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Abstract: We develop inference for point processes when its intensity has
a parametric form. The inference procedure is based on maximum likeli-
hood estimation. Under ergodicity of the point process intensity and its
derivative, we show the central limit theory of the inference procedure. As
an application, we consider Hawkes mutually exciting processes. We as-
sume that the kernel has a general form and is parametric. We show the
ergodicity of the Hawkes process intensity and its derivative. Moreover, we
obtain the central limit theory of the inference procedure for Hawkes pro-
cesses. In particular, we allow for kernels with power distribution, under
some smoothness assumptions on the kernel shape. The proofs are based
on the application of Burkholder-Davis-Gundy inequalites.
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1. Introduction

This paper concerns inference for point processes. The main stylized fact in
this strand of literature, the presence of event clustering in time, motivates the
so-called Hawkes mutually exciting processes (see Hawkes (1971a) and Hawkes
(1971b)). If we define Nt as the aggregated number of events up to time t and
λt its corresponding intensity, a standard definition of Hawkes doubly exciting
processes is given by

λt = ν∗ +

∫ t

0

h(t− s) dNs. (1)

Here, d is the number of point processes, ν∗ is a d dimensional Poisson baseline
and h is a d × d dimensional kernel matrix. The point processes are mutually
exciting in the sense that the diagonal components h(i,i) are self-exciting terms
for the i-th process and non-diagonal components h(i,j) are cross-exciting terms
for the i-th process made by events from the j-th process. The particular case
h = 0 corresponds to a classical Poisson process, so that we can view Hawkes
processes as a natural extension of Poisson processes.

The main application of Hawkes processes lies in seismology (see Rubin
(1972), Ozaki (1979), Vere-Jones and Ozaki (1982) and Ogata (1978), Ogata
(1988)). There are also applications in quantitative finance (see Chavez-Demoulin,
Davison and McNeil (2005), Embrechts, Liniger and Lin (2011), Bacry et al.
(2013), Jaisson and Rosenbaum (2015), Jaisson and Rosenbaum (2016), Clinet
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and Yoshida (2017)). Some applications are also in financial econometrics (see
Chen and Hall (2013), Clinet and Potiron (2018), Kwan, Chen and Dunsmuir
(2023), Potiron and Volkov (2025)). We can also find some applications in bi-
ology (see Reynaud-Bouret and Schbath (2010) and Donnet, Rivoirard and
Rousseau (2020)). See also Liniger (2009) and Hawkes (2018) with the refer-
ences therein.

There are many theoretical results for Hawkes processes in applied probabil-
ity. Hawkes and Oakes (1974) provide a Poisson cluster process representation
for the Hawkes process. Brémaud and Massoulié (1996) study stability of non-
linear Hawkes processes. Zhu (2015) considers large deviations for Markovian
nonlinear Hawkes processes. Roueff, von Sachs and Sansonnet (2016), Roueff
and Von Sachs (2019), Cheysson and Lang (2022) and Mammen and Müller
(2023) study locally stationary Hawkes processes. See also Potiron et al. (2025)
and Erdemlioglu, Potiron and Volkov (2025). The microstructure of stochastic
volatility models with self-excitation is investigated in Horst and Xu (2022).
Horst and Xu (2021) and Horst and Xu (2024+) give functional limit theorems
for Hawkes processes. Xu (2024) studies diffusion approximations for self-excited
systems. Karim, Laeven and Mandjes (2025+) introduce compound multivariate
Hawkes processes.

In this paper, we consider Hawkes processes, where the kernel has a general
form and is parametric. The inference procedure is based on maximum likeli-
hood estimation (MLE). Ogata (1978) shows the central limit theory (CLT) of
the inference procedure for an ergodic stationary point process. However, the
definition of ergodicity is vague in that paper. Most of the papers on inference
for Hawkes processes with parametric kernel make this ergodicity assumption
(see, e.g., Cavaliere et al. (2023), Assumption 1(b) and Remark 2.1). In fact,
Clinet and Yoshida (2017) exhibit the conditions required, i.e. ergodicity of the
Hawkes intensity process and its derivative. They consider general point pro-
cesses and derive the CLT of the inference procedure in Theorem 3.11 (p. 1809)
under these ergodicity assumptions. They also show these ergodicity assump-
tions in the case of a Hawkes process with exponential kernel in Theorem 4.6 (p.
1821). The proofs rely heavily on the Markov property of the exponential distri-
bution. Kwan (2023) considers the non-exponential kernel case but the author
mentions that such case is challenging since the Hawkes intensity process is non-
Markovian, thus rendering standard Markov tools inapplicable. Consequently,
the author can only show the ergodicity for the Hawkes intensity process itself
but not for its derivative. Thus, he can only show the consistency of the infer-
ence procedure in Theorem 3.4.3 (p. 73). When the kernel follows a generalized
gamma distribution, Potiron and Volkov (2025) can show that the ergodicity
assumptions are satisfied and also obtain the CLT of the inference procedure.
This is due to the exponentially decreasing nature of the kernel. With a general
kernel, Costa et al. (2020) (Theorem 1.2, p. 884) and Graham (2021) (Theorem
5.4, p. 2856) shows the ergodicity of the Hawkes processes, but not its intensity.
See also Section 3.2 (p. 893) in Reynaud-Bouret and Roy (2007).

All these results are useful, but the obtained CLT for the inference procedure
are restricted to exponentially decreasing kernels, which are restrictive for ap-
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plications. In finance, there is empirical evidence that the kernel decays as the
power distribution (see Bacry, Dayri and Muzy (2012) and Hardiman, Bercot
and Bouchaud (2013)). Consequently, we extend the literature in two directions.
First, we weaken the assumptions from the point process theory in Clinet and
Yoshida (2017), since they do not allow for kernels with power distribution. More
specifically, we consider a different approach in the proofs that circumvents the
use of the Sobolev embedding theorem (see Theorem 4.12 (p. 85) in Adams and
Fournier (2003)). This new approach is based on the application of Burkholder-
Davis-Gundy inequalites (see Expression (2.1.32) in Jacod and Protter (2012)
(p. 39)). Under ergodicity of the point process intensity and its derivative, we
show the CLT of the inference procedure (see Theorem 1). Second, we show the
ergodicity of the Hawkes intensity process and its derivative, in case of a general
kernel. Moreover, we show the CLT of the inference procedure (see Theorem 2).
This is the main result of this paper. This extends Clinet and Yoshida (2017)
and Potiron and Volkov (2025), who obtain ergodicity by proving first that the
Hawkes intensity process and its derivative is mixing by Markov arguments. In
particular, we allow for kernels with power distribution, under some smoothness
assumptions on the kernel shape.

The remainder of this paper is organized as follows. We consider inference
for point processes in Section 2. We study the Hawkes processes with a general
kernel case in Section 3. The proofs of the CLT for point processes are gathered
in Section 4. The proofs of the CLT for Hawkes processes with a general kernel
are given in Section 5. Finally, we provide concluding remarks in Section 6.

2. Inference for point processes

In this section, we develop inference for point processes when its intensity has a
parametric form. The inference procedure is based on MLE. Under ergodicity of
the point process intensity and its derivative, we show the CLT of the inference
procedure. In particular, we weaken the assumptions from the point process
theory in Clinet and Yoshida (2017), since they do not allow for kernels with
power distribution. More specifically, we consider a different approach in the
proofs that circumvents the use of the Sobolev embedding theorem. This new
approach is based on the application of Burkholder-Davis-Gundy inequalites.

For any space S such that 0 ∈ S, we define the space without zero as S∗. For
any space S, B(S) is the Borel σ-algebra on the space S. For a vector V , we
denote its i-th component as V (i). In what follows, we introduce the multidi-
mensional point process Nt. We denote its dimension as d. For i = 1, · · · , d, each
component of the point processN

(i)
t counts the number of events between 0 and t

for the i-th process. We define N
(i)
t as a simple point process on the space of pos-

itive real numbers R+, i.e. a family {N (i)(C)}C∈B(R+) of random variables with

values in the space of natural integers N. Moreover, N (i)(C) =
∑

k∈N 1C(T
(i)
k )

and {T (i)
k }k∈N is a sequence of event times, which are R+-valued and random. We

assume that the first time is equal to 0 and the following times are increasing for

each process a.s., i.e. P(T (i)
0 = 0 and T

(i)
k < T

(i)
k+1 for k ∈ N∗ and i = 1, · · · , d) =
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1. We also assume that no events happen at the same time for different pro-

cesses a.s., i.e. P(T (i)
k ̸= T

(j)
l for k, l ∈ N∗ and i, j = 1, · · · , d s.t. i ̸= j) = 1. Let

B = (Ω,F , {Ft}t∈R+ ,P) be a filtered probability space which satisfies the usual
conditions. For any t ∈ R, we denote the filtration generated by some stochastic
process X as FX

t = σ{Xs : 0 ≤ s ≤ t}. We assume that, for any t ∈ R+, the
filtration generated by the point process Nt is included in the main filtration,
i.e. FN

t ⊂ Ft. Any nonnegative Ft-progressively measurable process {λt}t∈R+ ,

which is d dimensional and satisfies E[N((a, b]) | Fa] = E
[ ∫ b

a
λsds

∣∣Fa

]
a.s.

for all intervals (a, b], is called an Ft-intensity of Nt. Intuitively, the intensity
corresponds to the expected number of events given the past information, i.e.

λt = lim
u→0

E
[Nt+u −Nt

u
| Ft

]
a.s..

For background on point processes, the reader can consult Jacod (1975), Jacod
and Shiryaev (2003), Daley and Vere-Jones (2003), and Daley and Vere-Jones
(2008).

The present work is concerned with multidimensional point processes Nt

admitting an Ft-intensity which has a parametric form. More specifically, we
introduce the parameter space Θ, consisting of n parameters. We also introduce
the family of intensities λt(θ) for any θ ∈ Θ. Finally, we assume the existence
of the true parameter θ∗ ∈ Θ such that

λt = λt(θ
∗). (2)

For any parameter θ ∈ Θ, we rely on the log likelihood process (see Ogata (1978)
and Daley and Vere-Jones (2003))

lT (θ) =

d∑
i=1

∫ T

0

log(λ
(i)
t (θ))dN

(i)
t −

d∑
i=1

∫ T

0

λ
(i)
t (θ)dt. (3)

Here, 0 is the starting time and T is the final time. Then, the MLE is defined
as the maximizer of the log likelihood process between 0 and T, i.e.

