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Abstract: We consider estimation of hitting-time variance, i.e. the explicit
solution in the inverse first-hitting time problem of a continuous martin-
gale to a constant boundary. The nonparametric estimation is based on
delta-sequences. We also consider tuning parameter estimation related to
the boundary. We characterize feasible statistics induced by central limit
theory for the estimation procedure. A numerical simulation corroborates
the asymptotic theory. An empirical application to financial duration data
documents that the hitting-time variance is time-varying.
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1. Introduction

Duration models are useful tools to deal with time series data when the times
between each event are not constant and random. This paper focuses on dura-
tion models based on first hitting time (FHT), i.e. the time when a stochastic
processes crosses a boundary. More specifically, this paper concerns estimation
of hitting-time variance, i.e. the explicit solution in the inverse first-hitting time
(IFHT) problem of a continuous martingale to a constant boundary. The IFHT
problem determines the variance function such that the FHT of a standard
Brownian motion, which is time changed by this variance integral, to the bound-
ary has a given distribution. It is a new problem, which was introduced in the
more probabilistic paper Potiron (2023). The probabilistic paper shows that the
hitting-time variance is equal to the ratio of probability distribution function
(pdf) over a functional of cumulative distribution function (cdf), which depends
on the boundary value. The novelty in this more econometrics paper is that we
consider estimation of hitting-time variance. The nonparametric estimation is
based on delta-sequences. As far as the authors know, estimation of time-varying
variance of a continuous local martingale is completely novel to the literature
on FHT in econometrics.

In financial econometrics, the FHT of a continuous local martingale have ap-
plications when estimating the quadratic variation of a continuous local martin-
gale based on endogenous observations. This is the so-called integrated volatility
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problem. In these models, endogenous observations are often generated by the
FHT of a local martingale to a boundary process. Fukasawa (2010) considers
the FHT to a symmetric two-sided boundary. Robert and Rosenbaum (2011)
and Robert and Rosenbaum (2012) introduce the model with uncertainty zones
in which the two-sided boundary is dynamic. Fukasawa and Rosenbaum (2012)
consider the FHT to a two-sided boundary, which is non-symmetric. Li et al.
(2014) consider a more general framework of endogeneity allowing for FHT.
Renault, Van der Heijden and Werker (2014) consider the mixed FHT of the
sum of a Brownian motion and a positive linear drift. Potiron and Mykland
(2017) estimate the quadratic covariation between two local martingales. Pot-
iron and Mykland (2020) (see Section 4.4) consider an extension of the model
with uncertinty zones. Cui (2024) proposes inference on estimation of quadratic
variation based on FHT.

Although the IFHT problem is new, it has useful applications to model time
series data. With the use of the IFHT problem, we can prove the existence and
determine the variance of the stochastic process that generates a given cdf. In
our empirical application to financial duration data (see Figure 6 and Table 9 in
Section 7), we document that the hitting-time variance is time-varying. However,
most of the literature focuses on a constant hitting-time variance, which implies
that the distribution is Levy. This is a too restrictive assumption, that we want
to weaken. Thus, we consider a continuous local martingale, with time-varying
variance. As far as the authors know, this is the first paper documenting about
the time-varying variance of the FHT with financial duration data.

The application of the FHT in econometrics can be traced back to Lancaster
(1979) mixed proportional hazards model. More recently, Abbring (2012) studies
the mixed FHT of a Levy process. Liu (2020) considers the FHT of a dependent
Levy process. Botosaru (2020) develops nonparametric estimation for the FHT.
Abbring and Salimans (2021) computes the likelihood of a mixed FHT. Lin and
Liu (2021) propose a dependent FHT. Kim (2023) develops a tractable approach
based on bounds for the FHT. Alvarez, Borovičková and Shimer (2024) develop
an economic model of transitions in and out of employment with the FHT.

There are also applications of FHT in mathematical finance. Roberts and
Shortland (1997) and Borovkov and Novikov (2002) provide an application of
the FHT for the pricing of barrier options. The application of the FHT in
statistics can be traced back to the Kolmogorov-Smirnov statistic. The primary
application of the FHT can be found in sequential analysis. At first, the fo-
cus was on the FHT of a random walk. Due to the complexity of the problem,
the literature often relies on the FHT of a Brownian motion (see Gut (1974),
Woodroofe (1976), Woodroofe (1977)), Lai and Siegmund (1977)), Lai and Sieg-
mund (1979)) and Siegmund (1986)). In survival analysis, Matthews, Farewell
and Pyke (1985) show that tests for constant hazard involve the FHT of an
Ornstein-Uhlenbeck process. Butler and Huzurbazar (1997) consider a Bayesian
approach for the FHT of a semi-Markovian process. Eaton and Whitmore (1977)
study the application of the FHT for hospital stay. Aalen and Gjessing (2001)
consider the FHT of a Markovian process. Detailed reviews on the FHT can
be found in Lee and Whitmore (2006) and Lawless (2011) (Section 11.5, pp.
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518-523).
Our aim in this paper is to estimate nonparametrically the hitting-time vari-

ance. Since the formula of the hitting-time variance is similar to hazard func-
tions, we will rely on estimation procedures from survival analysis. We con-
sider nonparametric estimation of distribution (Equations (2.1)-(2.2), p. 176)
from Watson and Leadbetter (1964a), based on delta-sequences. These delta-
sequences are a sequence of functions approaching the Dirac function asymptot-
ically which covers several types of smoothing estimation including the kernel
estimation. We also give estimation of functionals of hitting-time variance by
plugging the change hazard function estimator into the functional. We also
propose estimation of cumulative functionals of hitting-time variance based on
empirical cumulative functionals of hitting-time variance estimates. These re-
sults are obtained primarily to deduce an estimator of boundary, which is a
tuning parameter. There are also of interest in their own right. Finally, we con-
sider estimation of boundary, which normalizes the estimator for cumulative
functionals of hitting-time variance. We characterize feasible statistics induced
by central limit theory (CLT) for hitting-time variance estimation, functional
of hitting-time variance estimation and cumulative functional of hitting-time
variance estimation. We also obtain consistency in the estimation of boundary
tuning parameter, and that asymptotic properties of the feasible statistics are
preserved when the boundary tuning parameter is estimated.

The estimation of standard hazard functions, i.e. the ratio of pdf over unity
minus cdf, is close to nonparametric estimation of density, and there are many
methods available. Watson and Leadbetter (1964b) provide delta-sequence based
estimation of distribution and a first standard hazard function estimator (1.1)
(p. 102), which is equal to the ratio of pdf estimates over unity minus cdf
estimates. The respective CLT of these three estimators is available in their
Theorem 5 (p. 111), Theorem 6 (iii) (p. 112) and Theorem 7 (p. 114). They
consider another estimator of standard hazard function based on convolution
(below Equation (1.1), p. 102). The ratio estimator has no asymptotic bias
and the convolution estimator has an asymptotic bias, whereas both estimators
have the same asymptotic variance (see Rice and Rosenblatt (1976), Watson
and Leadbetter (1964b) (Theorem 7), Müller and Wang (1990) (Lemma 1)).
Moreover, the ratio estimator is more flexible as it does not require to be in
the class of cdfs considered in Equation (2.2) (p. 103) from Watson and Lead-
better (1964b). Eventually, the convolution estimator has prevailed owing to its
theoretical tractability in finite sample, i.e. exact mean square errors (MSE)
available, and its aesthetic superiority over the ratio estimator. Yet, the cumu-
lative hitting-time variance is no longer equal to minus log of unity minus cdf
as in Equation (1.3) from Watson and Leadbetter (1964a) (p. 175) and thus it
is not possible to adapt the convolution estimator. Accordingly, we choose to
adapt the ratio estimator to our hitting-time variance case.

Our theoretical contribution can be reexpressed as the estimation of standard
hazard function, in case when the denominator is replaced by a known functional
of the cdf. More specifically, our CLT (see Section 4) extends Theorem 7 (p.
114) from Watson and Leadbetter (1964b) in four directions. (a) They consider
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standard hazard function estimation, but we consider hitting-time variance es-
timation. (b) We develop estimation of functionals of hitting-time variance. (c)
We study estimation for cumulative functionals of hitting-time variance. (d) We
give consistent estimators of the asymptotic variance and feasible CLT, none
of which are provided in Theorem 7. We obtain the square root of the number
of observations over the square root of time-averaged squared delta-sequence as
rate of convergence for (a), (b) and (c), which is also equal to the rate of conver-
gence in Theorem 7. However, the asymptotic variance is altered as it is equal to
a more complicated form in (a) and (b), and a cumulative asymptotic variance
of (b) in (c). Our proofs also extend their machinery as a more complicated
functional form in the denominator of the hitting-time variance implies deeper
calculation in (a), the use of a Taylor expansion in (b), and uniform arguments
in (c).

We discuss about an appropriate choice of the delta-sequence and the tun-
ing parameters (see Section 5). We recommend to use the triangular kernel as
it is the nonnegative kernel with the smallest MSE in Singpurwalla and Wong
(1983) (see Table 1) in the case of exponential cdf. Müller and Wang (1990) give
a general principle to obtain local bandwidth, i.e. minimizing the local MSE in
case of the hazard estimator based on ordered sample values. Lo, Mack and
Wang (1989) give the MSE in the case of the hazard ratio estimator, but they
do not minimize it with respect to the bandwidth. We have that the asymptotic
variance diverges at the extremities, and the support of the delta-sequence can
exceed the available range of data. Thus, there may be bias problems at the ex-
tremities. The same problem appears when estimating the hazard function and
is referred as extremity effects. Müller and Wang (1994) propose hazard func-
tion estimation with varying kernels and bandwidths in their Equation (2.2)
(p. 62), based on Gasser and Müller (1979) earlier proposal. In their algorithm,
they recommend to start with b = 1

8n1/5 , which can be expressed in terms of our
tuning parameter as αn = 8n1/5. A rigorous study for the MSE of hitting-time
variance, the choice of local efficient bandwidth and delta-sequence is above
the scope of this paper and left for future work. However, we will find in our
numerical simulation (see Section 6) that a larger tuning parameter value, i.e.
αn = 8n

9
10 , will give better results for all the cases we have considered. The nu-

merical simulation also corroborates the asymptotic theory when all the tuning
parameters are feasible.

Finally, we conduct an empirical application to financial duration data. We
consider FHT equal to price change durations of the stock Apple Inc., which
is traded daily on the Nasdaq stock exchange during the year 2017. Thus, our
model describes intraday high-frequency durations. The durations are concate-
nated across all the days during the year. First, we document that the hitting-
time variance is time-varying. Second, we document that the duration model is
suitable to accommodate for the presence of right skewed data with fat tail.

Since our empirical application is based on financial data, we do observe the
data fully. However, the case of censored data may be of interest for applications
outside econometrics, such as in survival analysis and medicine. Extensions of
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the ratio hazard estimator to censored data are available in Blum and Susarla
(1980), Földes, Rejto and Winter (1981) and Lo, Mack and Wang (1989). They
are based on Kaplan-Meier estimation (see Kaplan and Meier (1958)). Thus, we
recommend to use the Kaplan-Meier estimator, rather than the empirical esti-
mator. Then, we can use delta-sequences based on the Kaplan-Meier estimator.
We conjecture that the theory holds. However, investigating this adaptation is
above the scope of this paper and left for future work.

The remainder of this paper is organized as follows. The set-up for the IFHT
problem is exposed in Section 2. In Sections 3 and 4, we provide estimation and
theory. A discussion including implementation is given in Section 5. A numerical
simulation can be found in Section 6. An empirical application is conducted in
Section 7. We conclude in Section 8. The supplementary materials include the
following. We specify the hitting-time variance for some standard parametric
pdfs in Section 9. Finally, all proofs of the theory can be found in Section 10.

2. Set-up: IFHT problem

In this section, we introduce the IFHT problem. For more details on the IFHT
problem, see Potiron (2023) (see Section 3). More specifically, we consider the
particular case when the quadratic variation of the process is absolutely contin-
uous, nonrandom, and the boundary is one-sided (see Section 3.1.1).

We consider the complete stochastic basis B = (Ω,P,F ,F), where F is a
σ-field and F = (Ft)t∈R+ is a filtration. We consider a continuous stochastic
process Z, which starts from 0 and is F-adapted. We define R+

∗ as the positive
real space, without 0. We consider a boundary g ∈ R+

∗ , which is constant and
positive. We define the FHT of the process Z to the boundary g as

TZ
g = inf{t ≥ 0 s.t. Zt ≥ g}. (1)

We define the cdf of the FHT TZ
g as PZ

g , which satisfies

PZ
g (t) = P(TZ

g ≤ t) for any t ≥ 0. (2)

When the cdf is absolutely continuous, we can also define its pdf as fZ
g , which

satisfies fZ
g (t) =

dPZ
g (t)

dt a.e..
We introduce the IFHT problem in what follows. The IFHT problem deter-

mines the variance function such that the FHT of a standard Brownian motion,
which is time changed by this variance integral, to the boundary has a given
distribution. More specifically, we consider the standard Brownian motion W ,
which is F-adapted. We also consider the variance function σ2 : R+ → R+

∗ . For
a given cdf F , we determine the variance σ2, of the local martingale X defined
as

Xt =

∫ t

0

σsdWs for any t ≥ 0, (3)

such that PX
g (t) = F (t) for any t ≥ 0.
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Potiron (2023) shows that the cdf F is absolutely continuous. Thus, we can
define its pdf as f , which satisfies f(t) = dF (t)

dt a.e.. Potiron (2023) (see Theo-
rem 5) shows that the hitting-time variance is equal to the ratio of pdf over a
functional of cdf, i.e.

