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This is the ”supplementary material” of ”Non-explicit formula of boundary
crossing probabilities by the Girsanov theorem” by Yoann Potiron published
in the Annals of the Institute of Statistical Mathematics. Supplement A gives
the results in the two-sided stochastic boundary process case. Supplement B

collects the proofs in the two-sided stochastic boundary process case.

Appendix A: Results in the two-sided stochastic boundary process
case

In this appendix, we consider the case when the two-sided boundary and the
drift are stochastic processes and the variance is random.

We first give the definition of the set of stochastic boundary processes.
Definition 1. We define the set of stochastic two-sided boundary processes as
J =R* xQ — R? such that for any (¢g,h) € J and w € Q we have (g, h)(w) € Z
as well as g and h are F-adapted.

We now give the definition of the FPT.

Definition 2. We define the FPT of an F-adapted continuous process Z to the
two-sided boundary (g, h) € J satisfying go < Zo < ho Vw € Q as

Tih =inf{t € R" s.t. Z, > g, or Z; < hy}. (1)

We can rewrite Tih as the infimum of two F-stopping times, i.e., Tih =
inf(Tg ,Tff ). Thus, it is an F-stopping time. We can rewrite the boundary

crossing probability P#, as the cdf of Tih, ie.,

g,h
Pfh(t) = IP’(TgZJL <t) for any ¢t > 0. (2)
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We assume that p is an F-adapted stochastic process which satisfies P(gg <
to < hg) = 1. We also assume that the variance o? is time-invariant, random,
and such that P(0? = 0) = 0. Finally, we assume that v is independent of W
where v is defined as v = (g, h, u, o).

Assumption D. We assume that P(3t € [0,7T] s.t uy # 0) = 1. We also as-
sume that u is absolutely continuous on [0,7], i.e., there exists a stochastic
process 0 : [0,7] x Q@ — R with v, = fot 0sds, a.s.. Finally, we assume that
Elexp (3 fOT 62ds)] < oo.

By Assumption D, M satisfies Novikov’s condition and thus is a positive

martingale.

Lemma 1. Under Assumption D, we have that M is a positive martingale.
Thus, we can consider an equivalent probability measure Q such that the Radon-
Nikodym derivative is defined as Z% = Mry. Finally, Y is a standard Wiener

process under Q.

The elementary idea in this appendix is to condition by both W and v, i.e., to
derive results of the form ]P’(Tzfc < T|Wr,v). The next proposition reexpresses
IP’(TZC < T|Wr,v) under Q. We define W, as

W, = /O Cpdv.. (3)
Proposition 1. Under Assumption D, we have
P(T}. < T|Wr,v) = Eq[liry,<ryMp'[Wr,o]. (4)
This can be reexpressed as
P(T) . < T|Wr,v) = (5)
Eq[M;'Eqg [1{TKCST}|WT,WT,U] \Wr,v].

W

—F— as i.e. =
/7]-0T 0§ds P ) P

We define the correlation under P between W and

Corp(Wr, \/%)
0 Eha

W

Lemma 2. Under Assumption D, we have that ——L— is a standard normal
VT 624
o Ysas
. _ 1 S 0.ds }
random variable under P. We can also show that p = Ep F/W

Moreover, there exists a standard normal random variable W under P, which is
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independent of Wr, and such that W when normalized can be reexpressed a.s.

as
W W —~
TT: TT+\/1—p2W. (6)
T 62ds T
This can be reexpressed a.s. as

Wi =aWr + aW, (7)

where o = py/T 1 fOT 02ds a.s. and @ = /(1 —pz)foT 02ds a.s.. If we define

0; = 955_0‘, we can reexpress W a.s. as

o~ T~
W / B.dW,. (8)
0

Moreover, W+ fOT 5593ds is a standard normal variable under Q. Finally, the
conditional distribution of W + fOT 0,0,ds given v, i.e., D(W + fOT 0505ds|v), is

standard normal under Q.
Our main result is the next theorem.

Theorem 1. Under Assumption D, we have

T
]P’(Tz/,c <T|\Wrp,v) = exp(—aWr+ %/ 02ds)
0

We first calculate Q(T};C < T|Wrp,v).
Lemma 3. Under Assumption D, we have
QTY, <TIWr,v) = Y @ (YD)l vreerbrly + Livegier oy~ (10)
j=1
The next theorem gives a formula based on the strong theoretical assumption
(11).
Theorem 2. We assume that Assumption D and the following assumption
EQ [1{TKCST} eXp( —&W)|WT,U] (11)
= EQ [I{TKCST} ‘WT7 U] E@ [exp ( - &W) |WT, ’U]

holds. Then, we have

1 (T
IP’(T?,/’C <T|Wr,v) = exp(—aWr+ 5/ 02ds) (12)
0
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X (Z B (Y1) L vz elerbel}

j=1
T ~

+1{YT§Z[CT,bT]}) exp (&/ esest)EN(&). (13)
0

Finally, we get PY (T) in the next corollary, by integrating P(T} < T|Wr,v)
with respect to the value of (Wr,v). We define the arrival space and cdf of v as
respectively II,, and P,. Moreover, we define y,,, ¥, ys, etc. following the above
definitions when integrating with respect to y € IL,.