θ̂T ∈ argmaxθ∈Θ lT (θ).

In this paper, we focus on the stochastic processesXt = (λt(θ
∗), λt(θ), ∂θλt(θ))

taking values in the space Ed where E = R+×R+×Rn. We denote by Cb(E,F )
the space of bounded and continuous functions from E to F . In what follows,
we provide the definition of ergodicity. This corresponds to Definition 3.1 (p.
1805) in Clinet and Yoshida (2017). See also Definition C1 in the supplementary
materials of Potiron and Volkov (2025).

Definition 1. We say that X is ergodic if for any i = 1, · · · , d there exists a
function π(i) : Cb(E,R) → R such that for any ψ ∈ Cb(E,R) we have

1

T

∫ T

0

ψ(X(i)
s )ds

P→ π(i)(ψ).
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Since the space of bounded functions is not large enough to establish CLT,
we introduce a bigger space in the following definition. We denote this bigger
space by C↑(E,R). This corresponds to Definition 3.7 (p. 1806) in Clinet and
Yoshida (2017).

Definition 2. We denote by C↑(E,R) the set of continuous functions ψ : (u, v, w) →
ψ(u, v, w) from E to R that satisfy

(a) ψ is continuous on R+
∗ × R+

∗ × Rn.

(b) ψ is of polynomial growth in u, v, w,
1{u>0}

u and
1{v>0}

v .
(c) For any (u, v, w) ∈ E, we have ψ(0, v, w) = ψ(u, 0, w) = 0.

Lemma 1 shows that for any i = 1, · · · , d there exists a probability measure

π
(i)
θ∗ on E such that, for any ψ ∈ C↑(E,R), we have

π(i)(ψ) =

∫
E

ψ(u, v, w)π
(i)
θ∗ (du, dv, dw).

Then, we define the limit of the normalized deviation between the log likelihood
at the parameter value θ ∈ Θ and the log likelihood at the true parameter value
as

Y (θ) =

d∑
i=1

∫
E

(
log

( v
u

)
u− (v − u)

)
π
(i)
θ∗ (du, dv, dw). (4)

For k ∈ N, we denote by Ck(E,F ) the space of functions which are k times
continuously differentiable from E to F . We define Θ as the closure space of Θ.
If x is a real number, a vector or a matrix, we define the sum of the absolute
values of its components as |x| =

∑
i |x|i. If X is a random variable, we define its

Lp norm as ||X||p = E[Xp]1/p. For any i = 1, · · · , d and any parameter θ ∈ Θ,
we define F as

F
(i)
t (θ) =

(∂θλ
(i)
t )⊗2(θ)

λ
(i)
t (θ)2

.

We now introduce a set of assumptions required for the CLT of the inference
procedure based on MLE. In particular, we weaken the assumptions from the
point process theory in Clinet and Yoshida (2017), since they do not allow for
kernels with power distribution.

Assumption 1. (a) The family of intensities λ : Ω × R+ × Ω → R+ is F ⊗
B(R+)⊗ B(Θ)-measurable.

(b) We assume that Θ ⊂ Rn is such that its closure Θ is a compact space.
(c) For any θ ∈ Θ, the stochastic processes X are ergodic in the sense of

Definition 1.
(d) We have supt∈R+ || supθ∈Θ |λt(θ)| ||2 < +∞.
(e) For any θ ∈ Θ− θ∗ , we have Y (θ) ̸= 0.
(f) For any s ∈ R+ a.e., we have a.s. that θ → λs(θ) is in C2(Θ,Rd

+) and

there exists a continuous extension to Θ.
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(g) For any θ ∈ Θ and T > 0, we have P(
∫ T

0
|∂θλt(θ)|dt < ∞) = 1 and

P(
∫ T

0
|∂2θλt(θ)|dt <∞) = 1.

(h) For any i = 1, · · · , d, we have

sup
t∈R+

∣∣∣∣∣∣ ∣∣∣∂θ(∂θλ(i)t (θ∗)

λ
(i)
t (θ∗)

)∣∣∣λ(i)t (θ∗)1{λ(i)
t >0}

∣∣∣∣∣∣
2

< +∞,

sup
t∈R+

∣∣∣∣∣∣ ∣∣∣∂θF (i)
t (θ∗)

∣∣∣λ(i)t (θ∗)1{λ(i)
t >0}

∣∣∣∣∣∣
1

< +∞,

sup
t∈R+

∣∣∣∣∣∣ ∣∣∣(∂2θλ(i)t )(θ∗)
∣∣∣ ∣∣∣∂θλ(i)t (θ∗)

λ
(i)
t (θ∗)

∣∣∣1{λ(i)
t >0}

∣∣∣∣∣∣
1

< +∞.

Assumption 1 (a) is natural and is equal to the first statement in Assumption
[A1] from Clinet and Yoshida (2017). Assumption 1 (b) is the assumption about
the parameter spacee and is weaker than the framework from Clinet and Yoshida
(2017) where the parameter space satisfies the assumptions from the Sobolev
embedding theorem. Assumption 1 (c) corresponds exactly to Assumption [A3]
from Clinet and Yoshida (2017). Assumptions 1 (d), (g) and (h) are weaker than
Assumptions [A2] (i) and (ii) from Clinet and Yoshida (2017), who requires the
finiteness of the Lp norm of intensity and some derivatives for any p ∈ N∗.
Assumption 1 (e) is required for the non-degeneracy of the inference procedure
and is Assumption [A4] from Clinet and Yoshida (2017). Finally, Assumption 1
(f) only requires that the intensity is continuously differentiable twice whereas
Assumption [A1] (ii) in Clinet and Yoshida (2017) needs that the intensity is
continuously differentiable three times.

If we consider a vector z ∈ Rn, we define the tensor product as z⊗2 = z×zT ∈
Rn×n. We define the n× n dimensional Fisher information matrix Γ as

Γ =

d∑
i=1

∫
E

w⊗2 1

u
π
(i)
θ∗ (du, dv, dw). (5)

The inverse of the Fisher information matrix, i.e. Γ−1, is the asymptotic covari-
ance matrix. Also ξ is defined as a n dimensional standard normal vector.

In the theorem that follows, we state the CLT of the inference procedure based
on MLE. We consider asymptotics when the final time diverges to infinity, i.e.
T → +∞. In particular, we weaken the assumptions from the point process
theory in Clinet and Yoshida (2017), since they do not allow for kernels with
power distribution. More specifically, we consider a different approach in the
proofs that circumvents the use of the Sobolev embedding theorem. This new
approach is based on the application of Burkholder-Davis-Gundy inequalites.

Theorem 1. We assume that Assumption 1 holds. As T → +∞, we have the
CLT of the inference procedure based on MLE, i.e.

√
T (θ̂T − θ∗)

D→ Γ−1/2ξ. (6)
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3. Hawkes processes with a general kernel case

In this section, we consider Hawkes mutually exciting processes. We assume that
the kernel has a general form and is parametric. We show the ergodicity of the
Hawkes process intensity and its derivative. Moreover, we obtain the CLT of
the inference procedure for the Hawkes processes. This is the main result of this
paper. In particular, we allow for kernels with power distribution, under some
smoothness assumptions on the kernel shape.

We consider Hawkes processes, where the kernel has a general form and is
parametric. More specifically, we introduce for any θ ∈ Θ the family of intensities

λt(θ) = ν +

∫ t

0

h(t− s, κ) dNs. (7)

Here, h is a d× d dimensional kernel matrix. The point processes are mutually
exciting in the sense that the diagonal components h(i,i) are self-exciting terms
for the i-th process and non-diagonal components h(i,j) are cross-exciting terms
for the i-th process made by events from the j-th process. Moreover, ν consists of
d baseline parameters, while κ consists of n− d kernel parameters. We assume
that the parameter θ has the form θ = (ν, κ), and that they belong to the
parameter space Θ = (Θν ,Θκ). We also assume that n ≥ 2d. Finally, we assume
the existence of the true parameter θ∗ ∈ Θ such that

λt = λt(θ
∗). (8)

Here, we assume that the parameter θ∗ has the form θ∗ = (ν∗, κ∗), where
ν∗ ∈ Θν and κ∗ ∈ Θκ.

For a matrix ϕ, we denote its spectral radius as ρ(ϕ). For any t ∈ R+, we
denote by κ+t the maximum argument parameter of ρ(h(t, κ)). It is defined
through

h(t, κ+t ) = sup
κ∈Θκ

ρ(h(t, κ)). (9)

Then, we define the d× d dimensional matrix ϕ as

ϕ =

∫ ∞

0

h(s, κ+s )ds.

For any t ∈ R+, we denote by κ+t,2 the maximum argument parameter of

ρ(h2(t, κ)). It is defined through

h2(t, κ+t,2) = sup
κ∈Θκ

ρ(h2(t, κ)). (10)

Then, we define the d× d dimensional matrix ϕ2 as

ϕ2 =

∫ ∞

0

h2(s, κ+s,2)ds.



