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Abstract

We study Hawkes self-exciting processes where the baseline is driven by an Itô semimartingale.

We consider estimation of the branching ratio, i.e., the integral of the kernel. The estimation pro-

cedure is based on empirical average and variance of local point process estimates. We characterize

feasible statistics induced by central limit theory for the estimation procedure. We develop a test

for any branching ratio value. We also propose a test for a branching ratio value that does not de-

pend on the number of observations against the branching ratio is dependent and tends to unity as

the number of observations increases. The results are obtained with in-fill asymptotics. Simulation

studies corroborate asymptotic theory and show that we improve branching ratio estimation for

this more realistic baseline. An empirical application on high-frequency data of the E-mini S&P500

future contracts shows that the branching ratio is around 0.7 and 0.8, while alternative methods

are positively biased. We interpret the branching ratio as a measure of resiliency of the limit order

book.
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1 Introduction

Point processes are widely used in statistics to characterize event times. The main stylized fact in

this strand of literature, the presence of event clustering in time, motivates the so-called Hawkes self-

exciting processes (see [Hawkes, 1971a] and [Hawkes, 1971b]). If we define Nt as the aggregated number

of events up to time t and λt its corresponding intensity, a standard definition of a Hawkes self-exciting

process is given by

λt = µ+

∫ t

0
ϕ(t− s) dNs.

Here, µ > 0 is the Poisson baseline and ϕ is the non-negative exciting kernel, i.e., ϕ(t) ≥ 0 for any

t ∈ R+. The particular case ϕ = 0 corresponds to a classical Poisson process, thus we can view Hawkes

processes as a natural extension of Poisson processes.

An early application of Hawkes processes evolves in seismology (see [Rubin, 1972], [Vere-Jones, 1978],

[Ozaki, 1979], [Vere-Jones and Ozaki, 1982], [Ogata, 1978] and [Ogata, 1988]). [Ikefuji et al., 2022] an-

alyze the impact of earthquake risk based on marked Hawkes processes. There are also some appli-

cations in financial econometrics (see [Yu, 2004], [Bowsher, 2007], [Embrechts et al., 2011], but also

[Aït-Sahalia et al., 2014], and [Corradi et al., 2020]), finance (see [Large, 2007], [Aït-Sahalia et al., 2015]

and [Fulop et al., 2015]) and in quantitative finance (see [Chavez-Demoulin et al., 2005], but also the

papers [Bacry et al., 2013], [Jaisson and Rosenbaum, 2015] and [Morariu-Patrichi and Pakkanen, 2022]).

See also [Liniger, 2009] and [Hawkes, 2018] with the references therein. [Cavaliere et al., 2023] develop

a bootstrap approach, while [Christensen and Kolokolov, 2024] propose an unbounded intensity model

for point processes. [Potiron and Volkov, 2025] consider estimation of latency.

This paper concerns the estimation of the branching ratio, i.e., the integral of the kernel function

BR =
∫∞
0 ϕ(t) dt. To ensure stability of the Hawkes processes, the branching ratio has to be strictly

smaller than unity. The interpretation of this branching ratio is closely related to the Poisson cluster

representation for Hawkes processes (see [Hawkes and Oakes, 1974]). More specifically, Hawkes pro-

cesses can be expressed as a population dynamic where each new individual duration time follows a
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Poisson distribution with parameter µ. Then, each new individual gives birth to children according to

a non-homogeneous Poisson process with kernel ϕ(t), and so on. In terms of population interpretation,

this branching ratio is the average number of children of an individual.

The main application of the branching ratio lies in finance. From a financial perspective, the

branching ratio can be interpreted as the average proportion of endogenous events. It is used as

an empirical measure of the degree of endogeneity in the market. During a crisis, we then expect

the branching ratio to be closer to unity. For example, [Filimonov and Sornette, 2012] consider the

prediction of flash crashes based on the branching ratio. [Hardiman et al., 2013] report branching ratio

values above 0.9. In [Filimonov and Sornette, 2012], branching ratio values between 0.7 and 0.8 are

obtained. Since it could lead to different financial interpretations, a debate on the validity of these

results is currently ongoing between people leaning towards values close to unity, or on the contrary way

below. See also [Achab et al., 2018b] for the multidimensional case. There are also some applications

in seismology (see [Bacry and Muzy, 2016]).

Empirical evidence suggests that the baseline is time-dependent, random and with possible jumps

(see [Chen and Hall, 2013], [Clinet and Potiron, 2018] and [Rambaldi et al., 2015]). These features

affect the estimation of the branching ratio. The empirical results very close to unity obtained

in [Hardiman et al., 2013] are criticized in [Filimonov and Sornette, 2015] (Section 4.3–4.4); see also

[Luo et al., 2024]. The authors point out that an estimation method only designed for constant base-

line induces a bias when the baseline is time-dependent, random and with jumps. The bias is also

visible in our numerical studies (see Figure 3).

In this paper, we consider Hawkes processes with a baseline driven by an Itô semimartingale with

possible jumps, namely

µt = µ0 +

∫ t

0
bs ds+

∫ t

0
σs dWs + (δ1{|δ|≤1}) ⋆ (µ− ν)t + (δ1{|δ|>1}) ⋆ µt. (1)

The Itô semimartingale baseline suits the three aforementioned empirical facts for the baseline inten-

sity: time-dependence, randomness, and jumps. This framework is introduced in [Potiron et al., 2025].

It differs from the available literature on nonstationary Hawkes processes, that do not accommo-
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date for the Itô semimartingale baseline. For example, [Chen and Hall, 2013], [Omi et al., 2017],

[Kwan et al., 2023] and [Kwan, 2023] allow for a time-dependent baseline, with time-invariant kernel

parameters. [Clinet and Potiron, 2018] and [Erdemlioglu et al., 2025] consider random time-dependent

baseline and random time-dependent kernel parameters, where the parameters are smoother than the

Itô semimartingale. [Roueff et al., 2016], [Roueff and Von Sachs, 2019] and [Mammen and Müller, 2023]

propose nonparametric estimation. Spectral parametric estimation for misobserved Hawkes processes

with a setting also covering a time-dependent baseline is given in [Cheysson and Lang, 2022].

Our inferential theory builds on in-fill asymptotics, i.e., when T is fixed and the number of ob-

servations on [0, T ] increases as n → ∞. These asymptotics are popular with financial applica-

tions based on high-frequency data (see [Aït-Sahalia and Jacod, 2014]). The main reason why we

use these asymptotics is that we observe in our empirical application a time-dependent branching

ratio between different days. There already exists work to accommodate for in-fill asymptotics with

Hawkes processes. In-fill asymptotic results from [Chen and Hall, 2013] are based on random obser-

vation times of order n. A single boosting of the baseline, i.e., λt = αν∗t +
∫ t
0 h(t − s, θ∗)dNs, is

considered, where α → ∞ is a scaling sequence. [Clinet and Potiron, 2018] introduce a joint boost-

ing of the baseline and the kernel, i.e., λ(t) = nν∗t +
∫ t
0 na

∗
s exp(−nb∗s(t − s))dNs. [Kwan et al., 2023]

revisit [Chen and Hall, 2013] with the same in-fill asymptotics as in [Clinet and Potiron, 2018], i.e.

λt = nν∗t +
∫ t
0 na

∗ exp(−nb∗(t−s)) dNs. [Kwan, 2023], [Potiron and Volkov, 2025], [Potiron et al., 2025]

and [Erdemlioglu et al., 2025] also use these in-fill asymptotics. There are compatible with the in-fill

asymptotics of [Christensen and Kolokolov, 2024].

Most methods for estimation of the branching ratio are based on the estimation of the ker-

nel. Numerical approximation of the kernel integral limit their use in practice. In the paramet-

ric case, [Ogata, 1978]) propose a method based on maximum likelihood estimation (MLE). See also

[Clinet and Yoshida, 2017], [Potiron and Volkov, 2025] and [Potiron, 2025]. Based on [Veen and Schoenberg, 2008],

[Marsan and Lengline, 2008] develop an expectation maximization (EM) estimator. [Lewis and Mohler, 2011]

consider maximimum penalized likelihood estimation. [Omi et al., 2017] develop EM with time-dependent
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parametric baseline. In the nonparametric case, [Bacry and Muzy, 2016] and [Clements et al., 2023]

consider procedures based on moments and cumulants.

In contrast, [Hardiman and Bouchaud, 2014] introduce a method that does not require estimation

of the kernel. It is based on the ratio of mean and variance of the point process. Its main practical ad-

vantage is that it is very fast as there is no optimization procedure. However, their method is not robust

to the time-dependent baseline. In this paper, we propose an extension of their estimation method.

More specifically, we replace their estimator of mean and variance on [0, T ] by empirical average and

variance of local point process estimates. See also [Achab et al., 2018a] and [Achab et al., 2018b], who

consider a multidimensional extension.

In addition, we develop a test for a branching ratio value. We consider a Wald test, which is based

on the estimation of the branching ratio. It extends the test for the absence of a Hawkes component

in [Potiron et al., 2025]. Moreover, we propose a Wald test for a branching ratio value that does

not depend on n against the branching ratio depends on n and tends to unity as n → ∞. More

specifically, we consider an alternative where the branching ratio depends on n of the form BR = b̃n,

where b̃n < 1 and b̃n → 1. [Jaisson and Rosenbaum, 2015] introduce such processes and they call them

nearly unstable Hawkes processes. It is due to the fact that the Hawkes processes are unstable when

the branching ratio is equal to unity (see [Brémaud and Massoulié, 2001]). As far as the authors know,

these two tests are novel to the literature.