σ2
t,g = f(t)

fW
g ((PW

g )−1(F (t)))
1{0<F (t)<1} for any t ≥ 0. (4)

Here, fZ
g and PZ

g are Levy pdf and cdf with scale parameter equal to the square
of the boundary g2.

Our aim in this paper is to estimate the hitting-time variance (4) nonpara-
metrically. Since the formula of the hitting-time variance is similar to hazard
functions, we will rely on estimation procedures from survival analysis.

3. Estimation

In this section, we introduce a two-step procedure to estimate nonparametrically
the hitting-time variance when the pdf f and the cdf F are unknown. We also
introduce nonparametric estimation for functionals, time-averaged functionals
of hitting-time variance, and boundary.

We prefer most of the time not to write explicitly the dependence on n. We
consider estimation based on n observations of FHT. More specifically, for any
i = 1, · · · , n we consider standard Brownian motions W (i), which are i.i.d and
Ft-adapted. We define for any i = 1, · · · , n and any t ≥ 0 the processes X

(i)
t =∫ t

0
σs,gdW

(i)
s . We observe the FHT of the processes X(i) for any i = 1, · · · , n,

i.e. (TX(1)

g , . . . ,TX(n)

g ).
We consider nonparametric estimation of the cdf and the pdf in a first step.

The estimation is based on delta-sequences (see Equations (2.1) and (2.2), p.
176, Watson and Leadbetter (1964a)). The delta-sequences, i.e. a sequence of
functions approaching the Dirac function asymptotically, are considered since
they are general. They cover several types of smoothing estimation including the
kernel estimation, orthogonal series estimation, Fourier transform estimation,
and the histogram (see Walter and Blum (1979)). They are also suitable since
the cdf estimator is proven to be uniformly convergent in Nadaraya (1964), and
satisfying Chung-Smirnov property in Winter (1979). Reiss (1981) shows that
the empirical estimator is asymptotically deficient compared to the smoothing
estimator. We define the delta-sequences as δn for any i = 1, · · · , n.

Following Section 4 of Watson and Leadbetter (1964b), we can then estimate
the pdf and the cdf as

f̂n(t) =
1

n

n∑
i=1

δn(t− TX(i)

g ) for t ≥ 0, (5)

F̂n(t) =

∫ t

0

f̂n(u)du for t ≥ 0. (6)
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To estimate the hitting-time variance, we then plug the pdf and the cdf
estimates into its formula (4). More specifically, the estimator of hitting-time
variance is defined as

σ̂2,n
t,g = f̂n(t)

fW
g ((PW

g )−1(F̂n(t)))
1{0<F̂n(t)<1} for any t > 0. (7)

We consider estimation of the known deterministic functional k : R+
∗ → R+

∗
of the hitting-time variance. For instance, the case k(x) = x2 corresponds to
the estimation of the squared hitting-time variance. To estimate functionals
of hitting-time variance, we plug the estimator of hitting-time variance into
the functional. More specifically, the estimator for functional of hitting-time
variance is defined as

̂k(σ2
t,g)

n = k(σ̂2,n
t,g )1{σ̂2,n

t,g >0}. (8)

We propose estimation for cumulative functionals of hitting-time variance,
i.e.

Cg(T−, T+) =

∫ T+

T−

k(σ2
t,g)dt, (9)

where T− is the starting point and T+ is the end point. This estimation is
considered primarily to deduce an estimator of boundary, which is a tuning
parameter. There are also of interest in their own right. When it is clear from the
context, we will refer in what follows to Cg = Cg(T−, T+). Since

∫ T

0
̂k(σ2

t,g)
ndt

cannot be reexpressed in a more explicit form easily, we cannot use a direct
approach as when estimating the cdf in Equation (6). We thus consider local
estimation, based on empirical estimates for cumulative functionals of hitting-
time variance. We consider Mn intervals with equal length ∆n, defined as

∆n =
T+ − T−

Mn
. (10)

Accordingly, we define the start and end points of the intervals as Tn
0 = T−, T

n
1 =

T− + ∆n, T
n
2 = T− + 2∆n, . . . , T

n
Mn

= T+. The estimator for cumulative func-
tionals of hitting-time variance is defined as

Ĉn
g =

Mn−1∑
k=0

̂k(σ2
Tn
k ,g)

n∆n. (11)

Finally, we propose estimation of the boundary g, which is a tuning pa-
rameter. This is based on estimation for cumulative functionals of hitting-time
variance. In the numerical simulation, we systematically find that the following
choice is adequate. We set the boundary to g that normalizes the cumulative
functionals of hitting-time variance Cg, i.e. we define implicitly g > 0 such that

Cg(T−, T+)

T+ − T−
= 1. (12)
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Accordingly, we define the boundary estimator implicitly as

Ĉn
ĝn
(T−, T+)

T+ − T−
= 1 if Ĉn

1 (T−, T+) > 0, (13)

ĝn = 1 else. (14)

4. Theory

In this section, we give the feasible CLT for estimation of hitting-time variance,
functionals of hitting-time variance, and cumulative functional of hitting-time
variance. We also show that the CLT for estimation of hitting-time variance and
functionals of hitting-time variance adapt when we estimate the boundary g.

We define the infimum time such that the cdf F is positive as K0
f , i.e. K0

f =
inf{t > 0 such that F (t) > 0}. We also define the infimum time such that F
equals unity as K1

f , i.e. K1
f = inf{t > 0 such that F (t) = 1}. For any function

h : R+ → R+, a 7→ h(a), and any A ⊂ R+, we define the restriction of h to A
as h �A such that h �A: A → R+, a 7→ h(a). For any p ∈ R, p ≥ 1 and A ⊂ R+

measurable, we define the set of p-integrable functions as

Lp(A) =
{
h : A → R+ measurable s.t.

∫
A

|h(x)|p dx < +∞
}
.

For any p ∈ R, p ≥ 1, we define the set of locally p-integrable functions as

Lp,loc(R+) =
{
h : R+ → R+ measurable s.t. h �K∈ Lp(K) ∀K ⊂ R+, K

compact
}
.

Let us give a set of assumptions required by Potiron (2023) (Assumption 4).
Assumption 1. We assume that there exists µ0

f > 0 s.t. the hitting-time variance
is locally integrable on [K0

f ,K
0
f+µ0

f ], i.e. σ2
t,g �[K0

f ,K
0
f+µ0

f ]
∈ L1,loc

(
[K0

f ,K
0
f+µ0

f ]
)
.

Moreover, we assume that K1
f is not finite.

Assumption 1 implies that σg ∈ L2,loc(R+), thus Xt is a local martingale
by Theorem I.4.40 (p. 48) in Jacod and Shiryaev (2003) with deterministic
quadratic variation

∫ t

0
σ2
u,gdu. In particular, the assumption that K1

f is not finite
is required since the solution could explode when t → K1

f . All the examples we
consider in the following of this paper satisfy Assumption 1.

We now give the assumptions on the delta-sequence. We introduce a sequence
of positive functions δn : R → R+ which will be called positive delta-sequence
if it satisfies the following set of assumptions.
Assumption 2. We assume that∫

R
δn(t)dt = 1 for n ∈ N, (15)

sup
|t|≥λ

δn(t) → 0 for λ > 0, (16)∫
|t|≥λ

δn(t)dt → 0 as n → ∞ for λ > 0. (17)
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For instance, we can consider the kernel function

δn(t) =
r(t/An)

An

∫
R r(t)dt

.

Here r : R → R+ is bounded, integrable, and satisfies r(t) = o(1/t) as | t |→ ∞
and An → 0 is the bandwidth. When compared to the general definition of
delta-sequences given in Watson and Leadbetter (1964b) (Section 2, pp. 102-
103), we restrict to the positive case since we want to avoid estimated negative
pdf and cdf which would imply that the hazard function estimator (7) is not
well-defined. This comes with a price of not allowing for kernel improving the
rate of convergence of the bias and the MSE (Singpurwalla and Wong (1983)).

Moreover, we introduce the squared-average and (2+µ) power-average delta-
sequence for µ > 0 as

αn =

∫ ∞

−∞
δ2n(t)dt,

γn =

∫ ∞

−∞
δn(t)

2+µdt.

We define the set of positive natural numbers as N∗. Let us introduce another
set of assumptions.
Assumption 3. We assume that

αn < ∞ for any n ∈ N∗, (18)
αn = o(n). (19)

We also assume that

γn < ∞ for any n ∈ N∗, (20)
γn

nµ/2α
1+µ/2
n

→ 0. (21)

Finally, we assume that √
n

αn
(E[f̂n(t)]− f(t)) → 0, (22)√

n

αn
(E[F̂n(t)]− F (t)) → 0. (23)

All the assumptions from Assumption 3 are required in Watson and Lead-
better (1964b). Expression (18) and Equation (19) are assumed for establishing
the rate of convergence of the pdf estimator in Theorem 4 (p. 110), the CLT of
the pdf estimator in Theorem 5 (p. 112) and the CLT of the ratio-based haz-
ard estimator in Theorem 7 (p. 114). Expressions (20)-(21) are assumptions for
Theorem 5 and Theorem 7. Expressions (22)-(23) are bias corrections required
for Theorem 7. As a consequence of Lemma 1 (p. 103) in the cited paper along
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with the fact that δn(t) is a positive delta-sequence, i.e. Assumption 2, and
Expression (18), we can deduce that

αn → ∞. (24)

Finally, the use of Expressions (18)-(19) implies that√
n

αn
→ ∞,

which is in fact the pdf estimator and ratio-based estimator rate of convergence.
We give now the feasible CLT for estimation of hitting-time variance. This

CLT extends Theorem 7 from Watson and Leadbetter (1964b) when the denom-
inator is equal to fW

g ((PW
g )−1(F (t))) instead of 1 − F (t). We obtain

√
n
αn

as
rate of convergence, which is equal to the rate of convergence in Theorem 7. We
obtain the same numerator of the asymptotic variance, i.e. f(t), but the denom-
inator of the asymptotic variance is equal to (fW

g ((PW
g )−1(F (t)))2 instead of

(1−F (t))2. Moreover, we give consistent estimators of the asymptotic variance
and feasible CLT, none of which are provided in Theorem 7. Our proofs also
extend their machinery as a more complicated functional form in the denomina-
tor implies deeper calculation. We require the positivity assumption on f which
technically implies that 1{0<F̂n(t)<1}

P→ 1 and continuity of f at t which are
also assumptions in Theorem 7.

Theorem 1. We assume that Assumptions 1, 2 and 3 hold. We have for any
t > 0, assuming that it is a continuity point of f and f(t) > 0, the standard
CLT √

n

αn
(σ̂2,n

t,g − σ2
t,g)

D→ N
(
0,

f(t)

fW
g ((PW

g )−1(F (t)))2

)
(25)

as n → ∞. We also obtain the feasible normalized CLT√√√√ n

αn

fW
g ((PW

g )−1(F̂n(t)))2

f̂n(t)
(σ̂2,n

t,g − σ2
t,g)

D→ N (0, 1). (26)

By Equation (4), we can rewrite the asymptotic variance as

f(t)

fW
g ((PW

g )−1(F (t)))2
=

σ4
t,g

f(t)
.

Then, we can show that the asymptotic variance diverges, i.e σ4
t,g

f(t) → ∞, as
t → 0 or t → ∞. The same problem appears when estimating the standard
hazard function in Watson and Leadbetter (1964b) (Theorem 7).

To estimate the functionals of hitting-time variance, we make the following
smoothness assumptions on k.
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Assumption 4. We assume that there exists η > 0 s.t.

k ∈ C2([σ2
t,g − η, σ2

t,g + η],R+
∗ ), (27)

k ∈ C3([σ2
t,g − η, σ2

t,g + η],R+
∗ ). (28)

We give now the CLT of the hitting-time variance functional estimator. This
CLT extends Theorem 7 from Watson and Leadbetter (1964b) as we consider
estimation of functionals of the hitting-time variance instead of estimation of
the standard hazard function. It also slightly extends our Theorem 1 as we con-
sider estimation of the hitting-time variance functional instead of estimation
of the hitting-time variance. We obtain

√
n
αn

as rate of convergence, which is
equal to the rate of convergence in Theorem 7 and our Theorem 1. We obtain
that the asymptotic variance is equal to k′(σ2

t,g)
2f(t)

fW
g ((PW

g )−1(F (t)))2
instead of f(t)

(1−F (t))2

in Theorem 7 and f(t)
fW
g ((PW

g )−1(F (t)))2
in our Theorem 1. Moreover, we give con-

sistent estimators of the asymptotic variance and feasible CLT, none of which
are provided in Theorem 7. Our proofs also extend their machinery and slightly
our proofs of Theorem 1 as the presence of the functional implies the use of a
Taylor expansion along with Assumption 4.