/Inference for Hawkes processes with a general kernel 8

For any i = 1, · · · , d, j = 1, · · · , d and any t ∈ R+, we denote by k
(i,j)
t,3 the

maximum argument of
∣∣∂κh(i,j)(t, κ)(k)∣∣. It is defined through∣∣∂κh(i,j)(t, κ)(k(i,j)

t,3 )
∣∣ = sup

k=1,··· ,d

∣∣∂κh(i,j)(t, κ)(k)∣∣. (11)

Then, we define the d× d dimensional matrix ϕ3(κ) as

ϕ
(i,j)
3 (κ) =

∫ ∞

0

∣∣∂κh(i,j)(s, κ)(k(i,j)
t,3 )

∣∣ds,
for any i = 1, · · · , d and j = 1, · · · , d. For any i = 1, · · · , d, j = 1, · · · , d and any

t ∈ R+, we denote by (k
(i,j)
t,4 , l

(i,j)
t,4 ) the maximum argument of

∣∣∂2κh(i,j)(t, κ)(k,l)∣∣.
It is defined through∣∣∂2κh(i,j)(t, κ)(k(i,j)

t,4 ,l
(i,j)
t,4 )

∣∣ = sup
k,l=1,··· ,d

∣∣∂2κh(i,j)(t, κ)(k,l)∣∣. (12)

Then, we define the d× d dimensional matrix ϕ4(κ) as

ϕ
(i,j)
4 (κ) =

∫ ∞

0

∣∣∂2κh(i,j)(s, κ)(k(i,j)
t,4 ,l

(i,j)
t,4 )

∣∣ds,
for any i = 1, · · · , d and j = 1, · · · , d. Moreover, we define the (n− d)× (n− d)
dimensional matrix ϕ5 as

ϕ
(i,j)
5 =

∫ ∞

0

∣∣∂κh(i,j)(s, κ∗)(k(i,j)
t,3 )

∣∣2ds,
for any i = 1, · · · , d and j = 1, · · · , d. Finally, we define the d × d dimensional
matrix ϕ6 as

ϕ
(i,j)
6 =

∫ ∞

0

∣∣∂2κh(i,j)(s, κ∗)(k(i,j)
t,4 ,l

(i,j)
t,4 )

∣∣2ds,
for any i = 1, · · · , d and j = 1, · · · , d.

We now introduce a set of assumptions required for the CLT of the inference
procedure for Hawkes processes. In particular, we allow for kernels with power
distribution, under some smoothness assumptions on the kernel shape.

Assumption 2. (a) We assume that Θ ⊂ Rn is such that its closure Θ is a
compact space.

(b) There exists ν− ∈ R+
∗ such that for any ν ∈ Θν and any i = 1, . . . , d we

have ν(i) > ν−.
(c) For any κ ∈ Θκ and any t ∈ R+, we have h(t, κ) > 0.
(d) We have ρ(ϕ) < 1 and ρ(ϕ2) < 1.
(e) For any s ∈ R+ a.e., we have κ→ h(s, κ) is in C2(Θκ,Rd

+) and there exists

a continuous extension to Θκ.
(f) For any κ ∈ Θκ, we have ρ(ϕ3(κ)) < 1 and ρ(ϕ4(κ)) < 1.



/Inference for Hawkes processes with a general kernel 9

(g) We have ρ(ϕ5) < 1 and ρ(ϕ6) < 1.

Assumptions 2 (a) and (b) imply that the point processes are well-defined and
are also required in the simpler case of heterogeneous Poisson processes without
a kernel (see Daley and Vere-Jones (2003)). Assumption 2 (c) are restrictive
for kernels with inhibitory effects. Assumption 2 (d) is slightly stronger than
the condition which is necessary to obtain a stationary intensity with finite
first moment (see Lemma 1 (p. 495) in Hawkes and Oakes (1974) and Theorem
1 (p. 1567) in Brémaud and Massoulié (1996)). Assumption 2 (d) is used to
prove Assumption 1 (d). Assumption 2 (e) is required to show Assumption 1
(f). Moreover, Assumption 2 (f) yields Assumption 1 (g). Finally, Assumption
2 (g) implies Assumption 1 (h).

In the theorem that follows, we state the CLT of the inference procedure
for Hawkes processes. The kernel has a general form and is parametric. The
inference procedure is based on MLE. We consider asymptotics when the final
time diverges to infinity, i.e. T → +∞. This is the main result of this paper. This
extends Clinet and Yoshida (2017) and Potiron and Volkov (2025), who obtain
ergodicity by proving first that the Hawkes intensity process and its derivative
is mixing by Markov arguments. In particular, we allow for kernels with power
distribution, under some smoothness assumptions on the kernel shape.

Theorem 2. We assume that Assumption 2 holds. As T → +∞, we have the
CLT of the inference procedure for Hawkes processes where the kernel has a
general form and is parametric, i.e.

√
T (θ̂T − θ∗)

D→ Γ−1/2ξ. (13)

4. Proofs of the CLT for point processes

In this section, we give the proofs of the CLT of the inference procedure for point
processes, i.e. Theorem 1. All the theoretical results refer to the convergence
T → +∞.

In what follows, the constant C refers to a generic constant, which can differ
from line to line. For a measure µ, we denote by L1(µ) the space of functions
that are integrable with respect to µ.

Since the functions that we will be using in our proofs will not necessarily be
bounded, we need to extend from Cb(E,R) to C↑(E,R) the space of functions
in which the ergodicity assumption holds. We also give a more explicit form to
the functions πθ∗(ψ, θ). The following lemma is Proposition 3.8 (pp. 1806-1807)
in Clinet and Yoshida (2017). The proof follows the arguments from the proof
of Proposition 3.8 (pp. 1822-1824) in Clinet and Yoshida (2017).

Lemma 1. We assume that Assumptions 1 (a), (b) and (c) hold. For any
θ ∈ Θ, we have

(a) The ergodicity assumption 1 (c) still holds for any ψ ∈ C↑(E,R). In par-

ticular, the function π
(i)
θ∗ (., θ) can be extended to C↑(E,R). Moreover, the

convergence is uniform in θ ∈ Θ for any ψ ∈ C↑(E,R).
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(b) For any i = 1, · · · , d, there exists a probability measure π
(i)
θ∗ on E such that,

for any ψ ∈ C↑(E,R), we have π(i)(ψ) =
∫
E
ψ(u, v, w)π

(i)
θ∗ (du, dv, dw). In

particular, C↑(E,R) ⊂ L1(π
(i)
θ∗ ).

Proof of Lemma 1. We can use the arguments from the proof of Proposition 3.8
(pp. 1822-1824) in Clinet and Yoshida (2017).

We define the normalized deviation between the log likelihood at the param-
eter value θ ∈ Θ and the log likelihood at the true parameter value as

YT (θ) =
1

T
(lT (θ)− lT (θ

∗)). (14)

We define the compensated point process as

Mt = Nt −
∫ t

0

λs(θ
∗)ds. (15)

By definition of a compensator, we have that Mt is an Ft-local martingale.
In the following lemma, we will prove the consistency of YT to Y uniformly

in θ ∈ Θ. This weakens the assumptions used in Lemma 3.10 (p. 1807) from
Clinet and Yoshida (2017). We consider a different approach in the proofs that
circumvents the use of the Sobolev embedding theorem. This new approach is
based on the application of Burkholder-Davis-Gundy inequalites.

Lemma 2. We assume that Assumptions 1 (a), (b), (c) and (d) hold. We have
the uniform consistency

sup
θ∈Θ

| YT (θ)− Y (θ) | P→ 0.

Proof of Lemma 2. We can rewrite YT (θ) as

YT (θ) =
1

T
(lT (θ)− lT (θ

∗))

=
1

T

( d∑
i=1

∫ T

0

log(λ
(i)
t (θ))dN

(i)
t −

d∑
i=1

∫ T

0

λ
(i)
t (θ)dt

−
d∑

i=1

∫ T

0

log(λ
(i)
t (θ∗))dN

(i)
t +

d∑
i=1

∫ T

0

λ
(i)
t (θ∗)dt

)
=

1

T

d∑
i=1

∫ T

0

log
( λ

(i)
t (θ)

λ
(i)
t (θ∗)

)
dN

(i)
t − 1

T

d∑
i=1

∫ T

0

(λ
(i)
t (θ)− λ

(i)
t (θ∗))dt

=
1

T

d∑
i=1

∫ T

0

log
( λ

(i)
t (θ)

λ
(i)
t (θ∗)

)
dM

(i)
t

− 1

T

d∑
i=1

∫ T

0

(
λ
(i)
t (θ)− λ

(i)
t (θ∗)− log

( λ
(i)
t (θ)

λ
(i)
t (θ∗)

)
λ
(i)
t (θ∗)

)
dt.
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Here, we use Definition (14) in the first equality, Definition (3) in the second
equality, algebraic manipulation in the third equality, Definition (15) and alge-

braic manipulation in the fourth equality. We define I
(i)
T (θ) as

I
(i)
T (θ) =

1

T

∫ T

0

log
( λ

(i)
t (θ)

λ
(i)
t (θ∗)

)
dM

(i)
t .

We also define II
(i)
T (θ) as

II
(i)
T (θ) =

1

T

∫ T

0

(
λ
(i)
t (θ)− λ

(i)
t (θ∗)− log

( λ
(i)
t (θ)

λ
(i)
t (θ∗)

)
λ
(i)
t (θ∗)

)
dt.

We first show that the martingale term disappears uniformly asymptotically
in probability, i.e. that

sup
θ∈Θ

∣∣∣ d∑
i=1

I
(i)
T (θ)

∣∣∣ P→ 0. (16)

Since L2 convergence implies convergence in probability, it is sufficient to show
Expression (16) that

E
[(

sup
θ∈Θ

∣∣∣ d∑
i=1

I
(i)
T (θ)

∣∣∣)2]
→ 0. (17)

By the triangular inequality, we can deduce that

E
[(

sup
θ∈Θ

∣∣∣ d∑
i=1

I
(i)
T (θ)

∣∣∣)2]
≤ E

[(
sup
θ∈Θ

d∑
i=1

∣∣∣I(i)T (θ)
∣∣∣)2]

. (18)

Then, the definition of I
(i)
T (θ) yields

E
[(

sup
θ∈Θ

d∑
i=1

∣∣∣I(i)T (θ)
∣∣∣)2]

= E
[(

sup
θ∈Θ

d∑
i=1

∣∣∣ 1
T

∫ T

0

log
( λ

(i)
t (θ)

λ
(i)
t (θ∗)

)
dM

(i)
t

∣∣∣)2]
. (19)

By supremum properties, we get

E
[(

sup
θ∈Θ

d∑
i=1

∣∣∣ 1
T

∫ T

0

log
( λ

(i)
t (θ)

λ
(i)
t (θ∗)

)
dM

(i)
t

∣∣∣)2]
(20)

≤ E
[( d∑

i=1

sup
θ∈Θ

∣∣∣ 1
T

∫ T

0

log
( λ

(i)
t (θ)

λ
(i)
t (θ∗)

)
dM

(i)
t

∣∣∣)2]
.

