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Abstract

We consider estimation of latency, i.e. the time to learn an event and respond. We study Hawkes

mutually exciting processes such that their intensity has a parametric form. We assume that the

kernel is polynomial and periodic. We define latency as a known function of kernel parameters.

Our parametric inference is based on maximum likelihood estimation. We give one central limit

theorem for estimation of parameters, a second central limit theorem for estimation of latency and

a third central limit theorem for the joint estimation of latency and some parameters. We propose

a Wald test statistic of linear hypothesis jointly for latency and some parameters. A numerical

study corroborates the asymptotic theory and shows that we improve latency estimation with

this more realistic kernel. Our empirical application examines the heterogeneity in central bank

communication in the context of monetary policy.
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1 Introduction

This paper concerns estimation of a latency matrix, i.e. the time to learn an event and respond.

The latency can also be called a delay. We assume that the latency is a matrix of dimension d × d.

In the finance literature, a common definition of latency is based on datasets that are not neces-

sarily available to the statistician (see [Hasbrouck and Saar, 2013]). An alternative definition of la-

tency is using a statistical model based on point processes which characterizes the event times (see

[Potiron and Volkov, 2025]). These models of point processes in which the time between two events

is random can be seen as a natural extension of standard time series, in which the time between two

events is fixed. We rely on the so-called Hawkes mutually exciting processes (see [Hawkes, 1971b] and

[Hawkes, 1971a]). We define the point process of dimension d as Nt and its intensity as λt. Then, a

standard definition of Hawkes mutually exciting processes is given by

λt = ν∗ +

∫ t

0
h(t− s) dNs. (1)

Here, ν∗ is a Poisson baseline of dimension d and h is a kernel matrix of dimension d× d. If we define

θ∗ as the parameters of the kernel, we rely on the parametric specification

λt = ν∗ +

∫ t

0
h(t− s, θ∗) dNs. (2)

Moreover, we can define the latency matrix of dimension d × d as a known function F of kernel

parameters

L = F (θ∗). (3)

More specifically, latency is defined as the time required to reach the pick of the kernel. Since latency

is not well-defined with an exponential kernel, [Potiron and Volkov, 2025] study generalized gamma

kernels. The main novelty in this paper is that the kernel is more realistic.

The main application of latency lies in finance. [Gagnon and Karolyi, 2010] show that price par-

ity deviations relate positively to proxies for holding costs that can limit arbitrage. The empiri-

cal application from [Hasbrouck and Saar, 2013] suggests that high-frequency trading is beneficial
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to market quality. In [Hoffmann, 2014], fast traders can revise their quotes quickly after news ar-

rivals to reduce market risks. [Budish et al., 2015], [Biais et al., 2015], [Foucault et al., 2016] and

[Pagnotta and Philippon, 2018] also consider trading speed. [Potiron and Volkov, 2025] propose es-

timation of latency. See also [Erdemlioglu et al., 2025] for the time-dependent latency case.

When seen as a delay, there are also applications in management. [Dong et al., 2019] investigate

the impact of delay on the coordination within hospitals. [Gámiz et al., 2022], [Gámiz et al., 2023]

and [Schoenberg, 2023] consider nonparametric local estimation of Hawkes processes and applications

to pandemic. There are also applications in seismology (see [Nolet and Dahlen, 2000]), insurance (see

[Lesage et al., 2022]), criminology (see [Nagin and Pogarsky, 2004]), sociology (see [Lahad, 2012]) and

medicine (see [Harris, 1990]).

The main reason why Hawkes processes are popular in statistics is that they target the presence of

event clustering in time. The main application of Hawkes processes lies in seismology (see [Rubin, 1972],

[Vere-Jones, 1978], [Ozaki, 1979], [Vere-Jones and Ozaki, 1982], [Ogata, 1978], [Ogata, 1988]). The

impact of earthquake risk is analyzed in [Ikefuji et al., 2022]. There are applications in financial

econometrics (see [Yu, 2004], [Bowsher, 2007], [Embrechts et al., 2011], [Aït-Sahalia et al., 2014] and

[Corradi et al., 2020]), finance (see [Large, 2007], [Aït-Sahalia et al., 2015] and [Fulop et al., 2015])

and quantitative finance (see [Chavez-Demoulin et al., 2005], [Bacry et al., 2013], but also the pa-

pers [Jaisson and Rosenbaum, 2015] and [Morariu-Patrichi and Pakkanen, 2022]). See the references

in [Liniger, 2009] and [Hawkes, 2018]. More recently, spectral parametric estimation for misobserved

Hawkes processes is given in [Cheysson and Lang, 2022]. [Cavaliere et al., 2023] develop a bootstrap

approach. [Clements et al., 2023] study nonparametric estimation. [Christensen and Kolokolov, 2024]

propose an unbounded intensity model for more general point processes.

Most papers with Hawkes processes consider at most exponentially decreasing kernels, which are

restrictive for applications. In financial applications, there is empirical evidence that the kernel is

polynomial (see [Bacry et al., 2012] and [Hardiman et al., 2013]). Moreover, there is periodicity in

the data (see ?). Thus, we consider a kernel which is polynomial and periodic. Namely, we study a
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periodic log-logistic kernel. This allows the latency to be defined as the time required to reach the

pick of the kernel which is not necessarily the maximum of the kernel. This is more realistic than the

exponential kernel from [Clinet and Yoshida, 2017], the power law kernel from [Cavaliere et al., 2023]

and the generalized gamma kernels used in [Potiron and Volkov, 2025].