Theorem 2. We assume that Assumptions 1, 2 and 3 hold. We have for any
t > 0, assuming that it is a continuity point of f with f(t) > 0 and that
Assumption 4 Expression (27) holds, the standard CLT√

n

αn
( ̂k(σ2

t,g)
n − k(σ2

t,g))
D→ N

(
0,

k′(σ2
t,g)

2f(t)

fW
g ((PW

g )−1(F (t)))2

)
(29)

as n → ∞. If we also assume that Assumption 4 Expression (28) holds, we
obtain the feasible normalized CLT√√√√ n

αn

fW
g ((PW

g )−1(F̂n(t)))2

( ̂k′(σ2
t,g)

n)2f̂n(t)
( ̂k(σ2

t,g)
n − k(σ2

t,g))
D→ N (0, 1). (30)

We can also show that the asymptotic variance diverges as t → 0 or t → ∞.
For any A ⊂ R+ and B ⊂ R+, we denote the space C1 of functions h : A → B

with derivatives which are continuous as C1(A,B). To estimate the cumulative
functionals of hitting-time variance, we make another set of assumptions.
Assumption 5. We assume that

Mn → ∞ such that
√

n

αn
= o(Mn) as n → ∞, (31)

0 < T− < T+ < ∞, (32)
f �[T−,T+] ∈ C1([T−, T+],R+), (33)

f(t) > 0 for any t ∈ [T−, T+]. (34)
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We also assume that√
n

αn
sup

T−≤t≤T+

∣∣E[f̂n(t)]− f(t)
∣∣ → 0, (35)√

n

αn
sup

T−≤t≤T+

∣∣E[F̂n(t)]− F (t)
∣∣ → 0. (36)

Finally, we assume that

k ∈ C2
([

inf
T−≤t≤T+

σ2
t,g, sup

T−≤t≤T+

σ2
t,g

]
,R
)
, (37)

k ∈ C3
([

inf
T−≤t≤T+

σ2
t,g, sup

T−≤t≤T+

σ2
t,g

]
,R
)
. (38)

Assumption 5 Expression (31) is required for local estimation. Assumption
5 Expression (32), i.e. T− 6= 0 and T+ 6= ∞, is required since the asymptotic
variance in the CLT (43) diverges as t → 0 or t → ∞. Assumption 5 Expression
(33) is required for the use of a Taylor expansion. Assumption 5 Expression
(34), i.e. uniform positivity of f , is required since we use locally Theorem 2.
Assumption 5 Expressions (35)-(36) are uniform bias corrections. Assumption
5 Expressions (37)-(38) are uniform functional smoothness assumptions.

We give now the CLT for the cumulative functional of hitting-time variance
estimator. The CLT results are obtained primarily to deduce a boundary tun-
ing parameter estimator, but are also of interest in their own right. This CLT
extends Theorem 7 from Watson and Leadbetter (1964b) as we consider estima-
tion of cumulative functionals of the hitting-time variance instead of estimation
of the standard hazard function. It also extends our Theorem 1 and Theorem 2
as we consider estimation of cumulative functionals of the hitting-time variance
instead of estimation of functionals of the hitting-time variance. We obtain

√
n
αn

as rate of convergence, which is equal to the rate of convergence in Theorem 7
and our Theorems 1-2. We obtain the asymptotic variance equal to the cumula-
tive asymptotic variance in the CLT (43), i.e.

∫ T+

T−

k′(σ2
t,g)

2f(t)

fW
g ((PW

g )−1(F (t)))2
dt, instead

of f(t)
(1−F (t))2 in Theorem 7 and k′(σ2

t,g)
2f(t)

fW
g ((PW

g )−1(F (t)))2
in our Theorem 2. Moreover,

we give consistent estimators of the asymptotic variance and feasible CLT, none
of which are provided in Theorem 7. Our proofs also extend their machinery
and our proofs of Theorem 1 and Theorem 2 as cumulative estimation requires
uniform arguments on [T−, T+].

Theorem 3. We assume that Assumptions 1, 2, 3 and Assumption 5 Expres-
sions (31),(32),(33),(34),(35) and (36) hold. We have, assuming that Assump-
tion 5 Expression (37) holds, the standard CLT√

n

αn
(Ĉn

g − Cg)
D→ N

(
0, (T+ − T−)

∫ T+

T−

k′(σ2
t,g)

2f(t)

fW
g ((PW

g )−1(F (t)))2
dt
)

(39)
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as n → ∞. If we also assume that Assumption 5 Expression (38) holds, we
obtain the feasible normalized CLT√√√√ n

αn

(
(T+ − T−)

Mn−1∑
k=0

( ̂k′(σ2
Tn
k ,f )

n)2f̂n(Tn
k )

fW
g ((PW

g )−1(F̂n(Tn
k )))

2
∆n

)−1

(Ĉn
g − Cg) (40)

D→ N (0, 1).

We can also show that the asymptotic variance diverges as T− → 0 or T+ → ∞.
In what follows, we adapt Theorem 1 and Theorem 2 when the boundary g is

estimated. First, we note that the asymptotic variance in the CLT of Theorem
1 and Theorem 2 when normalized respectively by the hitting-time variance
and the functional of hitting-time variance does not depend on the boundary
g, i.e. estimators based on different values of g are asymptotically equivalent.
Indeed, we can reexpress the CLT (25) in Theorem 1 when normalized by the
hitting-time variance as√

n

αn

σ̂2,n
t,g − σ2

t,g

σ2
t,g

D→ N
(
0,

1

f(t)

)
. (41)

Here, we use Equation (4) and the fact that
√
aN (0, b) = N (0, ab) for any a > 0

and b > 0. Moreover, we can use the same arguments in the other CLTs of
Theorem 1 and Theorem 2. Thus, there is no theoretical asymptotic gain by
choosing a particular g.

The existence and uniqueness of g and ĝn, as well as the consistency of ĝn to
g, will be shown in the following proposition. We make the following assumption
on k for that.
Assumption 6. We assume that k is a strictly monotone function.

The proof of Proposition 1 extends the arguments in the proof of Theorem 3
since boundary tuning parameter estimation requires uniform arguments on g.

Proposition 1. We assume that Assumptions 1 and 6 hold and that 0 < T− <
T+. Then, there exists a unique g > 0 which satisfies Equation (12) and a unique
ĝn which satisfies Equations (13) and (14). If we also assume that Assumptions
2,3 and Assumption 5 Expressions (31),(32),(33),(34),(35),(36) and (37) hold,
then we have the consistency of the boundary tuning parameter, i.e.

ĝn
P→ g. (42)

Finally, the adaptation of Theorem 1 and Theorem 2 when the boundary tuning
parameter is estimated will be shown in the next corollary. The asymptotic
variance is unchanged by the estimation of the bounding tuning parameter.

Corollary 1. We assume that Assumptions 1, 2, 3, 6 and Assumption 5 Ex-
pressions (31),(32),(33),(34),(35) and (36) hold and that 0 < T− < t ≤ T+. We
have, assuming that Assumption 5 Expression (37) holds, the standard CLT√

n

αn
( ̂k(σ2

t,ĝn
)n − k(σ2

t,g))
D→ N

(
0,

k′(σ2
t,g)

2f(t)

fW
g ((PW

g )−1(F (t)))2

)
(43)
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as n → ∞. If we also assume that Assumption 5 Expression (38) holds, we
obtain the feasible normalized CLT√√√√ n

αn

fW
ĝn

((PW
ĝn

)−1(F̂n(t)))2

( ̂k′(σ2
t,ĝn

)n)2f̂n(t)
( ̂k(σ2

t,ĝn
)n − k(σ2

t,g))
D→ N (0, 1). (44)

5. Discussion

In this section, we discuss about an appropriate choice of the delta-sequence,
αn, T−, T+ and Mn in practice. We also discuss about the case of censored data.

First, we recommend to use the triangular kernel as delta-sequence since it
is the nonnegative kernel with the smallest MSE in Singpurwalla and Wong
(1983) (Table 1). Since its support is bounded, it also prevents from obtaining
too many times positive estimation for which the pdf is null.

Second, Müller and Wang (1990) give a general principle to obtain local band-
width, i.e. minimizing the MSE in case of hazard estimation based on ordered
sample values. Lo, Mack and Wang (1989) give the MSE in case of estimation
for standard hazard function, but they do not minimize it with respect to the
bandwidth. Moreover, since the asymptotic variance diverges at the extremities,
i.e. as t → 0 or t → ∞, and since the support of the delta-sequence could exceed
the available range of data, there are bias problems at the extremities. The same
problem appears for estimation of standard hazard function and is referred as
extremity effects. Müller and Wang (1994) propose standard hazard function
estimation with varying kernels and bandwidths in their Equation (2.2) (p. 62),
based on Gasser and Müller (1979) earlier proposal. In their algorithm, they
recommend to start with b = 1

8n1/5 , which can be expressed in terms of our
tuning parameter as

αn = 8n1/5. (45)

With this choice, Assumption 3 holds. A rigorous study of the hitting-time
variance MSE and the choice of local efficient bandwidth and delta-sequence is
above the scope of this paper and left for future work. However, we will find in
our numerical simulation that a larger tuning parameter value, i.e.

αn = 8n
9
10 , (46)

will give better results. With this choice, we obviously have that αn = o(n) and
thus Equation (19) from Assumption 3 is satisfied.

Finally, we recommend to choose T− and T+ such that [T−, T+] covers around
90% of the cdf. We also recommend to set the number of intervals such that
Mn =

(
n
αn

) 1
4 . With this choice, we have that Assumption 5 Expression (31) is

satisfied.
Since our empirical application is based on financial data, we do observe the

data fully. However, the case of censored data may be of interest for applica-
tions in survival analysis and medicine. Extensions of the ratio hazard estimator
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to censored data are available in Blum and Susarla (1980), Földes, Rejto and
Winter (1981) and Lo, Mack and Wang (1989). They are based on Kaplan-
Meier estimation (see Kaplan and Meier (1958)). Thus, we recommend to use
the Kaplan-Meier estimator, rather than the empirical estimator. Then, we can
use delta-sequences based on the Kaplan-Meier estimator. We conjecture that
the theory holds. However, investigating this adaptation is above the scope of
this paper and left for future work.

6. Numerical simulation

In this section, we give a numerical simulation to assess the CLT of the infeasible
and feasible Z-statistics for estimation of hitting-time variance, i.e.

Z
σ2
g,inf

t =

√
n

αn

fW
g ((PW

g )−1(F (t)))2

f(t)
(σ̂2,n

t,g − σ2
t,g),

Z
σ2
g,feas

t =

√√√√ n

αn

fW
ĝn

((PW
ĝn

)−1(F̂n(t)))2

f̂n(t)
(σ̂2,n

t,ĝn
− σ2

t,g).

We also assess the CLT of the infeasible and feasible Z-statistics to estimate the
functionals of hitting-time variance, i.e.

Z
k(σ2

g),inf

t :=

√
n

αn

fW
g ((PW

g )−1(F (t)))2

(k′(σ2
t,g))

2f(t)
( ̂k(σ2

t,g)
n − k(σ2

t,g)),

Z
k(σ2

g),feas

t :=

√√√√ n

αn

fW
ĝn

((PW
ĝn

)−1(F̂n(t)))2

( ̂k′(σ2
t,ĝn

)n)2f̂n(t)
( ̂k(σ2

t,ĝn
)n − k(σ2

t,g)).

We consider the Levy distribution since it is a right skewed distribution with
fat tail, which is what we see in our empirical application. We set the scale
parameter c = 1.4×10−5 which is the value obtained in our empirical application
and the boundary equal to the square root of the parameter, i.e. g =

√
c, which

makes the hitting-time variance constant equal to unity, i.e. σf
t = 1 for any

t > 0 (see Appendix 9.1 in the supplementary materials).
As in Watson and Leadbetter (1964b) (see Section 5, Equation 5.2, p. 115),

we consider the triangle kernel function defined as

δn(t) = δ(1− δ|t|) if |t| ≤ 1

δ
,

δn(t) = 0 else.

With that choice, we have that αn =
∫∞
−∞ δ2n(t)dt =

2δ
3 . For large n, we set αn =

8n
9
10 when 10−7 ≤ t < 10−3, αn = 8n

1
2 when 10−3 ≤ t < 10−1, and αn = 8n

1
4

when 10−1 ≤ t < 10. For small n, we set αn = 8n2 when 10−7 ≤ t < 10−3, and
αn = 8n when 10−3 ≤ t < 100.
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We consider the number of iterations n = 1, 000, 000, 2, 000, 000, 5, 000, 000,
10, 000, 000, which are large values but adequate since they are smaller than
the value used in our empirical application. We also explore the cases of small
n = 1, 000 and intermediary n = 50, 000 for applications in survival analysis
and medicine. We also use S = 5, 000, 000 which corresponds to the number
of partitions in the numerical discretization of the integral when implementing
the cdf estimator (6). Moreover, the number of iterations is fixed to N = 1000.
Finally, we set T− = 5× 10−6 and T+ = 5× 10−4, which covers around 90% of

the distribution. We also set the number of intervals such that Mn =
(

n
αn

) 1
4 .

We choose the squared functional, i.e. k(x) = x2, which corresponds to the
estimation of the squared hitting-time variance.