By the triangular inequality, we can deduce that

E
[( d∑

i=1

sup
θ∈Θ

∣∣∣ 1
T

∫ T

0

log
( λ

(i)
t (θ)

λ
(i)
t (θ∗)

)
dM

(i)
t

∣∣∣)2]
(21)

≤ E
[( d∑

i=1

sup
θ∈Θ

1

T

∫ T

0

∣∣∣ log ( λ
(i)
t (θ)

λ
(i)
t (θ∗)

)∣∣∣dM (i)
t

)2]
.
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Again by supremum properties, we can deduce that

E
[( d∑

i=1

sup
θ∈Θ

1

T

∫ T

0

∣∣∣ log ( λ
(i)
t (θ)

λ
(i)
t (θ∗)

)∣∣∣dM (i)
t

)2]
(22)

≤ E
[( d∑

i=1

1

T

∫ T

0

sup
θ∈Θ

∣∣∣ log ( λ
(i)
t (θ)

λ
(i)
t (θ∗)

)∣∣∣dM (i)
t

)2]
.

By an algebraic manipulation, we can deduce that

E
[( d∑

i=1

1

T

∫ T

0

sup
θ∈Θ

∣∣∣ log ( λ
(i)
t (θ)

λ
(i)
t (θ∗)

)∣∣∣dM (i)
t

)2]
(23)

≤
d∑

i=1

C

T 2
E
[( ∫ T

0

sup
θ∈Θ

∣∣∣ log ( λ
(i)
t (θ)

λ
(i)
t (θ∗)

)∣∣∣dM (i)
t

)2]
.

By an application of Burkholder-Davis-Gundy inequalites (see Expression (2.1.32)
in Jacod and Protter (2012) (p. 39)) with the fact that Mt is an Ft-local mar-
tingale, we obtain

d∑
i=1

C

T 2
E
[( ∫ T

0

sup
θ∈Θ

∣∣∣ log ( λ
(i)
t (θ)

λ
(i)
t (θ∗)

)∣∣∣dM (i)
t

)2]
(24)

≤
d∑

i=1

C

T 2
E
[ ∫ T

0

sup
θ∈Θ

log
( λ

(i)
t (θ)

λ
(i)
t (θ∗)

)2

λ
(i)
t (θ∗)2dt

]
.

By the inequality log(x) ≤ 1 + x, we can deduce that

d∑
i=1

C

T 2
E
[ ∫ T

0

sup
θ∈Θ

log
( λ

(i)
t (θ)

λ
(i)
t (θ∗)

)2

λ
(i)
t (θ∗)2dt

]
(25)

≤
d∑

i=1

C

T 2
E
[ ∫ T

0

sup
θ∈Θ

(
1 +

λ
(i)
t (θ)

λ
(i)
t (θ∗)

)2

λ
(i)
t (θ∗)2dt

]
.

This can be reexpressed as

d∑
i=1

C

T 2
E
[ ∫ T

0

sup
θ∈Θ

(
1 +

λ
(i)
t (θ)

λ
(i)
t (θ∗)

)2

λ
(i)
t (θ∗)2dt

]
(26)

=

d∑
i=1

C

T 2
E
[ ∫ T

0

sup
θ∈Θ

(
λ
(i)
t (θ∗)2 + 2λ

(i)
t (θ)λ

(i)
t (θ∗) + λ

(i)
t (θ)2

)
dt
]
.

By Tonelli theorem, this can be reexpressed as

d∑
i=1

C

T 2
E
[ ∫ T

0

sup
θ∈Θ

(
λ
(i)
t (θ∗)2 + 2λ

(i)
t (θ)λ

(i)
t (θ∗) + λ

(i)
t (θ)2

)
dt
]

(27)

=

d∑
i=1

C

T 2

∫ T

0

E
[
sup
θ∈Θ

(
λ
(i)
t (θ∗)2 + 2λ

(i)
t (θ)λ

(i)
t (θ∗) + λ

(i)
t (θ)2

)
dt
]
.
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By Expressions (17) to (27) with Assumption 1 (d), we can prove Expression

(16). To prove that |
∑d

i=1 II
(i)
T (θ)− Y (θ) | P→ 0, we can use Lemma 1.

In the following lemma, we will prove the consistency of the inference pro-
cedure based on MLE. This weakens the assumptions used in Theorem 3.9 (p.
1807) from Clinet and Yoshida (2017).

Lemma 3. We assume that Assumptions 1 (a), (b), (c), (d) and (e) hold. We
have the consistency of the inference procedure based on MLE, i.e.

θ̂T
P→ θ∗.

Proof of Lemma 3. By the definition (14), we can deduce that YT (θ) ≤ 0 for
any θ ∈ Θ and Y (θ∗) = 0. By Assumption 1 (e), we have that θ∗ is a global
maximum of Y . We can then conclude by Lemma 2.

In the following lemma, we give a more explicit form to the partial derivatives
and the Hessian matrix of the log likelihood. This extends Lemma A.1 (p. 1824)
in Clinet and Yoshida (2017).

Lemma 4. We assume that Assumptions 1 (a), (f) and (g) hold. For any θ ∈ Θ
and any T > 0, we have that lT (θ) is a.s. finite and is differentiable a.s. with
partial derivatives equal to

∂θlT (θ) =

d∑
i=1

∫ T

0

∂θλ
(i)
t (θ)

λ
(i)
t (θ)

1{λ(i)
t >0}dN

(i)
t −

d∑
i=1

∫ T

0

∂θλ
(i)
t (θ)dt. (28)

Moreover, we have that lT (θ) is differentiable twice a.s. and that its Hessian
matrix satisfies

∂2θ lT (θ) =

d∑
i=1

∫ T

0

∂θ

(∂θλ(i)t (θ)

λ
(i)
t (θ)

)
1{λ(i)

t >0}dN
(i)
t −

d∑
i=1

∫ T

0

∂2θλ
(i)
t (θ)dt.(29)

Proof. We define I
(i)
T as

I
(i)
T =

∫ T

0

log(λ
(i)
t (θ))dN

(i)
t .

We also define II
(i)
T as

II
(i)
T =

∫ T

0

λ
(i)
t (θ)dt.

From the definition (3), we have the decomposition

lT (θ) =

d∑
i=1

(
I
(i)
T (θ)− II

(i)
T (θ)

)
.
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First, we show that, for any θ ∈ Θ, any T > 0 and any i = 1, · · · , d, we have

that I
(i)
T (θ) is a.s. finite and a.s. differentiable with partial derivatives equal to

∂θI
(i)
T =

∫ T

0

∂θ log(λ
(i)
t (θ))dN

(i)
t . (30)

Since N
(i)
t is a simple point process, I

(i)
T (θ) can be reexpressed as

I
(i)
T (θ) =

∑
k∈N∗ s.t. 0<T

(i)
k <T

log
(
λ
(i)

T
(i)
k

(θ)
)
. (31)

Since N
(i)
t is a simple point process, we have that the number of terms in the

sum and each term are a.s. finite. Then, we can deduce that I
(i)
T (θ) is a.s. finite.

As the intensity process is differentiable a.e. a.s. by Assumption 1 (f) and by

linearity of the derivative, we can deduce that I
(i)
T (θ) is a.s. differentiable and

that a.s.
∂θI

(i)
T (θ) =

∑
k∈N∗ s.t. 0<T

(i)
k <T

∂θ log
(
λ
(i)

T
(i)
k

(θ)
)
.

By Equation (31), this equality can be reexpressed as Equation (30). Finally,
we get by differentiating the term inside the integral that

∂θI
(i)
T =

∫ T

0

∂θλ
(i)
t (θ)

λ
(i)
t (θ)

1{λ(i)
t >0}dN

(i)
t . (32)

For any θ ∈ Θ, any T > 0 and any i = 1, · · · , d, we have that II
(i)
T (θ) is a.s.

finite and differentiable with partial derivatives equal to

∂θII
(i)
T (θ) =

∫ T

0

∂θλ
(i)
t (θ)dt. (33)

Since N
(i)
t is a simple point process, II

(i)
T (θ) is a.s. finite. To show Equation (33),

we show that the conditions for dominated convergence theorem are satisfied.
We get by Assumption 1 (g) that the conditions are satisfied. Thus, we can
deduce Equation (33). Finally, Equations (32) and (33) yield Equation (28). We
can show Equation (29) with similar arguments.

In the following lemma, we give a different form to the Hessian matrix of the
log likelihood. This is a direct application of Lemma 4.

Lemma 5. We assume that Assumptions 1 (a), (f) and (g) hold. For any θ ∈ Θ
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and any T > 0, we have that the Hessian matrix of lT (θ) can be rewritten as

∂2θ lT (θ) =

d∑
i=1

∫ T

0

∂θ

(∂θλ(i)t (θ)

λ
(i)
t (θ)

)
1{λ(i)

t >0}dM
(i)
t

−
d∑

i=1

∫ T

0

(∂θλ
(i)
t )⊗2(θ)

λ
(i)
t (θ∗)

λ
(i)
t (θ)2

1{λ(i)
t >0}dt

+

d∑
i=1

∫ T

0

(∂2θλ
(i)
t )(θ)

λ
(i)
t (θ)− λ

(i)
t (θ∗)

λ
(i)
t (θ)

1{λ(i)
t >0}dt. (34)

Proof. The proof of this lemma is a direct application of Lemma 4.

We provide the proof of Theorem 1 in what follows. This weakens the as-
sumptions used in Theorem 3.11 (p. 1809) from Clinet and Yoshida (2017).
We consider a different approach in the proofs that circumvents the use of the
Sobolev embedding theorem. This new approach is based on the application of
Burkholder-Davis-Gundy inequalites.

