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Abstract

We consider estimation of the receiver operating characteristic curve and the ordinal dominance

curve. The nonparametric estimation is based on smoothing. We also propose estimation of the

partial area under the receiver operating curve and the ordinal dominance curve. This is obtained

by local estimation of the receiver operating curve and the ordinal dominance curve. We charac-

terize feasible statistics induced by central limit theory for the estimation procedure. A numerical

simulation corroborates the asymptotic theory. An empirical application to ?? shows that ??.

Keywords: receiver operating curve ; ordinal dominance curve ; partial area; nonparametric estima-

tion; smoothing; local estimation

1 Introduction

This paper first concerns estimation of the receiver operating characteristic (ROC) curve and the

ordinal dominance curve (ODC). The ROC definition and ODC definition are based on the cumulative
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distribution function (cdf) and the quantile of two independent random variables with cdfs F and G.

More specifically, we define the ROC curve at point v as

ROC(v) = 1−G(F−1(1− v)) for 0 ≤ v ≤ 1, (1)

and the ODC at point v as

ODC(v) = F (G−1(v)) for 0 ≤ v ≤ 1. (2)

We propose nonparametric estimation of the two cdfs and the two quantiles based on smoothing. Then,

we can estimate the ROC curve and the ODC by replacing the cdfs and quantiles with their estimates

in the definitions (1) and (2). This paper also concerns estimation of the partial area under the ROC

curve and the ODC. This is first obtained by local estimation of the ROC curve and the ODC. Then,

we aggregate the local estimates. As far as the authors know, nonparametric estimation of the partial

area under the ROC curve and the ODC based on smoothing is novel to the literature. This paper

finally concerns estimation of the weighted area under the ROC curve and the ODC.

The primary application of ROC curve and ODC lies in medicine. In that field, the ROC curve

and ODC are important tools describing the performance of a diagnostic test used to discriminate

between healthy and diseased patients. The test scores of the patients are based on random variables

measured on a continuous scale. The use of ROC curve and ODC in medicine started right after 1960.

[Gonçalves et al., 2014] overview some developments on the estimation of the ROC curve. The area

under the ROC curve is another important tool (see [Walter, 2005]). Since the area under the ROC

curve can be limited, [Li and Fine, 2010] introduce the weighted area under the ROC curve and its

application to gene selection.

There are applications or potential applications of ROC curve and ODC in almost every scientific

field. [Swets and Pickett, 1982] (Appendix E) list almost 200 references in a variety of subject areas

where ROC curve methods have been used. [Krzanowski and Hand, 2009] (Chapter 10) also refer

substantive applications. These and later references span such diverse areas as radar signal detection,

statistical quality control, psychology, polygraph lie detection, radiology, clinical chemistry, cardiology,
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health and behavior studies, among others. The reader is also referred to [Green et al., 1966] and

[Metz, 1978] (1978) for general background.

Nonparametric approaches to estimate ROC curve, ODC, and the partial area under them have

been extensively investigated. Most of them are based on Mann-Whitney U-statistics, i.e. empirical

estimation. [Bamber, 1975] estimate the area under the ROC curve. [DeLong et al., 1988] compare the

areas under two or more correlated ROC curves. [Wieand et al., 1989] consider the difference between

ROC curves, or difference between the partial area under the ROC curves. [Hsieh and Turnbull, 1996]

consider estimation of the ODC and the area under the ODC based on empirical distribution function.

[Dodd and Pepe, 2003] propose semiparametric regression for the area under the ROC curve. Based on

the jackknife empirical likelihood ([Jing et al., 2009]), smoothed inference procedures for ROC curve are

proposed in [Gong et al., 2010] and [Adimari and Chiogna, 2012]. [Davidov and Herman, 2012] pro-

pose estimation of the ODC and the area under the ODC for stochastically ordered cdfs. New inference

method of two ROC curves and ROC curves with missing data are developed in [Yang and Zhao, 2013]

and [Yang and Zhao, 2015]. [Yang et al., 2017] consider partial areas under ROC curves and ODC.

[Bianco et al., 2022] study robust consistent estimators for ROC curves with covariates. Simulta-

neous inference for partial areas under ROC curves is given in [Wechsung and Konietschke, 2023].

[Huang et al., 2023] study interval estimation for operating characteristic of continuous biomarkers

with controlled sensitivity or specificity.

There are also approaches based on smoothing estimation. They are restricted to estimation of

ROC and ODC, but not the area under them. [Lloyd, 1998] uses smoothed ROC curves to summa-

rize and compare diagnostic systems. [Hall et al., 2004] gives confidence intervals for receiver operating

characteristic curves. [Peng and Zhou, 2004] consider local linear smoothing of receiver operating char-

acteristic (ROC) curves.

Although smoothing estimation for ROC curves is generally better than empirical estimation for

ROC curves (see [Lloyd and Yong, 1999]), there is as far as the authors know no method for estimation

of the partial area under the ROC curve or ODC based on smoothing estimation. In this paper, we
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propose to fill this gap with the use of delta-sequences, i.e. a sequence of functions approaching

the Dirac function asymptotically. They are considered since they are general. They cover several

types of smoothing estimation including the kernel estimation, orthogonal series estimation, Fourier

transform estimation, and the histogram (see [Walter and Blum, 1979]). They are also suitable since

the cdf estimator is proven to be uniformly convergent in [Winter, 1973], and satisfying Chung-Smirnov

property in [Winter, 1979] for the smoothing estimator case. [Reiss, 1981] shows that the empirical

estimator is asymptotically deficient compared to the smoothing estimator. These delta-sequences were

introduced in [Rosenblatt, 1956] (see Section 4), and also used in [Watson and Leadbetter, 1964a] (see

Equations (2.1) and (2.2), p. 176).

Theorem 1 gives the central limit theory (CLT) for estimation based on delta-sequences of the

ROC curve and the ODC. Theorem 2 provides the CLT for local estimation of the partial area under

the ROC curve and the ODC. Theorem 3 provides the CLT for local estimation of the weighted area

under the ROC curve and the ODC. They also provide feasible statistics induced by the CLT. All these

results are novel to the literature.

The main argument in the proofs is the use of the convergence in distribution in the sense of

stochastic processes. By stochastic processes, we mean that the convergence is obtained jointly for

any point between the starting point and the ending point of the area. More specifically, we show

the convergence in distribution of the process of ROC curve statistics to a limit which is a Gaussian

process.

2 Setting

In this section, we introduce the setting, the definition of the partial area under the ROC curve and

the ODC, and the definition of the weighted area under the ROC curve and the ODC.

We observe n independent random variables X1, · · · , Xn on the real positive numbers R+ with cdf

defined as F and probability distribution function (pdf) denoted by f . We also observe m independent

random variables Y1, · · · , Ym on the real positive numbers R+ with cdf defined as G and pdf denoted
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by g. We assume that the random variables X1, · · · , Xn are independent from the random variables

Y1, · · · , Ym. When used for a diagnostic test, the random variables X1, · · · , Xn are the test scores of

healthy patients and the random variables Y1, · · · , Ym are the test scores of diseased patients. The test

scores of the patients are based on random variables measured on a continuous scale.