Our main result (see Theorem 1) is a feasible CLT for estimation of the branching ratio. It extends

Section III in [Hardiman and Bouchaud, 2014], who show the consistency of the estimation procedure

when the baseline is constant. It extends Theorem 4.1 in [Potiron et al., 2025]. We also give the limit

theory of the Wald test for a branching ratio value (see Corollary 1). It extends Corollary 5.4 in

[Potiron et al., 2025]. Moreover, we give the limit theory of the Wald test for a branching ratio value

that does not depend on n (see Theorem 2). Under the alternative hypothesis, this extends Theorem

2.2 in [Jaisson and Rosenbaum, 2015]. The main novelty in the proofs is to divide the intensity by

1 − b̃n to deal with a time-dependent baseline and the branching ratio which both explode as the
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number of observations n increases.

Simulation studies corroborate the asymptotic theory. An empirical application on high-frequency

data of the E-mini S&P500 future contracts shows that the branching ratio is around 0.7 and 0.8, and

that the tests are ??. BLABLABLA.

The remainder of this paper is organized as follows. We provide the setting in Section 2, and we

introduce the estimation and testing strategy in Section 3. We give the theoretical results in Section 4.

In Section 5, we carry out numerical studies, which corroborate the asymptotic theory. In Section 6,

an empirical application on high-frequency data of the E-mini S&P500 future contracts is presented.

Finally, we provide concluding remarks in Section 7. All the proofs are gathered in the supplementary

materials.

2 Setting

In this section, we introduce Hawkes self-exciting processes with a baseline driven by an Itô semi-

martingale with possible jumps when the horizon T is finite. We also introduce the definition of the

branching ratio.

For any space S such that 0 ∈ S, we define the space without zero as S∗. For any space S,

we denote by B(S) the Borel σ-algebra on the space S. In what follows, we introduce the point

process Nt, which counts the number of events between 0 and t. We define Nt as a simple point

process on the space of positive real numbers R+, i.e., a family {N(C)}C∈B(R+) of random variables

with values in the space of natural integers N. Moreover, N(C) =
∑

k∈N 1C(Tk) and {Tk}k∈N is a

sequence of event times, which are R+-valued and random. We assume that the first time is equal

to 0 and the following times are increasing a.s., i.e., P
(
T0 = 0 and Tk < Tk+1 for k ∈ N∗

)
= 1. Let

B = (Ω,F , {Ft}t∈R+ ,P) be a filtered probability space which satisfies the usual conditions. For any

t ∈ R, we denote the filtration generated by some stochastic process X as FX
t = σ{Xs : 0 ≤ s ≤ t}. We

assume that, for any t ∈ R+, the filtration generated by the point process Nt is included in the main

filtration, i.e., FN
t ⊂ Ft. Any nonnegative Ft-progressively measurable process {λt}t∈R+ , which satisfies
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E[N((a, b]) | Fa] = E
[ ∫ b

a λsds
∣∣Fa

]
a.s. for all intervals (a, b], is called an Ft-intensity of Nt. Intuitively,

the intensity corresponds to the expected number of events given the past information, i.e., λt =

limu→0 E
[
Nt+u−Nt

u

∣∣∣Ft

]
a.s.. For background on point processes, the reader can consult [Jacod, 1975],

[Jacod and Shiryaev, 2003], [Daley and Vere-Jones, 2003], and [Daley and Vere-Jones, 2008].

The present work is concerned with simple point processes Nt admitting an Ft-intensity of the form

λt = µt +

∫ t

0
ϕ(t− s) dNs. (2)

Here, we have that µt is the F̃t-Itô semimartingale baseline process with F̃t ⊂ Ft and ϕ is the nonnega-

tive exciting kernel, i.e., ϕ(t) ≥ 0 for any t ∈ R+. Since µt follows an F̃t-Itô semimartingale, then we can

construct a filtered extension B = (Ω,F , {F t}t∈[0,T ],P) on which are defined a standard Brownian mo-

tion W and a Poisson random measure µ on R+×E, which is compensated by ν(dt, dx) = dt⊗Ft(dx).

Here, we assume that E is an auxiliary Polish space and that Ft is σ-finite, infinite, and optional

measure, having no atom. Then, the baseline µt has the Grigelionis representation of the form

µt = µ0 +

∫ t

0
bs ds+

∫ t

0
σs dWs +

∫ t

0

∫
E
(δ(s, z)1{|δ(s,z)|≤1})(µ− ν)(ds, dz)

+

∫ t

0

∫
E
(δ(s, z)1{|δ(s,z)|>1})µ(ds, dz). (3)

Here, we have µ0 is F0-measurable. We also have the drift bt is an R-valued predictable process on

the filtered probability space (Ω,F , {F̃t}t∈[0,T ],P) such that its integral defined in Equation (3) is well-

defined. Moreover, we have the variance σ2t is R+-valued predictable process on (Ω,F , {F̃t}t∈[0,T ],P)

such that its integral defined in Equation (3) is well-defined. Finally, δ is a R-valued predictable func-

tion on Ω × R+ × E such that both integral defined in Equation (3) are well-defined. Although we

have extended the filtered space, in the sequel we keep the original space B = (Ω,F , {Ft}t∈[0,T ],P).

We pretend that the Grigelionis form above is defined on the original space, to avoid more com-

plicated notation. For further details of definitions and notations, see Section 1.4.3 (pp. 47-49) in

[Aït-Sahalia and Jacod, 2014]. The baseline model (3) is general in the sense that it is a slightly re-

stricted version of a semimartingale. The semimartingale class is the most general class of “stochastic

integrator” (see [Jacod and Shiryaev, 2003]).
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The goal of this paper is the estimation of the branching ratio

BR = ∥ϕ∥1 =
∫ ∞

0
ϕ(t) dt. (4)

In terms of population interpretation, this branching ratio is the average number of children of an indi-

vidual. From a financial perspective, the branching ratio can be interpreted as the average proportion

of endogenous events. It is used as an empirical measure of the degree of endogeneity in the market.

We also develop a test for a branching ratio value. We consider a Wald test, which is based on the

estimation of the branching ratio. For a branching ratio value b ∈ [0, 1), we define the null hypothesis

and the alternative hypothesis as H0 : {BR = b} and H1 : {BR ̸= b}. It extends the test for the absence

of a Hawkes component in [Potiron et al., 2025]. Moreover, we propose a Wald test for a branching

ratio value that does not depend on n against the branching ratio depends on n and tends to unity as

n → ∞. More specifically, we consider an alternative where the branching ratio depends on n of the

form BR = b̃n, where b̃n < 1 and b̃n → 1. We define the null hypothesis and the alternative hypothesis

as H0 : {BR = b} and H1 : {BR = b̃n}. As far as the authors know, all these tests are novel to the

literature.

3 Estimation

In this section, we introduce the in-fill asymptotics. We also introduce empirical average and variance

of local Poisson estimates. Finally, we introduce the branching ratio estimator, the test statistic for a

branching ratio value and the test statistic for near criticality.

We prefer most of the time not to write explicitly the dependence on n, and any limit theorem

refers to the convergence when n → ∞. For inference purposes, we consider in-fill asymptotics with

joint boosting of the baseline and the kernel, i.e.,

λt = nµt +

∫ t

0
nϕ(n(t− s)) dNs.

Here, in-fill asymptotics are based on random observation times of order n within the time inter-

val [0, T ] for a finite horizon time T . These in-fill asymptotics, also based on joint boosting, are
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used in [Clinet and Potiron, 2018], [Kwan et al., 2023], [Potiron and Volkov, 2025] but also available

in [Erdemlioglu et al., 2025]. There are also compatible with the in-fill asymptotics used in the paper

[Christensen and Kolokolov, 2024]. They are different from [Chen and Hall, 2013] in-fill asymptotics

which considers no boosting of the kernel. Here, in-fill asymptotics are desirable because we can

incorporate random features of the baseline into asymptotic variances in the CLT.

For a finite horizon T , we consider M = ⌊T/∆n⌋ intervals with equal length ∆n such that
⋃M

i=1[(i−

1)∆n, i∆n) ⊂ [0, T ), where ⌊·⌋ denotes the floor function. For i = 1, . . . ,M , we define an estimator for

local Poisson estimates on the i-th interval [(i− 1)∆n, i∆n) as

λ̂i =
1

∆n
(Ni∆n− −N(i−1)∆n

). (5)

Then, we propose an estimator for empirical average and two estimators for empirical variance of local

Poisson estimates as

M̂ean = ∆n

⌊T/∆n⌋∑
i=1

λ̂i = NT , (6)

V̂ar1 =

⌊T/∆n⌋∑
i=2

(
∆iλ̂

)2
1{|∆iλ̂|≤α∆−ω

n }, (7)

V̂ar2 =

⌊T/(2∆n)⌋∑
i=2

(
∆2i−2λ̂+∆2i−1λ̂

2

)2

1{|(∆2i−1λ̂+∆2iλ̂)/2|≤α∆−ω
n }. (8)

Here, we have that ∆iλ̂ = λ̂i − λ̂i−1. We also have that α > 0 and ω are truncation parameters. Since

the intensity explodes asymptotically, the three aforementioned estimators also diverge to infinity. The

two variance estimators with a different scale are requested for the estimation of the branching ratio.

We consider a truncation in our variance estimators since they would be contaminated by the jumps

otherwise.

We define the diverging target values as

Mean = n
1

1−BR

∫ T

0
µt dt, (9)

Var1 = n2
1

(1−BR)2

∫ T

0

(
2

3
σ2t +

1

1−BR

2

c
µt

)
dt, (10)

Var2 = n2
1

(1−BR)2

∫ T

0

(
2

3
σ2t +

1

1−BR

1

2c
µt

)
dt. (11)
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In practice, the order of observation number n is unknown. Thus, the length of intervals ∆n cannot

be chosen directly. Instead, we can estimate it as

∆n =

√
cT√
NT

. (12)

We use c = 0.5, which works the best in our numerical studies.