Proof of Theorem 1. By Assumption (f), we have that lt is continuously differ-
entiable in θ ∈ Θ a.s. for any t ∈ R+. Thus, we can apply a Taylor expansion.
We obtain that

∂θlT (θ̂T ) = ∂θlT (θ
∗) + ∂2θ lT (ζ)(θ̂T − θ∗),

where ζ is between θ̂T and θ∗. Since θ̂T the maximizer of lT by definition, we
can deduce that ∂θlT (θ̂T ) = 0. This yields that

0 = ∂θlT (θ
∗) + ∂2θ lT (ζ)(θ̂T − θ∗).

If we multiply by −Γ−1
√
T

on both sides of the equation, we obtain that

0 =
−Γ−1

√
T

∂θlT (θ
∗) +

−Γ−1

√
T

∂2θ lT (ζ)(θ̂T − θ∗).

This equation can be reexpressed as

0 =
−Γ−1

√
T

∂θlT (θ
∗) +

−Γ−1

T
∂2θ lT (ζ)

√
T (θ̂T − θ∗).

To prove the theorem, it remains to show that

−Γ−1

√
T

∂θlT (θ
∗)

D→ Γ−1/2ξ, (35)

−Γ−1

T
∂2θ lT (ζ)

P→ 1. (36)

Here, 1 is the n× n dimensional unity matrix. Then, the theorem follows using
Slutsky’s theorem.
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We prove now Equation (35). Equation (28) from Lemma 4 can be reexpressed
as

∂θlT (θ
∗) =

d∑
i=1

∫ T

0

∂θλ
(i)
t (θ∗)

λ
(i)
t (θ∗)

1{λ(i)
t >0}dM

(i)
t . (37)

By Equation (37), we have that

−Γ−1

√
T

∂θlT (θ̂T ) =
−Γ−1

√
T

d∑
i=1

∫ T

0

∂θλ
(i)
t (θ∗)

λ
(i)
t (θ∗)

1{λ(i)
t >0}dM

(i)
t .

For u ∈ [0, 1], we define Su as

Su =
−Γ−1

√
T

d∑
i=1

∫ uT

0

∂θλ
(i)
t (θ∗)

λ
(i)
t (θ∗)

1{λ(i)
t >0}dM

(i)
t . (38)

We use Theorem V III.3.24 in Jacod and Shiryaev (2003). We can calculate
that

⟨S, S⟩u =
Γ−2

T

d∑
i=1

∫ uT

0

∂θλ
(i)
t (θ∗)2

λ
(i)
t (θ∗)2

1{λ(i)
t >0}dt

P→ uΓ−1.

We define ∆Ss as the jump of the process S at time s. We prove now that
Lindeberg’s condition is satisfied. For any a > 0, we have

E
[∑
s≤u

|∆Ss|21|∆Ss|>a

]
≤ E

[1
a

∑
s≤u

|∆Ss|3
]

= E
[1
a

∑
s≤u

∣∣∣−Γ−1

√
T

d∑
i=1

∫ uT

0

∂θλ
(i)
t (θ∗)

λ
(i)
t (θ∗)

1{λ(i)
t >0}dM

(i)
t

∣∣∣3]

= E
[1
a

∑
s≤u

∣∣∣−Γ−1

√
T

d∑
i=1

∫ uT

0

∂θλ
(i)
t (θ∗)

λ
(i)
t (θ∗)

1{λ(i)
t >0}dN

(i)
t

∣∣∣3].
Here, we use the fact that 1|∆Ss|>a ≤ 1

a |∆Ss| in the inequality, the first equality
is due to Definition (38), and the second equality is explained by the fact that
the compensator term does not jump. Then, we have

E
[∑
s≤u

|∆Ss|21|∆Ss|>a

]
≤ E

[1
a

∑
s≤u

∣∣∣−Γ−1

√
T

d∑
i=1

∫ uT

0

∂θλ
(i)
t (θ∗)

λ
(i)
t (θ∗)

1{λ(i)
t >0}dN

(i)
t

∣∣∣3]

= E
[1
a

d∑
i=1

∫ uT

0

∣∣∣−Γ−1

√
T

∂θλ
(i)
t (θ∗)

λ
(i)
t (θ∗)

∣∣∣31{λ(i)
t >0}dN

(i)
t

]
= E

[1
a

d∑
i=1

∫ uT

0

∣∣∣−Γ−1

√
T

∂θλ
(i)
t (θ∗)

λ
(i)
t (θ∗)

∣∣∣3λ(i)t (θ∗)dt
]
.



/Inference for Hawkes processes with a general kernel 17

Here, the first and second equalities are a consequence of the form of dN
(i)
t . We

can continue to bound the Linderberg’s term by

E
[∑
s≤u

|∆Ss|21|∆Ss|>a

]
≤ E

[1
a

d∑
i=1

∫ uT

0

∣∣∣−Γ−1

√
T

∂θλ
(i)
t (θ∗)

λ
(i)
t (θ∗)

∣∣∣3λ(i)t (θ∗)dt
]

= E
[1
a

∣∣∣−Γ−1

√
T

∣∣∣3 d∑
i=1

∫ uT

0

∣∣∣∂θλ(i)t (θ∗)

λ
(i)
t (θ∗)

∣∣∣3λ(i)t (θ∗)dt
]

= E
[1
a

∣∣∣−Γ−1

√
T

∣∣∣3 d∑
i=1

∫ uT

0

|∂θλ(i)t (θ∗)|3

λ
(i)
t (θ∗)2

dt
]
.

Finally, we can bound the Linderberg’s term by

E
[∑
s≤u

|∆Ss|21|∆Ss|>a

]
≤ E

[1
a

∣∣∣−Γ−1

√
T

∣∣∣3 d∑
i=1

∫ uT

0

|∂θλ(i)t (θ∗)|3

λ
(i)
t (θ∗)2

dt
]

=
1

a

∣∣∣−Γ−1

√
T

∣∣∣3 d∑
i=1

∫ uT

0

E
[ |∂θλ(i)t (θ∗)|3

λ
(i)
t (θ∗)2

dt
]

≤ CuT

a

∣∣∣−Γ−1

√
T

∣∣∣3
→ 0.

Here, we use Tonelli theorem in the equality, and Assumption 1 (h) in the second
inequality. We have thus shown that Lindeberg’s condition holds, i.e. Equation
(35) is satisfied.

We prove now Equation (36), i.e. that −Γ−1

T ∂2θ lT (ζ)
P→ 1. Then, it is sufficient

to prove that

|Γ + T−1∂2θ lT (ζ)|
P→ 0.

If we define V as a shrinking ball centered on θ∗, it is then sufficient to show
that

sup
θ∈V

|Γ + T−1∂2θ lT (θ)|
P→ 0. (39)

We define I
(i)
T (θ) as

I
(i)
T (θ) =

∫ T

0

∂θ

(∂θλ(i)t (θ)

λ
(i)
t (θ)

)
1{λ(i)

t >0}dM
(i)
t .

We also define II
(i)
T (θ) as

II
(i)
T (θ) =

∫ T

0

(∂θλ
(i)
t )⊗2(θ)

λ
(i)
t (θ∗)

λ
(i)
t (θ)2

1{λ(i)
t >0}dt.
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Finally, we define III
(i)
T (θ) as

III
(i)
T (θ) =

∫ T

0

(∂2θλ
(i)
t )(θ)

λ
(i)
t (θ)− λ

(i)
t (θ∗)

λ
(i)
t (θ)

1{λ(i)
t >0}dt.

By Equation (29) from Lemma 4, Expression (39) can be reexpressed as

sup
θ∈V

∣∣∣Γ + T−1
d∑

i=1

(
I
(i)
T (θ)− II

(i)
T (θ) + III

(i)
T (θ)

)∣∣∣ P→ 0. (40)

By Assumption 1 (h), we can prove with the same arguments from the proof of
Expression (16) that

sup
θ∈V

∣∣∣T−1
d∑

i=1

I
(i)
T (θ)

∣∣∣ P→ 0. (41)

By Assumption 1 (c), we obtain that

sup
θ∈V

∣∣∣Γ− T−1
d∑

i=1

II
(i)
T (θ∗)

∣∣∣ P→ 0. (42)

We can deduce by the triangular inequality and supremum properties that

sup
θ∈V

∣∣∣T−1
d∑

i=1

II
(i)
T (θ)− T−1

d∑
i=1

II
(i)
T (θ∗)

∣∣∣ ≤ d∑
i=1

sup
θ∈V

∣∣∣T−1
(
II

(i)
T (θ)− II

(i)
T (θ∗)

)∣∣∣. (43)
By the definition of II

(i)
T (θ), we have that

sup
θ∈V

∣∣∣T−1
(
II

(i)
T (θ)− II

(i)
T (θ∗)

)∣∣∣ (44)

= sup
θ∈V

∣∣∣T−1

∫ T

0

( (∂θλ(i)t )⊗2(θ)

λ
(i)
t (θ)2

− (∂θλ
(i)
t )⊗2(θ∗)

λ
(i)
t (θ∗)2

)
λ
(i)
t (θ∗)1{λ(i)

t >0}dt
∣∣∣.

By Assumption (f), we have that F
(i)
t is continuously differentiable in θ ∈ Θ

a.s. for any t ∈ R+. Thus, we can apply a Taylor expansion. We obtain that

F
(i)
t (θ)− F

(i)
t (θ∗) = ∂θF

(i)
t (θ̃)(θ − θ∗), (45)

where θ̃ is between θ and θ∗. By Equations (44) and (45), we can deduce that

sup
θ∈V

∣∣∣T−1
(
II

(i)
T (θ)− II

(i)
T (θ∗)

)∣∣∣ (46)

≤ sup
θ∈V

∣∣∣T−1

∫ T

0

∂θF
(i)
t (θ̃)(θ − θ∗)λ

(i)
t (θ∗)1{λ(i)

t >0}dt
∣∣∣.
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Then, we obtain by the triangular inequality, supremum and norm properties
that

sup
θ∈V

∣∣∣T−1

∫ T

0

∂θF
(i)
t (θ̃)(θ − θ∗)λ

(i)
t (θ∗)1{λ(i)

t >0}dt
∣∣∣ (47)

= T−1

∫ T

0

sup
θ∈V

∣∣∣∂θF (i)
t (θ̃)

∣∣∣∣∣∣θ − θ∗
∣∣∣λ(i)t (θ∗)1{λ(i)

t >0}dt.