The partial area under the ROC curve or ODC is another important tool (see [Walter, 2005]). We

define the partial area under the ROC curve from the starting point v0 to the final point v as

pROC(v0, v) =

∫ v

v0

ROC(u)du for 0 ≤ v0 < v ≤ 1. (3)

We define the partial area under the ODC curve from the starting point v0 to the final point v as

pODC(v0, v) =

∫ v

v0

ODC(u)du for 0 ≤ v0 < v ≤ 1. (4)

Since the area under the ROC curve and ODC can be limited, [Li and Fine, 2010] introduce the

weighted area under the ROC curve and its application to gene selection. Thus, we introduce hR as a

known pdf on the interval [0, 1]. We define the weighted area under the ROC curve from the starting

point v0 to the final point v as

wROC(v0, v) =

∫ v

v0

ROC(u)hR(u)du for 0 ≤ v0 < v ≤ 1. (5)

Finally, we introduce h0 as a known pdf on the interval [0, 1]. We define the weighted area under the

ODC curve from the starting point v0 to the final point v as

wODC(v0, v) =

∫ v

v0

ODC(u)h0(u)du for 0 ≤ v0 < v ≤ 1. (6)

3 Estimation

In this section, we introduce nonparametric estimation based on delta-sequences for ROC curve and

ODC. We also introduce local estimation for the partial area under the ROC curve and the partial area

under the ODC. Finally, we introduce local estimation for the weighted area under the ROC curve and

the weighted area under the ODC.
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We prefer most of the time not to write explicitly the dependence on n in definitions. We consider

the complete stochastic basis B = (Ω,P,F), where F is a σ-field. We consider nonparametric estimation

of the cdf, based on delta-sequences δ.

Following Section 4 of [Watson and Leadbetter, 1964b], we can then estimate the pdfs and cdfs as

f̂(t) =
1

n

n∑
i=1

δ(t−Xi) , ĝ(t) =
1

n

m∑
j=1

δ(t− Yj) for any t ≥ 0, (7)

F̂ (t) =

∫ t

0
f̂(u)du , Ĝ(t) =

∫ t

0
ĝ(u)du for any t ≥ 0. (8)

We define the empirical estimator of the quantiles as

F̂−1(v) = inf{t ∈ R+ s.t. F̂ (t) = v} and Ĝ−1(v) = inf{t ∈ R+ s.t. Ĝ(t) = v}. (9)

We define the estimator of ROC curve as

R̂OC(v) = 1− Ĝ(F̂−1(1− v)), (10)

and the estimator of ODC curve as

ÔDC(v) = F̂ (Ĝ−1(v)). (11)

We define the asymptotic variance for estimation of ROC curve as

VR(v) = λG(F−1(1− v))(1−G(F−1(1− v)) +
v(1− v)g(F−1(1− v))2

f(F−1(1− v))2
(12)

We also define the asymptotic variance for estimation of ODC as

VO(v) = F (G−1(v))(1− F (G−1(v)) +
λv(1− v)f(G−1(v))2

g(G−1(v))2
(13)

We define the estimator of asymptotic variance for ROC curve estimation as

V̂R(v) = λĜ(F̂−1(1− v))(1− Ĝ(F−1(1− v)) +
v(1− v)ĝ(F̂−1(1− v))2

f̂(F̂−1(1− v))2
(14)

We also define the estimator of asymptotic variance for ODC estimation as

V̂O(v) = F̂ (Ĝ−1(v))(1− F̂ (Ĝ−1(v)) +
λv(1− v)f̂(Ĝ−1(v))2

ĝ(Ĝ−1(v))2
. (15)
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To estimate the partial area under the ROC curve (3), we consider local estimation

p̂ROC(v0, v) =

M−1∑
k=0

R̂OC(vk)∆. (16)

Here, M is the number of points of approximation, ∆ = v−v0
M is the length between each point of

approximation, and the points of approximation are vk = v0 + k∆ for k = 0, · · · ,M − 1. To estimate

the partial area under the ODC curve (4), we also consider local estimation

p̂ODC(v0, v) =

M−1∑
k=0

ÔDC(vk)∆. (17)

We define the asymptotic variance for estimation of the partial area under the ROC curve as

VpR(v0, v) =

∫ v

v0

(1 + 2(v − u))VR(u)du. (18)

We also define the asymptotic variance for estimation of the partial area under the ODC as

VpO(v0, v) =

∫ v

v0

(1 + 2(v − u))VO(u)du. (19)

We define the estimator of asymptotic variance for the partial area under the ROC curve as

V̂pR(v0, v) =

M−1∑
k=0

(1 + 2(v − vk))V̂R(vk)∆. (20)

We also define the estimator of asymptotic variance for the partial area under the ODC curve as

V̂pO(v0, v) =
M−1∑
k=0

(1 + 2(v − vk))V̂O(vk)∆. (21)

To estimate the weighted area under the ROC curve (5), we also consider local estimation

ŵROC(v0, v) =

M−1∑
k=0

R̂OC(vk)hR(vk)∆. (22)

To estimate the weighted area under the ODC curve (6), we also consider local estimation

ŵODC(v0, v) =

M−1∑
k=0

ÔDC(vk)h0(vk)∆. (23)

We define the asymptotic variance for estimation of the weighted area under the ROC curve as

VwR(v0, v) =

∫ v

v0

(1 + 2(v − u))VR(u)h
2
R(u)du. (24)
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We also define the asymptotic variance for estimation of the weighted area under the ODC as

VwO(v0, v) =

∫ v

v0

(1 + 2(v − u))VO(u)h
2
O(u)du. (25)

We define the estimator of asymptotic variance for the weighted area under the ROC curve as

V̂wR(v0, v) =
M−1∑
k=0

V̂R(vk)h(vk)∆. (26)

Finally, we define the estimator of asymptotic variance for the weighted area under the ODC as

V̂wO(v0, v) =
M−1∑
k=0

V̂O(vk)h(vk)∆. (27)

4 Theory

We introduce a sequence of positive functions δ : R → R+ which will be called positive delta-sequence

if it satisfies the following set of conditions.

Condition 1. (a) We have
∫

R δ(t)dt = 1 for any n ∈ N.

(b) We have sup|t|≥κ δ(t) → 0 as n → ∞ for any κ > 0.

(c) We have
∫
|t|≥κ δ(t)dt → 0 as n → ∞ for any κ > 0.

For example, we can consider the kernel

δ(t) =
r(t/A)

A
∫

R r(t)dt
.

Here, we have that r : R → R+ is a bounded integrable function satisfying tr(t) → 0 as | t |→ ∞,

and A is the bandwidth satisfying A → 0 as n → ∞. When compared to the general definition of

delta-sequences given in [Watson and Leadbetter, 1964b] (Section 2, pp. 102-103), we restrict to the

positive case since we want to avoid estimated negative pdf and cdf which would imply that estimator

of the quantiles (9) is not well-defined. This comes with a price of not allowing for kernel improving

the rate of convergence of the bias and the MSE (see [Singpurwalla and Wong, 1983]).
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Moreover, we introduce the squared-average of the delta-sequence δ as

α =

∫ ∞

−∞
δ2(t)dt.

We also introduce a real positive number µ > 0. Finally, we introduce the (2 + µ) power-average of

the delta-sequence δ as

γ =

∫ ∞

−∞
δ2+µ(t)dt.

Let us introduce a set of conditions required to derive the CLT tor estimation of ROC curve and ODC.

Condition 2. (a) We have α < ∞ , γ < ∞ for any n ∈ N∗, αn → 0 and γ
nµ/2α1+µ/2 → 0 as n → ∞.

(b) There exists a real positive number λ > 0 such that n
m → λ.

(c) The random variables X1, · · · , Xn are independent from the random variables Y1, · · · , Ym.

(d) The cdfs F and G are strictly increasing on R+.

(e) The cdfs F and G are continuously differentiable on R+.