Table 1: Summary statistics for Levy distribution at time t = 10−5 and with N =
1, 000 iterations. The columns entitled ”5%” and ”95%” respectively correspond
to the 5%-quantile and 95%-quantile.

n Statistics Mean Std 5% 95%

1,000,000 Z
σ2
g,inf

t -0.004 1.000 -1.647 1.710
Z

σ2
g,feas

t -0.023 1.002 -1.704 1.651
Z

k(σ2
g),inf

t 0.015 1.000 -1.595 1.766
Z

k(σ2
g),feas

t -0.043 1.006 -1.761 1.601
2,000,000 Z

σ2
g,inf

t -0.004 1.007 -1.589 1.662
Z

σ2
g,feas

t -0.020 1.010 -1.633 1.621
Z

k(σ2
g),inf

t 0.012 1.006 -1.548 1.706
Z

k(σ2
g),feas

t -0.037 1.015 -1.677 1.580
5,000,000 Z

σ2
g,inf

t 0.020 0.961 -1.602 1.574
Z

σ2
g,feas

t 0.008 0.961 -1.637 1.542
Z

k(σ2
g),inf

t 0.031 0.961 -1.569 1.606
Z

k(σ2
g),feas

t -0.004 0.963 -1.672 1.512
10,000,000 Z

σ2
g,inf

t 0.008 1.047 -1.764 1.680
Z

σ2
g,feas

t -0.004 1.047 -1.797 1.649
Z

k(σ2
g),inf

t 0.020 1.047 -1.731 1.711
Z

k(σ2
g),feas

t -0.016 1.048 -1.833 1.621
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Table 2: Summary statistics for Levy distribution at time t = 2.5 × 10−5 and
with N = 1, 000 iterations. The columns entitled ”5%” and ”95%” respectively
correspond to the 5%-quantile and 95%-quantile.

n Statistics Mean Std 5% 95%

1,000,000 Z
σ2
g,inf

t -0.009 1.002 -1.601 1.702
Z

σ2
g,feas

t -0.041 1.008 -1.684 1.615
Z

k(σ2
g),inf

t 0.022 1.003 -1.522 1.791
Z

k(σ2
g),feas

t -0.072 1.021 -1.776 1.539
2,000,000 Z

σ2
g,inf

t 0.017 0.999 -1.664 1.597
Z

σ2
g,feas

t -0.010 1.001 -1.740 1.525
Z

k(σ2
g),inf

t 0.042 1.001 -1.592 1.663
Z

k(σ2
g),feas

t -0.036 1.007 -1.822 1.467
5,000,000 Z

σ2
g,inf

t -0.028 1.034 -1.768 1.609
Z

σ2
g,feas

t -0.050 1.040 -1.833 1.557
Z

k(σ2
g),inf

t -0.006 1.032 -1.704 1.662
Z

k(σ2
g),feas

t -0.073 1.050 -1.905 1.509
10,000,000 Z

σ2
g,inf

t -0.029 0.976 -1.601 1.590
Z

σ2
g,feas

t -0.045 0.979 -1.645 1.546
Z

k(σ2
g),inf

t -0.012 0.976 -1.556 1.633
Z

k(σ2
g),feas

t -0.062 0.983 -1.693 1.506

Table 3: Summary statistics for Levy distribution at time t = 5 × 10−5 and
with N = 1, 000 iterations. The columns entitled ”5%” and ”95%” respectively
correspond to the 5%-quantile and 95%-quantile.

n Statistics Mean Std 5% 95%

1,000,000 Z
σ2
g,inf

t -0.013 1.028 -1.682 1.717
Z

σ2
g,feas

t -0.065 1.037 -1.851 1.590
Z

k(σ2
g),inf

t 0.038 1.034 -1.546 1.859
Z

k(σ2
g),feas

t -0.118 1.063 -2.030 1.478
2,000,000 Z

σ2
g,inf

t 0.031 1.029 -1.625 1.694
Continued on next page
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Table 3: Summary statistics for Levy distribution at time t = 5 × 10−5 and
with N = 1, 000 iterations. The columns entitled ”5%” and ”95%” respectively
correspond to the 5%-quantile and 95%-quantile.

Mean Std 5.0% 95%
n Statistics

Z
σ2
g,feas

t -0.013 1.035 -1.753 1.585
Z

k(σ2
g),inf

t 0.074 1.035 -1.518 1.810
Z

k(σ2
g),feas

t -0.057 1.055 -1.887 1.489
5,000,000 Z

σ2
g,inf

t 0.005 1.011 -1.688 1.708
Z

σ2
g,feas

t -0.028 1.014 -1.789 1.618
Z

k(σ2
g),inf

t 0.038 1.015 -1.596 1.802
Z

k(σ2
g),feas

t -0.062 1.024 -1.898 1.538
10,000,000 Z

σ2
g,inf

t -0.045 0.970 -1.580 1.559
Z

σ2
g,feas

t -0.070 0.975 -1.653 1.495
Z

k(σ2
g),inf

t -0.019 0.969 -1.512 1.625
Z

k(σ2
g),feas

t -0.097 0.985 -1.730 1.437

Table 4: Summary statistics for Levy distribution at time t = 7.5 × 10−5 and
with N = 1, 000 iterations. The columns entitled ”5%” and ”95%” respectively
correspond to the 5%-quantile and 95%-quantile.

n Statistics Mean Std 5% 95%

1,000,000 Z
σ2
g,inf

t 0.029 1.008 -1.563 1.742
Z

σ2
g,feas

t -0.037 1.018 -1.751 1.575
Z

k(σ2
g),inf

t 0.094 1.028 -1.407 1.936
Z

k(σ2
g),feas

t -0.105 1.060 -1.969 1.432
2,000,000 Z

σ2
g,inf

t -0.056 0.959 -1.684 1.526
Z

σ2
g,feas

t -0.108 0.977 -1.862 1.413
Z

k(σ2
g),inf

t -0.006 0.957 -1.531 1.651
Z

k(σ2
g),feas

t -0.161 1.015 -2.068 1.313
5,000,000 Z

σ2
g,inf

t -0.054 0.985 -1.695 1.629
Z

σ2
g,feas

t -0.096 0.991 -1.829 1.523
Continued on next page
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Table 4: Summary statistics for Levy distribution at time t = 7.5 × 10−5 and
with N = 1, 000 iterations. The columns entitled ”5%” and ”95%” respectively
correspond to the 5%-quantile and 95%-quantile.

n Statistics Mean Std 5.0% 95%

Z
k(σ2

g),inf

t -0.013 0.989 -1.572 1.742
Z

k(σ2
g),feas

t -0.140 1.007 -1.984 1.430
10,000,000 Z

σ2
g,inf

t -0.060 1.048 -1.798 1.653
Z

σ2
g,feas

t -0.100 1.057 -1.925 1.563
Z

k(σ2
g),inf

t -0.020 1.048 -1.682 1.752
Z

k(σ2
g),feas

t -0.141 1.076 -2.068 1.480

Table 5: Summary statistics for Levy distribution at time t = 10−4 and with N =
1, 000 iterations. The columns entitled ”5%” and ”95%” respectively correspond
to the 5%-quantile and 95%-quantile.

n Statistics Mean Std 5% 95%

1,000,000 Z
σ2
g,inf

t 0.022 1.028 -1.566 1.753
Z

σ2
g,feas

t -0.064 1.047 -1.805 1.542
Z

k(σ2
g),inf

t 0.105 1.054 -1.374 1.994
Z

k(σ2
g),feas

t -0.154 1.116 -2.099 1.378
2,000,000 Z

σ2
g,inf

t 0.059 1.004 -1.533 1.759
Z

σ2
g,feas

t -0.008 1.008 -1.723 1.596
Z

k(σ2
g),inf

t 0.126 1.027 -1.378 1.962
Z

k(σ2
g),feas

t -0.076 1.041 -1.944 1.445
5,000,000 Z

σ2
g,inf

t 0.028 1.022 -1.598 1.809
Z

σ2
g,feas

t -0.027 1.026 -1.752 1.660
Z

k(σ2
g),inf

t 0.083 1.035 -1.464 1.980
Z

k(σ2
g),feas

t -0.083 1.049 -1.928 1.528
10,000,000 Z

σ2
g,inf

t 0.039 0.998 -1.591 1.765
Z

σ2
g,feas

t -0.005 0.999 -1.719 1.641
Z

k(σ2
g),inf

t 0.083 1.009 -1.480 1.902
Z

k(σ2
g),feas

t -0.049 1.012 -1.860 1.531
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Table 6: Summary statistics for Levy distribution at time t = 2.5 × 10−4 and
with N = 1, 000 iterations. The columns entitled ”5%” and ”95%” respectively
correspond to the 5%-quantile and 95%-quantile.

n Statistics Mean Std 5% 95%

1,000,000 Z
σ2
g,inf

t 0.102 0.999 -1.497 1.775
Z

σ2
g,feas

t -0.063 1.095 -2.052 1.426
Z

k(σ2
g),inf

t 0.256 1.083 -1.155 2.256
Z

k(σ2
g),feas

t -0.311 2.256 -2.912 1.174
2,000,000 Z

σ2
g,inf

t 0.023 0.989 -1.469 1.715
Z

σ2
g,feas

t -0.107 1.026 -1.866 1.428
Z

k(σ2
g),inf

t 0.149 1.059 -1.192 2.092
Z

k(σ2
g),feas

t -0.261 1.212 -2.428 1.210
5,000,000 Z

σ2
g,inf

t 0.047 1.027 -1.571 1.840
Z

σ2
g,feas

t -0.064 1.058 -1.906 1.569
Z

k(σ2
g),inf

t 0.155 1.075 -1.319 2.185
Z

k(σ2
g),feas

t -0.189 1.194 -2.355 1.355
10,000,000 Z

σ2
g,inf

t -0.038 1.010 -1.620 1.710
Z

σ2
g,feas

t -0.130 1.045 -1.904 1.498
Z

k(σ2
g),inf

t 0.050 1.029 -1.395 1.961
Z

k(σ2
g),feas

t -0.233 1.153 -2.270 1.328

Fig 1: Histogram of the Z-statistics for Levy distribution at time t = 10−4, with
n = 10, 000, 000 and N = 1, 000 iterations.

Tables 1 to 6 report summary statistics for Levy distribution at times t =
{10−5, 2.5×10−5, 5×10−5, 7.5×10−5, 10−4, 2.5×10−4}. Figures 1 and 2 show the
histogram and QQ plot of the Z-statistics for Levy distribution at time t = 10−4

with n = 10, 000, 000. The mean and standard deviations of the Z-statistics are
respectively close to zero and unity, as expected from the CLTs. We can also
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Fig 2: QQ plot of the Z-statistics for Levy distribution at time t = 10−4, with
n = 10, 000, 000 and N = 1, 000 iterations.

(a) n = 1000 (b) n = 50, 000

Fig 3: Estimated mean of hitting-time variance σ2
t,g for Levy distribution at

time t = 10−4 with N = 1, 000 iterations, small n (left panel) and intermediary
n (right panel).

see that the quantiles are close to their theoretical value. The results are the
best around t = 10−4, which is close from the median of the distribution. They
start to deteriorate around T− and T+, and are not satisfying when t < T− or
t > T+. The CLTs definitely require large n. Overall, the feasible and functional
Z-statistics are not as good as the infeasible and standard Z-statistics, which is
usual. Figure 3 shows the estimated mean of hitting-time variance σ2

t,g for Levy
distribution at time t = 10−4 with small n = 1, 000 (left panel) and intermediary
n = 50, 000 (right panel). As expected, the hitting-time variance estimator does
not perform as well as in the larger n case.

7. Empirical application

In this section, we conduct an empirical application to financial duration data.
We consider FHT equal to price change durations of the stock Apple Inc.
(AAPL), which is traded daily from 9:30 AM to 4:00 PM on the Nasdaq stock
exchange during the year 2017. The durations are concatenated across all the
days during the year. This yields n = 36, 247, 425 durations.

Figure 4 shows the histogram of the durations, while Table 7 reports the sum-
mary statistics. The histogram of FHT has a first pick around one microsecond,
a second pick around one millisecond, a third pick around one second and is
right-skewed with fat tail. Thus, we believe that a nonparametric model is the
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Fig 4: Histogram of the durations in seconds for Apple in 2017

Table 7
Summary statistics of the durations in seconds for Apple in 2017. The columns entitled

”q%” correspond to the q%-quantile.

n Mean Std Min Max

36,247,425 1.62 ×10−1 5.41 ×10−1 1.00 ×10−6 7.09 ×102

1% 5% 25% 50% 75% 95% 99%

1.00 ×10−6 3.00 ×10−6 1.50 ×10−5 6.33 ×10−4 8.47 ×10−2 9.39 ×10−1 2.14

most suitable to describe the data. In particular, the data do not seem to follow
a Levy distribution.

We estimate the pdf and cdf of the durations between t = 1.00 × 10−6 and
t = 7.09 × 102 with S = 5, 000, 000 partitions. We choose αn from Equation
(46). We set T− = 3.00× 10−6 and T+ = 9.39× 10−1, which covers exactly 90%

of the distribution. We also set the number of intervals such that Mn =
(

n
αn

) 1
4 .

Figure 5 and Table 8 show the estimated pdf and cdf of the FHT.
Figure 6 and Table 9 show the estimated hitting-time variance. We find that

the hitting-time variance is time-varying. The maximum value of the hitting-
time variance is around 106, while its minimum is around 102. This can be
explained by the fact that the data does not seem to follow a Levy distribution.
Since the hitting-time variance is bounded, it satisfies Assumption 1. Figure 7
and Table 10 show the asymptotic standard deviation over time, i.e.

√√√√ n

αn

fW
g ((PW

g )−1(F̂n(t)))2

f̂n(t)

−1

.

We also fit one parametric model, i.e. the Levy distribution. Although we
have seen that the data do not follow a Levy distribution, we believe the Levy
distribution is moderately suitable since it has right skewed pdf and fat tails.
We consider maximum likelihood estimation on the concatenated data in 2017.
Table 11 reports the estimated scale parameter value of the Levy pdf, i.e. c =
1.40× 10−5, which is used in our numerical simulation.
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Fig 5: Estimated pdf and cdf of the durations in seconds for Apple in 2017

Table 8
Estimated pdf and cdf of the durations in seconds for Apple in 2017

t f̂n F̂n

1.00×10−7 0.00 2.76 ×10−8

1.00 ×10−6 1.40 ×104 5.83 ×10−3

1.00 ×10−5 1.94 ×104 2.08 ×10−1

1.00 ×10−4 7.92 ×102 3.56 ×10−1

1.00 ×10−3 8.27 ×10 5.30 ×10−1

1.00 ×10−2 5.18 6.53 ×10−1

1.00 ×10−1 2.89 7.61 ×10−1

1.00 2.33 ×10−1 9.55 ×10−1

1.00 ×10 0.00 1.00

8. Conclusion

In this paper, we have considered estimation of hitting-time variance. The non-
parametric estimation was based on delta-sequences. We have characterized fea-
sible statistics induced by central limit theory for the estimation procedure. An
empirical application to financial duration data showed that the hitting-time
variance is time-varying.