By Assumption (f), we have that ∂θF
(i)
t is continuous in θ∗ a.s. for any t ∈ R+.

Thus, we get that

T−1

∫ T

0

sup
θ∈V

∣∣∣∂θF (i)
t (θ̃)

∣∣∣∣∣∣θ − θ∗
∣∣∣λ(i)t (θ∗)1{λ(i)

t >0}dt (48)

= T−1

∫ T

0

sup
θ∈V

∣∣∣∂θF (i)
t (θ∗)

∣∣∣∣∣∣θ − θ∗
∣∣∣λ(i)t (θ∗)1{λ(i)

t >0}dt+ oP(1).

We define s(V ) as the size of the shrinking ball V . Then, we can deduce that

T−1

∫ T

0

sup
θ∈V

∣∣∣∂θF (i)
t (θ∗)

∣∣∣∣∣∣θ − θ∗
∣∣∣λ(i)t (θ∗)1{λ(i)

t >0}dt (49)

≤ T−1s(V )

∫ T

0

∣∣∣∂θF (i)
t (θ∗)

∣∣∣λ(i)t (θ∗)1{λ(i)
t >0}dt.

By Assumption 1 (h), we get that

T−1s(V )

∫ T

0

∣∣∣∂θF (i)
t (θ∗)

∣∣∣λ(i)t (θ∗)1{λ(i)
t >0}dt

P→ 0. (50)

By Expressions (44) to (50), we can deduce that

sup
θ∈V

∣∣∣T−1
(
II

(i)
T (θ)− II

(i)
T (θ∗)

)∣∣∣ P→ 0. (51)

By Assumption 1 (h), we can prove with the same arguments from the proof of
Expression (51) that

sup
θ∈V

∣∣∣T−1
d∑

i=1

III
(i)
T (θ)

∣∣∣ P→ 0. (52)

Finally, we can deduce Equation (36) by the use of Expressions (39), (40), (41),
(42), (51) and (52).

5. Proofs CLT for Hawkes processes with a general kernel

In this section, we give the proofs of the CLT for Hawkes processes where the
kernel is parametric and general, i.e. Theorem 2.

We first show the following lemma, which corresponds to Assumption 1 (a).
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Lemma 6. We assume that Assumptions 2 (a), (b) and (c) hold. Then, the
family of intensities λ : Ω × R+ × Ω → R+ defined in Equation (7) is F ⊗
B(R+)⊗ B(Θ)-measurable.

Proof of Lemma 6. The proof can be deduced from its definition (7).

We now show the following lemma, which corresponds to Assumption 1 (d).
This complements Lemma C4 in the supplementary materials of Potiron and
Volkov (2025).

Lemma 7. We assume that Assumptions 2 (a), (b), (c) and (d) hold. Then,
we have

sup
t∈R+

∣∣∣∣∣∣ sup
θ∈Θ

|λt(θ)|
∣∣∣∣∣∣
2
< +∞.

Proof of Lemma 7. We first prove that

sup
t∈R+

∣∣∣∣∣∣ sup
θ∈Θ

|λt(θ)|
∣∣∣∣∣∣
1
< +∞. (53)

We have∣∣∣∣∣∣ sup
θ∈Θ

|λt(θ)|
∣∣∣∣∣∣
1

= E
[
sup
θ∈Θ

|λt(θ)|
]

= E
[
sup
θ∈Θ

{ d∑
i=1

λ
(i)
t (θ)

}]
= E

[
sup
θ∈Θ

{ d∑
i=1

ν(i) +

d∑
j=1

∫ t

0

h(i,j)(t− s, κ) dN (j)
s

}]
.

Here, we use the definition of the norm || ||1 in the first equality, the definition
of | | in the second equality, and Definition (7) in the third equality. Then, we
have∣∣∣∣∣∣ sup

θ∈Θ
|λt(θ)|

∣∣∣∣∣∣
1

= E
[
sup
θ∈Θ

{ d∑
i=1

ν(i) +

d∑
j=1

∫ t

0

h(i,j)(t− s, κ)dN (j)
s

}]

≤ E
[
C + sup

θ∈Θ

{ d∑
j=1

∫ t

0

h(i,j)(t− s, κ)dN (j)
s

}]

= C + E
[
sup
θ∈Θ

{ d∑
j=1

∫ t

0

h(i,j)(t− s, κ)dN (j)
s

}]
.

Here, we use Assumption 2 (a) in the inequality, and expectation properties in
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the second equality. Then, we obtain

∣∣∣∣∣∣ sup
θ∈Θ

|λt(θ)|
∣∣∣∣∣∣
1

≤ C + E
[
sup
θ∈Θ

{ d∑
j=1

∫ t

0

h(i,j)(t− s, κ)dN (j)
s

}]

= C + E
[
sup
κ∈Θκ

{ d∑
j=1

∫ t

0

h(i,j)(t− s, κ)dN (j)
s

}]

≤ C + E
[ d∑
j=1

∫ t

0

h(i,j)(t− s, κ+s )dN
(j)
s

]
Here, we use the fact that the kernel depends only on the parameter κ in the
first equality, and Definition (12) in the second inequality. Then, we obtain

∣∣∣∣∣∣ sup
θ∈Θ

|λt(θ)|
∣∣∣∣∣∣
1

≤ C + E
[ d∑
j=1

∫ t

0

h(i,j)(t− s, κ+s )dN
(j)
s

]

= C +

d∑
j=1

∫ t

0

h(i,j)(t− s, κ+s )
∣∣∣∣∣∣λ(j)t (θ)

∣∣∣∣∣∣
1
ds

= C +

d∑
j=1

∣∣∣∣∣∣λ(j)t (θ)
∣∣∣∣∣∣
1

∫ t

0

h(i,j)(t− s, κ+s )ds.

Here, we use point process properties in the first equality, and expectation prop-
erties in the second equality. Then, we have

∣∣∣∣∣∣ sup
θ∈Θ

|λt(θ)|
∣∣∣∣∣∣
1

≤ C +

d∑
j=1

∣∣∣∣∣∣λ(j)t (θ)
∣∣∣∣∣∣
1

∫ t

0

h(i,j)(t− s, κ+s )ds

= C +

d∑
j=1

∣∣∣∣∣∣λ(j)t (θ)
∣∣∣∣∣∣
1
h+

≤ C +
∣∣∣∣∣∣ sup

θ∈Θ
|λt(θ)|

∣∣∣∣∣∣
1
h+.

Here, we use Assumption 2 (d) to get the existence of h+ < 1 in the first equality,
the definition of | | and supremum properties in the second inequality. Thus, we
can deduce that

sup
t∈R+

∣∣∣∣∣∣ sup
θ∈Θ

|λt(θ)|
∣∣∣∣∣∣
1
≤ C + h+ sup

t∈R+

∣∣∣∣∣∣ sup
θ∈Θ

|λt(θ)|
∣∣∣∣∣∣
1
. (54)

Since h+ < 1, Expression (54) implies Expression (53). Finally, the lemma
can be shown by an application of Burkholder-Davis-Gundy inequalites with
Assumption 2 (d).

We now show the following lemma, which corresponds to Assumption 1 (f).
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Lemma 8. We assume that Assumptions 2 (a), (b), (c), (d) and (e) hold. For
any s ∈ R+ a.e., we have a.s. that θ → λs(θ) is in C2(Θ,Rd

+) and there exists

a continuous extension to Θ.

Proof of Lemma 8. By Definition (7), we have

λt(θ) = ν +

∫ t

0

h(t− s, κ) dNs.

Since ν is in C2(Θ,Rd
+) and there exists a continuous extension to Θ, it remains

to show the lemma with

λt,h(θ) =

∫ t

0

h(t− s, κ) dNs.

For i = 1, · · · , d, the intensity can be rewritten as

λ
(i)
t,h(θ) =

d∑
j=1

∫ t

0

h(i,j)(t− s, κ) dN (j)
s .

Since N
(i)
t is a simple point process, λ

(i)
t,h(θ) can be reexpressed as

λ
(i)
t,h(θ) =

d∑
j=1

∑
k∈N∗ s.t. 0<T

(j)
k <t

h(i,j)
(
t− T

(j)
k , κ

)
.

Since N
(i)
t is a simple point process, we have that the number of terms in the

sum and each term are a.s. finite. Then, we can deduce that λ
(i)
t,h(θ) is a.s. finite.

As the kernel is differentiable a.e. by Assumption 2 (e), we can deduce that

λ
(i)
t,h(θ) is a.s. differentiable and

∂θλ
(i)
t,h(θ) =

d∑
j=1

∑
k∈N∗ s.t. 0<T

(j)
k <t

∂θh
(i,j)

(
t− T

(j)
k , κ

)
.

As the kernel is differentiable twice a.e. by Assumption 2 (e), we can deduce

that λ
(i)
t,h(θ) is a.s. differentiable and

∂2θλ
(i)
t,h(θ) =

d∑
j=1

∑
k∈N∗ s.t. 0<T

(j)
k <t

∂2θh
(i,j)(t− T

(j)
k , κ).

Thus, we have a.s. that θ → λs(θ) for any s ∈ R+ a.e. is in C2(Θ,Rd
+), and

there exists a continuous extension to Θ.

We now show the following lemma, which corresponds to Assumption 1 (g).
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Lemma 9. We assume that Assumptions 2 (a), (b), (c), (d), (e) and (f)

hold. For any θ ∈ Θ and T > 0, we have P(
∫ T

0
|∂θλt(θ)|dt < ∞) = 1 and

P(
∫ T

0
|∂2θλt(θ)|dt <∞) = 1.

Proof of Lemma 9. By Definition (7), we have

λt(θ) = ν +

∫ t

0

h(t− s, κ) dNs.

Since ν satisfies P(
∫ T

0
|∂θν|dt <∞) = 1 and P(

∫ T

0
|∂2θν|dt <∞) = 1, it remains

to show the lemma with

λt,h(θ) =

∫ t

0

h(t− s, κ) dNs.