(f) We have the rescaled bias of estimation for F that converges to 0, i.e.
√
n(E[F̂ (G−1(v))] −

F (G−1(v))) → 0 and
√
n(E[F̂ (F−1(1 − v))] − F (F−1(1 − v)) → 0 as n → ∞. We also have the

rescaled bias of estimation for G that converges to 0, i.e.
√
m(E[Ĝ(F−1(1−v))]−G(F−1(1−v))) →

0 and
√
m(E[Ĝ(G−1(v))]−G(G−1(v))) → 0 as m → ∞.

Condition 2 (a) is required to apply Theorem 6 (p. 112) in [Watson and Leadbetter, 1964b]. Condi-

tions 2 (b) and (c) are usual for estimation of ROC curve and ODC, and appears in Section 2 (p. 28) of

[Hsieh and Turnbull, 1996]. Condition 2 (d) is required to obtain unicity of the quantiles. Conditions

2 (e) and (f) correspond to Conditions 2) and 3) in [Nadaraya, 1964] (p. 499). Our assumptions are

weaker, since we do not require Condition 1) from [Nadaraya, 1964] (p. 499). This is due to the fact

that we use in the proofs the uniform consistency of the pdf estimator on a compact space, rather than

on the real positive space R+.
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We define N as a random variable with standard normal distribution. We first state the CLT for

estimation of ROC curve and ODC in the following theorem. It also provides feasible statistics induced

by the CLT.

Theorem 1. Under Conditions 1 and 2, we obtain the CLT for estimation of ROC curve and ODC

curve,

√
n
R̂OC(v)−ROC(v)√

VR(v)

D→ N for any 0 < v < 1, (28)

√
n
ÔDC(v)−ODC(v)√

VO(v)

D→ N for any 0 < v < 1, (29)

as n → ∞. We also obtain the feasible CLT for estimation of ROC curve and ODC curve,

√
n
R̂OC(v)−ROC(v)√

V̂R(v)

D→ N for any 0 < v < 1, (30)

√
n
ÔDC(v)−ODC(v)√

V̂O(v)

D→ N for any 0 < v < 1, (31)

as n → ∞.

For two real numbers a and b, we denote by a∨b the minimum of a and b and by a∧b the maximum

of a and b. To obtain the CLT for estimation of the partial area under the ROC curve and the partial

area under the ODC curve, we make another set of conditions.

Condition 3. (a) We have ∆ → 0 and such that
√
n

∆ → 0 as n → ∞.

(b) We have the pdfs f and g are bounded uniformly by a constant strictly bigger than 0, i.e. there

exists K > 0 such that

inf
t∈[F−1(1−v),F−1(1−v0)]

f(t) ≥ K and inf
t∈[G−1(v0),G−1(v)]

g(t) ≥ K.

(c) We have the rescaled bias of estimation for F that converges to 0 uniformly, i.e.

sup
t∈[G−1(v0)∨F−1(1−v),G−1(v)∧F−1(1−v0)]

√
n(E[F̂ (t)]− F (t)) → 0
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as n → ∞. We also have the bias of estimation for G that converges to 0 uniformly, i.e.

sup
t∈[G−1(v0)∨F−1(1−v),G−1(v)∧F−1(1−v0)]

√
m(E[Ĝ(t)]−G(t)) → 0,

as m → ∞.

Condition 3 (a) is required for local estimation. Condition 3 (b) is used to prove the uniform

consistency for quantile estimation.

We now state the CLT for estimation of the partial area under the ROC curve and the partial area

under the ODC in the following theorem. It also provides feasible statistics induced by the CLT.

Theorem 2. We assume that Conditions 1, 2 and 3 hold. We obtain the CLT for estimation of the

partial area under the ROC curve and the partial area under the ODC curve,

√
n
p̂ROC(v0, v)− pROC(v0, v)√

VpR(v0, v)

D→ N for any 0 < v0 < v < 1, (32)

√
n
p̂ODC(v0, v)− pODC(v0, v)√

VpO(v0, v)

D→ N for any 0 < v0 < v < 1, (33)

as n → ∞. We also obtain the feasible CLT for estimation of the partial area under the ROC curve

and the partial area under the ODC curve,

√
n
p̂ROC(v0, v)− pROC(v0, v)√

V̂pR(v0, v)

D→ N for any 0 < v0 < v < 1, (34)

√
n
p̂ODC(v0, v)− pODC(v0, v)√

V̂pO(v0, v)

D→ N for any 0 < v0 < v < 1, (35)

as n → ∞.

Finally, we state the CLT for estimation of the weighted area under the ROC curve and the weighted

area under the ODC curve in the following theorem. It also provides feasible statistics induced by the

CLT.

Theorem 3. We assume that Conditions 1, 2 and 3 hold. We obtain the CLT for estimation of the
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weighted area under the ROC curve and the weighted area under the ODC curve

√
n
ŵROC(v0, v)− wROC(v0, v)√

VwR(v0, v)

D→ N for any 0 < v0 < v < 1, (36)

√
n
ŵODC(v0, v)− wODC(v0, v)√

VwO(v0, v)

D→ N for any 0 < v0 < v < 1, (37)

as n → ∞. We also obtain the feasible CLT for estimation of the weighted area under the ROC curve

and the weighted area under the ODC curve

√
n
ŵROC(v0, v)− wROC(v0, v)√

V̂wR(v0, v)

D→ N for any 0 < v0 < v < 1, (38)

√
n
ŵODC(v0, v)− wODC(v0, v)√

V̂wO(v0, v)

D→ N for any 0 < v0 < v < 1, (39)

as n → ∞.

5 Numerical study

In this section, we first report how the feasible statistics induced by CLT from Section 4 behave in

finite sample. We also compare these estimators to three concurrent estimators from the literature

([Yang et al., 2017]). The estimators are normal approximation (NA) from Corollary 1, jacknife esti-

mation (JKN) from Theorem 1, and jackknife empirical likelihood (JEL) from Theorem 2.

The setting will be: two different models, five different (n,m) values, six different estimators (ROC,

ODC, pROC, pODV, wROC, wODC). There will be six tables (see Table 1), one for each estimation.

First, focus on filling in Table 1

We first introduce the setting.

A. We observe independent random variables X1, · · · , Xm ∼ F, Y1, · · · , Yn ∼ G.

B. ROC(t) = 1−G(F−1(1− t)), ODC(t) = F (G−1(t)).

C. Define iROC(t) =
∫ t
0 ROC(u)du, iODC(t) =

∫ t
0 ODC(u)du, we have iROC(1) = iODC(1) =

P(X < Y ).
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Two Estimators

A. Based on plugging in empirical distribution function (EDF) F̃ (t) = 1
m

∑m
i=1 1(Xi≤t), G̃(t) =

1
n

∑n
j=1 1(Yj≤t)

ĩODC(v) =

∫ v

0
F̃ (G̃−1(t))dt =

∫ G̃−1(v)

−∞
F̃ (u)dG̃(u) =

1

mn

∑
i,j

1(Xi<Yj)1(Yj≤G̃−1(v)) (40)

ĩROC(v) =
1

mn

∑
i,j

1(Xi<Yj)1(F̃ (Xi)≥1−v) (41)

where v ∈ (0, 1].

B. Based on kernel density estimation F̂ (t), Ĝ(t) and numerical integration (trapezoidal rule). Let

{tk}Kk=1 partition [0, v], i.e. 0 = t0 < t1 < · · · < tK = v. ∆tk = tk − tk−1.

îODC(v) =
K∑
k=1

∆tk · F̂ (Ĝ−1(tk))+F̂ (Ĝ−1(tk−1))
2 ≈

∫ v

0
F̂ (Ĝ−1(t))dt (42)

îROC(v) =
K∑
k=1

∆tk · (1− Ĝ(F̂−1(1−tk))+Ĝ(F̂−1(1−tk−1))
2 ) ≈

∫ v

0
1− Ĝ(F̂−1(1− t))dt (43)

6 Empirical application

7 Discussion

8 Conclusion

In this paper,

The code is available online at ???