The code is available online at

https : //github.com/Julian−Kota−Kikuchi/volatility_estimation_replication
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Fig 6: Estimated hitting-time variance for several values of g in seconds for
Apple in 2017
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Table 9
Estimated hitting-time variance for several values of g in seconds for Apple in 2017

t g 0.5 1.0 2.0 4.0

1.00 ×10−7 0.00 0.00 0.00 0.00
1.00 ×10−6 1.88 ×104 7.52 ×104 3.01 ×105 1.20 ×106

1.00 ×10−5 1.34 ×104 5.38 ×104 2.15 ×105 8.60 ×105

1.00 ×10−4 9.66 ×102 3.86 ×103 1.55 ×104 6.18 ×104

1.00 ×10−3 2.54 ×102 1.01 ×103 4.07 ×103 1.63 ×104

1.00 ×10−2 3.96 ×10 1.58 ×102 6.33 ×102 2.53 ×103

1.00 ×10−1 6.73 ×10 2.69 ×102 1.08 ×103 4.31 ×103

1.00 7.86 ×102 3.15 ×103 1.26 ×104 5.03 ×104

1.00 ×10 0.00 0.00 0.00 0.00

Table 10
Estimated asymptotic standard deviation of the hitting-time variance for several values of g

in seconds for Apple in 2017

t g 0.5 1.0 2.0 4.0

1.00 ×10−7 0.00 0.00 0.00 0.00
1.00 ×10−6 2.04 ×10 4.08 ×10 8.16 ×10 1.63 ×102

1.00 ×10−5 1.73 ×10 3.45 ×10 6.90 ×10 1.38 ×102

1.00 ×10−4 4.63 9.25 1.85 ×10 3.70 ×10
1.00 ×10−3 2.37 4.75 9.49 1.90 ×10
1.00 ×10−2 0.94 1.87 3.74 7.49
1.00 ×10−1 1.22 2.44 4.89 9.77
1.00 4.17 8.35 1.67 ×10 3.34 ×10
1.00 ×10 0.00 0.00 0.00 0.00

Supplementary Material

Supplement: Parametric case
The supplement specifies the hitting-time variance for some standard parametric
distribution

Supplement: Proofs
The supplement provides the detailed proofs of the results from Section 4.
They rely on theory developed in Watson and Leadbetter (1964b) Doob (1949),
Malmquist (1954), Loeve (1977) and Wang and Pötzelberger (1997).
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Table 11
Estimated scale parameter for the Levy distribution of the FHT in seconds for Apple in 2017

c

1.40 ×10−5
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SUPPLEMENTARY MATERIAL: This is the supplementary material of
”Nonparametric estimation of hitting-time variance” by Julian Kota Kikuchi,
Chang Yuan Li and Yoann Potiron submitted to the Journal of Econometrics.
This supplementary material specifies the hitting-time variance for some stan-
dard parametric distribution in Section 9 and provides the detailed proofs of
the results from Section 4 in Section 10.

9. Parametric case

This supplement specifies the hitting-time variance for some standard paramet-
ric pdfs such as Levy pdfs, inverse gamma pdfs, inverse Gaussian pdfs, gamma
pdfs and pdfs for the FHT of a standard Brownian motion to a linear boundary.

9.1. Levy pdf

The Levy pdf and cdf satisfy f(0) = 0, F (0) = 0,

f(t) =

√
c

2π

e−
c
2t

t
3
2

for any t > 0, (47)

F (t) = 1− erf
(√ c

2t

)
for any t > 0. (48)

Here, c > 0 is the scale parameter. It is right skewed, has an infinite mean and
a fat tail with an asymptotic polynomial decay of order t− 3

2 . By Equations (62)
and (63) from Lemma 2, it corresponds to the pdf of the FHT by a standard
Brownian motion to the boundary g =

√
c. We can reexpress the hitting-time

variance for any t ≥ 0 as

σ2
t,g =

f(t)

fW
g ((PW

g )−1(F (t)))
1{0<F (t)<1}

=
f(t)

fW
g ((PW

g )−1(1− erf(
√

c
2t )))

1{t>0}

=
f(t)

fW
g

(
g2

2(erfinv(erf(
√

c
2t )))2

)1{t>0}

=
f(t)

fW
g ( g

2

c t)
1{t>0}

=
g2

c
1{t>0}, (49)

where the first equality corresponds to Equation (4), the second equality is due
to Equation (48), the third equality comes from Equation (64) in Lemma 2, the
fourth equality is obtained with algebraic manipulation, we use Lemma 2 along
with Equation (47) in the fifth equality. The hitting-time variance is constant
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Fig 8: Square root of hitting-time variance related to Levy distribution for sev-
eral scale parameters

since the square of the boundary and the scale parameter play a symmetric role.
Figure 8 shows the square root of hitting-time variance related for several scale
parameters.

9.2. Inverse gamma pdf

The inverse gamma pdf and cdf satisfy f(0) = 0, F (0) = 0,

f(t) =
βα

Γ(α)

e−
β
t

tα+1
for any t > 0, (50)

F (t) =
Γ
(
α, β

t

)
Γ(α)

for any t > 0. (51)

Here, α > 0 is the shape parameter, β > 0 is the scale parameter, Γ(α) =∫∞
0

xα−1e−xdx is the gamma function, and Γ(α, x) =
∫∞
x

xα−1e−xdx is the
upper incomplete gamma function. It is right skewed and has a fat tail with an
asymptotic polynomial decay of order t−1−α. When 0 < α < 1/2, the polynomial
decay is slower than the decay of the Levy pdf. When α = 1/2, the polynomial
decay is the same and in fact both pdfs are equal when β = c/2. When 0 < α <
1/2, the polynomial decay is faster than the decay of the Levy pdf. By Equation
(66) and Equations (50) and (51), we can reexpress the hitting-time variance
for any t ≥ 0 as

σ2
t,g =

βαg2
√
π

2Γ(α)

eh(t)
2− β

t

tα+1h(t)
31{t>0}.

Figure 9 shows the square root of hitting-time variance related for several shape
and scale parameters.
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Fig 9: Square root of hitting-time variance related to the the inverse gamma
distribution for several shape and scale parameters

9.3. Inverse Gaussian pdf

The inverse Gaussian pdf and cdf satisfy f(0) = 0, F (0) = 0,

f(t) =

√
λ

2π

e
−λ(t−µ)2

2µ2t

t
3
2

for any t > 0, (52)

F (t) = Φ

(√
λ

t

(
t

µ
− 1

))
+ e

2λ
µ Φ

(
−
√

λ

t

(
t

µ
+ 1

))
for any t > 0.(53)

Here, λ > 0 is the shape parameter, µ > 0 is the mean parameter and Φ is
defined as the cdf of the standard Gaussian distribution, i.e.

Φ(z) =

∫ z

−∞

1√
2π

e−
t2

2 dt for any z ∈ R. (54)

It has an asymptotic exponential decay. It corresponds to the pdf of the FHT of
a Brownian motion with drift ν = g/µ and variance σ2 = g2/λ to the boundary
g. By Equation (66) and Equations (52)-(53), we can reexpress the hitting-time
variance for any t ≥ 0 as

σ2
t,g =

g2
√
λ

2
√
2

e
h(t)2−λ(t−µ)2

2µ2t

t
3
2h(t)

3 1{t>0}.

Figure 10 shows the square root of hitting-time variance for several shape and
mean parameters.
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Fig 10: Square root of hitting-time variance related to the inverse Gaussian
distribution for several shape and mean parameters

9.4. Gamma pdf

The gamma pdf and cdf satisfy

f(t) =
βαtα−1e−βt

Γ(α)
for any t ≥ 0, (55)

F (t) =

∫ βt

0
xα−1e−xdx

Γ(α)
for any t ≥ 0. (56)

Here, α > 0 is the shape parameter and β > 0 is the rate parameter. When
α = 1, it becomes exponential whose pdf and cdf satisfy

f(t) = βe−βt for any t ≥ 0,

F (t) = 1− e−βt for any t ≥ 0.

The gamma pdf has an asymptotic exponential decay. By Equation (66) and
Equation (55)-(56), we can reexpress the hitting-time variance for any t ≥ 0 as

σ2
t,g =

βαg2
√
π

2Γ(α)

tα−1eh(t)
2−βt

h(t)
3 . (57)

When α = 1, the closed-form solution can be specified as

σ2
t,g =

βg2
√
π

2

eerfinv(e
−βt)

2−βt

erfinv(e−βt)
3 .

Figure 11 shows the square root of hitting-time variance for several shape and
rate parameters.

9.5. Linear boundary pdf

The next lemma gives the pdf and cdf of the FHT by a standard Brownian
motion to the linear boundary g(t) = at+ b, where a ∈ R is the slope and b > 0
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Fig 11: Square root of hitting-time variance related to the exponential distribu-
tion (left panel) and the gamma distribution (right panel) for several shape and
rate parameters

is the intercept, which are known results from Malmquist (1954) (Theorem 1,
p. 526).

Lemma 1. We obtain f(0) = 0, F (0) = 0,

f(t) =
be−

(at+b)2

2t

√
2πt3

for any t > 0. (58)

F (t) = 1− Φ

(
at+ b√

t

)
+ e−2abΦ

(
at− b√

t

)
for any t > 0. (59)

When a = 0, the boundary becomes constant and we obtain a Levy distribution
with parameter b2 as in Lemma 2 and Section 9.1. When a 6= 0, the pdf has
an exponential decay. By Equations (66),(58) and (59), we can reexpress the
hitting-time variance for any t ≥ 0 as

σ2
t,g =

g2be−
(at+b)2

2t

2
√
2t3

eerfinv(h(t))
2

erfinv (h(t))
3 .

Figures 12 and 13 show the square root of hitting-time variance for several slope
and intercept parameters.
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Fig 12: Square root of hitting-time variance related to the hitting-time of a
linear upper boundary of the form at+b by a Brownian motion for several slope
and intercept parameters

Fig 13: Square root of hitting-time variance related to the hitting-time of a con-
stant upper boundary of the form b by a Brownian motion for several intercept
parameters
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10. Proofs

This supplement provides the detailed proofs of the results from Section 4.
To obtain the form of the variance solution in the IFHT problem, the key

result in Potiron (2023) states that the cdf for the FHT of a continuous local
martingale is equal to the cdf for the FHT of a standard Brownian motion, which
is time-changed by the martingale quadratic variation. Thus, we now consider
the case when Zt = Wt for any t ∈ R+ and recall a basic lemma from Potiron
(2023). This lemma gives fZ

g and PZ
g , i.e. Levy distribution, in Equations (62)-

(63) which are known results from Malmquist (1954) (Theorem 1, p. 526). It
also shows that there exists an invert of PW

g which we denote (PW
g )−1 and gives

(PW
g )−1(t) and fW

g ((PW
g )−1(t)) for any 0 ≤ t < 1. We define the error function

and its inverse as

erf(z) =
2√
π

∫ z

0

e−t2dt for any z ∈ R, (60)

erf(erfinv(z)) = z for any z ∈ (−1, 1). (61)

Lemma 2. We obtain a Levy distribution with fW
g (0) = 0, PW

g (0) = 0,

fW
g (t) =

g√
2πt3

e
−g2

2t for any t > 0, (62)

PW
g (t) = 1− erf( g√

2t
) for any t > 0. (63)

Moreover, there exists an invert of PW
g which we denote (PW

g )−1 : [0, 1) → R+

and is strictly increasing such that (PW
g )−1(0) = 0,

(PW
g )−1(t) =

g2

2 erfinv(1− t)2
for any 0 < t < 1. (64)

Finally, we have fW
g ((PW

g )−1(t)) = 0,

fW
g ((PW

g )−1(t)) =
2

g2
√
π
erfinv(1− t)

3
e−erfinv(1−t)2 for any 0 < t < 1. (65)

Proof of Lemma 2. This corresponds to Lemma 6 in Potiron (2023).

If we introduce the notation h(t) = erfinv {1− F (t)} and substitute

fW
g ((PW

g )−1(F (t)))

in Equation (4) with Equation (65) from Lemma 2, we can reexpress the hitting-
time variance as a closed-form expression, i.e.

σ2
t,g = f(t)

2
g2

√
π
h(t)3e−h(t)2

1{0<F (t)<1} for any t ≥ 0. (66)

The next lemma is a direct consequence of the previous lemma.
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Lemma 3. We have

fW
g ∈ C1(R+,R+) and PW

g ∈ C1(R+, [0, 1)), (67)
(PW

g )−1 ∈ C1([0, 1),R+). (68)

Proof of Lemma 3. This is a direct consequence of Lemma 2.

We provide the following lemma, which corresponds to the consistency of
F̂n(t).

Lemma 4. We assume that Assumption 2 holds. We have that F̂n(t) is consis-
tent, i.e. for t ≥ 0 that

F̂n(t)
P→ F (t).

Proof of Lemma 4. As L2-convergence implies P-convergence, it is sufficient to
show the L2-convergence. We can express the L2-distance as the sum of the
square of the bias and the variance, i.e.

E[(F̂n(t)− F (t))2] = (E[F̂n(t)]− F (t))2 +Var[F̂n(t)].

Then, the first term and the second term in the right-hand side of the above
equation tend to 0 respectively by Theorem 6 (i) and Theorem 6 (ii) in Watson
and Leadbetter (1964b) (p. 112), along with Assumption 2.

We give another lemma, which establishes the consistency of f̂n(t).

Lemma 5. We assume that Assumption 2 and Assumption 3 Expressions (18)-
(19)-(20)-(21) hold. We have that f̂n(t) is consistent, i.e. for any t ≥ 0, assuming
that it is a continuity point of f , that

f̂n(t)
P→ f(t).

Proof of Lemma 5. As L2-convergence implies P-convergence, it is sufficient to
show the L2-convergence. We have that

E[(f̂n(t)− f(t))2] = (E[f̂n(t)]− f(t))2 +Var[f̂n(t)].