Our inferential theory builds on in-fill asymptotics when the final time T is finite and the num-

ber of observations on [0, T ] increases as n → ∞. These asymptotics are popular with financial

applications based on high-frequency data (see [Aït-Sahalia and Jacod, 2014]). The main statisti-

cal reason why we use these asymptotics is that we observe time-dependent latency between differ-

ent days (see our empirical study, Figures 1 and 2 in [Potiron and Volkov, 2025]). Thus, we cannot

rely on a final time T that increases to infinity with a constant latency. There already exists work

in statistics to accommodate for in-fill asymptotics with Hawkes processes. [Chen and Hall, 2013]

use random observation times of order n. A single boosting of the baseline, i.e. λt = αν∗ +∫ t
0 h(t − s, θ∗)dNs, is considered where α → ∞ is a scaling sequence. [Clinet and Potiron, 2018]

introduce a joint boosting of the baseline and the kernel, i.e. λt = nν∗ +
∫ t
0 na

∗ exp(−nb∗(t −

s))dNs. See also [Kwan et al., 2023], [Christensen and Kolokolov, 2024], [Potiron and Volkov, 2025],

[Erdemlioglu et al., 2025], [Potiron et al., 2025b] and [Potiron et al., 2025a].

Our parametric inference procedure builds on maximum likelihood estimation. [Ogata, 1978] shows

the central limit theorem of the estimation procedure for an ergodic stationary point process. However,

the definition of ergodicity is vague in that paper. Most papers on parametric inference for Hawkes pro-

cesses make this ergodicity assumption (see [Bowsher, 2007], [Large, 2007] and [Cavaliere et al., 2023]).

[Clinet and Yoshida, 2017] exhibit the conditions required, i.e. ergodicity of the Hawkes intensity pro-

cess and its derivative. They consider general point processes and derive the central limit theorem of

the estimation procedure in Theorem 3.11 (p. 1809) under these ergodicity assumptions. They also

show these ergodicity assumptions in the case of a Hawkes process with exponential kernel in Theorem

4.6 (p. 1821). [Kwan, 2023] considers the non-exponential kernel case and shows the ergodicity for

the Hawkes intensity process itself but not for its derivative. Thus, he can only show the consistency
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of the inference procedure in Theorem 3.4.3 (p. 73). When the kernel follows a generalized gamma

distribution, [Potiron and Volkov, 2025] (Theorem 1) show that the ergodicity assumptions are satis-

fied and also obtain the central limit theorem of the estimation procedure. [Potiron, 2025] extends

[Clinet and Yoshida, 2017] and allow for kernels with power distribution, under some smoothness as-

sumptions on the kernel shape.

All these results are useful, but none of them consider Hawkes processes with a periodic log-logistic

kernel. In our Theorem 1, we deliver the central limit theorem of the statistical procedure for parameter

estimation. This is the main theoretical result of this paper. This extends [Clinet and Yoshida, 2017]

(Theorem 4.6, p. 1821) and [Potiron and Volkov, 2025] (Theorem 1). See also [Cavaliere et al., 2023]

(Theorem 2, p. 138), who require stronger conditions. We give the central limit theorem for estimation

of latency in Corollary 1. This extends Corollary 3 in [Potiron and Volkov, 2025] to the more realistic

case of polynomial periodic kernel. To obtain joint tests based on the latency matrix L, the baseline

parameters ν∗ and the parameters of the kernel which are not used in the definition of latency, we

derive the central limit theorem for estimation of the parameter vector κ∗ = (ν∗, θ∗o , L) in Proposition

1. This general result is novel to the literature on latency. Finally, we consider Wald tests based on

the parameter vector κ∗. With this framework, we can jointly test for latency and the parameters of

the kernel which are not used in the definition of latency θo. Corollary 2 shows that the Wald test

statistic converges in distribution to a chi-squared distribution with q degrees of freedom under the

null hypothesis and is consistent under the alternative hypothesis. This general result is novel to the

literature on latency and extends Corollary 6 in [Potiron and Volkov, 2025], which is restricted to the

latency vector.

Our proof strategy follows the general machinery of [Clinet and Yoshida, 2017] and [Potiron, 2025],

which consider asymptotics when the final time increases, i.e. T → ∞. To rewrite our problem with

in-fill asymptotics as a problem with T → ∞, we consider a time transformation. This was already used

in [Clinet and Potiron, 2018], [Kwan et al., 2023] and [Potiron and Volkov, 2025]. The main novelty in

the proofs is in showing that Hawkes processes with a periodic log-logistic kernel satisfies Assumption
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2 from [Potiron, 2025]. This requires to study deeply some smoothness properties of the log-logistic

distribution, when seen as a function of its parameters.

We apply our estimation framework to examine empirically the heterogeneity in central bank com-

munication in the context of monetary policy. Specifically, we focus on time-stamped speeches and

statements delivered by FOMC members of the U.S. Federal Reserve System. This application is par-

ticularly compelling, as it offers an empirical setting that is characterized by potential heterogeneity in

speech timing, tone, ambiguity of the messages, and institutional role of the speakers (i.e., Fed Chair

versus other members). These features, taken together, allow us to explore how different forms of in-

formation release interact with the distributional characteristics of latency and to assess the flexibility

and performance of our modeling approach under realistic conditions.