Supplementary materials

All proofs of the theory can be found in the supplementary materials.
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Table 1: Summary statistics for ROC curve with feasible statistics. The number of replications is ??.

Method Ours Alternative 1 Alternative 2 Alternative 3

Model n m Mean Variance Mean Var Mean Var Mean Var

1 20 30

1 40 70

1 70 120

1 100 150

1 200 200

2 20 30

2 40 70

2 70 120

2 100 150

2 200 200
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Supplementary materials
This part corresponds to the supplementary materials of "Nonparametric local estimation of the partial

area under the receiver operating characteristic curve" by Chang Yuan Li and Yoann Potiron submitted

to the Journal of American Statistical Association. All the proofs of the theory can be found in Section

9.

9 Proofs

We start with the CLT for estimation of cdfs. The following lemma is an application of Theorem 6 (p.

112) in [Watson and Leadbetter, 1964b].

Lemma 1. We assume that Condition 1 and Conditions 2 (a), (b) and (f) hold. We have the CLT for

the cdf estimators

√
n(F̂ (t)− F (t))

D→ NF (t) for any t > 0 such that 0 < F (t) < 1, (44)

√
n(Ĝ(t)−G(t))

D→ NG(t) for any t > 0 such that 0 < G(t) < 1, (45)

as n → ∞. Here, NF (t) is a random variable with normal distribution characterized by its mean

equal to zero and its variance equal to F (t)(1 − F (t)). Also, NG(t) is a random variable with normal

distribution characterized by its mean equal to zero and its variance equal to λG(t)(1−G(t)).

Proof of Lemma 1. We have that

√
n(F̂ (t)− F (t)) =

√
n(F̂ (t)− E[F̂ (t)]) +

√
n(E[F̂ (t)]− F (t)).

By Condition 2 (f), we can deduce that the random variables

√
n(F̂ (t)− F (t))

and

√
n(F̂ (t)− E[F̂ (t)])
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converge to the same limit in distribution. Then, an application of [Watson and Leadbetter, 1964b]

(Theorem 6 (iii)) with Conditions 1 and 2 (a) gives Expression (44).

We have that

√
n(Ĝ(t)−G(t)) =

√
m

√
n√
m
(Ĝ(t)−G(t)).

By Slutsky’s theorem and Condition 2 (b), we can deduce that the random variables

√
n(Ĝ(t)−G(t))

and

√
m
√
λ(Ĝ(t)−G(t))

converge to the same limit in distribution. Then, we have that

√
m
√
λ(Ĝ(t)−G(t)) =

√
m
√
λ(Ĝ(t)− E[Ĝ(t)]) +

√
m
√
λ(E[Ĝ(t)]−G(t)).

By Condition 2 (f), we can deduce that

√
m
√
λ(Ĝ(t)−G(t))

and

√
m
√
λ(Ĝ(t)− E[Ĝ(t)])

converge to the same limit in distribution. Then, an application of [Watson and Leadbetter, 1964b]

(Theorem 6 (iii)) with Conditions 1 and 2 (a) gives Expression (45).

We give now the uniform consistency of the cdf estimators on the space of real positive numbers.

The following lemma is an application of Theorem 1 (p. 248) in [Winter, 1973].

Lemma 2. Under Conditions 1 and 2 (b), we have the uniform consistency of the cdf estimators

sup
t∈R+

∣∣F̂ (t)− F (t)
∣∣ P→ 0 and sup

t∈R+

∣∣Ĝ(t)−G(t)
∣∣ P→ 0,

as n → ∞.
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Proof of Lemma 2. This is a direct application of Theorem 1 (p. 248) in [Winter, 1973] and Condition

2 (b).

We give now the uniform consistency of the pdf estimators on any bounded interval of R+. The

following lemma extends Lemmas 6 and 7 in [Kikuchi et al., 2024].

Lemma 3. We assume that Conditions 1, 2 (b) and (e) hold. We have the uniform consistency of the

pdf estimators on any interval [a, b] of R+ such that 0 < a < b, i.e.

sup
t∈[a,b]

∣∣f̂(t)− f(t)
∣∣ P→ 0 and sup

t∈[a,b]

∣∣ĝ(t)− g(t)
∣∣ P→ 0,

as n → ∞.

Proof of Lemma 3. As L2-convergence implies P-convergence, it is sufficient to show the L2-convergence.

We have that

E[(f̂(t)− f(t))2] = (E[f̂(t)]− f(t))2 +Var[f̂(t)].

Thus, we can deduce that

sup
t∈[a,b]

E[(f̂(t)− f(t))2] ≤ sup
t∈[a,b]

(E[f̂(t)]− f(t))2 + sup
t∈[a,b]

Var[f̂(t)].

Since

E[f̂(t)] =
∫

R+

δn(s− t)f(s)ds,

we can apply Lemma 6 in [Kikuchi et al., 2024] with Conditions 1 and 2 (e) to obtain

sup
t∈[a,b]

(E[f̂(t)]− f(t))2 → 0.

We can also apply Lemma 7 in [Kikuchi et al., 2024] with Conditions 1 and 2 (e) to obtain

sup
t∈[a,b]

Var[f̂(t)] → 0.

The same arguments with Condition 2 (b) yield

sup
t∈[a,b]

∣∣ĝ(t)− g(t)
∣∣ P→ 0,
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We give now the consistency of the quantile estimators. The following lemma extends [Nadaraya, 1964]

(Section 3) to the case of delta-sequences.

Lemma 4. We assume that Conditions 1, 2 (b) and (d) hold. We have the consistency of the quantile

estimators

∣∣F̂−1(v)− F−1(v)
∣∣ P→ 0 and

∣∣Ĝ−1(v)−G−1(v)
∣∣ P→ 0 for any v ∈ (0, 1), (46)

as n → ∞.

Proof of Lemma 4. For ϵ > 0, we consider

δ = min(F (F−1(v) + ϵ)− v, v − F (F−1(v)− ϵ)).

By Condition 2 (d), we can deduce that δ > 0. By definition of δ, we obtain

P
(∣∣F̂−1(v)− F−1(v)

∣∣ > ϵ
)
≤ P

(∣∣F (F̂−1(v))− v
∣∣ > δ

)
. (47)

By definition of the quantile estimator (9), we obtain

∣∣F (F̂−1(v))− v
∣∣ = ∣∣F (F̂−1(v))− F̂ (F̂−1(v))

∣∣. (48)

By bounding the term in the right hand-side of Equation (48), we obtain

∣∣F (F̂−1(v))− F̂ (F̂−1(v))
∣∣ ≤ sup

t∈R+

∣∣F (t)− F̂ (t)
∣∣. (49)

By Lemma 2 with Expressions (47), (48) and (49), we can deduce that

∣∣F̂−1(v)− F−1(v)
∣∣ P→ 0.

The same arguments with Condition 2 (b) yield

∣∣Ĝ−1(v)−G−1(v)
∣∣ P→ 0.
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We continue with the CLT for estimation of quantiles. The following lemma extends [Nadaraya, 1964]

(Section 3) to the case of delta-sequences.

Lemma 5. We assume that Conditions 1 and 2 hold. We have the CLT for the quantile estimators

√
n(F̂−1(v)− F−1(v))

D→ NF−1, (50)

√
n(Ĝ−1(v)−G−1(v))

D→ NG−1 , (51)

as n → ∞. Here, NF−1(t) is a random variable with normal distribution characterized by its mean

equal to zero and its variance equal to v(1−v)
f(F−1(v))2

. Also, NG−1(t) is a random variable with normal

distribution characterized by its mean equal to zero and its variance equal to λv(1−v)
g(G−1(v))2

.