For i = 1, · · · , d, λ(i)t,h(θ) can be rewritten as

λ
(i)
t,h(θ) =

d∑
j=1

∫ t

0

h(i,j)(t− s, κ) dN (j)
s .

Since N
(i)
t is a simple point process, λ

(i)
t,h(θ) can be reexpressed as

λ
(i)
t,h(θ) =

d∑
j=1

∑
k∈N∗ s.t. 0<T

(j)
k <t

h(i,j)
(
t− T

(j)
k , κ

)
.

Since N
(i)
t is a simple point process, we have that the number of terms in the

sum and each term are a.s. finite. Then, we can deduce that λ
(i)
t,h(θ) is a.s. finite.

As the kernel is differentiable a.e. by Assumption 2 (e), we can deduce that

λ
(i)
t,h(θ) is a.s. differentiable and

∂θλ
(i)
t,h(θ) =

d∑
j=1

∑
k∈N∗ s.t. 0<T

(j)
k <t

∂θh
(i,j)

(
t− T

(j)
k , κ

)
.

As N
(i)
t is a simple point process, ∂θλ

(i)
t,h(θ) can be reexpressed as

∂θλ
(i)
t,h(θ) =

d∑
j=1

∫ t

0

∂θh
(i,j)(t− s, κ) dN (j)

s .

Then, we obtain P(
∫ T

0
|∂θλt(θ)|dt <∞) = 1 by Assumption 2 (f). As the kernel

is differentiable twice a.e. by Assumption 2 (e), we can deduce that λ
(i)
t,h(θ) is

a.s. differentiable twice and

∂2θλ
(i)
t,h(θ) =

d∑
j=1

∑
k∈N∗ s.t. 0<T

(j)
k <t

∂2θh
(i,j)(t− T

(j)
k , κ).
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Since N
(i)
t is a simple point process, ∂2θλ

(i)
t,h(θ) can be reexpressed as

∂2θλ
(i)
t,h(θ) =

d∑
j=1

∫ t

0

∂2θh
(i,j)(t− s, κ) dN (j)

s .

Finally, we obtain P(
∫ T

0
|∂2θλt(θ)|dt <∞) = 1 by Assumption 2 (f).

We now show the following lemma, which corresponds to Assumption 1 (h).

Lemma 10. We assume that Assumption 2 holds. For any i = 1, · · · , d, we
have

sup
t∈R+

∣∣∣∣∣∣ ∣∣∣∂θ(∂θλ(i)t (θ∗)

λ
(i)
t (θ∗)

)∣∣∣λ(i)t (θ∗)1{λ(i)
t >0}

∣∣∣∣∣∣
2

< +∞,

sup
t∈R+

∣∣∣∣∣∣ ∣∣∣∂θF (i)
t (θ∗)

∣∣∣λ(i)t (θ∗)1{λ(i)
t >0}

∣∣∣∣∣∣
1

< +∞,

sup
t∈R+

∣∣∣∣∣∣ ∣∣∣(∂2θλ(i)t )(θ∗)
∣∣∣ ∣∣∣∂θλ(i)t (θ∗)

λ
(i)
t (θ∗)

∣∣∣1{λ(i)
t >0}

∣∣∣∣∣∣
1

< +∞.

Proof of Lemma 10. We define I as

I = sup
t∈R+

∣∣∣∣∣∣ ∣∣∣∂θ(∂θλ(i)t (θ∗)

λ
(i)
t (θ∗)

)∣∣∣λ(i)t (θ∗)1{λ(i)
t >0}

∣∣∣∣∣∣
2
.

By Assumptions 2 (b) and (c), we can deduce that

I = sup
t∈R+

∣∣∣∣∣∣ ∣∣∣∂θ(∂θλ(i)t (θ∗)

λ
(i)
t (θ∗)

)∣∣∣λ(i)t (θ∗)
∣∣∣∣∣∣
2
.

By derivative formula, we obtain

I = sup
t∈R+

∣∣∣∣∣∣ ∣∣∣∂2θλ(i)t (θ∗)− (∂θλ
(i)
t )⊗2(θ∗)

λ
(i)
t (θ∗)2

∣∣∣λ(i)t (θ∗)
∣∣∣∣∣∣
2
.

This can be reexpressed as

I = sup
t∈R+

∣∣∣∣∣∣ ∣∣∣∂2θλ(i)t (θ∗)− (∂θλ
(i)
t )⊗2(θ∗)

λ
(i)
t (θ∗)

∣∣∣ ∣∣∣∣∣∣
2
.

By Assumption 2 (b), we can deduce that

I <
1

ν−
sup
t∈R+

∣∣∣∣∣∣ ∣∣∣∂2θλ(i)t (θ∗)− (∂θλ
(i)
t )⊗2(θ∗)

∣∣∣ ∣∣∣∣∣∣
2
.

By Assumption 2 (g) and Equation (7), we obtain

I < +∞. (55)
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We define II as

II = sup
t∈R+

∣∣∣∣∣∣ ∣∣∣∂θF (i)
t (θ∗)

∣∣∣λ(i)t (θ∗)1{λ(i)
t >0}

∣∣∣∣∣∣
1
.

By definition of F
(i)
t (θ∗), we can deduce that

II = sup
t∈R+

∣∣∣∣∣∣ ∣∣∣∂θ( (∂θλ(i)t )⊗2(θ∗)

λ
(i)
t (θ∗)2

)∣∣∣λ(i)t (θ∗)1{λ(i)
t >0}

∣∣∣∣∣∣
1
.

By Assumptions 2 (b) and (c), we can deduce that

II = sup
t∈R+

∣∣∣∣∣∣ ∣∣∣∂θ( (∂θλ(i)t )⊗2(θ∗)

λ
(i)
t (θ∗)2

)∣∣∣λ(i)t (θ∗)
∣∣∣∣∣∣
1
.

By Assumptions 2 (b), (g) and Equation (7), we obtain

II < +∞. (56)

We define III as

III = sup
t∈R+

∣∣∣∣∣∣ ∣∣∣(∂2θλ(i)t )(θ∗)
∣∣∣ ∣∣∣∂θλ(i)t (θ∗)

λ
(i)
t (θ∗)

∣∣∣1{λ(i)
t >0}

∣∣∣∣∣∣
1
.

By Assumptions 2 (b) and (c), we can deduce that

III = sup
t∈R+

∣∣∣∣∣∣ ∣∣∣(∂2θλ(i)t )(θ∗)
∣∣∣ ∣∣∣∂θλ(i)t (θ∗)

λ
(i)
t (θ∗)

∣∣∣ ∣∣∣∣∣∣
1
.

By Assumption 2 (b), we can deduce that

III <
1

ν−
sup
t∈R+

∣∣∣∣∣∣ ∣∣∣(∂2θλ(i)t )(θ∗)
∣∣∣ ∣∣∣∂θλ(i)t (θ∗)

∣∣∣ ∣∣∣∣∣∣
1
.

By Assumption 2 (g) and Equation (7), we obtain

III < +∞. (57)

We can prove the lemma with Expressions (55), (56) and (57).

The following definition introduces the notion of mixing. This corresponds to
the definition from Section 3.4 in Clinet and Yoshida (2017). See also Definition
C2 in the supplementary materials of Potiron and Volkov (2025).

Definition 3. We say that X is C-mixing, for some set of functions C from E
to R, if for any ϕ, ψ ∈ C and i = 1, · · · , d, we have

µ
(i)
T = sup

s∈R+

∣∣Cov [ϕ(X(i)
s ), ψ(X

(i)
s+T )

]∣∣ → 0.
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The following lemma states that Xt is mixing in the sense of Definition 3.
This extends Lemma A.6 (p. 1834) in Clinet and Yoshida (2017) and Proposition
C1 (i) in the supplementary materials of Potiron and Volkov (2025).

Lemma 11. We assume that Assumption 2 holds. For any θ ∈ Θ, Xt is
Cb(E,R)-mixing in the sense of Definition 3.

Proof of Lemma 11. We first define the truncation of X
(i)
T at time t ≤ T as

X̃
(i)
t,T =

(
λ(i)s (θ∗),

d∑
j=1

∫ T

t

h(i,j)(T−u, θ)dN (i)
u ,

d∑
j=1

∫ T

t

∂θ
(
h(i,j)(T−u, θ)

)
dN (i)

u

)
.

Then, we can reexpress µ
(i)
T as

µ
(i)
T = sup

s∈R+

∣∣Cov [ϕ(X(i)
s ), ψ(X

(i)
s+T )

]∣∣
= sup

s∈R+

∣∣Cov [ϕ(X(i)
s ), ψ(X

(i)
s+T )− ψ(X̃

(i)

s+
√
T ,s+T

) + ψ(X̃
(i)

s+
√
T ,s+T

)
]∣∣.

Here, we use Definition 3 in the first equality. Using the triangular inequality,

covariance and supremum properties, we can bound µ
(i)
T as

µ
(i)
T ≤ sup

s∈R+

∣∣Cov [ϕ(X(i)
s ), ψ(X

(i)
s+T )− ψ(X̃

(i)

s+
√
T ,s+T

)
]∣∣ (58)

+ sup
s∈R+

∣∣Cov [ϕ(X(i)
s ), ψ(X̃

(i)

s+
√
T ,s+T

)
]∣∣.

We define I
(i)
T as

I
(i)
T = sup

s∈R+

∣∣Cov [ϕ(X(i)
s ), ψ(X

(i)
s+T )− ψ(X̃

(i)

s+
√
T ,s+T

)
]∣∣.

We also define II
(i)
T as

II
(i)
T = sup

s∈R+

∣∣Cov [ϕ(X(i)
s ), ψ(X̃

(i)

s+
√
T ,s+T

)
]∣∣.