To further motivate the empirical relevance of this heterogeneity, consider the case of a speech

delivered by an FOMC member—e.g., the Chair of the Federal Reserve—at a standard, prescheduled

time (e.g., 14:30). Suppose the message conveyed is both anticipated and unambiguous. For instance,

in his March 16, 2022 press conference, Chair Powell opened by stating: “Today, in support of these

goals, the FOMC raised its policy interest rate by 1/4 percentage point.” (I WILL INSERT THE REF

OF THIS SPEECH HERE.) In such cases, where the communication is timely, relatively clear, and

broadly expected, market participants are likely to incorporate the information swiftly and uniformly,

resulting in a smooth price adjustment. If the same speaker were to deliver a similarly transparent

and expected message at the same time one week or one month later, there would still be little reason

to expect substantial variation in the market’s reaction. That is, when key dimensions such as timing,

speaker identity, message tone, and clarity are held constant, the latency of price response is expected

to be relatively stable—reflecting what we may call a “normal” pattern of adjustment. Under such

homogeneity, the distribution of latency may exhibit light tails, and classical specifications such as the

gamma distribution (TO BE CHECKED/REFINED AGAIN) may provide an adequate fit.

However, we argue that this idealized setting is far from representative of the broader data-

generating process observed in practice. Central bank communication exhibits considerable hetero-

6



geneity along multiple dimensions, each of which may alter the informational content and perceived

uncertainty associated with a speech (I WILL INSERT SOME REF). First, the institutional role of the

speaker matters: the market impact of a speech by the Fed Chair is not equivalent to that of a regional

Fed president or other committee member. Second, the intraday timing of the speech may influence

market sensitivity; speeches occurring at irregular or unscheduled times may convey urgency or unex-

pected information, leading to differential reactions. Third, the tone of the communication—whether

hawkish, dovish, or neutral—affects expectations, particularly when sentiment diverges from prior be-

liefs of market participants. Fourth, and critically, the clarity or ambiguity of the message influences

how quickly and confidently market participants can interpret the signal.

Taken together, these dimensions introduce significant variation in the speed and pattern of price

adjustment across events. We argue that this heterogeneity is not merely incidental but has structural

implications for the shape of the latency distribution itself. In particular, the presence of latent informa-

tional frictions and interpretive uncertainty can generate fat tails in the distribution of latency—that

is, some events lead to unusually delayed reactions, reflecting slower diffusion of news. We seek to

explore these patterns in our empirical analysis and differentiate the forms of latency characteristics

embedded in central bank speeches.

The rest of this paper is organized as follows. The setting is introduced in Section 2. The parametric

inference procedure is given in Section 3. The theory is developed in Section 4. Our numerical study

is carried in Section ??. Our empirical application is provided in Section ??. We conclude in Section

5. The supplementary materials contain all the proofs of the manuscript.

2 Setting

In this section, we introduce Hawkes mutually exciting processes such that their intensity has a para-

metric form, latency and a Wald test of linear hypothesis jointly for latency and some parameters.

We start with an introduction to the multidimensional point process Nt. For any index i = 1, · · · , d,

each component of the point process N (i)
t counts the number of events between 0 and t. Here, we
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denote the i-th component of a vector V by V (i). Then, we define N (i) as a simple point process

on [0, T ], i.e. a family {N (i)(C)}C∈B([0,T ]) of random variables with values in the space of natural

integers N. Here, B([0, T ]) is the Borel σ-algebra on the compact space [0, T ]. In addition, we have

N (i)(C) =
∑

k∈N 1C(τ
(i)
k ) where {τ (i)k }k∈N is a sequence of R+-valued event times, which are random.

We assume that the first time is equal to 0 and the following times are increasing for each process a.s.,

i.e. P
(
τ
(i)
0 = 0 < τ

(i)
1 < · · · < τ

(i)

N
(i)
T

< T < τ
(i)

N
(i)
T +1

for i = 1, · · · , d
)
= 1. We also assume that no

events happen at the same time for different processes a.s., i.e. P
(
τ
(i)
k ̸= τ

(j)
l for k, l ∈ N∗ and i, j =

1, · · · , d s.t. i ̸= j
)
= 1. Here, we define the space without zero as S∗ for any space S such that 0 ∈ S.

To deliver the definition of intensity, we introduce some more theoretical tools. We suppose

that a complete stochastic basis B = (Ω,F , {Ft}t∈[0,T ],P) describes the evolution of the point pro-

cess. More specifically, we assume that, for any t ∈ [0, T ], the canonical filtration of Nt is in-

cluded in the main filtration, i.e. FN
t ⊂ Ft. Here, the canonical filtration of Xt is defined as

FX
t = σ

(
X(C), C ∈ B([0, T ]), C ⊂ [0, t]

)
for any process Xt. Any nonnegative Ft-progressively

measurable process {λt}t∈[0,T ], which is of dimension d, such that E[N((a, b]) | Fa] = E
[ ∫ b

a λsds
∣∣Fa

]
a.s. for all intervals (a, b] ⊂ [0, T ], is called an Ft-intensity of Nt. Intuitively, the intensity corresponds

to the expected number of events given the past information, i.e.

λt = lim
u→0

E
[Nt+u −Nt

u
| Ft

]
a.s..

For background on point processes, the reader can consult [Jacod, 1975], [Jacod and Shiryaev, 2003],

[Daley and Vere-Jones, 2003], and [Daley and Vere-Jones, 2008].