Then, the squared bias term vanishes asymptotically as an application of The-
orem 5 (p. 111) from Watson and Leadbetter (1964b) (p. 112) and the variance
term goes to 0 using Theorem 4 (p. 110) from the aforementioned paper, to-
gether with Assumption 2, Assumption 3 Expressions (18)-(19)-(20)-(21) and
the fact that t is a continuity point of f .

We now give the proof of Theorem 1.
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Proof of Theorem 1. First, we prove the standard CLT (25). We can write for
any t > 0, assuming that it is a continuity point of f , that√

n

αn
(σ̂2,n

t,g − σ2
t,g) =

√
n

αn

(
σ̂2,n
t,g − f(t)

fW
g ((PW

g )−1(F (t)))

)
=

√
n

αn

( f̂n(t)1{0<F̂n(t)<1}

fW
g ((PW

g )−1(F̂n(t)))
− f(t)

fW
g ((PW

g )−1(F (t)))

)
=

√
n

αn

( f̂n(t)

fW
g ((PW

g )−1(F (t)))
− f(t)

fW
g ((PW

g )−1(F (t)))

)
+

√
n

αn

( f̂n(t)

fW
g ((PW

g )−1(F̂n(t)))
− f̂n(t)

fW
g ((PW

g )−1(F (t)))

)
+

√
n

αn

f̂n(t)(1{0<F̂n(t)<1} − 1)

fW
g ((PW

g )−1(F̂n(t)))

= I + II + III.

Here, the first equality is due to Equation (4) along with the assumption that
f(t) > 0 and t > 0, the second equality corresponds to Equation (7), and the
third equality is obtained with algebraic manipulation. In what follows, we will
show that

I
D→ N

(
0,

f(t)

fW
g ((PW

g )−1(F (t)))2

)
, (69)

II
P→ 0, (70)

III
P→ 0. (71)

We start with the proof of I. We can decompose it as

I =

√
n

αn

( f̂n(t)− E[f̂n(t)])
fW
g ((PW

g )−1(F (t)))
− f(t)− E[f̂n(t)])

fW
g ((PW

g )−1(F (t)))

)
:= IA + IB .

We can see that IB
P→ 0 by Assumption 3 Expression (22). We turn now to the

IA term. Note that by Theorem 5 (p. 111) in Watson and Leadbetter (1964b)
together with Assumption 2, Assumption 3 Expressions (18)-(19)-(20)-(21) and
the assumption that t is a continuity point of f , we obtain that√

n

αn
(f̂n(t)− E[f̂n(t)])

D→ N (0, f(t)). (72)

We have thus shown Equation (69).
We now continue with the proof of II. With an algebraic manipulation, we
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can decompose it as

II =

√
n

αn

( f̂n(t)− E[f̂n(t)]
fW
g ((PW

g )−1(F̂n(t)))
− f̂n(t)− E[f̂n(t)]

fW
g ((PW

g )−1(F (t)))

)
+

√
n

αn

( E[f̂n(t)]− f(t)

fW
g ((PW

g )−1(F̂n(t)))
− E[f̂n(t)]− f(t)

fW
g ((PW

g )−1(F (t)))

)
+

√
n

αn

( f(t)

fW
g ((PW

g )−1(F̂n(t)))
− f(t)

fW
g ((PW

g )−1(F (t)))

)
= IIA + IIB + IIC .

We start with IIA term. First, we note that by Theorem 5 (p. 111) in Watson
and Leadbetter (1964b) along with Assumption 2, Assumption 3 Expressions
(18),(19),(20) and (21), and the fact that t is a continuity point of f , we obtain√

n

αn
(f̂n(t)− E[f̂n(t)]) = OP(1). (73)

As a consequence of Equation (73), proving that IIA
P→ 0 amounts to showing

that
1

fW
g ((PW

g )−1(F̂n(t)))

P→ 1

fW
g ((PW

g )−1(F (t)))
. (74)

Equation (74) holds as an application of Lemma 4 along with the continuous
mapping theorem and the fact that fW

g and (PW
g )−1 are continuous functions

by Lemma 2.
We turn to IIB term. First, we can see that by Lemma 4 along with the

assumption that f(t) > 0 and t > 0 we have
1

fW
g ((PW

g )−1(F̂n(t)))
= OP(1). (75)

From Equation (75), the proof of IIB
P→ 0 amounts to showing that the bias

vanishes asymptotically, i.e. that√
n

αn
(E[f̂n(t)]− f(t)) = oP(1), (76)

which corresponds exactly to Assumption 3 Expression (22).
For IIC term, we define the function u : (0, 1) → R+

∗ as

u(s) =
1

fW
g ((PW

g )−1(s))
. (77)

First, we note that u ∈ C1((0, 1),R+
∗ ) since fW

g ∈ C1(R+,R+) and (PW
g )−1 ∈

C1([0, 1),R+) by Expressions (67)-(68) from Lemma 3. By the use of a Taylor
expansion, we can deduce that

u(F̂n(t))− u(F (t)) = u′(sn)(F̂n(t)− F (t)), (78)
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where sn is between F̂n(t) and F (t). We have

IIC =

√
n

αn

( f(t)

fW
g ((PW

g )−1(F̂n(t)))
− f(t)

fW
g ((PW

g )−1(F (t)))

)
=

√
n

αn
f(t)

(
u(F̂n(t))− u(F (t))

)
=

√
n

αn
f(t)u′(sn)(F̂n(t)− F (t)),

where the first equality is the definition of IIC , the second equality corresponds
to Equation (77), and the third equality is obtained from Equation (78). Since
we have that | u′(sn) |≤ C, we can deduce that

| IIC |≤ C

√
n

αn
| F̂n(t)− F (t) | . (79)

By an algebraic manipulation, we can decompose F̂n(t)− F (t) as

F̂n(t)− F (t) = (F̂n(t)− E[F̂n(t)]) + (E[F̂n(t)]− F (t)). (80)

As a consequence of Equation (79) and Equation (80), along with the triangular
inequality, we deduce that

| IIC |≤ C

√
n

αn
(| F̂n(t)− E[F̂n(t)] | + | E[F̂n(t)]− F (t) |). (81)

First, we note that by Theorem 6 (iii) (p. 112) in Watson and Leadbetter (1964b)
together with Assumption 2, we obtain

√
n(F̂n(t)− E[F̂n(t)]) = OP(1). (82)

Then, from Equation (82) along with the fact that αn → ∞, i.e. Expression
(24), we can deduce that the first term in the right-hand side of Equation (81)
tends to 0 in probability. The second term in the right-hand side of Equation
(81) is a bias term and vanishes asymptotically by Assumption 3 Expression
(23). Thus we have shown Equation (70).

Finally, we can show III
P→ 0 using the same arguments as fin the proof of

II
P→ 0. We have thus shown the standard CLT (25).

Now, we prove the feasible normalized CLT (26). First, as an application of
the continuous mapping theorem along with Lemma 4, Lemma 5 and the fact
that fW

g and (PW
g )−1 are continuous functions by Expressions (67)-(68) from

Lemma 3, we obtain that√√√√fW
g ((PW

g )−1(F̂n(t)))2

f̂n(t)

P→

√
fW
g ((PW

g )−1(F (t)))2

f(t)
. (83)



/Nonparametric estimation of hitting-time variance 40

Now, an application of Equation (83), the standard CLT (25) and Slutsky’s
lemma yields √√√√ n

αn

fW
g ((PW

g )−1(F̂n(t)))2

f̂n(t)
(σ̂2,n

t,g − σ2
t,g) (84)

D→

√
fW
g ((PW

g )−1(F (t)))2

f(t)
N (0,

f(t)

(fW
g ((PW

g )−1(F (t)))2
).

Then, as
√
aN (0, b) = N (0, ab) for any a > 0 and b > 0, we can deduce that

the term in the right-hand side of Expression (84) is equal to N (0, 1).

We now give the proof of Theorem 2.

Proof of Theorem 2. We first show the standard CLT (43). First, we have

̂k(σ2
t,g)

n = k(σ̂2,n
t,g )1{σ̂2,n

t,g >0}

= k(σ̂2,n
t,g ) + oP(1)

where the first equality comes from Equation (8) and the second equality comes
from the assumption that f(t) > 0 with t > 0 and that f is continuous at time
t. Then, by a Taylor expansion along with Assumption 4 Expression (27) we
obtain that√

n

αn
(k(σ̂2,n

t,g )− k(σ2
t,g)) =

√
n

αn
k′(σ2

t,g)(σ̂
2,n
t,g − σ2

t,g)

+

√
n

αn

k′′(σ̃2
n)

2
(σ̂2,n

t,g − σ2
t,g)

2

:= I + II,

where σ̃2
n is between σ̂2,n

t,g and σ2
t,g. By an application of Theorem 1 along with

Assumptions 1, 2 and 3 along with the assumption that f(t) > 0 with t > 0 and
that f is continuous at time t, we obtain the convergence

I
D→ g′(σ2

t,g)N
(
0,

f(t)

fW
g ((PW

g )−1(F (t)))2

)
.

Given the fact that
√
aN (0, b) = N (0, ab) for any a > 0 and b > 0, we can

deduce that

I
D→ N

(
0,

k′(σ2
t,g)

2f(t)

fW
g ((PW

g )−1(F (t)))2

)
.
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As for II, we can calculate that

II =

√
n

αn

k′′(σ̃2
n)

2
(σ̂2,n

t,g − σ2
t,g)

2

≤ C

√
n

αn
(σ̂2,n

t,g − σ2
t,g)

2 + oP(1)

= OP(σ̂
2,n
t,g − σ2

t,g)

= oP(1),

where the first equality comes from the definition of II, the inequality is due to
Assumption 4 Expression (28) and that σ̃2

n belongs uniformly in n to a compact
space shrinking to σ2

t,g in probability, the second and third equalities are con-
sequence of Theorem 1 by Assumptions 1-2-3 along with the assumption that
f(t) > 0 with t > 0 and that f is continuous at time t. Thus we have proven
the standard CLT (43).

Now, we prove the feasible normalized CLT (44). First, by Assumption 4
Expression (28) we can deduce that k′ ∈ C2(R+

∗ ,R) and thus apply the standard
CLT (43) to the functional k′ and obtain

k′(σ̂2,n
t,g )

P→ k′(σf
t ).

Then, the proof follows with extending the arguments from the normalized fea-
sible CLT in the proof of Theorem 1.

Before we turn to the proof of Theorem 3, we introduce several lemmas. The
next lemma extends Lemma 3 (p. 104) in Watson and Leadbetter (1964b) to a
statement uniform on [T−, T+].

Lemma 6. We assume that Assumption 2 and Assumption 5 Expressions
(32),(33) and (34) hold . Then for any t ∈ [T−, T+] we have s 7→ f(s)δn(s− t) ∈
L1(R+) and

sup
T−≤t≤T+

∣∣∣ ∫
R+

δn(s− t)f(s)ds− f(t)
∣∣∣→ 0. (85)

Proof of Lemma 6. First, we show that for any t ∈ [T−, T+] we have s 7→
f(s)δn(s − t) ∈ L1(R+). Let t ∈ [T−, T+]. Given that f is continuous and
positive in t by Assumption 5 Expressions (33) and (34), that f ∈ L1(R+) since
it is a density, δn is a positive delta-sequence, then s 7→ f(s)δn(s− t) ∈ L1(R+)
as an application of Lemma 3 (p. 104) in Watson and Leadbetter (1964b).
Then, we prove Expression (85). By Assumption 2 Equation (15), we can reex-
press the expression as

sup
T−≤t≤T+

∣∣∣ ∫
R+

δn(s− t)f(s)ds− f(t)
∣∣∣

= sup
T−≤t≤T+

∣∣∣ ∫
R+

δn(s− t)(f(s)− f(t))ds
∣∣∣.
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Note that f is continuous on [T−, T+] by Assumption 5 Expression (33), which
is a compact space of R+ by Assumption 5 Expression (32). Thus f is uniformly
continuous on [T−, T+]. Then, for any arbitrary small ε > 0, λ > 0 may be
chosen so that

sup
T−≤t≤T+,|s−t|≤λ

| f(s)− f(t) |< ε. (86)

If we define A as A = supT−≤t≤T+

∣∣∣ ∫R+ δn(s− t)(f(s)−f(t))ds
∣∣∣, we obtain that

A = sup
T−≤t≤T+

∣∣∣ ∫
|s−t|≤λ

δn(s− t)(f(s)− f(t))ds

+

∫
|s−t|>λ

δn(s− t)(f(s)− f(t))ds
∣∣∣

≤ sup
T−≤t≤T+

∣∣∣ ∫
|s−t|≤λ

δn(s− t)(f(s)− f(t))ds
∣∣∣

+ sup
T−≤t≤T+

∣∣∣ ∫
|s−t|>λ

δn(s− t)(f(s)− f(t))ds
∣∣∣

= I + II,

where we use algebraic manipulation in the equality, and the triangular inequal-
ity in the inequality. On the one hand, we have that

I ≤ sup
T−≤t≤T+

∫
|s−t|≤λ

δn(s− t)ds sup
s∈R+,|s−t|≤λ

| f(s)− f(t) |

≤ sup
T−≤t≤T+,|s−t|≤λ

| f(s)− f(t) |

≤ ε,

where we use algebraic manipulation with sup domination in the first inequality,
Assumption 2 Equation (15) in the second inequality, and Equation (86) in the
last inequality. Then, if we choose ε → 0, we obtain that I → 0.
On the other hand, we have that

II = sup
T−≤t≤T+

∣∣∣ ∫
|s−t|>λ

δn(s− t)f(s)ds−
∫
|s−t|>λ

δn(s− t)f(t)ds
∣∣∣

≤ sup
T−≤t≤T+

∣∣∣ ∫
|s−t|>λ

δn(s− t)f(s)ds
∣∣∣+ sup

T−≤t≤T+

∣∣∣ ∫
|s−t|>λ

δn(s− t)f(t)ds
∣∣∣

= IIA + IIB ,

where the equality is due to the definition of II with algebraic manipulation,
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we employ the triangular inequality in the inequality. We have that

IIA = sup
T−≤t≤T+

∣∣∣ ∫
|s−t|>λ

δn(s− t)f(s)ds
∣∣∣

≤ sup
T−≤t≤T+

sup
|s|≥λ

δn(s)

∫
|s−t|>λ

f(s)ds

≤ sup
T−≤t≤T+

sup
|s|≥λ

δn(s)

= sup
|s|≥λ

δn(s)

→ 0,

where the first equality comes from the definition of IIA, a sup domination yields
the first inequality, we use the fact that f is a pdf in the second inequality, the
convergence is obtained by Assumption 2 Expression (16).
As for IIB , we obtain that

IIB = sup
T−≤t≤T+

∣∣∣ ∫
|s−t|>λ

δn(s− t)f(t)ds
∣∣∣

= sup
T−≤t≤T+

f(t)

∫
|s−t|>λ

δn(s− t)ds

= sup
T−≤t≤T+

f(t)

∫
|u|>λ

δn(u)du

= C

∫
|u|>λ

δn(u)du

→ 0,

where the first equality comes from the definition of IIA, the second equality
comes from algebraic manipulation, the third equality is obtained by a change
of variable in the Riemmann integral, the fourth equality is due to the fact f is
continuous on [T−, T+] by Assumption 5 Expression (33) so that f is bounded,
and the convergence is a consequence of Assumption 2 Expression (17).

