the form θ = (ν, κ), and that they belong to the
parameter space Θ = (Θν ,Θκ). We also assume that n ≥ 2d. Finally, we assume
the existence of the true parameter θ∗ ∈ Θ such that

λt = λt(θ
∗). (9)

Here, we assume that the parameter θ∗ has the form θ∗ = (ν∗, κ∗), where
ν∗ ∈ Θν and κ∗ ∈ Θκ.

For a matrix ϕ, we denote its spectral radius as ρ(ϕ). For any t ∈ R+, we
denote by κ+t the maximum argument parameter of ρ(h(t, κ)). It is defined
through

ρ(h(t, κ+t )) = sup
κ∈Θκ

ρ(h(t, κ)). (10)

Then, we define the d× d dimensional matrix ϕ as

ϕ =

∫ ∞

0

h(s, κ+s )ds.

For any t ∈ R+, we denote by κ+t,2 the maximum argument parameter of

ρ(h2(t, κ)). It is defined through

ρ(h2(t, κ+t,2)) = sup
κ∈Θκ

ρ(h2(t, κ)). (11)

Then, we define the d× d dimensional matrix ϕ2 as

ϕ2 =

∫ ∞

0

h2(s, κ+s,2)ds.

For any i = 1, . . . , d, j = 1, . . . , d and any t ∈ R+, we denote by k
(i,j)
t,3 the

maximum argument of
∣∣∂κh(i,j)(t, κ)(k)∣∣. It is defined through∣∣∂κh(i,j)(t, κ)(k(i,j)

t,3 )
∣∣ = sup

k=1,...,n−d

∣∣∂κh(i,j)(t, κ)(k)∣∣. (12)

Then, we define the d× d dimensional matrix ϕ3(κ) as

ϕ
(i,j)
3 (κ) =

∫ ∞

0

∣∣∂κh(i,j)(s, κ)(k(i,j)
t,3 )

∣∣ds,
for any index i = 1, . . . , d and any index j = 1, . . . , d. For any index i = 1, . . . , d,

any index j = 1, . . . , d and any time t ∈ R+, we denote by (k
(i,j)
t,4 , l

(i,j)
t,4 ) the

maximum argument of
∣∣∂2κh(i,j)(t, κ)(k,l)∣∣. It is defined through∣∣∂2κh(i,j)(t, κ)(k(i,j)
t,4 ,l

(i,j)
t,4 )

∣∣ = sup
k,l=1,...,n−d

∣∣∂2κh(i,j)(t, κ)(k,l)∣∣. (13)
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Then, we define the d× d dimensional matrix ϕ4(κ) as

ϕ
(i,j)
4 (κ) =

∫ ∞

0

∣∣∂2κh(i,j)(s, κ)(k(i,j)
t,4 ,l

(i,j)
t,4 )

∣∣ds,
for any index i = 1, . . . , d and any index j = 1, . . . , d. Moreover, we define the
d× d dimensional matrix ϕ5 as

ϕ
(i,j)
5 =

∫ ∞

0

∣∣∂κh(i,j)(s, κ∗)(k(i,j)
t,3 )

∣∣2ds,
for any index i = 1, . . . , d and any index j = 1, . . . , d. Finally, we define the
d× d dimensional matrix ϕ6 as

ϕ
(i,j)
6 =

∫ ∞

0

∣∣∂2κh(i,j)(s, κ∗)(k(i,j)
t,4 ,l

(i,j)
t,4 )

∣∣2ds,
for any i = 1, . . . , d and j = 1, . . . , d.

Finally, Lemma 15 from Section 5 states that Xt is stable, i.e. for any θ ∈ Θ

and any i = 1, . . . , d there exists an R∗
+-valued random variable λ

(i)
l (θ) such

that we have
X

(i)
T

D→
(
λ
(i)
l (θ∗), λ

(i)
l (θ), ∂θλ

(i)
l (θ)

)
.

From Lemma 16, Xt is also ergodic in the sense of Definition 1 for any θ ∈ Θ.
Moreover, for any i = 1, . . . , d we have the more explicit expression of the limit
function as

π(i)(ψ) = E
[
ψ(λ

(i)
l (θ∗), λ

(i)
l (θ), ∂θλ

(i)
l (θ))

]
.

We now introduce a set of assumptions required for the CLT of the parametric
inference procedure for Hawkes processes. In particular, we allow for kernels with
power distribution, under some smoothness assumptions on the kernel shape.

Assumption 2. (a) There exists ν− ∈ R+
∗ such that for any ν ∈ Θν and any

i = 1, . . . , d we have ν(i) > ν−.
(b) For any kernel parameter κ ∈ Θκ and any time t ∈ R+, we have h(t, κ) > 0.
(c) We assume that Θ ⊂ Rn is such that its closure Θ is a compact space.
(d) We have ρ(ϕ) < 1 and ρ(ϕ2) < +∞.
(e) For any time s ∈ R+ a.e., we have the kernel function κ → h(s, κ) is

twice continuously differentiable from the kernel parameter space Θκ to
the space Rd×d

+ and there exists a continuous extension to Θκ.
(f) There exists ϕ+ ∈ [0, 1) such that for any κ ∈ Θκ we have ρ(ϕ3(κ)) < ϕ+

and ρ(ϕ4(κ)) < ϕ+.
(g) We have ρ(ϕ5) < +∞ and ρ(ϕ6) < +∞.
(h) We have P

(
λl(θ

∗) = λl(θ)
)
= 1 implies that θ∗ = θ.

Assumption 2 (a) imply that the point processes are well-defined and is also
required in the simpler case of heterogeneous Poisson processes without a kernel
(see Daley and Vere-Jones (2003)). Assumption 2 (b) are restrictive for kernels
with inhibitory effects. Assumption 2 (c) corresponds exactly to Assumption
1 (b) and is weaker than the framework from Clinet and Yoshida (2017) and
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Potiron and Volkov (2025) where the parameter space satisfies the assumptions
from the Sobolev embedding theorem.

The case ρ(ϕ) < 1 in Assumption 2 (d) states that the spectral radius of
the kernel integral when evaluated at the maximum argument parameter of
ρ(h(t, κ)) is strictly smaller than unity. This is slightly stronger than the as-
sumption which is necessary to obtain a stationary intensity with finite first
moment (see Lemma 1 (p. 495) in Hawkes and Oakes (1974) and Theorem 1
(p. 1567) in Brémaud and Massoulié (1996)). The case ρ(ϕ2) < +∞ in As-
sumption 2 (d) ensures that the spectral radius of the kernel integral, when
squared and evaluated at the maximum argument parameter of ρ(h2(t, κ)), is
finite. Assumption 2 (d) is used to prove Assumption 1 (d).

Assumption 2 (e) requires some smoothness assumptions on the kernel shape
and is used to show Assumption 1 (f). Moreover, the case ρ(ϕ3(κ)) < ϕ+ in
Assumption 2 (f) states that the spectral radius of the kernel derivative integral
when evaluated at the maximum argument of

∣∣∂κh(i,j)(t, κ)(k)∣∣ is strictly smaller
than ϕ+ uniformly in the space parameter value. The case ρ(ϕ4(κ)) < ϕ+ in
Assumption 2 (f) ensures that the spectral radius of the kernel second deriva-
tive integral when evaluated at the maximum argument of

∣∣∂2κh(i,j)(t, κ)(k,l)∣∣ is
strictly smaller than ϕ+ uniformly in the space parameter value. Assumption 2
(f) yields Assumption 1 (g). It is required since Assumption 1 (g) considers the
intensity derivatives ∂θλt(θ) and Hessian matrix of the intensity, i.e. ∂2θλt(θ).

In addition, the case ρ(ϕ5) < +∞ in Assumption 2 (g) ensures that the spec-
tral radius of the kernel derivative integral, when squared and evaluated at the
maximum argument parameter of

∣∣∂κh(i,j)(t, κ)(k)∣∣, is finite. When ρ(ϕ6) < +∞
in Assumption 2 (g), we have that the spectral radius of the kernel second deriva-
tive integral, when squared and evaluated at the maximum argument parameter
of

∣∣∂2κh(i,j)(t, κ)(k,l)∣∣, is finite. Assumption 2 (g) implies Assumption 1 (h). It is
necessary since Assumption 1 (h) considers the product of the intensity deriva-
tives ∂θλt(θ

∗) and the intensity Hessian matrix ∂2θλt(θ
∗). Finally, Assumption

2 (h) is required for the non-degeneracy of the parametric inference procedure
and gives Assumption 1 (e).

In the theorem that follows, we state the CLT of the parametric inference
procedure for Hawkes processes. The kernel has a general form and is parametric.
The inference procedure is based on MLE. We consider asymptotics when the
final time diverges to infinity, i.e. T → +∞. This is the main result of this
paper. This extends Clinet and Yoshida (2017) and Potiron and Volkov (2025),
who obtain ergodicity by proving first that the Hawkes intensity process and its
derivative is mixing by Markov arguments. In particular, we allow for kernels
with power distribution, under some smoothness assumptions on the kernel
shape.