The present work is concerned with Hawkes mutually exciting processes such that their intensity has

a parametric form. For a matrix ϕ, we denote its component (i, j) as ϕ(i,j). We introduce the parameter

space Ξ, consisting of m parameters. We assume that the parameter ξ has the form ξ = (ν, θ), and

that they belong to the parameter space Ξ = (Φ,Θ) where ν ∈ Φ and θ ∈ Θ. For any parameter ξ ∈ Ξ,

we introduce the family of intensities

λt(ξ) = ν +

∫ t

0
h(t− s, θ) dNs. (4)
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Here, h is a kernel matrix d × d. The point processes are mutually exciting in the sense that the

diagonal components h(i,i) are self-exciting terms for the i-th process and non-diagonal components

h(i,j) are cross-exciting terms for the i-th process made by events from the j-th process. Moreover, ν

consists of d baseline parameters, while θ consists of m − d kernel parameters. We also assume that

m − d ≥ d2, since at least one parameter should be used in each component of the kernel matrix.

Finally, we assume the existence of the true parameter ξ∗ ∈ Ξ such that

λt = λt(ξ
∗). (5)

Here again, we assume that the parameter ξ∗ has the form ξ∗ = (ν∗, θ∗), where ν∗ ∈ Φ and θ∗ ∈ Θ.

This paper targets estimation of latency. The latency is defined as a matrix of dimension d × d

which is a known function F of the kernel parameters θ∗, i.e.

L = F (θ∗). (6)

With a latency matrix, we can study the latency of each individual process and the latency between

two different processes. More specifically, a latency between events from the jth process and its

impact on events from the ith process is introduced at time t if L(i,j) > 0. In this paper, we set

F such that the latency L(i,j) is equal to the time required to reach the pick of the kernel which is

not necessarily the maximum of the kernel. This is more realistic than the definition introduced by

[Potiron and Volkov, 2025], which sets latency as the time required to reach the pick of the kernel which

is the maximum. See also [Erdemlioglu et al., 2025] for the time-dependent latency case. Moreover,

this definition of latency is in agreement with the finance literature, which defines latency as the

time it takes to learn and generate response to a trading event (see [Hasbrouck and Saar, 2013]). An

advantage of this definition is that latency can be characterized by parameters θ∗,(i,j) associated with

factors affecting latency. Such a structural approach permits identification of different aspects of

latency. Finally, there is no latency between events from the jth process and its impact on events from

the ith process at time t when L(i,j)
t ≤ 0.

Since we want to get a standard normal vector in the limit of the central limit theorem, we rewrite
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the latency matrix L of dimension d×d as a latency vector L = (L(1,1), L(1,2), · · · , L(d,d))T of dimension

d2. We also introduce the parameters of the kernel used in the definition of latency as θl, consisting

of l parameters. As latency is equal to a function of kernel parameters, we have by definition that

θl ⊂ θ and l ≤ m− d. Moreover, we can rewrite the latency function as L = F (θ∗l ). We also introduce

the parameters of the kernel which are not used in the definition of latency as θo, which consists of

m − d − l parameters. Then, we reorder any parameter ξ ∈ Ξ and the parameter space Ξ such that

ξ = (ν, θo, θl). To obtain joint tests based on the latency vector L, the baseline parameters ν∗ and the

parameters of the kernel which are not used in the definition of latency as θ∗o , we consider estimation

of the parameter vector κ∗ = (ν∗, θ∗o , L) of dimension denoted by dκ = d2 +m− l.

We finally introduce a Wald test of q linear hypotheses on the parameter vector κ∗ = (ν∗, θ∗o , L).

This test is based on the matrix R of dimension q × dκ. Namely, we define the null hypothesis as

H0 : {Rκ∗ = r} and the alternative hypothesis as H1 : {Rκ∗ ̸= r} for a real number r ∈ R. In

general, the Wald test assesses constraints on parameters based on the weighted distance between the

unrestricted estimate and its value under the null hypothesis. Intuitively, the larger this weighted

distance, the less likely it is that the constraint is true. With this framework, we can jointly test

for latency and the parameters of the kernel which are not used in the definition of latency θo. This

extends the tests proposed in [Potiron and Volkov, 2025], which are restricted to the latency vector.

3 Inference

In this section, we introduce the in-fill asymptotics, parametric estimation, latency estimation and the

Wald test statistic of linear hypothesis jointly for latency and some parameters.

For inference purposes, we consider in-fill asymptotics with joint boosting of the baseline and the

kernel, i.e.

λt = nν∗ +

∫ t

0
nh(n(t− s), θ∗) dNs. (7)

Here and in what follows, we prefer most of the time not to write explicitly the dependence on n.
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Also, in-fill asymptotics are based on random observation times of order n within the time inter-

val [0, T ] for a finite final time T . These in-fill asymptotics, also based on joint boosting, are used

in [Clinet and Potiron, 2018], [Kwan et al., 2023], [Kwan, 2023], [Potiron and Volkov, 2025], but also

[Potiron et al., 2025b], [Erdemlioglu et al., 2025] and [Potiron et al., 2025a]. They are different from

[Chen and Hall, 2013] in-fill asymptotics which considers no boosting of the kernel. There are compat-

ible with [Christensen and Kolokolov, 2024] in-fill asymptotics. The main statistical reason why we use

these asymptotics is that we observe time-dependent latency between different days (see our empirical

study, Figures 1 and 2 in [Potiron and Volkov, 2025]). Thus, we cannot rely on a final time T that

increases to infinity with a constant latency.