We can now estimate the branching ratio as

B̂R = 1−

√√√√ 3M̂ean

2∆2
n

(
V̂ar1 − V̂ar2

) . (13)

In Equation (13), we use the estimator from [Hardiman and Bouchaud, 2014] and we replace their

variance by 2
3

(
V̂ar1 − V̂ar2

)
since we have a time-dependent baseline in this paper. This method does

not require estimation of the kernel. It is based on the ratio of mean and variance of the empirical

average and variance of local point process estimates. Its main practical advantage is that it is very

fast as there is no optimization procedure.

For any t ∈ [0, T ], we define ϑ̆t as ϑ̆t = µt

c(1−BR)3
, σ̆t as σ̆t = σt

1−BR . We also define the non diverging

asymptotic variance of (Mean,Var1,Var2) as

Σ =

∫ T

0


µt

1−BR 0 0

0 σ̆4t + 4σ̆2t ϑ̆t + 12ϑ̆2t
29
24 σ̆

4
t +

3
2 σ̆

2
t ϑ̆t +

3
2 ϑ̆

2
t

0 29
24 σ̆

4
t +

3
2 σ̆

2
t ϑ̆t +

3
2 ϑ̆

2
t 2σ̆4t + 2σ̆2t ϑ̆t +

3
2 ϑ̆

2
t

dt. (14)

Then, we define the estimator of the non diverging asymptotic variance as

Σ̂ =


∆2

n
c Σ̂11 0 0

0 ∆4
n

c2
Σ̂22

∆4
n

c2
Σ̂23

0 ∆4
n

c2
Σ̂23

∆4
n

c2
Σ̂33

. (15)

Here, the components of the matrix are defined as Σ̂11 = M̂ean, Σ̂22 = 3
4 κ̂4,1 − 3η̂κ̂3,1 + 9η̂2κ̂2,1,

Σ̂23 = 29
32 κ̂4,1 −

69
8 η̂κ̂3,1 +

63
8 η̂

2κ̂2,1, and Σ̂33 = 3
2 κ̂4,2 − 6η̂κ̂3,2 + 18η̂2κ̂2,2. We also define κ̂2,1 as κ̂2,1 =

∆−3
n

∑⌊T/∆n⌋
i=2 λ̂2i1{|∆iλ̂|≤nϖi}, and κ̂2,2 as κ̂2,2 = ∆−3

n

∑⌊T/(2∆n)⌋
i=2 ( λ̂i−1+λ̂i

2 )21{|(∆2i−1λ̂+∆2iλ̂)/2|≤nϖi}. Ad-

ditionally, we can define κ̂3,1 as κ̂3,1 = ∆−2
n

∑⌊T/∆n⌋
i=2 λ̂i(∆iλ̂)

21{|∆iλ̂|≤nϖi}. Moreover, κ̂3,2 is defined

as

κ̂3,2 = ∆−2
n

⌊T/(2∆n)⌋∑
i=2

λ̂i−1 + λ̂i
2

(∆2i−2λ̂+∆2i−1λ̂

2

)2
1{|(∆2i−1λ̂+∆2iλ̂)/2|≤nϖi}.
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In addition, we define κ̂4,1 as κ̂4,1 = ∆−1
n

∑⌊T/∆n⌋
i=1 (∆iλ̂)

41{|∆iλ̂|≤nϖi}. Finally, κ̂4,2 is defined as

κ̂4,2 = ∆−1
n

∑⌊T/(2∆n)⌋
i=1 (∆2i−2λ̂+∆2i−1λ̂

2 )41{|(∆2i−1λ̂+∆2iλ̂)/2|≤nϖi}, and η̂ as η̂ = 2
3
∆2

n(V̂ar1−V̂ar2)

M̂ean
.

We denote the gradient of a function f by ∇f . We introduce x =
(
0,Var1,Var2

)T and the function

f1(x) = 1−
√

3nMean
2c(x2−x3)

. We define the asymptotic variance for estimation of branching ratio as

AV ar = ∇f1(x)TΣ∇f1(x). (16)

We introduce x̂ = [0, V̂ar1, V̂ar2]
T and the function f2(x) = 1 −

√
3M̂ean

2∆2
n(x2−x3)

. Then, we define the

estimator of the asymptotic variance for estimation of branching ratio as

ÂV ar = ∇f2(x̂)T Σ̂∇f2(x̂). (17)

Moreover, we introduce our Wald test statistic for a branching ratio value, i.e.,

S =
∆−1

n (B̂R− b)2

ÂV ar
. (18)

We introduce the function f3(x) = 2c(x2−x3)
3nMean . We define the asymptotic variance for the Wald test

statistic where the branching ratio value does not depend on n as

AV ar = ∇f3(x)TΣ∇f3(x). (19)

We introduce the function f4(x) =
2c(x2−x3)

3nM̂ean
. Then, we define the estimator of the asymptotic variance

for the Wald test statistic where the branching ratio value does not depend on n as

ÂV ar = ∇f4(x̂)T Σ̂∇f4(x̂). (20)

Furthermore, we introduce our Wald test statistic for a branching ratio value that does not depend on

n, i.e.,

S =
∆−1

n

ÂV ar

(
2∆2

n(V̂ar1 − V̂ar2)

3M̂ean
− 1

(1− b)2

)2

. (21)

The reason why we consider a Wald test statistic S based on estimation of (1−b)−2 rather than b itself

is that (1 − b̃n)
−2 explodes. Thus, this test statistics is more likely to explode under the alternative

hypothesis H1.
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4 Theory

In this section, our main result characterizes feasible statistics induced by CLT for estimation of

branching ratio. We also give the limit theory of the test for a branching ratio value and the test for

a branching ratio value that does not depend on n. The results are obtained with in-fill asymptotics

when n→ ∞ and T is fixed.

Let us introduce a set of conditions required for the existence of Hawkes processes with a time-

dependent baseline driven by an Itô semimartingale.

Condition 1. (a) The baseline is positive a.e. a.s., i.e., P(µt > 0∀t ∈ [0, T ]) = 1.

(b) The baseline is integrable a.s., i.e., P(
∫ T
0 µs ds <∞) = 1.

(c) For any 0 ≤ t ≤ T , we have Ft = F̃t ∨FN
t , where the filtration F̃t is independent from the other

filtration FN
t . We also have N t is a 2-dimensional Ft-adapted Poisson process of intensity 1 that

generates Nt, i.e., Nt =
∫
[0,t]×R 1[0,λs](x)N(ds× dx).

(d) The branching ratio is strictly less than one, i.e., BR < 1.

Condition 1 (a) implies that the point process is well-defined. Condition 1 (b) is already a condition

in the simpler case of heterogeneous Poisson processes without a kernel (see [Daley and Vere-Jones, 2003]).

Condition 1 (c) corresponds to Poisson imbedding ([Brémaud and Massoulié, 1996], Section 3, pp. 1571-

1572) and assumes independence between F̃t and FN
t . In particular, Nt is defined as the point process

counting the points of N below the curve t → λt. Finally, Condition 1 (d) is necessary to obtain a

stationary intensity with finite first moment (see Lemma 1 (p. 495) in [Hawkes and Oakes, 1974] and

Theorem 1 (p. 1567) in [Brémaud and Massoulié, 1996]). Condition 1 corresponds exactly to Assump-

tion 1 in [Potiron et al., 2025].

For any positive function f , we define its L1 norm as ∥f∥1 =
∫∞
0 f(t)dt. We define an alternative

drift as b′t = bt −
∫
E δ(t, z)1{|δ(t,z)|≤1}Ft(dz) for any t ∈ [0, T ]. Finally, we define V b

a (f) as the total

variation of f from a to b. Let us introduce a set of conditions required for estimation of branching

12



ratio.

Condition 2. (a) The kernel satisfies the short-range condition, i.e.,
∫∞
0 tϕ(t)dt <∞.

(b) For any k ∈ N with k ≥ 2, the L1 norm of ϕk is finite, i.e., ∥ϕk∥1 <∞.

(c) There exists a c > 0 such that n∆2
n

P→ c.

(d) There exists a β ∈ [0, 1) such that sup
0≤t≤T

∫
min(|x|r, 1)Ft(dx) is a.s. finite.

(e) The truncation level satisfies ω ∈ (0, 1/(4− 2β)).

(f) For any k ∈ N∗ and any t ∈ [0, T ], we have |bt|k <∞, |σt|k <∞.

(g) We have that
[
exp

(
1
2

∫ T
0

(b′s)
2

σ2
s
ds
)]
<∞.

(h) The volatility process is a semimartingale, i.e., σ2t = At+M
(σ)
t , where At is a Ft-adapted cadlag

process with finite variation and M (σ) is a square-integrable martingale. Moreover, E|V T
0 (A)|k <

∞ and E|σt − σs|k ≤ C(t− s)kγ for a γ > 0 and any k ∈ N∗.

Conditions 2 (a) and (b) put some restrictions on the kernel shape. Condition 2 (c) is natural

for local estimation. Conditions 2 (d) and (e) are due to the presence of jumps. Condition 2 (f) is

used in the proof of jumps and also in the proof of the CLT. Condition 2 (g) is required to apply the

Girsanov theorem. Condition 2 (h) is used in the proof of the CLT. Condition 2 corresponds exactly

to Assumption 2 in [Potiron et al., 2025].