Theorem 2. We assume that Assumption 2 holds. As T → +∞, we have the
CLT of the inference procedure for Hawkes processes where the kernel has a
general form and is parametric, i.e.

√
T (θ̂T − θ∗)

D→ Γ−1/2ξ. (14)
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4. Proofs of the CLT for point processes

In this section, we give the proofs of the CLT of the parametric inference proce-
dure for point processes, i.e. Theorem 1. All the theoretical results refer to the
convergence T → +∞.

In what follows, the constant C refers to a generic constant, which can differ
from line to line. For a measure µ, we denote by L1(µ) the space of functions
that are integrable with respect to µ.

Since the functions that we will be using in our proofs will not necessarily
be bounded, we extend from Cb(E,R) to C↑(E,R) the space of functions in
which the ergodicity assumption holds. We also give a more explicit form to
the functions π(ψ). The following lemma is Proposition 3.8 (pp. 1806-1807) in
Clinet and Yoshida (2017). The proof follows the arguments from the proof of
Proposition 3.8 (pp. 1822-1824) in Clinet and Yoshida (2017).

Lemma 1. We assume that Assumptions 1 (a), (b) and (c) hold. For any
parameter θ ∈ Θ, we have

(a) The ergodicity assumption 1 (c) still holds for any ψ ∈ C↑(E,R). In par-
ticular, the function π(i)(ψ) can be extended to C↑(E,R) for any θ ∈ Θ
and any i = 1, . . . , d. Moreover, the convergence is uniform in θ ∈ Θ for
any ψ ∈ C↑(E,R).

(b) For any i = 1, . . . , d and any θ ∈ Θ, there exists a probability mea-

sure π
(i)
θ on E such that, for any ψ ∈ C↑(E,R), we have π(i)(ψ) =∫

E
ψ(u, v, w)π

(i)
θ (du, dv, dw). In particular, C↑(E,R) ⊂ L1(π

(i)
θ ).

Proof of Lemma 1. We can use the arguments from the proof of Proposition 3.8
(pp. 1822-1824) in Clinet and Yoshida (2017).

We introduce now the following lemma, which ensures that the family of
intensities does not explode on any compact space. Its proof is a direct conse-
quence to Lemma 1.

Lemma 2. We assume that Assumptions 1 (a), (b) and (c) hold. For any
parameter θ ∈ Θ, the intensity process λt(θ) is a.s. locally integrable on the
space R+.

Proof of Lemma 2. This is a direct consequence to Lemma 1 with the function
ψ(u, v, w) = v for any (u, v, w) ∈ E.

We define the normalized deviation between the log likelihood at the param-
eter value θ ∈ Θ and the log likelihood at the true parameter value as

YT (θ) =
1

T
(lT (θ)− lT (θ

∗)). (15)

We define the compensated point process as

Mt = Nt −
∫ t

0

λs(θ
∗)ds. (16)
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By definition of a compensator, we have that Mt is an Ft-local martingale.
In the following lemma, we will prove the consistency of YT to Y uniformly

in the parameter θ ∈ Θ. This weakens the assumptions used in Lemma 3.10 (p.
1807) from Clinet and Yoshida (2017). We consider a different approach in the
proofs that circumvents the use of the Sobolev embedding theorem. This new
approach is based on the application of Burkholder—Davis—Gundy inequalites.

Lemma 3. We assume that Assumptions 1 (a), (b), (c) and (d) hold. We have
the uniform consistency

sup
θ∈Θ

| YT (θ)− Y (θ) | P→ 0.

Proof of Lemma 3. We can rewrite YT (θ) as

YT (θ) =
1

T
(lT (θ)− lT (θ

∗))

=
1

T

( d∑
i=1

∫ T

0

log(λ
(i)
t (θ))dN

(i)
t −

d∑
i=1

∫ T

0

λ
(i)
t (θ)dt

−
d∑

i=1

∫ T

0

log(λ
(i)
t (θ∗))dN

(i)
t +

d∑
i=1

∫ T

0

λ
(i)
t (θ∗)dt

)
=

1

T

d∑
i=1

∫ T

0

log
( λ

(i)
t (θ)

λ
(i)
t (θ∗)

)
dN

(i)
t − 1

T

d∑
i=1

∫ T

0

(λ
(i)
t (θ)− λ

(i)
t (θ∗))dt

=
1

T

d∑
i=1

∫ T

0

log
( λ

(i)
t (θ)

λ
(i)
t (θ∗)

)
dM

(i)
t

− 1

T

d∑
i=1

∫ T

0

(
λ
(i)
t (θ)− λ

(i)
t (θ∗)− log

( λ
(i)
t (θ)

λ
(i)
t (θ∗)

)
λ
(i)
t (θ∗)

)
dt.

Here, we use Definition (15) in the first equality, Definition (4) in the second
equality, algebraic manipulation in the third equality, Definition (16) and alge-

braic manipulation in the fourth equality. We define I
(i)
T (θ) as

I
(i)
T (θ) =

1

T

∫ T

0

log
( λ

(i)
t (θ)

λ
(i)
t (θ∗)

)
dM

(i)
t .

We also define II
(i)
T (θ) as

II
(i)
T (θ) =

1

T

∫ T

0

(
λ
(i)
t (θ)− λ

(i)
t (θ∗)− log

( λ
(i)
t (θ)

λ
(i)
t (θ∗)

)
λ
(i)
t (θ∗)

)
dt.

We first show that the martingale term disappears uniformly asymptotically
in probability, i.e. that

sup
θ∈Θ

∣∣∣ d∑
i=1

I
(i)
T (θ)

∣∣∣ P→ 0. (17)
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Since L2 convergence implies convergence in probability, it is sufficient to show
Expression (17) that

E
[(

sup
θ∈Θ

∣∣∣ d∑
i=1

I
(i)
T (θ)

∣∣∣)2]
→ 0. (18)

By the triangular inequality, we can deduce that

E
[(

sup
θ∈Θ

∣∣∣ d∑
i=1

I
(i)
T (θ)

∣∣∣)2]
≤ E

[(
sup
θ∈Θ

d∑
i=1

∣∣∣I(i)T (θ)
∣∣∣)2]

. (19)

Then, the definition of I
(i)
T (θ) yields

E
[(

sup
θ∈Θ

d∑
i=1

∣∣∣I(i)T (θ)
∣∣∣)2]

= E
[(

sup
θ∈Θ

d∑
i=1

∣∣∣ 1
T

∫ T

0

log
( λ

(i)
t (θ)

λ
(i)
t (θ∗)

)
dM

(i)
t

∣∣∣)2]
. (20)

By supremum properties, we get

E
[(

sup
θ∈Θ

d∑
i=1

∣∣∣ 1
T

∫ T

0

log
( λ

(i)
t (θ)

λ
(i)
t (θ∗)

)
dM

(i)
t

∣∣∣)2]
(21)

≤ E
[( d∑

i=1

sup
θ∈Θ

∣∣∣ 1
T

∫ T

0

log
( λ

(i)
t (θ)

λ
(i)
t (θ∗)

)
dM

(i)
t

∣∣∣)2]
.

By the triangular inequality and the definition of martingale (16), we can deduce
that

E
[( d∑

i=1

sup
θ∈Θ

∣∣∣ 1
T

∫ T

0

log
( λ

(i)
t (θ)

λ
(i)
t (θ∗)

)
dM

(i)
t

∣∣∣)2]
(22)

≤ CE
[( d∑

i=1

sup
θ∈Θ

1

T

∫ T

0

∣∣∣ log ( λ
(i)
t (θ)

λ
(i)
t (θ∗)

)∣∣∣dM (i)
t

)2]
.

Again by supremum properties, we can deduce that

CE
[( d∑

i=1

sup
θ∈Θ

1

T

∫ T

0

∣∣∣ log ( λ
(i)
t (θ)

λ
(i)
t (θ∗)

)∣∣∣dM (i)
t

)2]
(23)

≤ CE
[( d∑

i=1

1

T

∫ T

0

sup
θ∈Θ

∣∣∣ log ( λ
(i)
t (θ)

λ
(i)
t (θ∗)

)∣∣∣dM (i)
t

)2]
.

By an algebraic manipulation, we can deduce that

CE
[( d∑

i=1

1

T

∫ T

0

sup
θ∈Θ

∣∣∣ log ( λ
(i)
t (θ)

λ
(i)
t (θ∗)

)∣∣∣dM (i)
t

)2]
(24)

≤
d∑

i=1

C

T 2
E
[( ∫ T

0

sup
θ∈Θ

∣∣∣ log ( λ
(i)
t (θ)

λ
(i)
t (θ∗)

)∣∣∣dM (i)
t

)2]
.
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We are going to apply Burkholder—Davis—Gundy inequalites (see Expression
(2.1.32) in Jacod and Protter (2012) (p. 39)). In the notation of the book, we

set p = 2 and introduce the stochastic process M̃t of dimension d where for
i = 1, . . . , d its i-th component is defined as

M̃
(i)
t =

∫ t

0

sup
θ∈Θ

∣∣∣ log ( λ
(i)
u (θ)

λ
(i)
u (θ∗)

)∣∣∣dM (i)
u .