The parametric estimation relies on the log likelihood process (see [Ogata, 1978] as well as the book

[Daley and Vere-Jones, 2003])

l(ξ) =
d∑

i=1

∫ T

0
log(λ

(i)
t (ξ))dN

(i)
t −

d∑
i=1

∫ T

0
λ
(i)
t (ξ)dt. (8)

Here, 0 is the starting time and T is the final time. Then, the maximum likelihood estimator is defined

as the maximizing parameter of the log likelihood process between the starting time 0 and the final

time T, i.e.

ξ̂ ∈ argmaxξ∈Ξ l(ξ).

Here, we have that the estimator ξ̂ has the form ξ̂ = (ν̂, θ̂), where ν̂ ∈ Φ and θ̂ ∈ Θ. Finally, we rely

on the latency estimator

L̂ = F
(
θ̂
)
. (9)

This estimator was introduced by [Potiron and Volkov, 2025]. See also [Erdemlioglu et al., 2025] for

the time-dependent latency case.

In this paper, we rely on a time change from the time interval [0, T ] to the time interval [0, nT ].

The main reason is that our proof strategy follows the general machinery of [Potiron, 2025], which

consider asymptotics where the final time diverges, i.e. T → ∞. This is the same strategy that
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[Potiron and Volkov, 2025] applied with [Clinet and Yoshida, 2017]. More specifically, we introduce

the time-changed point process N t = N t
n

for any time t ∈ [0, nT ]. We also define the rescaled and

time-changed intensity process as λt(ξ) =
λt/n(ξ)

n for any parameter ξ ∈ Ξ and any time t ∈ [0, nT ].

Lemma 2 in the supplementary materials show that λt(ξ∗) is the intensity of N t. By rescaling the

intensity, we can show its stability.

On the way to define the asymptotic covariance matrix, we introduce some more notation. In

this paper, we focus on the stochastic processes Xt = (λt(ξ
∗), λt(ξ), ∂ξλt(ξ)) defined for t ∈ [0, nT ]

and taking values in the space Ed where E = R∗
+ × R∗

+ × Rm. Lemma 13 from the supplementary

materials states that Xt is stable for any parameter ξ ∈ Ξ, i.e. for any index i = 1, · · · , d there

exists an R∗
+-valued random variable λ(i)l (ξ) such that we have X(i)

nT
D→
(
λ
(i)
l (ξ∗), λ

(i)
l (ξ), ∂ξλ

(i)
l (ξ)

)
as

n→ ∞. Moreover, Lemma 14 from the supplementary materials establishes that Xt is ergodic for any

parameter ξ ∈ Ξ, i.e. for any index i = 1, · · · , d there exists a function π(i) : Cb(E,R) → R such that

for any ψ ∈ Cb(E,R) we have 1
nT

∫ nT
0 ψ(X

(i)
s )ds

P→ π(i)(ψ) as n → ∞. Here, we denote by Cb(E,F )

the space of bounded and continuous functions from E to F . The lemma also derives the more explicit

expression of the limit function as π(i)(ψ) = E
[
ψ(λ

(i)
l (ξ∗), λ

(i)
l (ξ), ∂ξλ

(i)
l (ξ))

]
for any index i = 1, · · · , d.

Since the functions that will be used in the definition of the asymptotic covariance matrix are not

bounded, we need to extend from Cb(E,R) to a bigger space C↑(E,R) the space of functions in which

the ergodicity condition holds. More specifically, we denote by C↑(E,R) the set of continuous functions

ψ : (u, v, w) → ψ(u, v, w) from E to R that satisfy ψ is of polynomial growth in u, v, w, 1
u and 1

v . This

more or less corresponds to Definition 3.7 (p. 1806) in [Clinet and Yoshida, 2017] and Definition 2 in

[Potiron, 2025]. Lemma 15 from the supplementary materials extends the starting space of the limit

function π from Cb(E,R) to C↑(E,R) and gives a more explicit form. Namely, it shows that, for any

index i = 1, · · · , d and any parameter ξ ∈ Ξ, there exists a probability measure π(i)ξ on E such that,

for any ψ ∈ C↑(E,R), we have

π(i)(ψ) =

∫
E
ψ(u, v, w)π

(i)
ξ (du, dv, dw).

We have now all the ingredients to derive the form of the asymptotic covariance matrix. For a
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vector z ∈ Rm, we define its tensor product as z⊗2 = z × zT ∈ Rm×m. Then, we define the asymptotic

Fisher information matrix Γ of dimension m×m as

Γ =
d∑

i=1

∫
E
w⊗2 1

u
Π

(i)
ξ∗ (du, dv, dw). (10)

The Fisher information matrix measures the amount of information that the intensity λt carries about

the parameter ξ∗. Formally, it is the expected value of the observed information. The Fisher informa-

tion matrix is used to calculate the covariance matrices associated with maximum likelihood estimation.