Proof of Lemma 5. By Condition 2 (e), we obtain that the cdf estimator (8) is continuously differen-

tiable on the real positive set R+. Its derivative is equal to the pdf estimator (7). Thus, we can consider

the Taylor expansion

F̂ (F̂−1(v))− F̂ (F−1(v)) = (F̂−1(v)− F−1(v))f̂(ξ), (52)

where ξ is a random variable between F−1(v) and F̂−1(v).

Let us first show that f̂(ξ) tends to f(F−1(v)) in probability. By the triangular inequality, we

obtain

|f̂(ξ)− f(F−1(v))| ≤ |f̂(ξ)− f(ξ)|+ |f(ξ)− f(F−1(v))|. (53)

By Lemma 4, we can deduce that ξ converges to F−1(v) in probability. If we introduce a sequence as

ϵ > 0 such that ϵ → 0, we also obtain

P
(
|f̂(ξ)− f(ξ)| ≤ sup

z∈[F−1(v)−ϵ,F−1(v)+ϵ]

|f̂(z)− f(z)|
)
→ 1. (54)

By Lemma 3, we can deduce that

sup
z∈[F−1(v)−ϵ,F−1(v)+ϵ]

|f̂(z)− f(z)| P→ 0. (55)
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By Expressions (54) and (55), we can deduce that

|f̂(ξ)− f(ξ)| P→ 0. (56)

Since ξ converges to F−1(v) in probability and f is continuous by Condition 2 (e), we obtain by an

application of the continuous mapping theorem that

|f(ξ)− f(F−1(v))| P→ 0. (57)

By Expressions (53), (56) and (57), we can deduce that

|f̂(ξ)− f(F−1(v))| P→ 0. (58)

By Equation (52), we can deduce that a.s.

√
n(F̂−1(v)− F−1(v)) =

√
n
F̂ (F̂−1(v))− F̂ (F−1(v))

f̂(ξ)
. (59)

By definition of the quantile estimator (9), we can deduce that

√
n
F̂ (F̂−1(v))− F̂ (F−1(v))

f̂(ξ)
=

√
n
F (F−1(v))− F̂ (F−1(v))

f̂(ξ)
. (60)

By an application of Lemma 1 with Slutsky’s theorem and Expression (58), we obtain

√
n
F (F−1(v))− F̂ (F−1(v))

f̂(ξ)

D→ NF−1 . (61)

By Expressions (59), (60) and (61), we can deduce Expression (50). The same arguments with Condi-

tion 2 (b) yield Expression (51).

We give now the proof of Theorem 1. This is based on a Taylor expansion, and an application of

Lemmas 1 and 5.

Proof of Theorem 1. By the definitions of ROC curve (1) and its estimator (10), we can deduce

R̂OC(v)−ROC(v) = Ĝ(F̂−1(1− v))−G(F−1(1− v)). (62)

24



Then, we can deduce that

Ĝ(F̂−1(1− v))−G(F−1(1− v)) = Ĝ(F̂−1(1− v))− Ĝ(F−1(1− v)) (63)

+Ĝ(F−1(1− v))−G(F−1(1− v)).

By Condition 2 (e), we obtain that the cdf estimator (8) is continuously differentiable on the real

positive set R+. Its derivative is equal to the pdf estimator (7). Thus, we can consider the Taylor

expansion

Ĝ(F̂−1(1− v))− Ĝ(F−1(1− v)) = (F̂−1(1− v)− F−1(1− v))ĝ(ξ), (64)

where ξ is a random variable between F−1(1− v) and F̂−1(1− v). By an application of Lemma 5 with

Slutsky’s theorem and Expression (58), we obtain

√
n(F̂−1(1− v)− F−1(1− v))ĝ(ξ)

D→ N
(
0,

v(1− v)g(F−1(1− v))2

f(F−1(1− v))2

)
. (65)

Here, N (m,σ2) denotes a random variable which is normally distributed with mean m and variance

σ2. By Expressions (64) and (65), we can deduce that

√
n(Ĝ(F̂−1(1− v))− Ĝ(F−1(1− v)))

D→ N
(
0,

v(1− v)g(F−1(1− v))2

f(F−1(1− v))2

)
. (66)

By Lemma 1, we obtain

√
n(Ĝ(F−1(1− v))−G(F−1(1− v)))

D→ N
(
0, λG(F−1(1− v))(1−G(F−1(1− v))

)
. (67)

By Condition 2 (c), we obtain

Cov(
√
n(Ĝ(F−1(1− v))−G(F−1(1− v))),

√
n(Ĝ(F̂−1(1− v))− Ĝ(F−1(1− v)))) → 0. (68)

By Expressions (62), (63), (66), (67) and (68), we can deduce Expression (28). By an application of

Lemmas 2, 3 and 4, with the definitions (12) and (14), we can deduce that V̂R(v) converges to VR(v)

in probability. Then, we can deduce Expression (30) by Slutsky’s theorem.

By the definitions of ODC (2) and its estimator (11), we can deduce

ÔDC(v)−ODC(v) = F̂ (Ĝ−1(v))− F (G−1(v)). (69)
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Then, we can deduce that

F̂ (Ĝ−1(v))− F (G−1(v)) = F̂ (Ĝ−1(v))− F̂ (G−1(v)) + F̂ (G−1(v))− F (G−1(v)). (70)

By Condition 2 (e), we obtain that the cdf estimator (8) is continuously differentiable on the real

positive set R+. Its derivative is equal to the pdf estimator (7). Thus, we can consider the Taylor

expansion

F̂ (Ĝ−1(v))− F̂ (G−1(v)) = (Ĝ−1(v)−G−1(v))f̂(ξ), (71)

where ξ is a random variable between G−1(v) and Ĝ−1(v). By an application of Lemma 5 with Slutsky’s

theorem and Expression (58), we obtain

√
n(Ĝ−1(v)−G−1(v))f̂(ξ)

D→ N
(
0,

λv(1− v)f(G−1(v))2

g(G−1(v))2

)
. (72)

By Expressions (71) and (72), we can deduce that

√
n(F̂ (Ĝ−1(v))− F̂ (G−1(v)))

D→ N
(
0,

λv(1− v)f(G−1(v))2

g(G−1(v))2

)
. (73)

By Lemma 1, we obtain

√
n(F̂ (G−1(v))− F (G−1(v)))

D→ N
(
0, F (G−1(v))(1− F (G−1(v))

)
. (74)

By Condition 2 (c), we obtain

Cov(
√
n(F̂ (G−1(v))− F (G−1(v))),

√
n(F̂ (Ĝ−1(v))− F̂ (G−1(v)))) → 0. (75)

By Expressions (69), (70), (73), (74) and (75), we can deduce Expression (29). By an application of

Lemmas 2, 3 and 4, with the definitions (13) and (15), we can deduce that V̂O(v) converges to VO(v)

in probability. Then, we can deduce Expression (31) by Slutsky’s theorem.

We give the CLT for multidimensional estimation of cdfs at different times in the following lemma.