First, we can show that M̃t is an Ft-local martingale by an application of
Lemma 1 with the fact that Mt is an Ft-local martingale. Then, we can ap-
ply Burkholder—Davis—Gundy inequalites and we obtain

d∑
i=1

C

T 2
E
[( ∫ T

0

sup
θ∈Θ

∣∣∣ log ( λ
(i)
t (θ)

λ
(i)
t (θ∗)

)∣∣∣dM (i)
t

)2]
(25)

≤
d∑

i=1

C

T 2
E
[ ∫ T

0

sup
θ∈Θ

log
( λ

(i)
t (θ)

λ
(i)
t (θ∗)

)2

λ
(i)
t (θ∗)2dt

]
.

By the inequality log(x) ≤ 1 + x, we can deduce that

d∑
i=1

C

T 2
E
[ ∫ T

0

sup
θ∈Θ

log
( λ

(i)
t (θ)

λ
(i)
t (θ∗)

)2

λ
(i)
t (θ∗)2dt

]
(26)

≤
d∑

i=1

C

T 2
E
[ ∫ T

0

sup
θ∈Θ

(
1 +

λ
(i)
t (θ)

λ
(i)
t (θ∗)

)2

λ
(i)
t (θ∗)2dt

]
.

This can be reexpressed as

d∑
i=1

C

T 2
E
[ ∫ T

0

sup
θ∈Θ

(
1 +

λ
(i)
t (θ)

λ
(i)
t (θ∗)

)2

λ
(i)
t (θ∗)2dt

]
(27)

=

d∑
i=1

C

T 2
E
[ ∫ T

0

sup
θ∈Θ

(
λ
(i)
t (θ∗)2 + 2λ

(i)
t (θ)λ

(i)
t (θ∗) + λ

(i)
t (θ)2

)
dt
]
.

By Tonelli theorem, this can be reexpressed as

d∑
i=1

C

T 2
E
[ ∫ T

0

sup
θ∈Θ

(
λ
(i)
t (θ∗)2 + 2λ

(i)
t (θ)λ

(i)
t (θ∗) + λ

(i)
t (θ)2

)
dt
]

(28)

=

d∑
i=1

C

T 2

∫ T

0

E
[
sup
θ∈Θ

(
λ
(i)
t (θ∗)2 + 2λ

(i)
t (θ)λ

(i)
t (θ∗) + λ

(i)
t (θ)2

)
dt
]
.

By Expressions (18) to (28) with Assumption 1 (d), we can prove Expression

(17). To prove that |
∑d

i=1 II
(i)
T (θ) + Y (θ) | P→ 0, we can use Lemma 1.
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In the following lemma, we will prove the consistency of the parametric infer-
ence procedure based on MLE. This weakens the assumptions used in Theorem
3.9 (p. 1807) from Clinet and Yoshida (2017).

Lemma 4. We assume that Assumptions 1 (a), (b), (c), (d) and (e) hold. We
have the consistency of the parametric inference procedure based on MLE, i.e.

θ̂T
P→ θ∗.

Proof of Lemma 4. By its definition (6), we can deduce that Y (θ) ≤ 0 for any
parameter θ ∈ Θ and Y (θ∗) = 0. By Assumption 1 (e), we have that θ∗ is a
global maximum of Y . Finally, we can conclude by an application of Lemma 3
with Theorem 5.7 (p. 45) in Van der Vaart (2000)

In the following lemma, we give a more explicit form to the partial derivatives
and the Hessian matrix of the log likelihood. This extends Lemma A.1 (p. 1824)
in Clinet and Yoshida (2017).

Lemma 5. We assume that Assumptions 1 (a), (b), (c), (f) and (g) hold. For
any parameter θ ∈ Θ and any time T > 0, we have that lT (θ) is a.s. finite and
is differentiable a.s. with partial derivatives equal to

∂θlT (θ) =

d∑
i=1

∫ T

0

∂θλ
(i)
t (θ)

λ
(i)
t (θ)

1{λ(i)
t (θ)>0}dN

(i)
t −

d∑
i=1

∫ T

0

∂θλ
(i)
t (θ)dt. (29)

Moreover, we have that lT (θ) is differentiable twice a.s. and that its Hessian
matrix satisfies

∂2θ lT (θ) =

d∑
i=1

∫ T

0

∂θ

(∂θλ(i)t (θ)

λ
(i)
t (θ)

)
1{λ(i)

t (θ)>0}dN
(i)
t (30)

−
d∑

i=1

∫ T

0

∂2θλ
(i)
t (θ)dt.

Proof. We define I
(i)
T (θ) for any parameter θ ∈ Θ as

I
(i)
T (θ) =

∫ T

0

log(λ
(i)
t (θ))dN

(i)
t .

We also define II
(i)
T (θ) as

II
(i)
T (θ) =

∫ T

0

λ
(i)
t (θ)dt.

From the definition (4), we have the decomposition

lT (θ) =

d∑
i=1

(
I
(i)
T (θ)− II

(i)
T (θ)

)
.
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First, we show that, for any parameter θ ∈ Θ, any time T > 0 and any index

i = 1, . . . , d, we have that I
(i)
T (θ) is a.s. finite and a.s. differentiable with partial

derivatives equal to

∂θI
(i)
T (θ) =

∫ T

0

∂θ log(λ
(i)
t (θ))dN

(i)
t . (31)

By the assumption on the times of the point process (2), I
(i)
T (θ) can be reex-

pressed as

I
(i)
T (θ) =

∑
k∈N∗ s.t. 0<T

(i)
k <T

log
(
λ
(i)

T
(i)
k

(θ)
)
. (32)

By Lemma 2 and compacity of the segment [0, T ], we have that the number of
terms in the sum is a.s. finite. We also have that each term in the sum is a.s.
finite as the intensity process λ

(i)
t (θ) takes its values in R+ by definition. Then,

we can deduce that I
(i)
T (θ) is a.s. finite. As the intensity process is differentiable

a.e. a.s. by Assumption 1 (f) and by linearity of the derivative, we can deduce

that I
(i)
T (θ) is a.s. differentiable and that a.s.

∂θI
(i)
T (θ) =

∑
k∈N∗ s.t. 0<T

(i)
k <T

∂θ log
(
λ
(i)

T
(i)
k

(θ)
)
.

By Equation (32), this equality can be reexpressed as Equation (31). Finally,
we get by rewriting the sum as an integral that

∂θI
(i)
T (θ) =

∫ T

0

∂θλ
(i)
t (θ)

λ
(i)
t (θ)

1{λ(i)
t (θ)>0}dN

(i)
t . (33)

For any parameter θ ∈ Θ, any time T > 0 and any index i = 1, . . . , d, we

have that II
(i)
T (θ) is a.s. finite and differentiable with partial derivatives equal

to

∂θII
(i)
T (θ) =

∫ T

0

∂θλ
(i)
t (θ)dt. (34)

By Lemma 2 and compacity of the segment [0, T ], II
(i)
T (θ) is a.s. finite. To show

Equation (34), we show that the conditions for dominated convergence theorem
are satisfied. We get by Assumption 1 (g) that the conditions are satisfied. Thus,
we can deduce Equation (34). Finally, Equations (33) and (34) yield Equation
(29). We can show Equation (30) with similar arguments.

In the following lemma, we give a different form to the Hessian matrix of the
log likelihood. This is a direct application of Lemma 5.
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Lemma 6. We assume that Assumptions 1 (a), (b), (c), (f) and (g) hold. For
any parameter θ ∈ Θ and any time T > 0, we have that the Hessian matrix of
lT (θ) can be rewritten as

∂2θ lT (θ) =

d∑
i=1

∫ T

0

∂θ

(∂θλ(i)t (θ)

λ
(i)
t (θ)

)
1{λ(i)

t (θ)>0}dM
(i)
t

−
d∑

i=1

∫ T

0

(∂θλ
(i)
t )⊗2(θ)

λ
(i)
t (θ∗)

λ
(i)
t (θ)2

1{λ(i)
t (θ)>0}dt

+

d∑
i=1

∫ T

0

(∂2θλ
(i)
t )(θ)

λ
(i)
t (θ)− λ

(i)
t (θ∗)

λ
(i)
t (θ)

1{λ(i)
t (θ)>0}dt. (35)

Proof. The proof of this lemma is a direct application of Lemma 5.

We provide the proof of Theorem 1 in what follows. This weakens the as-
sumptions used in Theorem 3.11 (p. 1809) from Clinet and Yoshida (2017).
We consider a different approach in the proofs that circumvents the use of the
Sobolev embedding theorem. This new approach is based on the application of
Burkholder—Davis—Gundy inequalites.