In other words, Γ−1 is the asymptotic covariance matrix. The asymptotic Fisher information matrix

is estimated from

Γ̂ = −∂2ξ l(ξ̂). (11)

Here, we define the log likelihood process of the time-changed point process N t between the start-

ing time 0 and the final time nT as l(ξ) =
∑d

i=1

∫ Tn
0 log(λ

(i)
t (ξ))dN

(i)
t −

∑d
i=1

∫ Tn
0 λ

(i)
t (ξ)dt and its

Hessian matrix as ∂2ξ l(ξ). This is a natural estimator since we can reexpress the Fisher information

matrix as Γ = − limn→∞
1
TnE

[
∂2ξ l(ξ

∗)
]
. This corresponds exactly to the estimation procedure used in

[Potiron and Volkov, 2025]. This is based on [Clinet and Yoshida, 2017] who only considers the case

when the final time diverges, i.e. T → ∞.

We also rewrite the latency estimator matrix L̂ of dimension d × d as a latency estimator vec-

tor L̂ = (L̂(1,1), L̂(1,2), · · · , L̂(d,d))T of dimension d2. We denote the kernel estimator θ̂ restricted to

the latency parameter θ∗l by θ̂l. We also denote the Fisher information matrix of dimension l × l

restricted to the latency parameter θ∗l and its estimator by Γl and Γ̂l. For any i = 1, · · · , d and

j = 1, · · · , d we define the differential vector of the latency function F (i,j) at the latency parameter

θl as dF (i,j)(θl) = (dF (i,j,1)(θl), · · · , dF (i,j,l)(θl)), which is of dimension l. Moreover, we introduce the

asymptotic covariance matrix Γ
−1 of dimension d2 × d2 for the latency estimator vector satisfying

(
Γ
−1)((i−1)d+j,(k−1)d+u)

=

l∑
q=1

( l∑
r=1

dF (i,j,r)(θ∗l )
(
Γ
−1/2
l

)(r,q))( l∑
r=1

dF (k,u,r)(θ∗l )
(
Γ
−1/2
l

)(r,q))
, (12)

for any i = 1, · · · , d, j = 1, · · · , d, k = 1, · · · , d and u = 1, · · · , d. Finally, we propose estimation of the
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asymptotic covariance matrix as

(
Γ̂
−1)((i−1)d+j,(k−1)d+u)

=
l∑

q=1

( l∑
r=1

dF (i,j,r)(θ̂l)
(
Γ̂
−1/2
l

)(r,q))( l∑
r=1

dF (k,u,r)(θ̂l)
(
Γ̂
−1/2
l

)(r,q))
, (13)

for any i = 1, · · · , d, j = 1, · · · , d, k = 1, · · · , d and u = 1, · · · , d.

Moreover, we propose estimation of the vector κ∗ = (ν∗, θ∗o , L) with κ̂ = (ν̂, θ̂o, L̂). Here, we denote

the kernel estimator θ̂ restricted to the parameters which are not used in the definition of latency θ∗o

by θ̂o. Then, we introduce the asymptotic covariance matrix Γ−1
κ of dimension dκ × dκ for the vector

estimator κ̂ satisfying

(
Γ−1
κ

)(i,j)
=
(
Γ−1

)(i,j) for i = 1, · · · ,m− l, j = 1, · · · ,m− l, (14)(
Γ−1
κ

)(m−l+i,m−l+j)
=
(
Γ
−1)(i,j) for i = 1, · · · , d2, j = 1, · · · , d2,(

Γ−1
κ

)(m−l+(i−1)d+j,k)
=
(
Γ−1
κ

)(k,m−l+(i−1)d+j)
=

l∑
q=1

( l∑
r=1

dF (i,j,r)(θ∗l )
(
Γ
−1/2
l

)(r,q))(
Γ−1/2

)(m−l+q,k)

for i = 1, · · · , d, j = 1, · · · , d, k = 1, · · · ,m− l.

Finally, we propose estimation of the asymptotic covariance matrix Γ−1
κ as

(
Γ̂−1
κ

)(i,j)
=
(
Γ̂−1

)(i,j) for i = 1, · · · ,m− l, j = 1, · · · ,m− l, (15)(
Γ̂−1
κ

)(m−l+i,m−l+j)
=
(
Γ̂
−1)(i,j) for i = 1, · · · , d2, j = 1, · · · , d2,(

Γ̂−1
κ

)(m−l+(i−1)d+j,k)
=
(
Γ̂−1
κ

)(k,m−l+(i−1)d+j)
=

l∑
q=1

( l∑
r=1

dF (i,j,r)(θ̂l)
(
Γ̂
−1/2
l

)(r,q))(
Γ̂−1/2

)(m−l+q,k)

for i = 1, · · · , d, j = 1, · · · , d, k = 1, · · · ,m− l.

Since we have proposed estimation of the asymptotic covariance matrix Γ−1
κ , we can introduce our

Wald test statistic

S = nT
(
Rκ̂− r

)T (
RΓ̂−1

κ RT
)−1(

Rκ̂− r
)
. (16)

Here, RT denotes the transpose matrix of the matrix R. The Wald test statistic relies on two approxi-

mations, namely the asymptotic covariance matrix estimator Γ̂−1
κ and the vector parameter estimator

κ̂.
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4 Theory

In this section, we introduce the periodic log-logistic kernel. In our Theorem 1, we deliver the central

limit theorem of the statistical procedure. This is the main theoretical result of this paper. In par-

ticular, we provide conditions such that Hawkes processes with a periodic log-logistic kernel satisfies

Assumption 2 from [Potiron, 2025]. This requires to study deeply some smoothness properties of the

log-logistic distribution, when seen as a function of its parameters. Moreover, we give the central limit

theorem for estimation of latency in Corollary 1. In addition, we derive the central limit theorem for

estimation of the parameter vector κ∗ in Proposition 1. Finally, Corollary 2 shows that the Wald test

statistic converges in distribution to a chi-squared distribution with q degrees of freedom under the

null hypothesis and is consistent under the alternative hypothesis. All these results build on in-fill

asymptotics when n→ ∞ and the final time T is finite.