By the definition of I
(i)
T , covariance and supremum properties, we can deduce

that

I
(i)
T ≤ sup

s∈R+

Var
[
ϕ(X(i)

s )
]
sup
s∈R+

Var
[
ψ(X

(i)
s+T )− ψ(X̃

(i)

s+
√
T ,s+T

)
]
. (59)

By Lemmas 7 and 10, we get

sup
s∈R+

Var
[
ϕ(X(i)

s )
]
≤ C. (60)

Since
√
T → ∞, by Equation (8) and Assumption 2 (d), we obtain

sup
s∈R+

Var
[
ψ(X

(i)
s+T )− ψ(X̃

(i)

s+
√
T ,s+T

)
]
→ 0. (61)
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By Expressions (59), (60) and (61), we can deduce that

I
(i)
T → 0. (62)

As T → ∞, by Equation (8) and Assumption 2 (d), we obtain

II
(i)
T → 0. (63)

By Expressions (58), (62) and (63), we can deduce that

µ
(i)
T → 0.

The following lemma states that Xt is stable. This extends Lemma A.6 (p.
1834) in Clinet and Yoshida (2017) and Proposition C1 (ii) in Potiron and
Volkov (2025).

Lemma 12. We assume that Assumption 2 hold. For any θ ∈ Θ, Xt is stable,

i.e. there exists an R∗
+-valued random variable λ

(i)
l such that for any i = 1, · · · , d

we have
X

(i)
T

D→
(
λ
(i)
l (θ∗), λ

(i)
l (θ), ∂θλ

(i)
l (θ)

)
.

Proof of Lemma 12. The proof is obtained by an application of Theorem 1 and
Lemma 4 in Brémaud and Massoulié (1996) with Assumption 2 (d).

The following lemma states thatXt is ergodic in the sense of Definition 1. This
extends Lemma 3.16 (p. 1815) in Clinet and Yoshida (2017) and Proposition C1
(iii) in Potiron and Volkov (2025).

Lemma 13. We assume that Assumptions 2 hold. For any θ ∈ Θ, Xt is ergodic
in the sense of Definition 1.

Proof of Lemma 13. For ψ ∈ Cb(E,R), we define V (i)(ψ) as

V (i)(ψ) =
1

T

∫ T

0

ψ(X(i)
s )ds. (64)

To show that Xt is ergodic, it is sufficient to show that V (i)(ψ)
P→ π(i)(ψ) where

π(i)(ψ) = E
[
ψ(λ

(i)
l (θ∗), λ

(i)
l (θ), ∂θλ

(i)
l (θ))

]
.

Since L2 convergence implies convergence in probability, it is sufficient to show
L2 convergence. Since for any random variable X and any nonrandom a ∈ R we
have E[(X − a)2] = Var[X] + (E[X]− a)2, we can deduce that

E
[
(V (i)(ψ)− π(i)(ψ))2

]
= Var[V (i)(ψ)] + (E[V (i)(ψ)]− π(i)(ψ))2. (65)

We define I(i) as
I(i) = Var[V (i)(ψ)].
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We also define II(i) as

II(i) = (E[V (i)(ψ)]− π(i)(ψ))2.

We have

I(i) = Var[V (i)(ψ)]

= Var
[ 1
T

∫ T

0

ψ(X(i)
s )ds

]
=

1

T 2
Var

[ ∫ T

0

ψ(X(i)
s )

]
.

Here, we use the definition of I(i) in the first equality, the definition of V (i)(ψ)
in the second equality, and the fact that for any nonrandom a ∈ R and any
random variable X we have Var[aX] = a2 Var[X] in the third equality. Then,
we have

I(i) =
1

T 2
Var

[ ∫ T

0

ψ(X(i)
s )

]
=

1

T 2
lim

K→∞
Var

[ T
K

K−1∑
k=0

ψ(X
(i)
kT/K)

]
=

1

T 2
lim

K→∞

T 2

K2
Var

[K−1∑
k=0

ψ(X
(i)
kT/K)

]
.

Here, we use the approximation of the Riemann sum in the second equality,
and an application of the dominated convergence theorem in the third equality.
Then, we have

I(i) =
1

T 2
lim

K→∞

T 2

K2
Var

[K−1∑
k=0

ψ(X
(i)
kT/K)

]
=

1

T 2
lim

K→∞

T 2

K2

K−1∑
k=0

K−1∑
l=0

Cov
[
ψ(X

(i)
kT/K), ψ(X

(i)
lT/K)

]
=

1

T 2

∫ T

0

∫ T

0

Cov
[
ψ(X(i)

s ), ψ(X(i)
u )

]
dsdu.

Here, we use Bienayme’s identity in the second equality. By Definition 3, we
obtain

I(i) ≤ 1

T 2

∫ T

0

∫ T

0

µ
(i)
|s−u|dsdu.

A split of the integral into two terms leads to

I(i) ≤ 1

T 2

∫ T

0

∫ T

0

µ
(i)
|s−u|1{|s−u|≤

√
T}dsdu+

1

T 2

∫ T

0

∫ T

0

µ
(i)
|s−u|1{|s−u|>

√
T}dsdu. (66)
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By Lemma 11, there exists µ
(i)
+ > 0 such that for any t ≥ 0 we have µ

(i)
t ≤ µ

(i)
+ .

Then, we obtain that

1

T 2

∫ T

0

∫ T

0

µ
(i)
|s−u|1{|s−u|≤

√
T}dsdu ≤

µ
(i)
+

T 2

∫ nT

0

∫ nT

0

1{|s−u|≤
√
nT}dsdu.(67)

Then, we can deduce that

µ
(i)
+

T 2

∫ nT

0

∫ nT

0

1{|s−u|≤
√
nT}dsdu→ 0. (68)

By Expressions (67) and (68), we can deduce that

1

T 2

∫ T

0

∫ T

0

µ
(i)
|s−u|1{|s−u|≤

√
T}dsdu→ 0. (69)

We also have

1

T 2

∫ T

0

∫ T

0

µ
(i)
|s−u|1{|s−u|>

√
T}dsdu ≤ sup

y>
√
T

µ(i)
y

1

T 2

∫ T

0

∫ T

0

1{|s−u|>
√
T}dsdu.(70)

Then, we obtain

sup
y>

√
T

µ(i)
y

1

T 2

∫ T

0

∫ T

0

1{|s−u|>
√
T}dsdu ≤ sup

y>
√
T

µ(i)
y . (71)

Since µ
(i)
T → 0 by an application of Lemma 11, we can also deduce that

sup
y>

√
T

µ(i)
y → 0. (72)

Expressions (70), (71) and (72) imply that

1

T 2

∫ T

0

∫ T

0

µ
(i)
|s−u|1{|s−u|>

√
T}dsdu→ 0. (73)

Expressions (66), (69) and (73) yield that

I(i) → 0. (74)

By the definitions of II(i) and V (i), we have

II(i) =
(
E
[ 1
T

∫ T

0

ψ(X(i)
s )ds

]
− π(i)(ψ)

)2

.

By Fubini’s theorem with Lemmas 7 and 10, we obtain

II(i) =
( 1

T

∫ T

0

E
[
ψ(X(i)

s )
]
ds− π(i)(ψ)

)2

. (75)
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By Lemma 12, we have that

X
(i)
T

D→
(
λ
(i)
l (θ∗), λ

(i)
l (θ), ∂θλ

(i)
l (θ)

)
.

Since convergence in distribution implies convergence in expectation of any
bounded function, we obtain that

E[ψ(X(i)
T )] → E

[
ψ(λ

(i)
l (θ∗), λ

(i)
l (θ), ∂θλ

(i)
l (θ))

]
.

By the definition of π(i)(ψ), we can deduce

E[ψ(X(i)
T )] → π(i)(ψ). (76)

Expressions (75) and (76) imply that

II(i) → 0. (77)

By Expressions (65), (74) and (77), we can deduce

E
[
(V (i)(ψ)− π(i)(ψ))2

]
.

We now show the following lemma, which corresponds to Assumption 1 (e).
This extends Lemma A.7 (p. 1836) in Clinet and Yoshida (2017) and Lemma
C6 in the supplementary materials of Potiron and Volkov (2025).

Lemma 14. We assume that Assumption 2 holds. Then, for any θ ∈ Θ − θ∗

we have Y (θ) ̸= 0.

Proof of Lemma 14. We assume that θ ∈ Θ and that Y (θ) = 0. By Definition
(4), we can deduce that

0 =

d∑
i=1

∫
E

(
log

( v
u

)
u− (v − u)

)
π
(i)
θ∗ (du, dv, dw).

By Lemma 13, this can be reexpressed as

0 =

d∑
i=1

E
[
log

( λ
(i)
l (θ)

λ
(i)
l (θ∗)

)
λ
(i)
l (θ∗)−

(
λ
(i)
l (θ)− λ

(i)
l (θ∗)

)]
. (78)

For any i = 1, · · · , d we also have by definition

0 ≥ log
( λ

(i)
l (θ)

λ
(i)
l (θ∗)

)
λ
(i)
l (θ∗)−

(
λ
(i)
l (θ)− λ

(i)
l (θ∗)

)
. (79)

Expressions (78) and (79) yield a.s.

0 = log
( λ

(i)
l (θ)

λ
(i)
l (θ∗)

)
λ
(i)
l (θ∗)−

(
λ
(i)
l (θ)− λ

(i)
l (θ∗)

)
.
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We can then deduce that a.s.

λ
(i)
l (θ∗) = λ

(i)
l (θ).

By injectivity of the function θ 7→ (λ
(1)
l (θ), · · · , λ(d)l (θ)), we obtain θ∗ = θ.

We now give the proof of Theorem 2. This is based on an application of
Theorem 1 with the previous lemmas.

Proof of Theorem 2. The proof is an application of Theorem 1 with Lemmas 6,
7 , 8, 9, 10, 13 and 14.

6. Conclusion

In this paper, we have developed inference for point processes when its inten-
sity has a parametric form. The inference procedure was based on MLE. Under
ergodicity of the point process intensity and its derivative, we have shown the
CLT of the inference procedure. As an application, we have considered Hawkes
mutually exciting processes, where the kernel has a general form and is para-
metric. We have shown the ergodicity of the Hawkes process intensity and its
derivative. Moreover, we have obtained the CLT of the inference procedure for
Hawkes processes. In particular, we have allowed for kernels with power distri-
bution, under some smoothness assumptions on the kernel shape. The proofs
were based on the application of Burkholder-Davis-Gundy inequalites.
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