Proof of Theorem 1. By Assumption (f), we have that lt is twice continuously
differentiable in θ ∈ Θ a.s. for any time t ∈ R+. Thus, we can apply the mean
value theorem. We obtain that

∂θlT (θ̂T ) = ∂θlT (θ
∗) + ∂2θ lT (ζ)(θ̂T − θ∗),

where ζ is between θ̂T and θ∗. Since θ̂T the maximizer of lT by definition, we
can deduce that ∂θlT (θ̂T ) = 0. This yields that

0 = ∂θlT (θ
∗) + ∂2θ lT (ζ)(θ̂T − θ∗).

If we multiply by −Γ−1
√
T

on both sides of the equation, we obtain that

0 =
−Γ−1

√
T

∂θlT (θ
∗) +

−Γ−1

√
T

∂2θ lT (ζ)(θ̂T − θ∗).

This equation can be reexpressed as

0 =
−Γ−1

√
T

∂θlT (θ
∗) +

−Γ−1

T
∂2θ lT (ζ)

√
T (θ̂T − θ∗).

To prove the theorem, it remains to show that

−Γ−1

√
T

∂θlT (θ
∗)

D→ Γ−1/2ξ, (36)

−Γ−1

T
∂2θ lT (ζ)

P→ In. (37)
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Here, In is the identity matrix of dimension n × n. Then, the theorem follows
using Slutsky’s theorem.

We prove now Equation (36). Equation (29) from Lemma 5 can be reexpressed
as

∂θlT (θ
∗) =

d∑
i=1

∫ T

0

∂θλ
(i)
t (θ∗)

λ
(i)
t (θ∗)

1{λ(i)
t >0}dM

(i)
t . (38)

By Equation (38), we have that

−Γ−1

√
T

∂θlT (θ
∗) =

−Γ−1

√
T

d∑
i=1

∫ T

0

∂θλ
(i)
t (θ∗)

λ
(i)
t (θ∗)

1{λ(i)
t >0}dM

(i)
t .

For u ∈ [0, 1], we define Su as

Su =
−Γ−1

√
T

d∑
i=1

∫ uT

0

∂θλ
(i)
t (θ∗)

λ
(i)
t (θ∗)

1{λ(i)
t >0}dM

(i)
t . (39)

We use Corollary VIII.3.24 (p. 476) in Jacod and Shiryaev (2003). We can
calculate that

⟨S, S⟩u =
Γ−2

T

d∑
i=1

∫ uT

0

∂θλ
(i)
t (θ∗)21{λ(i)

t >0}dt

P→ uΓ−1.

Here, we define the quadratic variation of a stochastic process X at time t
as ⟨X,X⟩t. We also define ∆Xt as the jump of the process X at time t, i.e.
∆Xt = Xt − Xt− . We prove now that Lindeberg’s condition is satisfied. We
introduce

I = E
[∑
s≤u

|∆Ss|21|∆Ss|>a

]
.

For any a > 0, we have

I ≤ E
[1
a

∑
s≤u

|∆Ss|3
]

= E
[1
a

∑
s≤u

∣∣∣∆(−Γ−1

√
T

d∑
i=1

∫ sT

0

∂θλ
(i)
t (θ∗)

λ
(i)
t (θ∗)

1{λ(i)
t >0}dM

(i)
t

)∣∣∣3]

≤ CE
[1
a

∑
s≤u

∣∣∣∆(−Γ−1

√
T

d∑
i=1

∫ sT

0

∂θλ
(i)
t (θ∗)

λ
(i)
t (θ∗)

1{λ(i)
t >0}dN

(i)
t

)∣∣∣3].
Here, we use Markov inequality in the first inequality, the equality is due to
Definition (39), and the second inequality is explained by the fact that the term

d∑
i=1

∫ sT

0

∂θλ
(i)
t (θ∗)

λ
(i)
t (θ∗)

1{λ(i)
t >0}λ

(i)
t dt
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does not jump and the triangular inequality. Then, we have

I ≤ CE
[1
a

∑
s≤u

∣∣∣∆(−Γ−1

√
T

d∑
i=1

∫ sT

0

∂θλ
(i)
t (θ∗)

λ
(i)
t (θ∗)

1{λ(i)
t >0}dN

(i)
t

)∣∣∣3]

≤ CE
[1
a

(−Γ−1

√
T

d∑
i=1

∑
k∈N∗ s.t. 0<T

(i)
k <uT

∣∣∣∂θλ(i)T
(i)
k

(θ∗)

λ
(i)

T
(i)
k

(θ∗)
1{λ(i)

T
(i)
k

>0}

∣∣∣3)]

= CE
[1
a

d∑
i=1

∫ uT

0

∣∣∣−Γ−1

√
T

∂θλ
(i)
t (θ∗)

λ
(i)
t (θ∗)

∣∣∣3λ(i)t (θ∗)1{λ(i)
t >0}dt

]
+ oP(1).

Here, the second inequality is obtained by the assumption on the times of the
point process (2) and the triangular inequality, and the equality is due to an
extension of Theorem 2 from Bacry et al. (2013). Then, we can continue to
bound the Linderberg’s term by

I ≤ CE
[1
a

d∑
i=1

∫ uT

0

∣∣∣−Γ−1

√
T

∂θλ
(i)
t (θ∗)

λ
(i)
t (θ∗)

∣∣∣3λ(i)t (θ∗)1{λ(i)
t >0}dt

]
+ oP(1)

= CE
[1
a

∣∣∣−Γ−1

√
T

∣∣∣3 d∑
i=1

∫ uT

0

∣∣∣∂θλ(i)t (θ∗)

λ
(i)
t (θ∗)

∣∣∣3λ(i)t (θ∗)1{λ(i)
t >0}dt

]
+ oP(1)

= CE
[1
a

∣∣∣−Γ−1

√
T

∣∣∣3 d∑
i=1

∫ uT

0

|∂θλ(i)t (θ∗)|3

λ
(i)
t (θ∗)2

1{λ(i)
t >0}dt

]
+ oP(1).

Finally, we can bound the Linderberg’s term by

I ≤ CE
[1
a

∣∣∣−Γ−1

√
T

∣∣∣3 d∑
i=1

∫ uT

0

|∂θλ(i)t (θ∗)|3

λ
(i)
t (θ∗)2

1{λ(i)
t >0}dt

]
+ oP(1)

=
C

a

∣∣∣−Γ−1

√
T

∣∣∣3 d∑
i=1

∫ uT

0

E
[ |∂θλ(i)t (θ∗)|3

λ
(i)
t (θ∗)2

1{λ(i)
t >0}

]
dt+ oP(1)

≤ CuT

a

∣∣∣−Γ−1

√
T

∣∣∣3 + oP(1)

→ 0.

Here, we use Tonelli theorem in the equality, and Assumption 1 (h) in the second
inequality. We have thus shown that Lindeberg’s condition holds, i.e. Equation
(36) is satisfied.

We prove now Equation (37), i.e. that −Γ−1

T ∂2θ lT (ζ)
P→ In. Then, it is sufficient

to prove that

|Γ + T−1∂2θ lT (ζ)|
P→ 0.
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If we define V as a shrinking ball centered on θ∗, it is then sufficient to show
that

sup
θ∈V

|Γ + T−1∂2θ lT (θ)|
P→ 0. (40)

We define I
(i)
T (θ) as

I
(i)
T (θ) =

∫ T

0

∂θ

(∂θλ(i)t (θ)

λ
(i)
t (θ)

)
1{λ(i)

t (θ)>0}dM
(i)
t .

We also define II
(i)
T (θ) as

II
(i)
T (θ) =

∫ T

0

(∂θλ
(i)
t )⊗2(θ)

λ
(i)
t (θ∗)

λ
(i)
t (θ)2

1{λ(i)
t (θ)>0}dt.

Finally, we define III
(i)
T (θ) as

III
(i)
T (θ) =

∫ T

0

(∂2θλ
(i)
t )(θ)

λ
(i)
t (θ)− λ

(i)
t (θ∗)

λ
(i)
t (θ)

1{λ(i)
t (θ)>0}dt.

By Equation (30) from Lemma 5, Expression (40) can be reexpressed as

sup
θ∈V

∣∣∣Γ + T−1
d∑

i=1

(
I
(i)
T (θ)− II

(i)
T (θ)− III

(i)
T (θ)

)∣∣∣ P→ 0. (41)

By Assumption 1 (h), we can prove with the same arguments from the proof of
Expression (17) that

sup
θ∈V

∣∣∣T−1
d∑

i=1

I
(i)
T (θ)

∣∣∣ P→ 0. (42)

By Assumption 1 (c), we obtain that

sup
θ∈V

∣∣∣Γ− T−1
d∑

i=1

II
(i)
T (θ∗)

∣∣∣ P→ 0. (43)

We can deduce by the triangular inequality and supremum properties that

sup
θ∈V

∣∣∣T−1
d∑

i=1

II
(i)
T (θ)− T−1

d∑
i=1

II
(i)
T (θ∗)

∣∣∣ (44)

≤
d∑

i=1

sup
θ∈V

∣∣∣T−1
(
II

(i)
T (θ)− II

(i)
T (θ∗)

)∣∣∣.
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By the definition of II
(i)
T (θ), we have that

sup
θ∈V

∣∣∣T−1
(
II

(i)
T (θ)− II

(i)
T (θ∗)

)∣∣∣ (45)

= sup
θ∈V

∣∣∣T−1

∫ T

0

( (∂θλ(i)t )⊗2(θ)

λ
(i)
t (θ)2

− (∂θλ
(i)
t )⊗2(θ∗)

λ
(i)
t (θ∗)2

)
λ
(i)
t (θ∗)1{λ(i)

t >0}dt
∣∣∣.