This extends Lemma 1, and its proof is based on the CLT normal convergence criterion (p. 307) from

[Loeve, 1977] adapted to the multidimensional case.
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Lemma 6. We assume that Condition 1, Conditions 2 (a), (b) and (e) and Condition 3 (c) hold. We

consider joint estimation at different times (ti) for i = 1, · · · , d, which satisfy 0 < t1 < t2 < . . . < td

and d ∈ N with d ≥ 2. We have the CLT for the multidimensional cdf estimators

√
n((F̂ (ti))

d
i=1 − (F (ti))

d
i=1)

D→ (NF (ti))
d
i=1, (76)

√
n((Ĝ(ti))

d
i=1 − (G(ti))

d
i=1)

D→ (NG(ti))
d
i=1, (77)

as n → ∞. Here, (NF (ti))
d
i=1 is a d-dimensional random vector with multidimensional normal distribu-

tion characterized by its variance Var(NF (ti)) = F (ti)(1−F (ti)) and covariance Cov(NF (ti), NF (tj)) =

F (ti)(1 − F (ti)) for any i < j. Also, (NG(ti))
d
i=1 is a d-dimensional random vector with multidimen-

sional normal distribution characterized by its variance Var(NG(ti)) = λG(ti)(1−G(ti)) and covariance

Cov(NG(ti), NG(tj)) = λG(ti)(1−G(ti)) for any i < j.

Proof of Lemma 6. First, we can deduce by Condition 2 (e) that the cdfs at different times satisfy

0 < F (t1) < · · · < F (td) < 1. We have that

√
n((F̂ (ti))

d
i=1 − F (ti)

d
i=1) =

√
n((F̂ (ti))

d
i=1 − (E[F̂ (ti)])

d
i=1) +

√
n((E[F̂ (ti)])

d
i=1 − (F (ti))

d
i=1).

By Condition 3 (c), we can deduce that the random vectors

√
n((F̂ (ti))

d
i=1 − (F (ti))

d
i=1)

and

√
n((F̂ (ti))

d
i=1 − (E[F̂ (ti)])

d
i=1)

converge to the same limit in distribution. By Conditions 1 and 2 (a), we can extend the arguments

from the proof of Theorem 6 (iii) from [Watson and Leadbetter, 1964b]. Then, we obtain by the CLT

normal convergence criterion (p. 307) from [Loeve, 1977] adapted to the multidimensional case that

√
n((F̂ (ti))

d
i=1 − (F (ti))

d
i=1)

D→ (NF (ti))
d
i=1,
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as n → ∞. Here, (NF (ti))
d
i=1 is a random vector with a multidimensional normal distribution. By

Lemma 1, we can deduce that Var(NF (ti)) = F (ti)(1− F (ti)). To determine Cov(NF (ti), NF (tj)), we

first obtain that

Cov(
√
n(F̂ (ti)− E[F̂ (ti)]),

√
n(F̂ (tj)− E[F̂ (tj)])) → Cov(NF (ti), NF (tj)), (78)

as n → ∞. By Equation (8), we can deduce that

Cov(
√
n(F̂ (ti)− E[F̂ (ti)]),

√
n(F̂ (tj)− E[F̂ (tj)])) (79)

= Cov
(√

n
(∫ ti

0
f̂(u)du− E

[ ∫ ti

0
f̂(u)du

])
,
√
n
(∫ tj

0
f̂(u)du− E

[ ∫ tj

0
f̂(u)du

]))
.

By linearity of the covariance and integral, we can deduce that

Cov
(√

n
(∫ ti

0
f̂(u)du− E

[ ∫ ti

0
f̂(u)du

])
,
√
n
(∫ tj

0
f̂(u)du− E

[ ∫ tj

0
f̂(u)du

]))
(80)

= Cov
(√

n
(∫ ti

0
f̂(u)du− E

[ ∫ ti

0
f̂(u)du

])
,
√
n
(∫ ti

0
f̂(u)du− E

[ ∫ ti

0
f̂(u)du

]))
+ Cov

(√
n
(∫ ti

0
f̂(u)du− E

[ ∫ ti

0
f̂(u)du

])
,
√
n
(∫ tj

ti

f̂(u)du− E
[ ∫ tj

ti

f̂(u)du
]))

.

By Lemma 1, we can deduce that

Cov
(√

n
(∫ ti

0
f̂(u)du− E

[ ∫ ti

0
f̂(u)du

])
,
√
n
(∫ ti

0
f̂(u)du− E

[ ∫ ti

0
f̂(u)du

]))
(81)

→ F (ti)(1− F (ti)),

as n → ∞. By definition of the pdf estimator (7), we can deduce that

Cov
(√

n
(∫ ti

0
f̂(u)du− E

[ ∫ ti

0
f̂(u)du

])
,
√
n
(∫ ti

0
f̂(u)du− E

[ ∫ ti

0
f̂(u)du

]))
(82)

= Cov
(√

n
(∫ ti

0

1

n

n∑
k=1

δ(u−Xk)du− E
[ ∫ ti

0

1

n

n∑
k=1

δ(u−Xk)du
])

,

√
n
(∫ tj

ti

1

n

n∑
k=1

δ(u−Xk)du− E
[ ∫ tj

ti

1

n

n∑
k=1

δ(u−Xk)du
]))

.

By Condition 1 (b), we obtain

Cov
(√

n
(∫ ti

0

1

n

n∑
k=1

δ(u−Xk)du− E
[ ∫ ti

0

1

n

n∑
k=1

δ(u−Xk)du
])

, (83)

√
n
(∫ tj

ti

1

n

n∑
k=1

δ(u−Xk)du− E
[ ∫ tj

ti

1

n

n∑
k=1

δ(u−Xk)du
]))

→ 0,
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as n → ∞. Finally, we can deduce by Expressions (78), (79), (80), (81), (82) and (83) that

Cov(
√
n(F̂ (ti)− E[F̂ (ti)]),

√
n(F̂ (tj)− E[F̂ (tj)])) → F (ti)(1− F (ti)),

as n → ∞. Thus, we can deduce Expression (76).

To show Expression (77), we can first deduce by Condition 2 (e) that the cdfs at different times

satisfy 0 < G(u1) < · · · < G(ud) < 1. We have that

√
n((Ĝ(ti))

d
i=1 − (G(ti))

d
i=1) =

√
m

√
n√
m
((Ĝ(ti))

d
i=1 − (G(ti))

d
i=1).

By Slutsky’s theorem and Condition 2 (b), we can deduce that the random vectors

√
n((Ĝ(ti))

d
i=1 − (G(ti))

d
i=1)

and

√
m
√
λ((Ĝ(ti))

d
i=1 − (G(ti))

d
i=1)

converge to the same limit in distribution. Then, we have that

√
m
√
λ((Ĝ(ti))

d
i=1 − (G(ti))

d
i=1)

=
√
m
√
λ((Ĝ(ti))

d
i=1 − E[(Ĝ(ti))

d
i=1]) +

√
m
√
λ(E[(Ĝ(ti))

d
i=1]− (G(ti))

d
i=1).

By Condition 3 (c), we can deduce that

√
m
√
λ((Ĝ(ti))

d
i=1 − (G(ti))

d
i=1)

and

√
m
√
λ((Ĝ(ti))

d
i=1 − E[(Ĝ(ti))

d
i=1])

have the same limit in distribution. By Conditions 1 and 2 (a), we can extend the arguments from the

proof of Theorem 6 (iii) from [Watson and Leadbetter, 1964b]. Then, we obtain by the CLT normal

convergence criterion (p. 307) from [Loeve, 1977] adapted to the multidimensional case that

√
n((Ĝ(ti))

d
i=1 − (G(ti))

d
i=1)

D→ (NG(ti))
d
i=1,
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as n → ∞. Here, (NG(ti))
d
i=1 is a random vector with a multidimensional normal distribution.

By Lemma 1, we can deduce that Var(NG(ti)) = λG(ti)(1 − G(ti)). Finally, we can prove that

Cov(NG(ti), NG(tj)) = λG(ti)(1−G(ti)) with the arguments used in the proof of the F case.