We define N (0, 1) as a standard normal variable. We denote D−s−→ as the Ft-stable weak convergence

for the Skorokhod topology on D([0, T ],R). Moreover, we introduce the local asymptotic variance

w2
t > 0 which satisfies

w2
t = ∇f1(x)T


µt

1−BR 0 0

0 σ̆4t + 4σ̆2t ϑ̆t + 12ϑ̆2t
29
24 σ̆

4
t +

3
2 σ̆

2
t ϑ̆t +

3
2 ϑ̆

2
t

0 29
24 σ̆

4
t +

3
2 σ̆

2
t ϑ̆t +

3
2 ϑ̆

2
t 2σ̆4t + 2σ̆2t ϑ̆t +

3
2 ϑ̆

2
t

∇f1(x). (22)

We provide now the CLT for estimation of branching ratio. This extends [Hardiman and Bouchaud, 2014]

(see Section III), who only show the consistency of the estimation procedure when the baseline is
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constant. This extends Theorem 4.1 in [Potiron et al., 2025]. The theorem is obtained with in-fill

asymptotics when n→ ∞ and T is fixed. The convergence rate is ∆
−1/2
n , which by Condition 2 (c) is

asymptotically equivalent to n1/4.

Theorem 1. Under Conditions 1 and 2, there is a standard Brownian extension of B, with the canonical

standard Brownian motion W̃t such that

∆
− 1

2
n (B̂R− BR)

D−s−→
∫ T

0
wtdW̃t. (23)

Moreover, we have the normalized CLT with feasible variance, i.e.,

∆
− 1

2
n (B̂R− BR)√

ÂV ar

D→ N (0, 1). (24)

We define q(u) as the quantile function of the chi-squared distribution with one degree of freedom.

The following corollary gives the limit theory of the Wald test for a branching ratio value. This is

an application of Theorem 1. This extends Corollary 5.4 in [Potiron et al., 2025]. The corollary is

obtained with in-fill asymptotics when n→ ∞ and T is fixed.

Corollary 1. Under Conditions 1 and 2, the test statistic S converges in distribution to a chi-squared

random variable with one degree of freedom under the null hypothesis H0. Moreover, the test statistic

S is consistent under the alternative hypothesis H1, i.e., we have P(S > q(u) | H1) → 1 for any

0 < u < 1.

We denote the kernel under the alternative hypothesis H1 by ϕ̃. Let ψ(t) =
∑∞

k=1(ϕ̃)
∗k(t) where

(ϕ̃)∗1 = ϕ̃ and (ϕ̃)∗k denotes the convolution product of (ϕ̃)k−1 with the function ϕ̃ for k ≥ 2. Finally,

we define ρ(t) as ρ(t) = ψ(t)/∥ψ∥1 for t ∈ R+. In what follows, we provide a set of conditions required

for the consistency under the alternative hypothesis of the Wald test statistic for a branching ratio

value that does not depend on n.

Condition 3. (a) The intensity is equal to

λt = nµt + b̃n

∫ t

0
nϕ̃(n(t− s)) dNs.

14



(b) There exists λ > 0 such that the sequence b̃n satisfies n(1− b̃n) → λ.

(c) The non-negative measurable function ϕ̃ : R+ → R+ satisfies ∥ϕ̃′∥1 <∞ and

∫ ∞

0
tϕ̃(t)dt <∞. (25)

Moreover, ϕ̃ is differentiable with derivative ϕ̃′ such that supt∈R+ |ϕ̃′(t)| <∞ and ∥ϕ̃′∥1 <∞.

(d) We have that the function ρ is bounded uniformly, i.e. supt∈R+,n∈N |ρ(t)| <∞.

Condition 3 (a) extends Section 2.3 from [Jaisson and Rosenbaum, 2015], who considers time-

invariant baseline and T → ∞ for inference purposes, to the time-dependent baseline and in-fill

asymptotics case. Condition 3 (b) is necessary to obtain the existence of the limit and can be

compared to Equation (3) in [Jaisson and Rosenbaum, 2015]. Condition 3 (c) corresponds exactly

to Assumption (1) in [Jaisson and Rosenbaum, 2015]. Condition 3 (d) extends Assumption (2) in

[Jaisson and Rosenbaum, 2015].

The following theorem gives the limit theory of the Wald test statistic for a branching ratio

value that does not depend on n. Under the alternative hypothesis H1, this extends Theorem 2.2

in [Jaisson and Rosenbaum, 2015]. The theorem is obtained with in-fill asymptotics when n→ ∞ and

T is fixed.

Theorem 2. We assume that Conditions 1 and 2 hold. Then, the test statistic S converges in distri-

bution to a chi-squared random variable with one degree of freedom under the null hypothesis H0. If

we also assume Condition 3, the test statistic S is consistent under the alternative hypothesis H1, i.e.,

we have P(S > q(u) | H1) → 1 for any 0 < u < 1.

5 Simulation studies

In this section, we conduct simulation studies to document how the estimator of branching ratio and

two tests behave. We also show that we improve branching ratio estimation for this more realistic

baseline.
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We consider the following simulation design to be as close as possible from the data application in

finance. We set T = 1, i.e., 6.5 hour long day of trading. The order of the observation number n varies

from 50,000 to 1,000,000. With these realistic values, the simulation design allows for both less traded

and highly traded stocks. The number of replications is equal to 1,000. We use the python package

tick from [Bacry et al., 2017] for the generation of the point process.

We define the intensity process as

λt = n(1−BR)
(
µC
t + µB

t

)
+

∫ t

0
nϕ(n(t− s))dNs. (26)

Here, the component of the baseline µC
t satisfies a square root process (SRP)

dµC
t = 30(bt − µC

t )dt+ 3
√
µC
t dWt. (27)

Here, bt is a solution of the ordinary differential drt = 30(bt − rt)dt with inverse J-shape rt defined as

rt = 20

(
(t− 0.53)4 +

1

24

)
, (28)

and µC
0 = r0. We have that the drift term in Equation (27) ensures mean reversion of µC

t to the process

bt. Moreover, bt pushes µC
t to follow the inverse J-shape nonrandom term rt. In Equation (27), the

diffusion term
√
µC
t dWt is the random fluctuation. The Feller condition (see [Feller, 1951]) is satisfied

with 30× bt ≥ 32 for any t ∈ [0, T ], thus µC
t is positive.

In Equation (27), µB
t are the intensity jumps (see [Rambaldi et al., 2018]). They are defined as a

sudden occurrence of a big number of exogenous points for a short period of time, i.e., around one

second. The arrival time of jumps zi is sampled from an homogeneous Poisson process with rate 2/T .

The size of the bursts Zi are drawn from max(N (200n, (50n)2), 50n). The intensity bursts have the

form

µB
t =

∑
zi≤t

Zi1{(t−zi)∈[0,1/(3600×6.5)]}. (29)

The parameter values come from our empirical application and the results from [Rambaldi et al., 2018]

(p. 6), where the authors report an average number of jumps between 1.95–3.25 for a 6.5-hour period.
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In Equation (26), we consider an exponential kernel defined as ϕe(t) = 1.6e−2t and a power kernel

defined as ϕp(t) = 1.6(1 + t)−3. With these kernel values, the branching ratio is equal to BR = 0.8,

which is the average value that we obtain in our own empirical application and in the results of

[Filimonov and Sornette, 2012]. Finally, we set the truncation parameters as α = 1 and

ϖ = ∆
− 1

4
n

√√√√ 1

⌊T/∆n⌋

⌊T/∆n⌋∑
i=1

(∆iλ̂)2. (30)

We consider the following models to disentangle the effects. First, we set Model 1 as a null kernel

and a constant baseline, i.e., λt = n. Second, we set Model 2 as a null kernel and a J-shape baseline,

i.e., λt = 20
(
(t− 0.53)4 + 1

24

)
n. Third, we set Model 3 as a null kernel and a J-shape + SRP + jump

baseline, i.e., λt = n(µC
t +µB

t ). Then, we set Model 4 as an exponential kernel and a constant baseline,

i.e., λt = n+
∫ t
0 nϕe(n(t−s))dNs. We also set Model 5 as an exponential kernel and a J-shape baseline,

i.e., λt = nµt +
∫ t
0 nϕe(n(t− s))dNs where µt = 20(1− BR)

(
(t− 0.53)4 + 1

24

)
. We set Model 6 as an

exponential kernel and a J-shape + SRP + burst baseline, i.e., λt = n(1−BR)(µC
t +µ

B
t )+

∫ t
0 nϕe(n(t−

s))dNs. We set Model 7 as a power kernel, and a constant baseline as λt = n +
∫ t
0 nϕp(n(t − s))dNs.

We set Model 8 as a Power kernel and a J-shape baseline, i.e., λt = nµt +
∫ t
0 nϕp(n(t − s))dNs, µt =

20(1−BR)
(
(t−0.53)4+ 1

24

)
. Moreover, we set Model 9 as a power kernel and a J-shape + SRP + burst

baseline, i.e., λt = n(1−BR)(µC
t +µ

B
t )+

∫ t
0 nϕp(n(t−s))dNs. Finally, we set Model 10 as nearly unstable

Hawkes with constant baseline, i.e., λt =
√
n +

∫ t
0 b̃nϕ

√
n(t − s)dNs, where ϕ

√
n(t) = 2

√
ne−2

√
nt and

b̃n = 1− n−1/2 with the branching ratio BR = b̃n which goes to unity. These models are summarized

in Table 1.

In general, the intensity jumps µB follow Equation (29). In the case of power kernel, we first

generate points without the jump and then add points whose intensity follows (1−BR)−1µB. It is due

to the implemented function in the package tick taking over a day to generate points when there is a

jump. However, it does not give any significant differences in the results.