By Assumption (f), we have that F
(i)
t is continuously differentiable in the pa-

rameter θ ∈ Θ a.s. for any t ∈ R+. Thus, we can apply the mean value theorem.
We obtain that

F
(i)
t (θ)− F

(i)
t (θ∗) = ∂θF

(i)
t (θ̃)(θ − θ∗), (46)

where θ̃ is between θ and θ∗. As θ ∈ V and θ∗ ∈ V , we also have θ̃ ∈ V . By
Equations (45) and (46), we can deduce that

sup
θ∈V

∣∣∣T−1
(
II

(i)
T (θ)− II

(i)
T (θ∗)

)∣∣∣ (47)

≤ sup
θ∈V

∣∣∣T−1

∫ T

0

∂θF
(i)
t (θ̃)(θ − θ∗)λ

(i)
t (θ∗)1{λ(i)

t (θ)>0}dt
∣∣∣.

Then, we obtain by the triangular inequality, supremum and norm properties
that

sup
θ∈V

∣∣∣T−1

∫ T

0

∂θF
(i)
t (θ̃)(θ − θ∗)λ

(i)
t (θ∗)1{λ(i)

t >0}dt
∣∣∣ (48)

≤ T−1

∫ T

0

sup
θ∈V

∣∣∣∂θF (i)
t (θ̃)

∣∣∣∣∣∣θ − θ∗
∣∣∣λ(i)t (θ∗)1{λ(i)

t >0}dt.

By Assumption (f), we have that ∂θF
(i)
t is continuous in θ∗ a.s. for any t ∈ R+.

As V is a shrinking ball centered at the parameter θ∗, we get that

T−1

∫ T

0

sup
θ∈V

∣∣∣∂θF (i)
t (θ̃)

∣∣∣∣∣∣θ − θ∗
∣∣∣λ(i)t (θ∗)1{λ(i)

t >0}dt (49)

= T−1

∫ T

0

sup
θ∈V

∣∣∣∂θF (i)
t (θ∗)

∣∣∣∣∣∣θ − θ∗
∣∣∣λ(i)t (θ∗)1{λ(i)

t >0}dt+ oP(1).

We define s(V ) as the size of the shrinking ball V . Then, we can deduce that

T−1

∫ T

0

sup
θ∈V

∣∣∣∂θF (i)
t (θ∗)

∣∣∣∣∣∣θ − θ∗
∣∣∣λ(i)t (θ∗)1{λ(i)

t >0}dt (50)

≤ T−1s(V )

∫ T

0

∣∣∣∂θF (i)
t (θ∗)

∣∣∣λ(i)t (θ∗)1{λ(i)
t >0}dt.

By Assumption 1 (h), we get that

T−1s(V )

∫ T

0

∣∣∣∂θF (i)
t (θ∗)

∣∣∣λ(i)t (θ∗)1{λ(i)
t >0}dt

P→ 0. (51)



/Parametric inference for Hawkes processes with a general kernel 22

By Expressions (45) to (51), we can deduce that

sup
θ∈V

∣∣∣T−1
(
II

(i)
T (θ)− II

(i)
T (θ∗)

)∣∣∣ P→ 0. (52)

By Assumption 1 (h), we can prove with the same arguments from the proof of
Expression (52) that

sup
θ∈V

∣∣∣T−1
d∑

i=1

III
(i)
T (θ)

∣∣∣ P→ 0. (53)

Finally, we can deduce Equation (37) by the use of Expressions (40), (41), (42),
(43), (52) and (53).

5. Proofs of the CLT for Hawkes processes with a general kernel

In this section, we give the proofs of the CLT for Hawkes processes where the
kernel is parametric and general, i.e. Theorem 2.

We first show the following lemma, which corresponds to Assumption 1 (a).

Lemma 7. We assume that Assumptions 2 (a) and (b) hold. Then, the family
of intensities λ : Ω×R+×Θ → Rd

+ defined in Equation (8) is F⊗B(R+)⊗B(Θ)
measurable.

Proof of Lemma 7. First, we get by Definition (8), Assumptions 2 (a) and (b)
that the intensity process is nonnegative, namely λt ≥ 0 for any time t ∈ R+ and
any ω ∈ Ω. Then, we can deduce that the intensity process λt is F ⊗ B(R+)⊗
B(Θ) measurable by Definition (8).

We now prove the following lemma, which corresponds to Assumption 1 (b).

Lemma 8. We assume that Assumption 2 (c) holds. Then, the parameter space
Θ ⊂ Rn is such that its closure Θ is a compact space.

Proof of Lemma 8. The statement of the lemma corresponds exactly to As-
sumption 2 (c)

The next lemma is Lemma A.2 (p. 1825) from Clinet and Yoshida (2017).

Lemma 9. We assume that Assumptions 2 (a), (b) and (c) hold. Let an integer
p ∈ N∗ and ft be a stochastic process such that f2

p

t is a.s. locally integrable on
the space R+. Then, we have for any index i = 1, . . . , d that

E
[∣∣∣ ∫ T

0

ftdN
(i)
t

∣∣∣2p] ≤ E
[ ∫ T

0

f2
p

t λ
(i)
t (θ∗)dN

(i)
t

]
+E

[∣∣∣ ∫ T

0

f2t λ
(i)
t (θ∗)dN

(i)
t

∣∣∣2p−1]
.

Proof of Lemma 9. This is a direct application of Lemma A.2 (p. 1825) from
Clinet and Yoshida (2017).

We now show the following lemma, which corresponds to Assumption 1 (d).
This complements Lemma C4 in Supplement C of Potiron and Volkov (2025).
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Lemma 10. We assume that Assumptions 2 (a), (b), (c) and (d) hold. Then,
we have

sup
t∈R+

∣∣∣∣∣∣ sup
θ∈Θ

|λt(θ)|
∣∣∣∣∣∣
2
< +∞.

Proof of Lemma 10. We first prove that

sup
t∈R+

∣∣∣∣∣∣ sup
θ∈Θ

|λt(θ)|
∣∣∣∣∣∣
1
< +∞. (54)

We have∣∣∣∣∣∣ sup
θ∈Θ

|λt(θ)|
∣∣∣∣∣∣
1

= E
[
sup
θ∈Θ

|λt(θ)|
]

= E
[
sup
θ∈Θ

{ d∑
i=1

λ
(i)
t (θ)

}]
= E

[
sup
θ∈Θ

{ d∑
i=1

ν(i) +

d∑
j=1

∫ t

0

h(i,j)(t− s, κ) dN (j)
s

}]
.

Here, we use the definition of the norm || ||1 in the first equality, the definition
of | | in the second equality, and Definition (8) in the third equality. Then, we
have ∣∣∣∣∣∣ sup

θ∈Θ
|λt(θ)|

∣∣∣∣∣∣
1

= E
[
sup
θ∈Θ

{ d∑
i=1

ν(i) +

d∑
j=1

∫ t

0

h(i,j)(t− s, κ)dN (j)
s

}]

≤ E
[
C + sup

θ∈Θ

{ d∑
i=1

d∑
j=1

∫ t

0

h(i,j)(t− s, κ)dN (j)
s

}]

= C + E
[
sup
θ∈Θ

{ d∑
i=1

d∑
j=1

∫ t

0

h(i,j)(t− s, κ)dN (j)
s

}]
.

Here, we use Assumption 2 (c) in the inequality, and expectation properties in
the second equality. Then, we obtain

∣∣∣∣∣∣ sup
θ∈Θ

|λt(θ)|
∣∣∣∣∣∣
1

≤ C + E
[
sup
θ∈Θ

{ d∑
i=1

d∑
j=1

∫ t

0

h(i,j)(t− s, κ)dN (j)
s

}]

= C + E
[
sup
κ∈Θκ

{ d∑
i=1

d∑
j=1

∫ t

0

h(i,j)(t− s, κ)dN (j)
s

}]

≤ C + E
[ d∑

i=1

d∑
j=1

∫ t

0

h(i,j)(t− s, κ+s )dN
(j)
s

]
Here, we use the fact that the kernel depends only on the parameter κ in the
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equality, and Definition (10) in the second inequality. Then, we obtain∣∣∣∣∣∣ sup
θ∈Θ

|λt(θ)|
∣∣∣∣∣∣
1

≤ C + E
[ d∑

i=1

d∑
j=1

∫ t

0

h(i,j)(t− s, κ+s )dN
(j)
s

]

= C +

d∑
i=1

d∑
j=1

∫ t

0

h(i,j)(t− s, κ+s )
∣∣∣∣∣∣λ(j)t

∣∣∣∣∣∣
1
ds

≤ C +

d∑
i=1

d∑
j=1

sup
t∈R+

∣∣∣∣∣∣λ(j)t

∣∣∣∣∣∣
1

∫ t

0

h(i,j)(t− s, κ+s )ds.