We first introduce the periodic log-logistic kernel. For any i = 1, · · · , d and j = 1, · · · , d, we define

the component (i, j) of the periodic log-logistic kernel as

h(i,j)(t, θ(i,j)) = γ(i,j)(1 +A(i,j) cos(π(i,j)t))
β(i,j)tβ

(i,j)−1

(α(i,j))β
(i,j)

(1 + (t/α(i,j))β
(i,j)

)2
. (17)

Here, γ(i,j) ∈ R∗
+ is the level of intensity, A(i,j) ∈ R∗

+ is the amplitude of the oscillation and π(i,j) ∈ R∗
+

is the period of the oscillation. Moreover, α(i,j) ∈ R∗
+ is the scale parameter and β(i,j) ∈ R∗

+ is the

shape parameter from the log-logistic distribution. We assume that the kernel parameter is of the form

θ = (θ(i,j))1≤i,j≤d = (θ(1,1), θ(1,2), · · · , θ(d,d−1), θ(d,d)) (18)

θ(i,j) = (γ(i,j), A(i,j), π(i,j), α(i,j), β(i,j)).

We study a periodic log-logistic kernel, which is polynomially decreasing. This complements the

exponential kernel from [Clinet and Yoshida, 2017], the power law kernel from [Cavaliere et al., 2023]

and the mixture of generalized gamma kernel used in [Potiron and Volkov, 2025], which is exponentially

decreasing. We consider this more general kernel as there is empirical evidence that the kernel decays as

the power distribution and periodicity in finance. It is also adapted when examining the heterogeneity

in central bank communication in the context of monetary policy.
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From Equations (18), we have that the true kernel parameter is of the form θ∗ = (θ∗,(i,j))1≤i,j≤d =

(θ∗,(1,1), θ∗,(1,2), · · · , θ∗,(d,d−1), θ∗,(d,d)), where θ∗,(i,j) = (γ∗,(i,j), A∗,(i,j), π∗,(i,j), α∗,(i,j), β∗,(i,j)). Then,

latency is naturally defined as one half of the period, i.e. for any i = 1, · · · , d and j = 1, · · · , d

L∗,(i,j) =
π∗,(i,j)

2
.

In other words, we have θl = π and F (i,j)(θl) = π(i,j)/2. In our model, we necessarily have that

latency is positive, i.e. L∗,(i,j) > 0. This is a technical limitation as the case when the latency is null

is degenerate, with a decrease in the number of parameters from the model (18). However, this allows

us to derive joint general results on the parameter vector κ∗. Moreover, the empirical application in

[Potiron and Volkov, 2025] documents the presence of positive latency when used on financial data.

Before introducing the conditions, we first need to introduce some notation. We define Ξ as the

closure space of the parameter space Ξ. For a matrix ϕ, we denote its spectral radius as ρ(ϕ). For

any time t ∈ R+, we denote by θ+t the maximum argument parameter of the kernel spectral radius

ρ(h(t, θ)). It is defined through

h(t, θ+t ) = sup
θ∈Θ

ρ(h(t, θ)). (19)

Then, we define the matrix ϕ of dimension d× d as the integral of h(t, θ+t ) over time, i.e.

ϕ =

∫ ∞

0
h(s, θ+s )ds.

For a vector or a matrix V of dimension k, we denote its L1 norm as |V | =
∑k

i=1 |V (i)|. Moreover,

∂θG(θ) denotes the vector of partial derivatives for any function G(θ). For any i = 1, · · · , d, any

j = 1, · · · , d and any time t ∈ R+, we denote by k(i,j)t,3 the maximum index argument for the L1 norm

of the kernel partial derivatives
∣∣∂θh(i,j)(t, θ)(k)∣∣. It is defined through

∣∣∂θh(i,j)(t, θ)(k(i,j)t,3 )
∣∣ = sup

k=1,··· ,d

∣∣∂θh(i,j)(t, θ)(k)∣∣. (20)

Then, we define the matrix ϕ3(θ) of dimension d×d as as the integral of
∣∣∂θh(i,j)(t, θ)(k(i,j)t,3 )

∣∣ over time,

i.e.

ϕ
(i,j)
3 (θ) =

∫ ∞

0

∣∣∂θh(i,j)(s, θ)(k(i,j)t,3 )
∣∣ds,
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for any i = 1, · · · , d and any j = 1, · · · , d. For any i = 1, · · · , d, any j = 1, · · · , d and any t ∈ R+,

we denote by (k
(i,j)
t,4 , l

(i,j)
t,4 ) the maximum component argument for the L1 norm of the kernel Hessian

matrix
∣∣∂2θh(i,j)(t, θ)(k,l)∣∣. It is defined through

∣∣∂2θh(i,j)(t, θ)(k(i,j)t,4 ,l
(i,j)
t,4 )

∣∣ = sup
k,l=1,··· ,d

∣∣∂2θh(i,j)(t, θ)(k,l)∣∣. (21)

Then, we define the matrix ϕ4(θ) of dimension d × d as the integral of
∣∣∂2θh(i,j)(t, θ)(k(i,j)t,4 ,l

(i,j)
t,4 )

∣∣ over

time, i.e.