For a vector V , we denote its components as V i. We give the CLT for multidimensional estimation

of quantiles at different points in the following lemma. This extends Lemma 5, and its proof is based

on Lemma 6.

Lemma 7. We assume that Conditions 1, 2 and Condition 3 (c) hold. We consider joint estimation

at different points (ui) for i = 1, · · · , d, which satisfy 0 < u1 < u2 < . . . < ud < 1 and d ∈ N with

d ≥ 2. We have the multidimensional CLT for the quantile estimators

√
n((F̂−1(ui))

d
i=1 − (F−1(ui))

d
i=1)

D→ (NF−1(ui))
d
i=1, (84)

√
n((Ĝ−1(ui))

d
i=1 − (G−1(ui))

d
i=1)

D→ (NG−1(ui))
d
i=1, (85)

as n → ∞. Here, (NF−1(ui))
d
i=1 is a d-dimensional random vector with multidimensional normal

distribution characterized by its variance Var(NF−1(ui)) =
ui(1−ui)

f(F−1(ui))2
and covariance

Cov(NF−1(ui), NF−1(uj)) =
ui(1− ui)

f(F−1(ui))2
,

for any i < j. Also, (NG−1(ui))
d
i=1 is a d-dimensional random vector with multidimensional normal

distribution characterized by its variance Var(NG−1(ui)) = λ ui(1−ui)
g(G−1(ui))2

and covariance

Cov(NG−1(ui), NG−1(uj)) = λ
ui(1− ui)

g(G−1(ui))2
,

for any i < j.

Proof of Lemma 7. We can consider the multidimensional Taylor expansion

(F̂ (F̂−1(ui)))
d
i=1 − (F̂ (F−1(ui)))

d
i=1 = ((F̂−1(ui))

d
i=1 − (F−1(ui))

d
i=1)f̂(ξi), (86)

where ξi are random variables between F−1(ui) and F̂−1(ui).

30



Let us first show that (f̂(ξi))di=1 tends to (f(F−1(ui)))
d
i=1 in probability. By the triangular inequal-

ity and the definition of norm, we obtain

||(f̂(ξi))di=1 − (f(F−1(ui)))
d
i=1|| ≤

d∑
i=1

|f̂(ξi)− f(ξi)|+ |f(ξi)− f(F−1(ui))|. (87)

By Lemma 4, we can deduce that ξi converges to F−1(ui) in probability for i = 1, · · · , d. If we introduce

for i = 1, · · · , d a sequence as ϵi > 0 such that ϵi → 0, we also obtain

P
(
|f̂(ξi)− f(ξi)| ≤ sup

z∈[F−1(ui)−ϵi,F−1(ui)+ϵi]

|f̂(z)− f(z)|
)
→ 1. (88)

By Lemma 3, we can deduce that

sup
z∈[F−1(ui)−ϵi,F−1(ui)+ϵi]

|f̂(z)− f(z)| P→ 0. (89)

By Expressions (88) and (89), we can deduce that

|f̂(ξi)− f(ξi)|
P→ 0. (90)

Since ξi converges to F−1(ui) in probability and f is continuous by Condition 2 (e), we obtain by an

application of the continuous mapping theorem that

|f(ξi)− f(F−1(ui))|
P→ 0 (91)

By Expressions (87), (90) and (91), we can deduce that

||(f̂(ξi))di=1 − (f(F−1(ui)))
d
i=1||

P→ 0. (92)

By Equation (86), we can deduce that a.s.

√
n((F̂−1(ui))

d
i=1 − (F−1(ui))

d
i=1) =

√
n
(F̂ (F̂−1(ui)))

d
i=1 − (F̂ (F−1(ui)))

d
i=1

(f̂(ξi))di=1

. (93)

Here, the multidimensional division operation is componentwise, i.e. U
V =

(
U i

V i

)d
i=1

. By definition of

the quantile estimator (9), we can deduce that

√
n
(F̂ (F̂−1(ui)))

d
i=1 − (F̂ (F−1(ui)))

d
i=1

(f̂(ξi))di=1

=
√
n
(F (F−1(ui)))

d
i=1 − (F̂ (F−1(ui)))

d
i=1

(f̂(ξi))di=1

. (94)
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By an application of Lemma 6 with Slutsky’s theorem and Expression (92), we obtain

√
n
(F (F−1(ui)))

d
i=1 − (F̂ (F−1(ui)))

d
i=1

(f̂(ξi))di=1

D→ (NF−1(ui))
d
i=1. (95)

By Expressions (93), (94) and (95), we can deduce Expression (84). The same arguments with Condi-

tion 2 (b) yield Expression (85).

In the following lemma, we give the CLT for the process of ROC curve statistics, which converges

to the limit Gaussian process (NR(u)){0<u<v}. We also consider the ODC case. This extends the proof

of Theorem 1.

Lemma 8. We assume that Conditions 1, 2 and Condition 3 (c) hold. We also assume that 0 <

v0 < v < 1. We have the CLT for the process of ROC curve statistics which converges to the the limit

Gaussian process, i.e.

√
n
(
R̂OC(u)−ROC(u)

)
{v0<u<v}

D→ (NR(u)){v0<u<v}, (96)

√
n
(
ÔDC(u)−ODC(u)

)
{v0<u<v}

D→ (NO(u)){v0<u<v}, (97)

as n → ∞. Here, the Gaussian process (NR(u)){v0<u<v} is characterized by its variance Var(NR(u)) =

VR(u), and its covariance

Cov(NR(u), NR(w)) = VR(u),

for v0 < u < w < v. Also, the Gaussian process (NO(u)){v0<u<v} is characterized by its variance

Var(NO(u)) = VO(u), and its covariance

Cov(NO(u), NO(w)) = VO(u),

for v0 < u < w < v.

Proof of Lemma 8. To show that (NR(u)){0<u<v} is a Gaussian process limit, it is sufficient to prove

that

√
n
(
R̂OC(ui)−ROC(ui)

)d
i=1

D→ (NR(ui))
d
i=1, (98)
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as n → ∞ and where v0 < u1 < u2 < . . . < ud < v.

By the definitions of ROC curve (1) and its estimator (10), we can deduce

√
n
(
R̂OC(ui)−ROC(ui)

)d
i=1

=
√
n
(
Ĝ(F̂−1(1− ui))−G(F−1(1− ui))

)d
i=1

. (99)

Then, we can deduce that

√
n
(
Ĝ(F̂−1(1− ui))−G(F−1(1− ui))

)d
i=1

(100)

=
√
n
(
Ĝ(F̂−1(1− ui))− Ĝ(F−1(1− ui))

)d
i=1

+
√
n
(
Ĝ(F−1(1− ui))−G(F−1(1− ui))

)d
i=1

.

Then, we can consider the multidimensional Taylor expansion

√
n
(
Ĝ(F̂−1(1− ui))− Ĝ(F−1(1− ui))

)d
i=1

=
√
n
(
(F̂−1(1− ui)− F−1(1− ui))ĝ(ξi)

)d
i=1

. (101)

Here, ξi is a random variable between F−1(1−ui) and F̂−1(1−ui) for i = 1, · · · , d. By an application

of Lemma 7 with Slutsky’s theorem and Expression (58), we obtain

√
n
(
(F̂−1(1− ui)− F−1(1− ui))ĝ(ξi)

)d
i=1

D→ (g(F−1(1− ui))NF−1(1− ui))
d
i=1. (102)

By Expressions (101) and (102), we can deduce that

√
n
(
Ĝ(F̂−1(1− ui))− Ĝ(F−1(1− ui))

)d
i=1

D→ (g(F−1(1− ui))NF−1(1− ui))
d
i=1. (103)

By Lemma 6, we obtain

√
n
(
Ĝ(F−1(1− ui))−G(F−1(1− ui))

)d
i=1

D→ (NG(F
−1(1− ui)))

d
i=1. (104)

By Condition 2 (c), we obtain

Cov(
√
n(Ĝ(F−1(1− ui))−G(F−1(1− ui))),

√
n(Ĝ(F̂−1(1− uj))− Ĝ(F−1(1− uj)))) → 0, (105)

for i = 1, · · · , d and j = 1, · · · , d. By Expressions (99), (100), (103), (104) and (105), we can deduce

Expression (96). The same arguments yield Expression (97).
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In what follows, we give the CLT of the integral of the ROC curve process. We also consider the

ODC case. The proof is based on the Gaussian process property of the limit obtained in Lemma 8.