Corollary 1. Under Assumption D, we have

RET) = 1= () (T

br—ur 1 22 1 /7 9
+ ex ( — —) exp ( — Yo + = / ds
/CMT /n Vart P\~ gp) o (e g [ vide)
xEq [1{T5Y,CST} exp ( — &W) W =2,v = y] dzdP,(y). (14)

If we further assume (11), we have

br—ury  gCr—lry

VT VT
[T (- Do (vt L [ i)
——exp| — — )exp( — Yor + = <ds
o wr . VAT P oT P Y 2 /s Yo,

o0
x ( Z yﬂf&f (12 + Yu, 1) Yoelye.r—vu 0,00, —yu, 7]}
j=1

Py (T) = 1-¢(

+1{x¢[yC,Tfyu,Tyyb‘T*yu,T]})

T
x exp (ya / Yg..Y0,548) L (ya)dzdPy (y). (15)
0

Appendix B: Proofs in the two-sided stochastic boundary process

case

In this section, we consider the proofs in the case when the two-sided boundary
and the drift are stochastic processes and the variance is random.

The elementary idea in the proofs of this section is to condition by both
W and v, i.e., to derive results of the form IP(TKC < T|Wr,v). The proof of
Proposition 1 is based on Lemma, 1.



/Non-explicit formula of boundary crossing probabilities 5

Proof of Proposition 1. By definition of the conditional probability, Equation

(4) can be rewritten formally as
— —1
E]}D [1{T§§T}|WT7U] = EQ I:]'{TKCST}MT |WT7’U}. (].6)

For any o(Wp,v)-measurable event Ep, we can use a change of probability in

the expectation by Lemma 1, along with Assumption D, and we obtain that

Ep [1{T{C§T}1ET] = Eq [1{TKC§T}M’1?11ET] (17)

We can deduce Equation (16) from Equation (17) by definition of the conditional
expectation. By definition of the conditional probability, Equation (5) can be

rewritten formally as

= ]EQ [Mfl]EQ [I{TKCST} |WT,WT, 1}] |WT, ’U] .

By definition of the conditional expectation, we can deduce what follows. If we

can show that for any Ep, which is o(Wr,v)-measurable, that
Ep [1{TX,CST}1ET] (19)
=Ep {]EQ [M,ZTI]EQ [I{TZCST} |WT,WT, 1}] |WT, v] ]_ET:| R

then Equation (18) holds. Let Er be a o(Wr, v)-measurable event. By Lemma
1 along with Assumption D, we obtain that

Ep[1 {T{CST}lET] = Eo[liry <ryle. M7 ']. (20)
Then, we have by the law of total expectation that

Eq [l{Tﬁch}lETMle} = (21)
EQ [EQ [l{TbY,CST}]‘ETMTTl|WT7WT’ ’UH .

Since 1g, and My L are o(Wr, Wr,v)-measurable random variables, we can

pull them out of the conditional expectation and deduce that
Eq[Eo[1iry <ryle My [Wr, Wr,v]] (22)
= Eo[lp, My 'Eq [1{T{ch}|WT,WT, v]].
If we use Equations (20)-(21)-(22), we can deduce that Equation (19) holds. O

In what follows, we give the proof of Lemma 2.
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Proof of Lemma 2. By Assumption D, we can deduce that 0 < fOT 62ds < oo

.= T W
a.s.. Thus, we can normalize W by 1/ [, 62ds a.s. and we have that ﬁ
is a mixed normal random variable a.s. by definition. Using the same arguments
from the proof of Lemma 2.10, we have that its conditional mean under P is a.s.

equal to

I 6,

\/mv} = 0.

We also have that its conditional variance under P is a.s. equal to

Ep[

I 6,

\/fOT 02ds

Since its conditional mean and conditional variance are nonrandom, we obtain
that its mean under P is equal to Ep [M} =Ep [Ep [M UH =0 by
N VI s

the the law of total expectation and Equation (23). Similarly, we obtain that

Varp (

u) - 1 (23)

its variance is equal to 1 by the law of total expectation and Equation (23).