Here, we use martingale properties in the equality and supremum properties in
the second inequality. By Assumption 2 (d), there exists a real positive number
h+ which is smaller than unity, i.e. 0 < h+ < 1. This real positive number h+

satisfies for any i = 1, . . . , d and any j = 1, . . . , d that∫ t

0

h(i,j)(t− s, κ+s )ds ≤ h+. (55)

Then, we have∣∣∣∣∣∣ sup
θ∈Θ

|λt(θ)|
∣∣∣∣∣∣
1

≤ C +

d∑
i=1

d∑
j=1

sup
t∈R+

∣∣∣∣∣∣λ(j)t

∣∣∣∣∣∣
1

∫ t

0

h(i,j)(t− s, κ+s )ds

≤ C +

d∑
i=1

d∑
j=1

sup
t∈R+

∣∣∣∣∣∣λ(j)t

∣∣∣∣∣∣
1
h+

≤ C + sup
t∈R+

∣∣∣∣∣∣ sup
θ∈Θ

|λt(θ)|
∣∣∣∣∣∣
1
h+.

Here, we use Expression (55) in the second inequality, the definition of | | and
supremum properties in the third inequality. By taking the supremum over the
time t ∈ R+ on the left side of the expression, we can deduce that

sup
t∈R+

∣∣∣∣∣∣ sup
θ∈Θ

|λt(θ)|
∣∣∣∣∣∣
1
≤ C + h+ sup

t∈R+

∣∣∣∣∣∣ sup
θ∈Θ

|λt(θ)|
∣∣∣∣∣∣
1
. (56)

Since 0 < h+ < 1, Expression (56) implies

sup
t∈R+

∣∣∣∣∣∣ sup
θ∈Θ

|λt(θ)|
∣∣∣∣∣∣
1
≤ C

1− h+
. (57)

Thus, we have shown Expression (54). Finally, the lemma can be shown by an
application of Lemma 9 with Assumption 2 (d).

We now show the following lemma, which corresponds to Assumption 1 (f).

Lemma 11. We assume that Assumptions 2 (a), (b), (c), (d) and (e) hold. For
any s ∈ R+ a.e., we have a.s. that the intensity θ → λs(θ) is twice continuously
differentiable from the parameter space Θ to the space Rd

+. Moreover, there exists

a continuous extension to Θ.
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Proof of Lemma 11. By Definition (8), we have

λt(θ) = ν +

∫ t

0

h(t− s, κ) dNs.

Since the baseline parameter ν is twice continuously differentiable from the
parameter space Θ to the space Rd

+ and there exists a continuous extension to

Θ, it remains to show the lemma with

λt,h(θ) =

∫ t

0

h(t− s, κ) dNs.

For any index i = 1, . . . , d, the intensity can be rewritten as

λ
(i)
t,h(θ) =

d∑
j=1

∫ t

0

h(i,j)(t− s, κ) dN (j)
s .

By the assumption on the times of the point process (2), λ
(i)
t,h(θ) can be reex-

pressed as

λ
(i)
t,h(θ) =

d∑
j=1

∑
k∈N∗ s.t. 0<T

(j)
k <t

h(i,j)
(
t− T

(j)
k , κ

)
.

By Lemma 2 and compacity of the segment [0, T ], we have that the number of

terms in the sum and each term are a.s. finite. Then, we can deduce that λ
(i)
t,h(θ)

is a.s. finite. As the kernel is differentiable a.e. by Assumption 2 (e), we can

deduce that λ
(i)
t,h(θ) is a.s. differentiable and

∂θλ
(i)
t,h(θ) =

d∑
j=1

∑
k∈N∗ s.t. 0<T

(j)
k <t

∂θh
(i,j)

(
t− T

(j)
k , κ

)
.

As the kernel is differentiable twice a.e. by Assumption 2 (e), we can deduce

that λ
(i)
t,h(θ) is a.s. differentiable and

∂2θλ
(i)
t,h(θ) =

d∑
j=1

∑
k∈N∗ s.t. 0<T

(j)
k <t

∂2θh
(i,j)(t− T

(j)
k , κ).

Thus, we have a.s. that the intensity process θ → λs(θ) for any time s ∈ R+

a.e. is twice continuously differentiable from the parameter space Θ to the space
Rd

+, and there exists a continuous extension to Θ.

We now show the following lemma, which corresponds to Assumption 1 (g).

Lemma 12. We assume that Assumptions 2 (a), (b), (c), (d), (e) and (f)

hold. For any θ ∈ Θ and T > 0, we have P(
∫ T

0
|∂θλt(θ)|dt < ∞) = 1 and

P(
∫ T

0
|∂2θλt(θ)|dt <∞) = 1.
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Proof of Lemma 12. By Definition (8), we have

λt(θ) = ν +

∫ t

0

h(t− s, κ) dNs.

Since ν satisfies P(
∫ T

0
|∂θν|dt <∞) = 1 and P(

∫ T

0
|∂2θν|dt <∞) = 1, it remains

to show the lemma with

λt,h(θ) =

∫ t

0

h(t− s, κ) dNs.

For i = 1, . . . , d, λ
(i)
t,h(θ) can be rewritten as

λ
(i)
t,h(θ) =

d∑
j=1

∫ t

0

h(i,j)(t− s, κ) dN (j)
s .

By the assumption on the times of the point process (2), λ
(i)
t,h(θ) can be reex-

pressed as

λ
(i)
t,h(θ) =

d∑
j=1

∑
k∈N∗ s.t. 0<T

(j)
k <t

h(i,j)
(
t− T

(j)
k , κ

)
.

By Lemma 2 and compacity of the segment [0, T ], we have that the number of

terms in the sum and each term are a.s. finite. Then, we can deduce that λ
(i)
t,h(θ)

is a.s. finite. As the kernel is differentiable a.e. by Assumption 2 (e), we can

deduce that λ
(i)
t,h(θ) is a.s. differentiable and

∂θλ
(i)
t,h(θ) =

d∑
j=1

∑
k∈N∗ s.t. 0<T

(j)
k <t

∂θh
(i,j)

(
t− T

(j)
k , κ

)
.

By the assumption on the times of the point process (2), ∂θλ
(i)
t,h(θ) can be reex-

pressed as

∂θλ
(i)
t,h(θ) =

d∑
j=1

∫ t

0

∂θh
(i,j)(t− s, κ) dN (j)

s .

Then, we obtain P(
∫ T

0
|∂θλt(θ)|dt <∞) = 1 by Assumption 2 (f). As the kernel

is differentiable twice a.e. by Assumption 2 (e), we can deduce that λ
(i)
t,h(θ) is

a.s. differentiable twice and

∂2θλ
(i)
t,h(θ) =

d∑
j=1

∑
k∈N∗ s.t. 0<T

(j)
k <t

∂2θh
(i,j)(t− T

(j)
k , κ).
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By the assumption on the times of the point process (2), ∂2θλ
(i)
t,h(θ) can be

reexpressed as

∂2θλ
(i)
t,h(θ) =

d∑
j=1

∫ t

0

∂2θh
(i,j)(t− s, κ) dN (j)

s .

Finally, we obtain P(
∫ T

0
|∂2θλt(θ)|dt <∞) = 1 by Assumption 2 (f).

We now show the following lemma, which corresponds to Assumption 1 (h).

Lemma 13. We assume that Assumptions 2 (a), (b), (c) and (g) hold. For any
i = 1, . . . , d, we have

sup
t∈R+

∣∣∣∣∣∣ ∣∣∣∂θ(∂θλ(i)t (θ∗)

λ
(i)
t (θ∗)

)∣∣∣λ(i)t (θ∗)1{λ(i)
t >0}

∣∣∣∣∣∣
2

< +∞,

sup
t∈R+

∣∣∣∣∣∣ ∣∣∣∂θF (i)
t (θ∗)

∣∣∣λ(i)t (θ∗)1{λ(i)
t >0}

∣∣∣∣∣∣
1

< +∞,

sup
t∈R+

∣∣∣∣∣∣ ∣∣∣(∂2θλ(i)t )(θ∗)
∣∣∣ ∣∣∣∂θλ(i)t (θ∗)

λ
(i)
t (θ∗)

∣∣∣1{λ(i)
t >0}

∣∣∣∣∣∣
1

< +∞.