Figure 1 provides a comparison between simulated intensity with Model 9 (left panel) and intensity

based on AAPL (Apple) data on April 1st 2016 (right panel). The intensity is obtained from one-
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Table 1: Summary of models.

Baseline Model (µt)

Kernel Constant J-shape J-shape + SRP + jump

Null Model 1 Model 2 Model 3

Exponential Model 4 Model 5 Model 6

Power Model 7 Model 8 Model 9

Nearly unstable Model 10

minute intervals. The simulated process captures the U-shaped pattern and intensity jump well. It

also exhibits some random fluctuation of the baseline intensity. These patterns can also be seen in the

data that justify our simulation design being realistic.
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Figure 1: Comparison between simulated intensity with Model 9 (left panel) and intensity based on

AAPL data on April 1st 2016 (right panel).

Table 2 and Figure 2 report the summary statistics and the histogram for the branching ratio with

Models 1-10. The order of the observation number n is 150,000 and 1,000,000. The absolute value of

the mean ranges from 0% to 28%, with an average of 10%. It has an average of 7% for the statistics
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with unfeasible variance, and an average of 13% for the statistics with feasible variance. Overall, the

statistics are slightly biased, especially when the variance is unfeasible. However, the bias gets smaller

when n increases. The variance ranges from 100% to 110%, with an average of 103%. It has an average

of 101% for the statistics with unfeasible variance, and an average of 105% for the statistics with

feasible variance. Overall, the variance is close to unity.

Table 2: Summary statistics for estimation of branching ratio with Models 1-10. The order of the

observation number n is 150,000 and 1,000,000, and the number of replications is 1,000.

n 150,000 1,000,000

Variance Unfeasible Feasible Unfeasible Feasible

Model Mean Variance Mean Variance Mean Variance Mean Variance

Model 1 0.0096 1.0332 0.0178 1.0574 -0.0424 1.0108 -0.0840 1.0186

Model 2 -0.0281 1.0210 -0.0650 1.0358 0.0163 1.0347 0.0310 1.0567

Model 3 0.0706 1.0256 0.1526 1.0595 0.0402 1.0058 0.0697 1.0078

Model 4 -0.0834 1.0144 -0.1552 1.0289 -0.0243 1.0461 -0.0550 1.0809

Model 5 -0.0542 1.0609 -0.1353 1.1020 -0.0636 1.0184 -0.1127 1.0228

Model 6 -0.0465 1.0240 -0.0873 1.0544 0.0224 1.0066 0.0371 1.0113

Model 7 -0.1474 1.0019 -0.2808 1.0028 -0.0823 1.0086 -0.1563 1.0044

Model 8 -0.1313 1.0255 -0.2689 1.0324 0.0823 1.0121 -0.1295 1.0210

Model 9 -0.0924 1.0339 -0.2094 1.0982 -0.0214 1.0208 0.1247 1.0550

Model 10 -0.0120 0.9991 -0.0092 0.9978 0.0004 1.0115 0.0016 1.0175

We compare our branching ratio estimator to several branching ratio estimators from the literature.

The competitors are Hardiman-Bouchaud estimator (H&B), a local average of the Hardiman-Bouchaud

estimator with 2 hour-long intervals (H&B(2h)), MLE with exponential kernel implemented in the

package tick, EM implemented in tick, and EM(O&H&A) by [Omi et al., 2017]. In all these methods,
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Figure 2: Histogram of the normalized CLT with feasible variance (24) for branching ratio estimation

with Models 1-10. The order of the observation number n is 150,000, and the number of replications

is 1,000.
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only EM(O&H&A) is adapted for a time-dependent baseline.

Table 3: Computation time for estimation of branching ratio with Model 6

Method
n

1000 4000 10000 50000

Our method 0.002 sec 0.003 sec 0.003 sec 0.007 sec

H&B 0.001 sec 0.001 sec 0.001 sec 0.002 sec

H&B(2h) 0.001 sec 0.002 sec 0.002 sec 0.003 sec

MLE(exp) 0.049 sec 0.062 sec 0.049 sec 0.184 sec

EM 0.016 sec 0.061 sec 0.146 sec 0.851 sec

EM(O&H&A) 18.752 sec 67.487 sec 105.432 sec 723.410 sec

Table 3 reports the computation time for several estimation methods. Our method and Hardiman-

Bouchaud method achieve a millisecond computation time even for n = 50,000, while the other methods

require a longer time ranging from 20 times bigger for MLE(exp) to 105 times bigger for EM(O&H&A).

This illustrates well that Hardiman-Bouchaud and our method do not require any optimization pro-

cedure. As the computational time for EM(O&H&A) is too big, we unfortunately have to drop it in

what follows.

Figure 3 gives the histogram of several branching ratio estimation methods with Models 1–9. For

the simple Model 1, most estimation methods behave properly. However, most estimation methods are

severely biased when the baseline is time-dependent, and this is the most pronounced for Model 3. On

the contrary, our method gives estimation results with a very small bias and relatively small variance

under all the models. These results are also visible in Table 4, which reports the mean absolute error

(MAE) and mean squared error (MSE) of the estimation results. This seems to indicate that our

estimation method is adequate.

Table 5 reports the percentage of rejections at the 5% level of the null hypothesis for the two tests
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Figure 3: Histogram of several branching ratio estimation methods with Models 1–9. The scaling

parameter n is set to 150,000, and the number of replications is 1,000.
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Table 4: Mean absolute error (MAE) and mean squared error (MSE) of several branching ratio es-

timation methods with Models 1–9. The scaling parameter n is set to 150,000, and the number of

replications is 1,000.

Methods

Models

1 2 3 4 5 6 7 8 9

MAE(×102)

Our method 2.668 2.673 3.105 0.981 1.055 1.095 0.991 1.027 1.193

H&B 2.926 85.074 90.443 0.627 7.908 11.358 0.650 7.889 11.464

H&B(2h) 2.201 39.971 83.190 0.528 1.820 7.476 0.595 1.694 7.691

MLE(exp) 0.376 95.017 85.425 2.268 1.649 6.916 3.485 3.987 7.299

EM 7.945 47.459 67.906 0.256 1.490 3.767 0.804 1.280 3.794

MSE(×102)

Our method 0.108 0.112 0.152 0.015 0.018 0.021 0.016 0.017 0.024

H&B 0.138 72.376 81.817 0.006 0.627 1.300 0.007 0.624 1.322

H&B(2h) 0.078 16.009 69.298 0.004 0.036 0.579 0.005 0.032 0.608

MLE(exp) 0.008 90.283 73.485 0.052 0.028 0.575 0.122 0.160 0.657

EM 0.637 22.527 46.372 0.001 0.023 0.149 0.007 0.017 0.154
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with Models 1-10. The order of the observation number n is 50,000, 150,000 and 1,000,000. The size

ranges from 4.5% to 6.1%, with an average of 5.6%. It has an average of 5.8% with the test for a

branching ratio value, and an average of 5.0% with the test for near criticality. Overall, the test for a

branching ratio value is slightly oversized while the size of the test for near criticality is adequate. The

power is always equal to 100%, and thus is also adequate.

Table 5: Percentage of rejections at the 5% level of the null hypothesis for the two tests with Models

1-10. The order of the observation number n is 50,000, 150,000 and 1,000,000, and the number of

replications is 1,000.

Test for a branching ratio value BR = 0.8

Size Power

n 4 5 6 7 8 9 1 2 3

50,000 5.4 5.8 5.9 6.1 6.0 5.8 100 100 99.9

150,000 5.8 5.7 5.6 5.9 6.1 5.5 100 100 100

1,000,000 5.3 6.0 5.7 5.7 5.4 6.1 100 100 100

Test for a branching ratio value that does not depend on n

Size Power

n 1 2 3 4 5 6 7 8 9 10

50,000

150,000

1,000,000
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6 Empirical application

Our empirical application focuses on the S&P500 E-mini futures. They are liquid contracts traded

on the Chicago Mercantile Exchange. We obtain the mid-quote price, i.e., the average price between

best bid and ask prices, and time stamps from the consolidated trade history in the transaction Tick-

datamarket database. The data set covers the period from January 2020 to December 2021. All index

quotes are considered during normal trading hours.

Now, we turn to testing the two hypotheses formulated in Section ??, i.e., branching ratio value and

near criticality. For each day in the sample, we perform the tests following Corollary 1 and Theorem

2. Figure 5 shows corresponding test statistics revealing rejection of the null hypothesis in both cases.

AOS/Intensity.pdf

Figure 4: Estimated intensity of the S&P500 E-mini futures quotes. The number of the mid-quote

price changes in millions per minute is shown.

To verify that our test results are not distorted due to a multiple statistical inference problem, we im-

plement the sequential Bonferroni procedure of [?] for all p-values. The adjusted p-values computed at

25



AOS/test_empirics1.pdf

Figure 5: Test statistics for the null hypothesis in the two tests from Sections ?? and ?? with the 5%

critical value.

26



the 1% level provide identical conclusions about all hypotheses, confirming the statistical robustness of

our results. Another robustness check of our test results is conducted following [Bajgrowicz et al., 2016]

and the results are in agreement with the Bonferroni corrected tests.

7 Conclusion

In this paper, we have studied Hawkes processes where the baseline is driven by an Itô semimartingale.

We have considered estimation of the branching ratio. The estimation procedure was based on empirical

average and variance of local point process estimates. We gave the CLT for the estimation procedure.

We have also developed a test for any branching ratio value, and another one for near criticality

or the branching ratio is null. The results are obtained with in-fill asymptotics. Simulation studies

have corroborated asymptotic theory. An empirical application on high-frequency data of the E-mini

S&P500 future contracts showed that the branching ratio is around 0.7 and 0.8, and that the tests for

a branching ratio tending to unity or equal to zero are rejected.