Thus, we have that _Wr is a standard normal random variable under P.
’ VT 02ds

Since (Wy, ——2L__) is a centered normal random vector under P, there exists

VT 62ds

a standard normal random variable W under P which is independent of W
and such that Equation (6) holds. Then, we can calculate that the covariance

Wr .
between Wrp and NG under P is equal to
= T
0sd
Cove (177, L) _ B {M] (24)
\/fOT 02ds \/fOT 02ds
Now, we can calculate that the correlation between Wp and ~Wr__ ynder P

\/ 'OT 02ds

is equal to

lEp[ fngsds }
T LT g2ds

Equation (7) can be deduced directly from Equation (6). Moreover, we can

reexpress W as
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Moreover, we can deduce that W + fOT gsesds is a standard normal variable
under Q. This is due to its expression (8) and since by Lemma 1 along with
Assumption D, Y is a Wiener process under Q. Finally, D(W + fOT gb’ﬁsds|v)
is standard normal under Q by Equation (8). O

We provide now the proof of Theorem 1, which is based on Lemma 2.

Proof of Theorem 1. Using the same arguments from the proof of Theorem 2.11,
we can reexpress Mr as

T —_—~
Mr = exp (aWT - %/ 9§ds) exp (&W).
0
Then, we have

1 T
P(Ty. < T|Wr,v) = exp(—aWr+ 5/ 02ds)
0

XEQ [l{TbY,CST} exp ( — &W) ‘WT, 'U] .
Thus, we have shown Equation (9). O
We now give the proof of Lemma 3.

Proof of Lemma 3. By definition of the conditional probability, Equation (10)

can be rewritten formally as

oo

]EQ [1{TXC§T}|WT] = Zqzc(j|YT)1{YTE[CT,bT]} + 1{YT€[CT,bT]}' (25)
j=1

By Lemma 1 along with Assumption D, Y is a Wiener process under Q.
Then, we have by Anderson (1960) (Theorem 4.2, pp. 178-179) that Equation
(25) holds. O

We provide now the proof of Theorem 2, which is based on Lemma 3.

Proof of Theorem 2. We have

Eo[liry <ryexp (= aW)[Wr.o] = Eo[liry <py|Wr.v]
<Eq[exp (— &W)|Wr, o]
= (D a UYL yreter sy
j=1
+1{YT¢[cT,bT1}) (26)
XEq[exp (— aW)[Wr, ],
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where we use Assumption (11) in the first equality, and Equation (10) from

Lemma 3 along with Assumption D in the second equality. Finally, we have
EQ[eXp ( — &W)WVT,U] = EQ[eXp ( — &W) \v]
T ~
= exp (&/ Hsﬁsds)
0 B -
xEq[exp (— &(W + / 6.0.ds)) o]
- 0
= exp (&/ 9893ds)
0 B -
XEQ[exp(—&(W+/ 6.0.ds))]
- 0
= exp (&/ GSGSdS)Ep[eXp ( - &N)]
oT )
= exp (&/ GSHSdS)EN(&). (27)
0

Here, we use the fact that W is independent from Wy in the first equality, the
fact that 6, and 6, for any t € [0,T] are o(v)-measurable random variables in
the second equality, the fact that D(W + fOT 0,0, ds|v) is standard normal under
Q by Lemma 2 along with Assumption D in the third equality, the fact that
W+ fOT aQGSds is a standard normal variable under Q by Lemma 2 along with
Assumption D in the fourth equality, and Equation (2.14) in the last equality.
We can deduce Equation (12) from Equations (9), (26) and (27). O

Finally, we get Pb};(T) in the next theorem, by integrating P(TZC < T|\Wr,v)
with respect to the value of (Wr,v).

Proof of Corollary 1. We can calculate that

PY(T) = / /H B(TY, < T|Wr = 2,0 = y)
1 72
—_ — — |dxdP,
X 27rTexp( 2T) T (y)
bp — —
— 1o 4 (T

VT vT

bT—uT
+/ / P(TY <T|\Wr =z,v=y)
c 11,

T—Uur

X1 (
V2rT
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b—uT

VT
b-ur 1 22 1T,
+ ex (f—>ex - Oé:chf/ sds
/m /H == P~ 37 P(=Yar+ 3 i )

xEq[Lry <7y exp (- W) [Wr = z,v = y]dvdP, (y).

= -0

Here, we use Equation (2), regular conditional probability and the fact that Wr
and v are independent in the first equality, the fact that P(TY , < T|Wp = z) = 1
for any x > by — ur and any z < ¢y — ur in the second equality, and Equation
(9) in the third equality. We have thus shown Equation (14). Equation (15) can
be shown following the same first two equalities and using Equation (12) in the
third equality. O
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