The next lemma extends Theorem 4 (p. 110) in Watson and Leadbetter
(1964b), i.e. convergence of the pdf estimator rescaled variance, to a statement
uniform on [T−, T+].

Lemma 7. We assume that Assumption 2, Assumption 3 Expressions (18) and
(19), and Assumption 5 Expressions (32) ,(33) and (34) hold. We have

sup
T−≤t≤T+

∣∣∣ n
αn

Var[f̂n(t)]− f(t)
∣∣∣→ 0. (87)

Proof of Lemma 7. From Equation (4.1) in Watson and Leadbetter (1964b) (p.
110), we can deduce that

n

αn
Var[f̂n(t)] =

1

αn

∫
R
δ2n(t− s)f(s)ds− 1

αn

(∫
R
δn(t− s)f(s)ds

)2
.(88)
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Then, substituting Equation (88) into Equation (87), we can obtain that

sup
T−≤t≤T+

∣∣∣ n
αn

Var[f̂n(t)]− f(t)
∣∣∣ = sup

T−≤t≤T+

∣∣∣ 1
αn

∫
R
δ2n(t− s)f(s)ds

− 1

αn

(∫
R
δn(t− s)f(s)ds

)2
− f(t)

∣∣∣.
An use of the triangular inequality along with sup manipulation yields that

sup
T−≤t≤T+

∣∣∣ n
αn

Var[f̂n(t)]− f(t)
∣∣∣ ≤ sup

T−≤t≤T+

∣∣∣ 1
αn

∫
R
δ2n(t− s)f(s)ds− f(t)

∣∣∣
+ sup

T−≤t≤T+

∣∣∣ 1
αn

(∫
R
δn(t− s)f(s)ds

)2∣∣∣.
(89)

By Lemma 2 (p. 103) in Watson and Leadbetter (1964b), δ2n(t)/αn defines a
delta-sequence. Thus, we can deduce that the upper term in the right-hand side
of Equation (89) goes to 0 by an application of Lemma 6 along with Assump-
tion 2 and Assumption 5 Expressions (32)-(33)-(34). By a direct application of
Lemma 6 along with Expression (24), i.e. that αn → ∞, we can also deduce
that the lower term in the right-hand side of Equation (89) goes to 0.

In the next lemma, we show the convergence uniform on [T−, T+] of the
rescaled variance of σ̂2,n

t,g .

Lemma 8. We assume that Assumptions 1-2-3 and Assumption 5 Expressions
(32)-(33)-(34) hold. Then, we have

sup
T−≤t≤T+

∣∣∣ n
αn

Var
[
σ̂2,n
t,g

]
− f(t)

(fW
g ((PW

g )−1(F (t)))2

∣∣∣→ 0.

Proof of Lemma 8. We define I as

I = sup
T−≤t≤T+

∣∣∣ n
αn

Var
[
σ̂2,n
t,g

]
− f(t)

(fW
g ((PW

g )−1(F (t)))2

∣∣∣.
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We have that

I = sup
T−≤t≤T+

∣∣∣ n
αn

Var
[ f̂n(t)

fW
g ((PW

g )−1(F̂n(t)))
1{0<F̂n(t)<1}

]
−

f(t)

(fW
g ((PW

g )−1(F (t)))2

∣∣∣
= sup

T−≤t≤T+

∣∣∣ n
αn

Var
[ f̂n(t)

fW
g ((PW

g )−1(F̂n(t)))

]
− f(t)

(fW
g ((PW

g )−1(F (t)))2

∣∣∣+ o(1)

= sup
T−≤t≤T+

∣∣∣ n
αn

Var
[ f̂n(t)

fW
g ((PW

g )−1(F (t)))

]
− f(t)

(fW
g ((PW

g )−1(F (t)))2

∣∣∣+ o(1)

= sup
T−≤t≤T+

1

(fW
g ((PW

g )−1(F (t)))2

∣∣∣ n
αn

Var[f̂n(t)]− f(t)
∣∣∣+ o(1)

≤ sup
T−≤t≤T+

1

(fW
g ((PW

g )−1(F (t)))2
sup

T−≤t≤T+

∣∣∣ n
αn

Var[f̂n(t)]− f(t)
∣∣∣+ o(1)

= C sup
T−≤t≤T+

∣∣∣ n
αn

Var[f̂n(t)]− f(t)
∣∣∣+ o(1)

→ 0,

where the first equality is obtained by Equation (7), the second and third equal-
ities can be deduced following similar arguments as in the proofs of Theorem 1
together with Assumptions 1-2-3 and Assumption 5 Expressions (32)-(33)-(34),
the fourth equality is due to the elementary fact that Var[cX] = c2 Var[X] for
any random variable X and any deterministic c ∈ R, the first inequality is due
to sup domination, we use the fact that the function (fW

g ((PW
g )−1(F (t)))2 is

continuous and positive by Equation (65) on [T−, T+] which is compact by As-
sumption 5 Expression (32) in the fifth equality, and the convergence is deduced
with the application of Lemma 7 along with Assumption 2, Assumption 3 Ex-
pressions (18)-(19) and Assumption 5 Expressions (32)-(33)-(34). We have thus
shown the lemma.

In the next lemma, we show the convergence uniform on [T−, T+] of the
rescaled variance of ̂k(σ2

t,g)
n.

Lemma 9. We assume that Assumptions 1, 2 and 3, and Assumption 5 Ex-
pressions (32),(33),(34) and (37) hold. Then, we have

sup
T−≤t≤T+

∣∣∣ n
αn

Var
[ ̂k(σ2

t,g)
n
]
−

k′(σ2
t,g)

2f(t)

(fW
g ((PW

g )−1(F (t)))2

∣∣∣→ 0. (90)

Proof of Lemma 9. We define I as

I = sup
T−≤t≤T+

∣∣∣ n
αn

Var
[ ̂k(σ2

t,g)
n
]
−

k′(σ2
t,g)

2f(t)

(fW
g ((PW

g )−1(F (t)))2

∣∣∣.
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First, we have

I = sup
T−≤t≤T+

∣∣∣ n
αn

Var
[
k(σ̂2,n

t,g )1{σ̂2,n
t,g >0}

]
−

k′(σ2
t,g)

2f(t)

(fW
g ((PW

g )−1(F (t)))2

∣∣∣
= sup

T−≤t≤T+

∣∣∣ n
αn

Var
[
k(σ̂2,n

t,g )
]
−

k′(σ2
t,g)

2f(t)

(fW
g ((PW

g )−1(F (t)))2

∣∣∣+ o(1) (91)

where the first equality comes from Equation (8) and the second equality comes
from the assumption that f is positive and continuous on the compact space
[T−, T+] by Assumption 5 Expressions (32)-(33)-(34). For any t ∈ [T−, T+], we
have that

Var[k(σ̂2,n
t,g )] = Var[k(σ̂2,n

t,g )− k(σ2,n
t,g )], (92)

since Var[X − c] = Var[X] for any random variable X and any deterministic
c ∈ R. Then, by a Taylor expansion along with Assumption 5 Expression (37)
we obtain that

k(σ̂2,n
t,g )− k(σ2

t,g) = k′(σ2
t,g)(σ̂

2,n
t,g − σ2

t,g) +
k′′(σ̃2

n)

2
(σ̂2,n

t,g − σ2
t,g)

2, (93)

where σ̃2
n is between σ̂2,n

t,g and σ2
t,g. We can thus reexpress the variance as

Var[k(σ̂2,n
t,g )] = Var[k′(σ2

t,g)(σ̂
2,n
t,g − σ2

t,g) +
k′′(σ̃2

n)

2
(σ̂2,n

t,g − σ2
t,g)

2]

= Var[k′(σ2
t,g)(σ̂

2,n
t,g − σ2

t,g)]

+2Cov[k′(σ2
t,g)(σ̂

2,n
t,g − σ2

t,g),
k′′(σ̃2

n)

2
(σ̂2,n

t,g − σ2
t,g)

2] (94)

+Var[
k′′(σ̃2

n)

2
(σ̂2,n

t,g − σ2
t,g)

2]

:= IA + IB + IC , (95)

where we substitute Equation (93) into Equation (92) in the first equality, and
use a variance-covariance elementary fact in the second equality. On the one
hand, we can reexpress IA as

IA = Var[k′(σ2
t,g)(σ̂

2,n
t,g − σ2

t,g)]

= k′(σ2
t,g)

2 Var[σ̂2,n
t,g − σ2

t,g]

= k′(σ2
t,g)

2 Var[σ̂2,n
t,g ], (96)

where the first equality corresponds to the definition of IA, we use the elementary
fact that Var[cX] = c2 Var[X] for any random variable X and any deterministic
c ∈ R in the second equality, the third equality is due to the elementary fact
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that Var[X − c] = Var[X]. Then, we also have

I = sup
T−≤t≤T+

∣∣∣ n
αn

Var
[
k(σ̂2,n

t,g )
]
−

k′(σ2
t,g)

2f(t)

(fW
g ((PW

g )−1(F (t)))2

∣∣∣+ o(1)

= sup
T−≤t≤T+

∣∣∣ n
αn

(IA + IB + IC)−
k′(σ2

t,g)
2f(t)

(fW
g ((PW

g )−1(F (t)))2

∣∣∣+ o(1)

≤ sup
T−≤t≤T+

∣∣∣ n
αn

IA −
k′(σ2

t,g)
2f(t)

(fW
g ((PW

g )−1(F (t)))2

∣∣∣+ n

αn
|IB |+

n

αn
|IC |+ o(1),

where the first equality corresponds to Equation (91), we substitute Var
[
k(σ̂2,n

t,g )
]

by its value in Equation (95) in the second equality, and the inequality comes
from the triangular inequality. We define J as

J = sup
T−≤t≤T+

∣∣∣ n
αn

IA −
k′(σ2

t,g)
2f(t)

(fW
g ((PW

g )−1(F (t)))2

∣∣∣.
On the one hand, we have that

J = sup
T−≤t≤T+

∣∣∣ n
αn

k′(σ2
t,g)

2 Var[σ̂2,n
t,g ]−

k′(σ2
t,g)

2f(t)

(fW
g ((PW

g )−1(F (t)))2

∣∣∣
≤ sup

T−≤t≤T+

k′(σ2
t,g)

2

× sup
T−≤t≤T+

∣∣∣ n
αn

Var[σ̂2,n
t,g ]−

f(t)

(fW
g ((PW

g )−1(F (t)))2

∣∣∣
= C sup

T−≤t≤T+

∣∣∣ n
αn

Var[σ̂2,n
t,g ]−

f(t)

(fW
g ((PW

g )−1(F (t)))2

∣∣∣
→ 0,

where we substitute IA by its value in Equation (96) in the first equality, the
first inequality is due to sup domination, the second equality is implied by the
fact that k′ is continuous on[

inf
T−≤t≤T+

σ2
t,g, sup

T−≤t≤T+

σ2
t,g

]
given Assumption 5 Expression (37) and by the fact that the instantaneous
variance σ2

t,g is bounded on [T−, T+] by Equation (4), and the convergence comes
from Lemma 8 along with Assumptions 1-2-3 and Assumption 5 Expressions
(32),(33) and (34). On the other hand, we can show that n

αn
|II| → 0 and

n
αn

|III| → 0 using similar proving techniques. We have thus shown Equation
(90).

We show the convergence of the rescaled variance of Ĉn
g in the next propo-

sition. The asymptotic variance of Ĉn
g is equal to the cumulative asymptotic

variance of ̂k(σ2
t,g)

n.
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Proposition 2. We assume that Assumptions 1, 2 and 3, and Assumption 5
Expressions (31), (32), (33), (34) and (37) hold. Then, we have

n

αn
Var[Ĉn

g ] →
∫ T+

T−

k′(σ2
t,g)

2f(t)

fW
g ((PW

g )−1(F (t)))2
dt (97)

as n → ∞.