Lemma 9. We assume that Conditions 1, 2 and Condition 3 (c) hold. We also assume that 0 < v0 <

v < 1. We have the CLT for the integral∫ v

v0

√
n(R̂OC(u)−ROC(u))du

D→
∫ v

v0

NR(u)du, (106)∫ v

v0

√
n(ÔDC(u)−ODC(u))du

D→
∫ v

v0

NO(u)du, (107)

as n → ∞. Here, the first limit is a random variable with normal distribution which is characterized

by its variance

Var
(∫ v

v0

NR(u)du
)
=

∫ v

v0

(1 + 2(v − u))VR(u)du. (108)

Also, the second limit is a random variable with normal distribution which is characterized by its

variance

Var
(∫ v

v0

NO(u)du
)
=

∫ v

v0

(1 + 2(v − u))VO(u)du.

Proof of Lemma 9. We obtain Expression (106) and the fact that the limit is a random variable with

normal distribution with the Gaussian process property of the limit obtained in Lemma 8. By variance

and covariance properties of a Gaussian process, we obtain that

Var
(∫ v

v0

NR(u)du
)
=

∫ v

v0

Var(NR(u))du+

∫ v

v0

∫ v

v0

Cov(NR(u), NR(w))dudw. (109)

From Lemma 8, we can deduce that∫ v

v0

Var(NR(u))du =

∫ v

v0

VR(u)du. (110)

From Lemma 8 and Tonelli’s theorem, we obtain that∫ v

v0

∫ v

v0

Cov(NR(u), NR(w))dudw = 2

∫ v

v0

(v − u)VR(u)du. (111)

We can deduce Equation (108) with Equations (109), (110) and (111). The same arguments yield

Expression (107).
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We give now the uniform consistency of the quantile estimators. The following lemma extends

Lemma 4.

Lemma 10. We assume that Conditions 1, 2 (b) and 3 (b) hold. We have the uniform consistency of

the quantile estimators

sup
u∈[1−v,1−v0]

∣∣F̂−1(u)− F−1(u)
∣∣ P→ 0 and sup

u∈[v0,v]

∣∣Ĝ−1(u)−G−1(u)
∣∣ P→ 0, (112)

as n → ∞.

Proof of Lemma 10. For ϵ > 0 and u ∈ [1− v, 1− v0], we consider

δ(u) = min(F (F−1(u) + ϵ)− u, u− F (F−1(u)− ϵ)),

δ = inf
u∈[1−v,1−v0]

δ(u)

By Condition 3 (b), we can deduce that δ > 0. By definition of δ, we obtain

P
(

sup
u∈[1−v,1−v0]

∣∣F̂−1(u)− F−1(u)
∣∣ > ϵ

)
≤ P

(
sup

u∈[1−v,1−v0]

∣∣F (F̂−1(u))− u
∣∣ > δ

)
. (113)

By definition of the quantile estimator (9), we obtain

sup
u∈[1−v,1−v0]

∣∣F (F̂−1(u))− u
∣∣ = sup

u∈[1−v,1−v0]

∣∣F (F̂−1(u))− F̂ (F̂−1(u))
∣∣. (114)

By bounding the term in the right hand-side of Equation (114), we obtain

sup
u∈[1−v,1−v0]

∣∣F (F̂−1(u))− F̂ (F̂−1(u))
∣∣ ≤ sup

t∈R+

∣∣F (t)− F̂ (t)
∣∣. (115)

By Lemma 2 with Expressions (113), (114) and (115), we can deduce that

sup
u∈[1−v,1−v0]

∣∣F̂−1(u)− F−1(u)
∣∣ P→ 0.

The same arguments with Condition 2 (b) yield

sup
u∈[v0,v]

∣∣Ĝ−1(u)−G−1(u)
∣∣ P→ 0.
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We give now the uniform consistency of the ROC curve and ODC estimators. The following lemma

is a direct application of Lemmas 2 and 10.

Lemma 11. We assume that Conditions 1, 2 (b) and 3 (b) hold. We have the uniform consistency of

the ROC curve and ODC curve estimators

sup
u∈[1−v,1−v0]

∣∣R̂OC(u)−ROC(u)
∣∣ P→ 0 and sup

u∈[v0,v]

∣∣ÔDC(u)−ODC(u)
∣∣ P→ 0, (116)

as n → ∞.

Proof of Lemma 11. This is an application of Lemmas 2 and 10, with Slutsky’s theorem.

In what follows, we give the proof of Theorem 2, which is mainly based on an application of Lemma

9.

Proof of Theorem 2. By the definition of the partial area under the ROC curve (3) and its estimator

(16), we can deduce

√
n
(
p̂ROC(v0, v)− pROC(v0, v)

)
=

√
n
(M−1∑

k=0

R̂OC(vk)∆−
∫ v

v0

ROC(u)du
)
. (117)

Then, the right-hand side in Equation (117) can be rewritten as

√
n
(M−1∑

k=0

R̂OC(vk)∆−
∫ v

v0

ROC(u)du
)
=

√
n
(M−1∑

k=0

R̂OC(vk)∆−
∫ v

v0

R̂OC(u)du
)

(118)

+

∫ v

v0

√
n(R̂OC(u)−ROC(u))du.

First, we can deduce by Lemma 9 that∫ v

v0

√
n(R̂OC(u)−ROC(u))du

D→
∫ v

v0

NR(u)du. (119)

By an application of Lemma 11, we obtain

√
n
(M−1∑

k=0

R̂OC(vk)∆−
∫ v

v0

R̂OC(u)du
)
−
√
n
(M−1∑

k=0

ROC(vk)∆−
∫ v

v0

ROC(u)du
)

P→ 0. (120)

By the triangular inequality, we can deduce

√
n
∣∣∣M−1∑
k=0

ROC(vk)∆−
∫ v

v0

ROC(u)du
∣∣∣ ≤ √

n

M−1∑
k=0

∫ vk+1

vk

∣∣∣ROC(vk)−ROC(u)
∣∣∣du. (121)

36



We obtain by Conditions 2 (e) and 3 (a) that

√
n

M−1∑
k=0

∫ vk+1

vk

∣∣∣ROC(vk)−ROC(u)
∣∣∣du P→ 0. (122)

We can deduce from Expressions (120), (121) and (122) that

√
n
(M−1∑

k=0

R̂OC(vk)∆−
∫ v

v0

R̂OC(u)du
)

P→ 0. (123)

Finally, we can deduce Expression (32) by Expressions (117), (118), (119) and (123). By similar

arguments, we can show that V̂pO(v0, v) converges to VpO(v0, v) in probability. Then, we can deduce

Expression (33) by Slutsky’s theorem. The same arguments yield Expressions (34) and (35).

In what follows, we give the proof of Theorem 3, which is based on a direct application of Theorem

2.

Proof of Theorem 3. The theorem is proven with the same arguments from the proof of Theorem 2.
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