Proof of Lemma 13. We define I as

I = sup
t∈R+

∣∣∣∣∣∣ ∣∣∣∂θ(∂θλ(i)t (θ∗)

λ
(i)
t (θ∗)

)∣∣∣λ(i)t (θ∗)1{λ(i)
t >0}

∣∣∣∣∣∣
2
.

By Assumptions 2 (a) and (b), we can deduce that

I = sup
t∈R+

∣∣∣∣∣∣ ∣∣∣∂θ(∂θλ(i)t (θ∗)

λ
(i)
t (θ∗)

)∣∣∣λ(i)t (θ∗)
∣∣∣∣∣∣
2
.

By derivative formula, we obtain

I = sup
t∈R+

∣∣∣∣∣∣ ∣∣∣∂2θλ(i)t (θ∗)− (∂θλ
(i)
t )⊗2(θ∗)

λ
(i)
t (θ∗)2

∣∣∣λ(i)t (θ∗)
∣∣∣∣∣∣
2
.

This can be reexpressed as

I = sup
t∈R+

∣∣∣∣∣∣ ∣∣∣∂2θλ(i)t (θ∗)− (∂θλ
(i)
t )⊗2(θ∗)

λ
(i)
t (θ∗)

∣∣∣ ∣∣∣∣∣∣
2
.

By Assumption 2 (a), we can deduce that

I <
1

ν−
sup
t∈R+

∣∣∣∣∣∣ ∣∣∣∂2θλ(i)t (θ∗)− (∂θλ
(i)
t )⊗2(θ∗)

∣∣∣ ∣∣∣∣∣∣
2
.

By Assumption 2 (g) and Equation (8), we obtain

I < +∞. (58)
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We define II as

II = sup
t∈R+

∣∣∣∣∣∣ ∣∣∣∂θF (i)
t (θ∗)

∣∣∣λ(i)t (θ∗)1{λ(i)
t >0}

∣∣∣∣∣∣
1
.

By definition of F
(i)
t (θ∗), we can deduce that

II = sup
t∈R+

∣∣∣∣∣∣ ∣∣∣∂θ( (∂θλ(i)t )⊗2(θ∗)

λ
(i)
t (θ∗)2

)∣∣∣λ(i)t (θ∗)1{λ(i)
t >0}

∣∣∣∣∣∣
1
.

By Assumptions 2 (a) and (b), we can deduce that

II = sup
t∈R+

∣∣∣∣∣∣ ∣∣∣∂θ( (∂θλ(i)t )⊗2(θ∗)

λ
(i)
t (θ∗)2

)∣∣∣λ(i)t (θ∗)
∣∣∣∣∣∣
1
.

By extending the arguments from the proof of the case I < +∞ with Assump-
tions 2 (a), (g) and Equation (8), we obtain

II < +∞. (59)

We define III as

III = sup
t∈R+

∣∣∣∣∣∣ ∣∣∣(∂2θλ(i)t )(θ∗)
∣∣∣ ∣∣∣∂θλ(i)t (θ∗)

λ
(i)
t (θ∗)

∣∣∣1{λ(i)
t >0}

∣∣∣∣∣∣
1
.

By Assumptions 2 (a) and (b), we can deduce that

III = sup
t∈R+

∣∣∣∣∣∣ ∣∣∣(∂2θλ(i)t )(θ∗)
∣∣∣ ∣∣∣∂θλ(i)t (θ∗)

λ
(i)
t (θ∗)

∣∣∣ ∣∣∣∣∣∣
1
.

By Assumption 2 (a), we can deduce that

III <
1

ν−
sup
t∈R+

∣∣∣∣∣∣ ∣∣∣(∂2θλ(i)t )(θ∗)
∣∣∣ ∣∣∣∂θλ(i)t (θ∗)

∣∣∣ ∣∣∣∣∣∣
1
.

By extending the arguments from the proof of the case I < +∞ with Assump-
tion 2 (g) and Equation (8), we obtain

III < +∞. (60)

We can prove the lemma with Expressions (58), (59) and (60).

The following definition introduces the notion of mixing. This corresponds to
the definition from Section 3.4 in Clinet and Yoshida (2017). See also Definition
C2 in Supplement C of Potiron and Volkov (2025).

Definition 3. We say that X is mixing if for any ϕ, ψ ∈ Cb(E,R) and i =
1, . . . , d, we have as T → ∞ that

µ
(i)
T = sup

s∈R+

∣∣Cov [ϕ(X(i)
s ), ψ(X

(i)
s+T )

]∣∣ → 0.
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The following lemma states that Xt is mixing in the sense of Definition 3.
This extends Lemma A.6 (p. 1834) in Clinet and Yoshida (2017) and Proposition
C1 (i) in Supplement C of Potiron and Volkov (2025).

Lemma 14. We assume that Assumptions 2 (a), (b), (c), (d), (e), (f) and (g)
hold. For any θ ∈ Θ, Xt is mixing in the sense of Definition 3.

Proof of Lemma 14. We first define the truncation of X
(i)
T at time t ≤ T as

X̃
(i)
t,T =

(
λ
(i)
t (θ∗),

d∑
j=1

∫ T

t

h(i,j)(T−u, θ)dN (i)
u ,

d∑
j=1

∫ T

t

∂θ
(
h(i,j)(T−u, θ)

)
dN (i)

u

)
.

Then, we can reexpress µ
(i)
T as

µ
(i)
T = sup

s∈R+

∣∣Cov [ϕ(X(i)
s ), ψ(X

(i)
s+T )

]∣∣
= sup

s∈R+

∣∣Cov [ϕ(X(i)
s ), ψ(X

(i)
s+T )− ψ(X̃

(i)

s+
√
T ,s+T

) + ψ(X̃
(i)

s+
√
T ,s+T

)
]∣∣.

Here, we use Definition 3 in the first equality. Using the triangular inequality,

covariance and supremum properties, we can bound µ
(i)
T as

µ
(i)
T ≤ sup

s∈R+

∣∣Cov [ϕ(X(i)
s ), ψ(X

(i)
s+T )− ψ(X̃

(i)

s+
√
T ,s+T

)
]∣∣ (61)

+ sup
s∈R+

∣∣Cov [ϕ(X(i)
s ), ψ(X̃

(i)

s+
√
T ,s+T

)
]∣∣.

We define I
(i)
T as

I
(i)
T = sup

s∈R+

∣∣Cov [ϕ(X(i)
s ), ψ(X

(i)
s+T )− ψ(X̃

(i)

s+
√
T ,s+T

)
]∣∣.

We also define II
(i)
T as

II
(i)
T = sup

s∈R+

∣∣Cov [ϕ(X(i)
s ), ψ(X̃

(i)

s+
√
T ,s+T

)
]∣∣.

By the definition of I
(i)
T , Cauchy–Schwarz inequality and supremum properties,

we can deduce that

I
(i)
T ≤ sup

s∈R+

Var
[
ϕ(X(i)

s )
]
sup
s∈R+

Var
[
ψ(X

(i)
s+T )− ψ(X̃

(i)

s+
√
T ,s+T

)
]
. (62)

By Lemmas 10 and 13, we get

sup
s∈R+

Var
[
ϕ(X(i)

s )
]
≤ C. (63)

Since
√
T → ∞, by Assumption 2 (d), we obtain

sup
s∈R+

Var
[
ψ(X

(i)
s+T )− ψ(X̃

(i)

s+
√
T ,s+T

)
]
→ 0. (64)
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By Expressions (62), (63) and (64), we can deduce that

I
(i)
T → 0. (65)

As T → ∞, by Assumption 2 (d), we obtain

II
(i)
T → 0. (66)

By Expressions (61), (65) and (66), we can deduce that

µ
(i)
T → 0.

The following lemma states that Xt is stable. This extends Lemma A.6 (p.
1834) in Clinet and Yoshida (2017) and Proposition C1 (ii) in Potiron and
Volkov (2025).

Lemma 15. We assume that Assumptions 2 (a), (b), (c), (d), (e), (f) and
(g) hold. For any θ ∈ Θ, Xt is stable, i.e. for any i = 1, . . . , d there exists an

R∗
+-valued random variable λ

(i)
l (θ) such that we have

X
(i)
T

D→
(
λ
(i)
l (θ∗), λ

(i)
l (θ), ∂θλ

(i)
l (θ)

)
.

Proof of Lemma 15. The proof is obtained by an application of Theorem 1 in
Brémaud and Massoulié (1996) and Lemma 4 in Brémaud and Massoulié (1996)
with Assumption 2 (d).

The following lemma states that Xt is ergodic in the sense of Definition 1.
Moreover, it delivers a more explicit expression of the limit function π(ψ). This
extends Lemma 3.16 (p. 1815) in Clinet and Yoshida (2017) and Proposition C1
(iii) in Potiron and Volkov (2025).

Lemma 16. We assume that Assumptions 2 (a), (b), (c), (d), (e), (f) and (g)
hold. For any θ ∈ Θ, Xt is ergodic in the sense of Definition 1. Moreover, for
any i = 1, . . . , d we have

π(i)(ψ) = E
[
ψ(λ

(i)
l (θ∗), λ

(i)
l (θ), ∂θλ

(i)
l (θ))

]
.