There are some follow-up questions, which are left for future work. First, the case of a multidimen-

sional branching ratio matrix could have more interesting applications in finance. Second, we could

consider, under the alternative, the fractional Brownian motion (see [Jaisson and Rosenbaum, 2016])

under the heavy-tailed condition (i.e. 1 −
∫ x
0 ϕ(t) dt ∼ Cx−α for some α ∈ (0, 1)). The fractional

Brownian motion does not satisfy the short-range condition, thus it would be theoretically challenging

to explore this problem.

The code is available at https://github.com/SeunghyeonTonyYu/TSRV2Hawkes.

Supplementary materials

All proofs of the theory can be found in the supplementary materials. These proofs are based on

[Jaisson and Rosenbaum, 2015] and [Potiron et al., 2025].
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Supplementary materials
This part corresponds to the supplementary materials of "Estimation of branching ratio for Hawkes

processes with Ito semimartingale baseline" by Yoann Potiron, Olivier Scaillet, Vladimir Volkov and

Seunghyeon Yu submitted to the Journal of American Statistical Association. All the proofs of the

theory can be found in Section 8.

8 Proofs

In what follows, the constant C refers to a generic constant, which can differ from line to line. We

say that X = oP(Y ) when X
Y 1{Y ̸=0}

P→ 0. We denote the Hessian matrix of a function f by Hf . If x

is a real number, a vector or a matrix, we define the sum of the absolute values of its components as

|x| =
∑

i |x|i.

In the lemma that follows, we show that estimation for asymptotic variance of the branching ratio

is consistent. This extends Theorem 4.1 in [Potiron et al., 2025].

Lemma 1. Under Conditions 1 and 2, we have the consistency of the asymptotic variance estimator,

i.e. ÂV ar P→ AV ar.

Proof of Lemma 1. By Definition (17), we have

ÂV ar = ∇f2(x̂)T Σ̂∇f2(x̂). (31)

By definition of f2, we get

ÂV ar = ∇

(
1−

√
3M̂ean

2∆2
n(x2 − x3)

)
(x̂)T Σ̂∇

(
1−

√
3M̂ean

2∆2
n(x2 − x3)

)
(x̂). (32)

By definition of x̂, we can deduce that

ÂV ar = ∇

(
1−

√√√√ 3M̂ean

2∆2
n(V̂ar1 − V̂ar2)

)T

Σ̂∇

(
1−

√√√√ 3M̂ean

2∆2
n(V̂ar1 − V̂ar2)

)
. (33)

By Condition 2 (c), we obtain

ÂV ar = ∇

(
1−

√√√√ 3nM̂ean

2c(V̂ar1 − V̂ar2)

)T

Σ̂∇

(
1−

√√√√ 3nM̂ean

2c(V̂ar1 − V̂ar2)

)
+ oP(1). (34)
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We have that (n−1M̂ean, n−2V̂ar1, n
−2V̂ar2)− (n−1Mean, n−2Var1, n

−2Var2)
P→ (0, 0) by Theorem 4.1

in [Potiron et al., 2025]. Thus, we can deduce that

ÂV ar = ∇

(
1−

√
3nMean

2c(Var1 −Var2)

)T

Σ̂∇

(
1−

√
3nMean

2c(Var1 −Var2)

)
+ oP(1). (35)

By definitions (14) and (15), we get

ÂV ar = ∇

(
1−

√
3nMean

2c(Var1 −Var2)

)T

Σ∇

(
1−

√
3nMean

2c(Var1 −Var2)

)
+ oP(1). (36)

Finally, we have by Definition (16) that

Avar = ∇f1(x)TΣ∇f1(x). (37)

We can prove the lemma with Expressions (36) and (37).

We now give the proof of Theorem 1. The proof is based on Theorem 4.1 in [Potiron et al., 2025].

Proof of Theorem 1. By Definition (4), we can deduce that

∆
− 1

2
n (B̂R− BR) = ∆

− 1
2

n

(
1−

√√√√ 3M̂ean

2∆2
n

(
V̂ar1 − V̂ar2

) −BR

)
. (38)

We introduce

h(x1, x2, x3) = 1−
√

3x1

2
(
x2 − x3

) .
Then, we can rewrite Equation (38) as

∆
− 1

2
n (B̂R− BR) = ∆

− 1
2

n

(
h
(
∆2

nM̂ean,∆4
nV̂ar1,∆

4
nV̂ar2

)
−BR

)
. (39)

We have by Theorem 4.1 in [Potiron et al., 2025] that the convergence of mean estimation is faster

than ∆
− 1

2
n . Thus, we obtain

∆
− 1

2
n

(
h
(
∆2

nM̂ean,∆4
nV̂ar1,∆

4
nV̂ar2

)
−BR

)
= ∆

− 1
2

n

(
h
(
∆2

nMean,∆4
nV̂ar1,∆

4
nV̂ar2

)
−BR

)
(40)

+oP(1).
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We have that h(∆2
nMean,∆4

nx2,∆
4
nx3) is continuously differentiable twice in a neighborhood of

(∆2
nMean,∆4

nVar1,∆
4
nVar2).

We have that (∆4
nV̂ar1,∆

4
nV̂ar2)−(∆4

nVar1,∆
4
nVar2)

P→ (0, 0) by Theorem 4.1 in [Potiron et al., 2025].

Thus, we can apply a Taylor expansion. We obtain that a.s.

h
(
∆2

nMean,∆4
nV̂ar1,∆

4
nV̂ar2

)
= h

(
∆2

nMean,∆4
nVar1,∆

4
nVar2

)
(41)

+∇h
(
∆2

nMean,∆4
n(V̂ar1 −Var1),∆

4
n(V̂ar2 −Var2)

)
+
(
∆2

nMean,∆4
n(V̂ar1 −Var1),∆

4
n(V̂ar2 −Var2)

)T
Hh(ζ)

∗
(
∆2

nMean,∆4
n(V̂ar1 −Var1),∆

4
n(V̂ar2 −Var2)

)
.

Here, we have that the random vector ζ = (∆2
nMean, ζ2, ζ3) is such that ζ2 is between ∆4

nVar1 and

∆4
nV̂ar1, and ζ3 is between ∆4

nVar2 and ∆4
nV̂ar2. With the use of Equations (39), (40) and (41), we

get

∆
− 1

2
n (B̂R− BR) = ∆

− 1
2

n

(
h
(
∆2

nMean,∆4
nVar1,∆

4
nVar2

)
(42)

+∇h
(
∆2

nMean,∆4
n(V̂ar1 −Var1),∆

4
n(V̂ar2 −Var2)
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nMean,∆4
n(V̂ar1 −Var1),∆

4
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)T
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∗
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∆2

nMean,∆4
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4
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)
−BR

)
+ oP(1).

By Definitions (9), (10) and (11), we obtain

∆
− 1

2
n

∣∣∣h(∆2
nMean,∆4

nVar1,∆
4
nVar2

)
−BR

∣∣∣ (43)
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dt

−BR

∣∣∣∣∣.
By an algebraic manipulation, this can be rewritten as
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1−BR

∫ T
0 µt dt

2∆2
nn

2 1
(1−BR)2

∫ T
0

(
1

1−BR

(
2
c −

1
2c

)
µt

)
dt

−BR

∣∣∣∣∣ (44)

= ∆
− 1

2
n

∣∣∣∣∣1− (1−BR)

√
c

∆2
nn

−BR

∣∣∣∣∣.
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By Condition 2 (c), we can deduce that

∆
− 1

2
n

∣∣∣∣∣1− (1−BR)

√
c

∆2
nn

−BR

∣∣∣∣∣ P→ 0. (45)

By Expressions (43), (44) and (45), we get

∆
− 1

2
n

∣∣∣h(∆2
nMean,∆4

nVar1,∆
4
nVar2

)
−BR

∣∣∣ P→ 0. (46)

By an application of Theorem 4.1 in [Potiron et al., 2025] with Slutsky’s lemma, we obtain

∆
− 1

2
n ∇h

(
∆2

nMean,∆4
n(V̂ar1 −Var1),∆

4
n(V̂ar2 −Var2)

) D−s−→
∫ T

0
wtdW̃t. (47)

By norm properties, we have

∣∣∣∆− 1
2

n

(
∆2

nMean,∆4
n(V̂ar1 −Var1),∆

4
n(V̂ar2 −Var2)

)T
Hh(ζ) (48)

∗
(
∆2

nMean,∆4
n(V̂ar1 −Var1),∆

4
n(V̂ar2 −Var2)

)∣∣∣
≤ ∆

− 1
2

n

∣∣∣(∆2
nMean,∆4

n(V̂ar1 −Var1),∆
4
n(V̂ar2 −Var2)

)∣∣∣2∣∣∣Hh(ζ)
∣∣∣.

AsHh is continuous around the point
(
∆2

nMean,∆4
nVar1,∆

4
nVar2

)
and we have that (∆4

nV̂ar1,∆
4
nV̂ar2)−

(∆4
nVar1,∆

4
nVar2)

P→ 0 by Theorem 4.1 in [Potiron et al., 2025], we obtain

∆
− 1

2
n

∣∣∣(∆2
nMean,∆4

n(V̂ar1 −Var1),∆
4
n(V̂ar2 −Var2)

)∣∣∣2∣∣∣Hh(ζ)
∣∣∣ (49)

≤ C∆
− 1

2
n

∣∣∣(∆2
nMean,∆4

n(V̂ar1 −Var1),∆
4
n(V̂ar2 −Var2)

)∣∣∣2.
By Theorem 4.1 in [Potiron et al., 2025], we get

C∆
− 1

2
n

∣∣∣(∆2
nMean,∆4

n(V̂ar1 −Var1),∆
4
n(V̂ar2 −Var2)

)∣∣∣2 P→ 0. (50)

By Equations (48), (49) and (50), we can deduce that

∣∣∣∆− 1
2

n

(
∆2

nMean,∆4
n(V̂ar1 −Var1),∆

4
n(V̂ar2 −Var2)

)T
Hh(ζ) (51)

∗
(
∆2

nMean,∆4
n(V̂ar1 −Var1),∆

4
n(V̂ar2 −Var2)

)∣∣∣ P→ 0.