Proof of Proposition 2. We have that

n

αn
Var

[
Ĉn

g

]
=

n

αn
Var

[Mn−1∑
k=0

̂k(σ2
Tn
k ,f )

n∆n

]
=

n

αn

Mn−1∑
k=0

Var
[ ̂k(σ2

Tn
k ,f )

n∆n

]
+

n

αn

Mn−1∑
k,l=0 s.t. k 6=l

Cov[ ̂k(σ2
Tn
k ,f )

n∆n, ̂k(σ2
Tn
l ,f )

n∆n]

:= I + II,

where the first equality is obtained by Equation (11), the second equality is
obtained by a variance-covariance elementary fact and algebraic manipulation.
On the one hand, we have that

I =
n

αn

Mn−1∑
k=0

Var
[ ̂k(σ2

Tn
k ,f )

n∆n

]
=

Mn−1∑
k=0

k′(σ2
Tn
k ,f )

2f(Tn
k )

fW
g ((PW

g )−1(F (Tn
k )))

2
∆n + o(1)

→
∫ T+

T−

k′(σ2
t,g)

2f(t)

fW
g ((PW

g )−1(F (t)))2
dt,

where the first equality corresponds to the definition of I, the second equality
comes from Lemma 9 along with Assumptions 1, 2 and 3 and Assumption 5
Expressions (32),(33),(34) and (37), and we use Riemann integral definition
along with the fact that the integrated function is continuous on [T−, T+] and
Assumption 5 Expression (31) for the convergence. On the other hand, we have
that

II =
n

αn

Mn−1∑
k,l=0 s.t. k 6=l

Cov[ ̂k(σ2
Tn
k ,f )

n∆n, ̂k(σ2
Tn
l ,f )

n∆n]

=
1

αn
O(1)

→ 0,

where the first equality corresponds to the definition of II, the second equality
is a consequence to the fact that nCov[f̂n(t), f̂n(s)] → −f(t)f(s) for any t 6= s



/Nonparametric estimation of hitting-time variance 49

from Watson and Leadbetter (1964b) (Section 4, p. 110) along with Assumption
2, Assumption 3 Expressions (18)-(19) and Assumption 5 Expressions (33)-(34),
and the convergence is obtained as αn → ∞ by Expression (24).

In what follows, we give the proof of Theorem 3, which in particular extends
the arguments from the proof of Theorem 5 (pp. 111-112) in Watson and Lead-
better (1964b) based on CLT normal convergence criterion (p. 307) from Loeve
(1977) along with the use of Proposition 2.

Proof of Theorem 3. We have that√
n

αn
(Ĉn

g − Cg) =

√
n

αn

(Mn−1∑
k=0

̂k(σ2
Tn
k ,f )

n∆n −
∫ T+

T−

k(σ2
t,g)dt

)
=

√
n

αn

(Mn−1∑
k=0

̂k(σ2
Tn
k ,f )

n∆n −
∫ Tn

k+1

Tn
k

k(σ2
t,g)dt

))
=

√
n

αn

Mn−1∑
k=0

(
̂k(σ2
Tn
k ,f )

n − E[ ̂k(σ2
Tn
k ,f )

n]
)
∆n

+

√
n

αn

Mn−1∑
k=0

(
E[ ̂k(σ2

Tn
k ,f )

n]∆n −
∫ Tn

k+1

Tn
k

k(σ2
t,g)dt

)
= I + II,

where we use Equation (11) and Equation (9) in the first equality, and the second
and third equalities correspond to algebraic manipulation. In what follows, we
will show that

I
D→ N

(
0, (T+ − T−)

∫ T+

T−

k′(σ2
t,g)

2f(t)

fW
g ((PW

g )−1(F (t)))2
dt
)
, (98)

II
P→ 0. (99)

We can prove Expression (98) extending the arguments from the proof of Theo-
rem 5 (pp. 111-112) in Watson and Leadbetter (1964b), which is based on CLT
assumptions from Loeve (1977) along with the use of Proposition 2, Assump-
tions 1-2-3 and Assumption 5 Expressions (31)-(32)-(33)-(34)-(37).
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We now show that Expression (99) holds. We have that

| II | =

√
n

αn

∣∣∣Mn−1∑
k=0

(
E[ ̂k(σ2

Tn
k ,f )

n]∆n −
∫ Tn

k+1

Tn
k

k(σ2
t,g)dt

)∣∣∣
=

√
n

αn

∣∣∣Mn−1∑
k=0

(
E[ ̂k(σ2

Tn
k ,f )

n]− k(σ2
Tn
k ,f )

)
∆n

+

√
n

αn

Mn−1∑
k=0

(
k(σ2

Tn
k ,f )∆n −

∫ Tn
k+1

Tn
k

k(σ2
t,g)dt

)∣∣∣
≤

∣∣∣√ n

αn

Mn−1∑
k=0

(
E[ ̂k(σ2

Tn
k ,f )

n]− k(σ2
Tn
k ,f )

)
∆n

∣∣∣+
∣∣∣√ n

αn

Mn−1∑
k=0

(
k(σ2

Tn
k ,f )∆n −

∫ Tn
k+1

Tn
k

k(σ2
t,g)dt

)∣∣∣
≤

∣∣∣√ n

αn

Mn−1∑
k=0

(
E[ ̂k(σ2

Tn
k ,f )

n]− k(σ2
Tn
k ,f )

)
∆n

∣∣∣
+

√
n

αn

Mn−1∑
k=0

∫ Tn
k+1

Tn
k

∣∣∣k(σ2
Tn
k ,f )− k(σ2

t,g)
∣∣∣dt

= IIA + IIB ,

where the first equality is obtained by the definition of II, the second equal-
ity corresponds to algebraic manipulation, and the two inequalities are due to
the use of triangular inequalities. On the one hand, we have that IIA → 0
can be obtained extending the arguments to the bias case in the proof of
Lemma 9 along with Assumptions 1, 2 and 3, and Assumption 5 Expressions
(31),(32),(33),(34),(35),(36) and (37). On the other hand, by a Taylor expansion
to the function h(t) = k(σ2

t,g) along with Assumption 5 Expressions (33)-(37)
we obtain that

k(σ2
t,g)− k(σ2

Tn
k ,f ) = h′(tk)(t− Tn

k ), (100)
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where Tn
k ≤ tk ≤ t. Then, we have that

IIB =

√
n

αn

Mn−1∑
k=0

∫ Tn
k+1

Tn
k

∣∣∣k(σ2
Tn
k ,f )− k(σ2

t,g)
∣∣∣dt

=

√
n

αn

Mn−1∑
k=0

∫ Tn
k+1

Tn
k

∣∣∣h′(tk)(t− Tn
k )
∣∣∣dt

≤
√

n

αn
sup

T−≤t≤T+

∣∣∣h′(t)
∣∣∣Mn−1∑

k=0

∫ Tn
k+1

Tn
k

∣∣∣t− Tn
k

∣∣∣dt
=

√
n

αn
C

Mn−1∑
k=0

∫ Tn
k+1

Tn
k

∣∣∣t− Tn
k

∣∣∣dt
=

√
n

αn
CMn

∆2
n

2

=
C(T+ − T−)

2

2

√
n

αn

1

Mn

→ 0,

where the first equality corresponds to the definition of IIB , the second equality
comes from Equation (100), the first inequality is obtained by sup domination,
the third equality is a consequence to the fact that h′ is continuous on [T−, T+] by
Assumption 5 Expression (33) and Equation (4), the fourth equality is obtained
by an integral calculation and algebraic manipulation, we use Equation (10) in
the fifth equality, the convergence is deduced by Assumption 5 Expression (31).
Thus, we have shown the CLT (39). It remains to prove the feasible CLT (40).
First, we obtain the following consistency, i.e.

Mn−1∑
k=0

k′(σ̂2
Tn
k ,f )

2f̂n(T
n
k )

fW
g ((PW

g )−1(F̂n(Tn
k )))

2
∆n

P→
∫ T+

T−

k′(σ2
t,g)

2f(t)

fW
g ((PW

g )−1(F (t)))2
dt

by extending the arguments in the proofs of Lemma 4 and Lemma 5 to obtain
a uniform convergence and using Lemma 3 and Assumption 5 Expressions (31)-
(37). We define In as

In =

√√√√(Mn−1∑
k=0

k′(σ̂2
Tn
k ,f )

2f̂n(Tn
k )

fW
g ((PW

g )−1(F̂n(Tn
k )))

2
∆n

)−1

.

Then, we can deduce by the continuous mapping theorem that

In
P→

√(∫ T+

T−

k′(σ2
t,g)

2f(t)

fW
g ((PW

g )−1(F (t)))2
dt
)−1

. (101)

By Slutsky’s lemma along with Equation (101) and the CLT (39), we obtain
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that √
n

αn
In(Ĉ

n
g − Cg)

D→

√(∫ T+

T−

k′(σ2
t,g)

2f(t)

fW
g ((PW

g )−1(F (t)))2
dt
)−1

×N
(
0,

∫ T+

T−

k′(σ2
t,g)

2f(t)

fW
g ((PW

g )−1(F (t)))2
dt
)
.

Finally, we can deduce the feasible CLT (40) noting that aN (0, b) = N (0, a2b)
for any a > 0 and b > 0.

In what follows, we give the proof of Proposition 1 which extends the argu-
ments in the proof of Theorem 3 since boundary tuning parameter estimation
requires uniform arguments on g.

Proof of Proposition 1. We have that for any fixed t ≥ 0, the hitting-time vari-
ance is a strictly increasing function of g by Equation (66) and solution of the
IFHT problem by Assumption 1. Thus, the function g → Cg(T−,T+)

T+−T−
is a strictly

increasing function of g since 0 < T− < T+ and by Assumption 6. Then, we
can deduce the existence and uniqueness of g > 0 which satisfies Equation (12)
by the intermediate value theorem. We also have that for any fixed t ≥ 0, the
hitting-time variance estimator is a strictly increasing function of g by Equation
(7). Thus, the function g → Ĉn

g (T−,t)

t−T−
is a strictly increasing function by the fact

that 0 < T− < t, Equation (11) and Assumption 6. Then, we can deduce the
existence and uniqueness of ĝn > 0 which satisfies Equations (13)-(14) by the
intermediate value theorem. We prove now the consistency, i.e. ĝn

P→ g. Since
the function g → Cg(T−, T+) is continuous and positive in g, it is sufficient to
show that

∣∣Cĝn(T−, T+)− Cg(T−, T+)
∣∣ = oP(1). We have∣∣Cĝn(T−, T+)− Cg(T−, T+)

∣∣ =
∣∣Cĝn(T−, T+)− Ĉn

ĝn
(T−, T+)

+Ĉn
ĝn
(T−, T+)− Cg(T−, T+)

∣∣
≤

∣∣Cĝn(T−, T+)− Ĉn
ĝn
(T−, T+)

∣∣
+
∣∣Ĉn

ĝn
(T−, T+)− Cg(T−, T+)

∣∣
=

∣∣Cĝn(T−, T+)− Ĉn
ĝn
(T−, T+)

∣∣+ oP(1)

where we use the triangular inequality in the inequality, and Equations (12)-
(13)-(14) along with Assumption 5 Expression (34) in the second equality. We
have∣∣Cĝn(T−, T+)− Ĉn

ĝn
(T−, T+)

∣∣ ≤ sup
g∈[g−,g+]

∣∣Cg(T−, T+)− Ĉn
g (T−, T+)

∣∣+ oP(1)

= oP(1).

where we define g− ∈ R+
∗ and g+ ∈ R+

∗ such that they satisfy 0 < g− < g+
and we use Assumption 5 Expression (34) in the inequality, we extend the
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arguments in the proof of Theorem 3 with uniformity on g ∈ [g−, g+] along with
Assumptions 1-2-3 and Assumption 5 Expressions (31)-(32)-(33)-(34)-(35)-(36)-
(37).

We give the proof of Corollary 1 in what follows.

Proof of Corollary 1. This is a consequence of Proposition 1, Theorem 3 along
with Slutsky’s theorem.

Finally, we give the proof of Lemma 1, which is based on Doob (1949) (For-
mula (4.2), p. 397) and Malmquist (1954) (Theorem 1, p. 526).

Proof of Lemma 1. Based on Doob (1949) (Formula (4.2), p. 397), Malmquist
(1954) (Theorem 1, p. 526) provides an extension where the probability that a
standard Brownian motion stays below a linear boundary g(t) = at + b with
slope a and intercept b conditioned on its arrival value s at arrival time T > 0
is given by

P(Wt ≤ at+b∀t ∈ [0, T ]|WT = s) = 1−e−2ab+
2b(s−b)

T for any s ≤ aT +b. (102)

Wang and Pötzelberger (1997) (Equation (3), p. 55) integrate Equation (102)
with respect to the Brownian motion arrival value WT = s, and obtain that the
cdf satisfies F (0) = 0,

F (t) = 1− Φ

(
at+ b√

t

)
+ e−2abΦ

(
at− b√

t

)
for any t > 0.

Thus, we have shown Equation (59). Then, we can deduce the pdf for any t > 0
as

f(t) =
d

dt
F (t)

=
d

dt

(
1− Φ

(
at+ b√

t

)
+ e−2abΦ

(
at− b√

t

))
=

d

dt

(
1−

∫ at+b√
t

−∞

1√
2π

e−
u2

2 du+ e−2ab

∫ at−b√
t

−∞

1√
2π

e−
u2

2 du

)

= −ae−
(at+b)2

2t

2
√
2πt

+
be−

(at+b)2

2t

2
√
2πt3

+ e−2ab

(
ae−

(at−b)2

2t

2
√
2πt

+
be−

(at−b)2

2t

2
√
2πt3

)

=
be−

(at+b)2

2t

√
2πt3

,

where the fact that f is the density of F in the first equality, the second equality
comes from Equation (59), the third equality corresponds to Equation (54), the
fourth equality is obtained with the fundamental theorem of calculus along with
the chain rule and the fifth equality is obtained by algebraic manipulation. When
t → 0, we obtain that f(t) → 0 and we can deduce that f(0) = 0 by continuity.
We have thus proven Equation (58).
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