Proof of Lemma 16. For ψ ∈ Cb(E,R), we define V (i)(ψ) as

V (i)(ψ) =
1

T

∫ T

0

ψ(X(i)
s )ds. (67)

To show that Xt is ergodic, it is sufficient to show that V (i)(ψ)
P→ π(i)(ψ) where

π(i)(ψ) = E
[
ψ(λ

(i)
l (θ∗), λ

(i)
l (θ), ∂θλ

(i)
l (θ))

]
.
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Since L2 convergence implies convergence in probability, it is sufficient to show
L2 convergence. Since for any random variable X and any nonrandom a ∈ R we
have E[(X − a)2] = Var[X] + (E[X]− a)2, we can deduce that

E
[
(V (i)(ψ)− π(i)(ψ))2

]
= Var[V (i)(ψ)] + (E[V (i)(ψ)]− π(i)(ψ))2. (68)

We define I(i) as
I(i) = Var[V (i)(ψ)].

We also define II(i) as

II(i) = (E[V (i)(ψ)]− π(i)(ψ))2.

We have

I(i) = Var[V (i)(ψ)]

= Var
[ 1
T

∫ T

0

ψ(X(i)
s )ds

]
=

1

T 2
Var

[ ∫ T

0

ψ(X(i)
s )ds

]
.

Here, we use the definition of I(i) in the first equality, the definition of V (i)(ψ)
in the second equality, and the fact that for any nonrandom a ∈ R and any
random variable X we have Var[aX] = a2 Var[X] in the third equality. Then,
we have

I(i) =
1

T 2
Var

[ ∫ T

0

ψ(X(i)
s )ds

]
=

1

T 2
lim

K→∞
Var

[ T
K

K−1∑
k=0

ψ(X
(i)
kT/K)

]
=

1

T 2
lim

K→∞

T 2

K2
Var

[K−1∑
k=0

ψ(X
(i)
kT/K)

]
.

Here, we use the approximation of the Riemann sum in the second equality

as the random function ψ(X
(i)
s ) is Riemann integrable for any ω ∈ Ω, and an

application of the dominated convergence theorem in the third equality. Then,
we have

I(i) =
1

T 2
lim

K→∞

T 2

K2
Var

[K−1∑
k=0

ψ(X
(i)
kT/K)

]
=

1

T 2
lim

K→∞

T 2

K2

K−1∑
k=0

K−1∑
l=0

Cov
[
ψ(X

(i)
kT/K), ψ(X

(i)
lT/K)

]
=

1

T 2

∫ T

0

∫ T

0

Cov
[
ψ(X(i)

s ), ψ(X(i)
u )

]
dsdu.
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Here, we use Bienayme’s identity in the second equality. By Definition 3, we
obtain

I(i) ≤ 1

T 2

∫ T

0

∫ T

0

µ
(i)
|s−u|dsdu.

A split of the integral into two terms leads to

I(i) ≤ 1

T 2

∫ T

0

∫ T

0

µ
(i)
|s−u|1{|s−u|≤

√
T}dsdu (69)

+
1

T 2

∫ T

0

∫ T

0

µ
(i)
|s−u|1{|s−u|>

√
T}dsdu.

By Lemma 14, there exists µ
(i)
+ > 0 such that for any t ≥ 0 we have µ

(i)
t ≤ µ

(i)
+ .

Then, we obtain that

1

T 2

∫ T

0

∫ T

0

µ
(i)
|s−u|1{|s−u|≤

√
T}dsdu (70)

≤
µ
(i)
+

T 2

∫ nT

0

∫ nT

0

1{|s−u|≤
√
nT}dsdu.

Then, we can deduce that

µ
(i)
+

T 2

∫ nT

0

∫ nT

0

1{|s−u|≤
√
nT}dsdu→ 0. (71)

By Expressions (70) and (71), we can deduce that

1

T 2

∫ T

0

∫ T

0

µ
(i)
|s−u|1{|s−u|≤

√
T}dsdu→ 0. (72)

We also have

1

T 2

∫ T

0

∫ T

0

µ
(i)
|s−u|1{|s−u|>

√
T}dsdu (73)

≤ sup
y>

√
T

µ(i)
y

1

T 2

∫ T

0

∫ T

0

1{|s−u|>
√
T}dsdu.

Then, we obtain

sup
y>

√
T

µ(i)
y

1

T 2

∫ T

0

∫ T

0

1{|s−u|>
√
T}dsdu ≤ sup

y>
√
T

µ(i)
y . (74)

Since µ
(i)
T → 0 by an application of Lemma 14, we can also deduce that

sup
y>

√
T

µ(i)
y → 0. (75)
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Expressions (73), (74) and (75) imply that

1

T 2

∫ T

0

∫ T

0

µ
(i)
|s−u|1{|s−u|>

√
T}dsdu→ 0. (76)

Expressions (69), (72) and (76) yield that

I(i) → 0. (77)

By the definitions of II(i) and V (i), we have

II(i) =
(
E
[ 1
T

∫ T

0

ψ(X(i)
s )ds

]
− π(i)(ψ)

)2

.

By Fubini’s theorem with Lemmas 10 and 13, we obtain

II(i) =
( 1

T

∫ T

0

E
[
ψ(X(i)

s )
]
ds− π(i)(ψ)

)2

. (78)

By Lemma 15, we have that

X
(i)
T

D→
(
λ
(i)
l (θ∗), λ

(i)
l (θ), ∂θλ

(i)
l (θ)

)
.

Since convergence in distribution implies convergence in expectation of any
bounded function, we obtain that

E[ψ(X(i)
T )] → E

[
ψ(λ

(i)
l (θ∗), λ

(i)
l (θ), ∂θλ

(i)
l (θ))

]
.

By the definition of π(i)(ψ), we can deduce

E[ψ(X(i)
T )] → π(i)(ψ). (79)

Expressions (78) and (79) imply that

II(i) → 0. (80)

By Expressions (68), (77) and (80), we can deduce

E
[
(V (i)(ψ)− π(i)(ψ))2

]
.

We now show the following lemma, which corresponds to Assumption 1 (e).
This complements Lemma A.7 (p. 1836) in Clinet and Yoshida (2017) and ex-
tends Lemma C6 in Supplement C of Potiron and Volkov (2025).

Lemma 17. We assume that Assumption 2 holds. Then, for any θ ∈ Θ − θ∗

we have Y (θ) ̸= 0.
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Proof of Lemma 17. We assume that θ ∈ Θ and that Y (θ) = 0. By Definition
(6), we can deduce that

0 =

d∑
i=1

∫
E

(
log

( v
u

)
u− (v − u)

)
π
(i)
θ∗ (du, dv, dw).

By Lemma 15, this can be reexpressed as

0 =

d∑
i=1

E
[
log

( λ
(i)
l (θ)

λ
(i)
l (θ∗)

)
λ
(i)
l (θ∗)−

(
λ
(i)
l (θ)− λ

(i)
l (θ∗)

)]
. (81)

we also have by definition for any index i = 1, . . . , d and any ω ∈ Ω that

0 ≥ log
( λ

(i)
l (θ)

λ
(i)
l (θ∗)

)
λ
(i)
l (θ∗)−

(
λ
(i)
l (θ)− λ

(i)
l (θ∗)

)
. (82)

Expressions (81) and (82) yield a.s.

0 = log
( λ

(i)
l (θ)

λ
(i)
l (θ∗)

)
λ
(i)
l (θ∗)−

(
λ
(i)
l (θ)− λ

(i)
l (θ∗)

)
.

We can then deduce that a.s.

λl(θ
∗) = λl(θ).

Finally, we obtain θ∗ = θ by Assumption 2 (h).

We now give the proof of Theorem 2. This is based on an application of
Theorem 1 with the previous lemmas.

Proof of Theorem 2. The proof is an application of Theorem 1 with Lemmas 7,
10 , 11, 12, 13, 16 and 17.

6. Conclusion

In this paper, we have developed inference for point processes when its inten-
sity has a parametric form. The inference procedure was based on MLE. Under
ergodicity of the point process intensity and its derivative, we have shown the
CLT of the inference procedure. As an application, we have considered Hawkes
mutually exciting processes, where the kernel has a general form and is para-
metric. We have shown the ergodicity of the Hawkes process intensity and its
derivative. Moreover, we have obtained the CLT of the inference procedure for
Hawkes processes. In particular, we have allowed for kernels with power distri-
bution, under some smoothness assumptions on the kernel shape. The proofs
were based on the application of Burkholder—Davis—Gundy inequalites.

As an application of the technology, Erdemlioglu et al. (2025b) show that
Hawkes processes with a periodic log-logistic kernel satisfies Assumption 2. This
requires to study deeply some smoothness properties of the log-logistic distri-
bution, when seen as a function of its parameters.
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