Finally, we can deduce Equation (23) for the theorem by Equations (42),(46), (47) and (51). By

Slutsky’s lemma with Lemma 1, we obtain Equation (24) for the theorem.
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We now give the proof of Corollary 1. The proof is an application of Theorem 1.

Proof of Corollary 1. By Definition (18), the test statistic is equal to

S =
∆−1

n (B̂R− b)2

ÂV ar
. (52)

Under the null hypothesis H0, we obtain by an application of the delta method to Expression (23)

from Theorem 1 that

∆−1
n (B̂R− b)2

AV ar

D→ χ2. (53)

Here, χ2 is a chi-squared random variable with one degree of freedom. By Expression (53) with Lemma

1 and Slutsky’s lemma, we get

∆−1
n (B̂R− b)2

ÂV ar

D→ χ2. (54)

By Expressions (52) and (54), we can deduce that the test statistic S converges in distribution to a

chi-squared random variable with one degree of freedom under the null hypothesis H0.

Under the alternative hypothesis H1, we introduce the branching ratio b̃. We have

∆−1
n (B̂R− b)2

ÂV ar
=

∆−1
n (B̂R− b̃+ b̃− b)2

ÂV ar
. (55)

An algebraic manipulation yields

∆−1
n (B̂R− b̃+ b̃− b)2

ÂV ar
=

∆−1
n ((B̂R− b̃)2 + (̃b− b)2 + 2(B̂R− b̃)(̃b− b))

ÂV ar
. (56)

By Expression (54), we get

∆−1
n (B̂R− b̃)2

ÂV ar

D→ χ2. (57)

We can deduce by Lemma 1 that

∆−1
n ((̃b− b)2

ÂV ar

P→ ∞. (58)

Finally, we obtain by Theorem 1 that

∆−1
n (2(B̂R− b̃)(̃b− b))

ÂV ar

P→ ∞. (59)
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By Expressions (57), (58) and (59), we can deduce

∆−1
n (B̂R− b̃+ b̃− b)2

ÂV ar

P→ ∞. (60)

By Expressions (52),(55) and (60), we can deduce

S
P→ ∞. (61)

Thus, the test statistic S is consistent under the alternative hypothesis H1.

In the lemma that follows, we show that estimation of asymptotic variance for the Wald test statistic

where the branching ratio value does not depend on n is consistent. The lemma extends Theorem 4.1

in [Potiron et al., 2025]. Its proof is based on Theorem 4.1 in [Potiron et al., 2025].

Lemma 2. Under Conditions 1 and 2, we have the consistency of the asymptotic variance estimator,

i.e. ÂV ar P→ AV ar.

Proof of Lemma 2. By Definition (20), we have

ÂV ar = ∇f4(x̂)T Σ̂∇f4(x̂). (62)

By definition of f4, we get

ÂV ar = ∇

(
2c(x2 − x3)

3nM̂ean

)
(x̂)T Σ̂∇

(
2c(x2 − x3)

3nM̂ean

)
(x̂). (63)

By definition of x̂, we can deduce that

ÂV ar = ∇

(
2c(V̂ar1 − V̂ar2)

3nM̂ean

)T

Σ̂∇

(
2c(V̂ar1 − V̂ar2)

3nM̂ean

)
. (64)

We have that (n−1M̂ean, n−2V̂ar1, n
−2V̂ar2)− (n−1Mean, n−2Var1, n

−2Var2)
P→ (0, 0) by Theorem 4.1

in [Potiron et al., 2025]. Thus, we can deduce that

ÂV ar = ∇

(
2c(Var1 −Var2)

3nMean

)T

Σ̂∇

(
2c(Var1 −Var2)

3nMean

)
+ oP(1). (65)

By definitions (14) and (15), we get

ÂV ar = ∇

(
2c(Var1 −Var2)

3nMean

)T

Σ∇

(
2c(Var1 −Var2)

3nMean

)
+ oP(1). (66)
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Finally, we have by Definition (19) that

Avar = ∇f3(x)TΣ∇f3(x). (67)

We can prove the lemma with Expressions (66) and (67).

We introduce the local asymptotic variance w2
t > 0 which satisfies

w2
t = ∇f3(x)T


µt

1−BR 0 0

0 σ̆4t + 4σ̆2t ϑ̆t + 12ϑ̆2t
29
24 σ̆

4
t +

3
2 σ̆

2
t ϑ̆t +

3
2 ϑ̆

2
t

0 29
24 σ̆

4
t +

3
2 σ̆

2
t ϑ̆t +

3
2 ϑ̆

2
t 2σ̆4t + 2σ̆2t ϑ̆t +

3
2 ϑ̆

2
t

∇f3(x). (68)

In the lemma that follows, we show the CLT for estimation of the Wald test statistic for a branching

ratio value that does not depend on n under the null hypothesis H0. The lemma extends Theorem 4.1

in [Potiron et al., 2025]. Its proof is based on Theorem 4.1 in [Potiron et al., 2025].

Lemma 3. Under Conditions 1 and 2, we have the CLT for estimation of the Wald test statistic for a

branching ratio value that does not depend on n under the null hypothesis H0. More specifically, there

is a standard Brownian extension of B, with the canonical standard Brownian motion W̃ t such that

∆
− 1

2
n

(
2∆2

n(V̂ar1 − V̂ar2)

3M̂ean
− 1

(1−BR)2

)
D−s−→

∫ T

0
wtdW̃ t. (69)

Proof of Lemma 3. We introduce

h2(x1, x2, x3) =
2
(
x2 − x3

)
3x1

.

Then, we have

∆
− 1

2
n

(
2∆2

n(V̂ar1 − V̂ar2)

3M̂ean
− 1

(1−BR)2

)
= ∆

− 1
2

n

(
h2
(
∆2

nM̂ean,∆4
nV̂ar1,∆

4
nV̂ar2

)
− 1

(1−BR)2

)
.(70)

We have by Theorem 4.1 in [Potiron et al., 2025] that the convergence of mean estimation is faster

than ∆
− 1

2
n . Thus, we obtain

∆
− 1

2
n

(
h2
(
∆2

nM̂ean,∆4
nV̂ar1,∆

4
nV̂ar2

)
− 1

(1−BR)2

)
(71)

= ∆
− 1

2
n

(
h2
(
∆2

nMean,∆4
nV̂ar1,∆

4
nV̂ar2

)
− 1

(1−BR)2

)
+ oP(1).
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We have that h2(∆2
nMean,∆4

nx2,∆
4
nx3) is continuously differentiable twice in a neighborhood of

(∆2
nMean,∆4

nVar1,∆
4
nVar2).

We have that (∆4
nV̂ar1,∆

4
nV̂ar2)−(∆4

nVar1,∆
4
nVar2)

P→ (0, 0) by Theorem 4.1 in [Potiron et al., 2025].

Thus, we can apply a Taylor expansion. We obtain that a.s.

h2
(
∆2

nMean,∆4
nV̂ar1,∆

4
nV̂ar2

)
= h2

(
∆2

nMean,∆4
nVar1,∆

4
nVar2

)
(72)

+∇h2
(
∆2

nMean,∆4
n(V̂ar1 −Var1),∆

4
n(V̂ar2 −Var2)

)
+
(
∆2

nMean,∆4
n(V̂ar1 −Var1),∆

4
n(V̂ar2 −Var2)

)T
Hh2(ζ2)

∗
(
∆2

nMean,∆4
n(V̂ar1 −Var1),∆

4
n(V̂ar2 −Var2)

)
.

Here, we have that the random vector ζ2 = (∆2
nMean, ζ2,2, ζ2,3) is such that ζ2,2 is between ∆4

nVar1

and ∆4
nV̂ar1, and ζ2,3 is between ∆4

nVar2 and ∆4
nV̂ar2. With the use of Equations (70), (71) and (72),

we get

∆
− 1

2
n

(
2∆2

n(V̂ar1 − V̂ar2)

3M̂ean
− 1

(1−BR)2

)
= ∆

− 1
2

n

(
h2
(
∆2

nMean,∆4
nVar1,∆

4
nVar2

)
(73)

+∇h2
(
∆2

nMean,∆4
n(V̂ar1 −Var1),∆

4
n(V̂ar2 −Var2)

)
+
(
∆2

nMean,∆4
n(V̂ar1 −Var1),∆

4
n(V̂ar2 −Var2)

)T
Hh2(ζ2)

∗
(
∆2

nMean,∆4
n(V̂ar1 −Var1),∆

4
n(V̂ar2 −Var2)

)
− 1

(1−BR)2

)
+ oP(1).

By Definitions (9), (10) and (11), we obtain

∆
− 1

2
n

∣∣∣h2(∆2
nMean,∆4

nVar1,∆
4
nVar2

)
− 1

(1−BR)2

∣∣∣ (74)

= ∆
− 1

2
n

∣∣∣∣∣2∆
2
nn

2 1
(1−BR)2

∫ T
0

(
1

1−BR

(
2
c −

1
2c

)
µt

)
dt

3n 1
1−BR

∫ T
0 µt dt

− 1

(1−BR)2

∣∣∣∣∣.
By an algebraic manipulation, this can be rewritten as

∆
− 1

2
n

∣∣∣∣∣2∆
2
nn

2 1
(1−BR)2

∫ T
0

(
1

1−BR

(
2
c −

1
2c

)
µt

)
dt

3n 1
1−BR

∫ T
0 µt dt

− 1

(1−BR)2

∣∣∣∣∣ (75)

= ∆
− 1

2
n

∣∣∣∣∣ 1

(1−BR)2
∆2

nn

c
− 1

(1−BR)2

∣∣∣∣∣.
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By Condition 2 (c), we can deduce that

∆
− 1

2
n

∣∣∣∣∣ 1

(1−BR)2
∆2

nn

c
− 1

(1−BR)2

∣∣∣∣∣ P→ 0. (76)

By Expressions (74), (75) and (76), we get

∆
− 1

2
n

∣∣∣h2(∆2
nMean,∆4

nVar1,∆
4
nVar2

)
− 1

(1−BR)2

∣∣∣ P→ 0. (77)

By an application of Theorem 4.1 in [Potiron et al., 2025] with Slutsky’s lemma, we obtain

∆
− 1

2
n ∇h2

(
∆2

nMean,∆4
n(V̂ar1 −Var1),∆

4
n(V̂ar2 −Var2)

) D−s−→
∫ T

0
wtdW̃ t. (78)

By norm properties, we have

∣∣∣∆− 1
2

n

(
∆2

nMean,∆4
n(V̂ar1 −Var1),∆

4
n(V̂ar2 −Var2)

)T
Hh2(ζ2) (79)

∗
(
∆2

nMean,∆4
n(V̂ar1 −Var1),∆

4
n(V̂ar2 −Var2)

)∣∣∣
≤ ∆

− 1
2

n

∣∣∣(∆2
nMean,∆4

n(V̂ar1 −Var1),∆
4
n(V̂ar2 −Var2)

)∣∣∣2∣∣∣Hh2(ζ2)
∣∣∣.

AsHh2 is continuous around the point
(
∆2

nMean,∆4
nVar1,∆

4
nVar2

)
and we have that (∆4

nV̂ar1,∆
4
nV̂ar2)−

(∆4
nVar1,∆

4
nVar2)

P→ 0 by Theorem 4.1 in [Potiron et al., 2025], we obtain

∆
− 1

2
n

∣∣∣(∆2
nMean,∆4

n(V̂ar1 −Var1),∆
4
n(V̂ar2 −Var2)

)∣∣∣2∣∣∣Hh2(ζ2)
∣∣∣ (80)

≤ C∆
− 1

2
n

∣∣∣(∆2
nMean,∆4

n(V̂ar1 −Var1),∆
4
n(V̂ar2 −Var2)

)∣∣∣2.
By Theorem 4.1 in [Potiron et al., 2025], we get

C∆
− 1

2
n

∣∣∣(∆2
nMean,∆4

n(V̂ar1 −Var1),∆
4
n(V̂ar2 −Var2)

)∣∣∣2 P→ 0. (81)

By Equations (79), (80) and (81), we can deduce that

∣∣∣∆− 1
2

n

(
∆2

nMean,∆4
n(V̂ar1 −Var1),∆

4
n(V̂ar2 −Var2)

)T
Hh2(ζ2) (82)

∗
(
∆2

nMean,∆4
n(V̂ar1 −Var1),∆

4
n(V̂ar2 −Var2)

)∣∣∣ P→ 0.

Finally, we can deduce the theorem by Equations (73),(77), (78) and (82).
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In the proposition that follows, we show the Wald test statistic for a branching ratio value that

does not depend on n is consistent under the alternative hypothesis H1. This proposition extends

Theorem 2.2 in [Jaisson and Rosenbaum, 2015], who considers time-invariant baseline and T → ∞ for

inference purposes, to the time-dependent baseline and in-fill asymptotics case. The proof also extends

the arguments from the proof of Theorem 2.2 in [Jaisson and Rosenbaum, 2015]. The main novelty in

the proofs is to divide the intensity by 1− b̃n to deal with a time-dependent baseline and the branching

ratio which both explode as the number of observations n increases.

Proposition 1. We assume that Conditions 1, 2 and 3 hold. Then, the test statistic S is consistent

under the alternative hypothesis H1, i.e., we have P(S > q(u) | H1) → 1 for any 0 < u < 1.

Proof of Proposition 1. By Definition (21), the test statistic is equal to

S =
∆−1

n

ÂV ar

(
2∆2

n(V̂ar1 − V̂ar2)

3M̂ean
− 1

(1− b)2

)2

. (83)

Under the alternative hypothesis H1, we have

∆−1
n

ÂV ar

(
2∆2

n(V̂ar1 − V̂ar2)

3M̂ean
− 1

(1− b)2

)2

=
∆−1

n

ÂV ar

(
2∆2

n(V̂ar1 − V̂ar2)

3M̂ean
− 1

(1− b̃n)2
(84)

+
1

(1− b̃n)2
− 1

(1− b)2

)2

.

An algebraic manipulation yields

∆−1
n

ÂV ar

(
2∆2

n(V̂ar1 − V̂ar2)

3M̂ean
− 1

(1− b̃n)2
+

1

(1− b̃n)2
− 1

(1− b)2

)2

(85)

=
∆−1

n

ÂV ar

(
2∆2

n(V̂ar1 − V̂ar2)

3M̂ean
− 1

(1− b̃n)2

)2

+
∆−1

n

ÂV ar

(
1

(1− b̃n)2
− 1

(1− b)2

)2

+
2∆−1

n

ÂV ar

(
2∆2

n(V̂ar1 − V̂ar2)

3M̂ean
− 1

(1− b̃n)2

)(
1

(1− b̃n)2
− 1

(1− b)2

)
.

By Lemma 2, we get

∆−1
n

ÂV ar

(
2∆2

n(V̂ar1 − V̂ar2)

3M̂ean
− 1

(1− b̃n)2

)2

=
∆−1

n

AV ar

(
2∆2

n(V̂ar1 − V̂ar2)

3M̂ean
− 1

(1− b̃n)2

)2

+ oP(1).(86)
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By the use of an extension of Theorem 2.2 in [Jaisson and Rosenbaum, 2015] with Condition 3, we

have

2∆2
n(V̂ar1 − V̂ar2)

3M̂ean
= oP

( 1

(1− b̃n)2

)
. (87)

Then, we can deduce that

2∆2
n(V̂ar1 − V̂ar2)

3M̂ean
− 1

(1− b̃n)2
= oP

( 1

(1− b̃n)2

)
. (88)

As 1

(1−b̃n)2
→ ∞ under the alternative hypothesis H1, we obtain

2∆2
n(V̂ar1 − V̂ar2)

3M̂ean
− 1

(1− b̃n)2
P→ ∞. (89)

By monotonicity of the square function, we get(
2∆2

n(V̂ar1 − V̂ar2)

3M̂ean
− 1

(1− b̃n)2

)2
P→ ∞. (90)

As ∆−1
n → ∞, we can deduce that

∆−1
n

AV ar

(
2∆2

n(V̂ar1 − V̂ar2)

3M̂ean
− 1

(1− b̃n)2

)2
P→ ∞. (91)

We get by Expressions (86) and (91) that

∆−1
n

ÂV ar

(
2∆2

n(V̂ar1 − V̂ar2)

3M̂ean
− 1

(1− b̃n)2

)2
P→ ∞. (92)

We can deduce by Lemma 2, the fact that b̃n → 1 and b < 1 that

∆−1
n

ÂV ar

(
1

(1− b̃n)2
− 1

(1− b)2

)2
P→ ∞. (93)

Finally, we obtain by Expression (89), the fact that b̃n → 1 and b < 1, that

2∆−1
n

ÂV ar

(
2∆2

n(V̂ar1 − V̂ar2)

3M̂ean
− 1

(1− b̃n)2

)(
1

(1− b̃n)2
− 1

(1− b)2

)
P→ ∞. (94)

By Expressions (85), (92), (93) and (94), we can deduce

∆−1
n

ÂV ar

(
2∆2

n(V̂ar1 − V̂ar2)

3M̂ean
− 1

(1− b̃n)2
+

1

(1− b̃n)2
− 1

(1− b)2

)2
P→ ∞. (95)
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By Expressions (83),(84) and (95), we can deduce

S
P→ ∞. (96)

Thus, the test statistic S is consistent under the alternative hypothesis H1.

We now give the proof of Theorem 2. The proof is an application of Lemma 3 and Proposition 1.

Proof of Theorem 2. By Definition (21), the test statistic is equal to

S =
∆−1

n

ÂV ar

(
2∆2

n(V̂ar1 − V̂ar2)

3M̂ean
− 1

(1− b)2

)2

. (97)

Under the null hypothesis H0, we obtain by an application of the delta method to Lemma 3 that

∆−1
n

AV ar

(
2∆2

n(V̂ar1 − V̂ar2)

3M̂ean
− 1

(1− b)2

)2
D→ χ2. (98)

By Expression (98) with Lemma 2 and Slutsky’s lemma, we get

∆−1
n

ÂV ar

(
2∆2

n(V̂ar1 − V̂ar2)

3M̂ean
− 1

(1− b)2

)2
D→ χ2. (99)

By Expressions (97) and (99), we can deduce that the test statistic S converges in distribution to a

chi-squared random variable with one degree of freedom under the null hypothesis H0. Finally, the

test statistic S is consistent under the alternative hypothesis H1 by Proposition 1.
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