ϕ
(i,j)
4 (θ) =

∫ ∞

0

∣∣∂2θh(i,j)(s, θ)(k(i,j)t,4 ,l
(i,j)
t,4 )

∣∣ds,
for any i = 1, · · · , d and j = 1, · · · , d.

We make the following set of conditions for the central limit theorem of the statistical procedure

for parameter estimation.

Condition 1. (a) The parameter space Ξ ⊂ Rm is such that its closure Ξ is a compact space.

(b) There exists ν− > 0 such that for any ν ∈ Φ and any i = 1, · · · , d we have ν(i) > ν−.

(c) For any θ ∈ Θ, we have that the kernel h(t, θ) follows (17) and its parameter θ satisfies (18).

(d) There exists A+ ∈ (0, 1) such that for any i = 1, · · · , d and any j = 1, · · · , d we have A(i,j) < A+.

(e) There exists α− > 0 such that for any i = 1, · · · , d and any j = 1, · · · , d we have α(i,j) > α−.

(f) There exists β− > 0 such that for any i = 1, · · · , d and any j = 1, · · · , d we have β(i,j) > β−.

(g) We have the spectral norm of the matrix ϕ is smaller than unity, i.e. ρ(ϕ) < 1.

(h) For any parameter θ ∈ Θ, we have ρ(ϕ3(θ)) < 1 and ρ(ϕ4(θ)) < 1.

Condition 1 (a) corresponds exactly to Assumption 2 (a) in [Potiron, 2025] and is weaker than

the framework from [Clinet and Yoshida, 2017] and [Potiron and Volkov, 2025] where the parameter

space satisfies the assumptions from the Sobolev embedding theorem. It is often necessary to restrict

on a compact space to obtain consistency of the statistical procedure based on maximum likelihood
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estimation. Condition 1 (b) imply that the point processes are well-defined and are also required in the

simpler case of heterogeneous Poisson processes without a kernel (see [Daley and Vere-Jones, 2003]).

Condition 1 (c) restricts to Hawkes processes with log-logistic kernel, which is more realistic than the

case with exponential Hawkes processes from [Clinet and Yoshida, 2017], the power law kernel case

from [Cavaliere et al., 2023] and the case with mixture of generalized gamma kernels (see Condition

[A] (ii) in [Potiron and Volkov, 2025]). Conditions 1 (d), (e) and (f) put restriction on the parameter

space.

The remaining two conditions are a bit more abstract. Condition 1 (g) states that the spectral

radius of the kernel integral when evaluated at the maximum argument parameter of ρ(h(t, θ)) is

strictly smaller than unity. This is slightly stronger than the condition which is necessary to obtain

a stationary intensity with finite first moment (see Lemma 1 (p. 495) in [Hawkes and Oakes, 1974]

and Theorem 1 (p. 1567) in [Brémaud and Massoulié, 1996]). Nonetheless, Condition 1 (g) is very

close to the stationary condition in practice since our parameter space is included in a compact space.

Moreover, it is much weaker than Assumption 2 (d) in [Potiron, 2025].

Finally, the case ρ(ϕ3(θ)) < ϕ+ in Condition 1 (h) states that the spectral radius of the kernel

derivative integral when evaluated at the maximum argument of
∣∣∂θh(i,j)(t, θ)(k)∣∣ is strictly smaller than

ϕ+ uniformly in the space parameter value. The case ρ(ϕ4(θ)) < ϕ+ in Condition 1 (h) ensures that

the spectral radius of the kernel second derivative integral when evaluated at the maximum argument

of
∣∣∂2θh(i,j)(t, θ)(k,l)∣∣ is strictly smaller than ϕ+ uniformly in the space parameter value. Condition 1

(h) ensures that the kernel shape is smooth enough uniformly in the parameter space and corresponds

exactly to Assumption 2 (g) in [Potiron, 2025]. In practice, Condition 1 (h) does not limit more than

Condition 1 (g) since the kernel is polynomially decreasing.

The theorem that follows is the main theoretical result of this paper. It delivers the central limit

theorem of the statistical procedure for parameter estimation. This is based on Hawkes processes with

parametric intensity and polynomial periodic kernel. The parametric inference relies on maximum

likelihood estimation. We consider in-fill asymptotics when n→ ∞ and the final time T is finite. This
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extends [Clinet and Yoshida, 2017] (Theorem 4.6, p. 1821) and [Potiron and Volkov, 2025] (Theorem

1). See also [Cavaliere et al., 2023] (Theorem 2, p. 138), who require stronger conditions. In the

theorem and what follows, υ is defined as standard normal vector of dimension m.

Theorem 1. We assume that Condition 1 holds. We have the central limit theorem of the statistical

procedure based on Hawkes processes with parametric intensity and polynomial periodic kernel, i.e.

√
n(ξ̂ − ξ∗)

D→
√
TΓ−1/2υ. (22)

Moreover, we have the feasible normalized central limit theorem

Γ̂1/2
√
nT (ξ̂ − ξ∗)

D→ υ. (23)

We introduce the matrix of dimension d2 × l

M ((i−1)d+j,q) =
l∑

r=1

dF (i,j,r)(θ∗l )
(
Γl(θ

∗
l )

−1/2
)(r,q)

,

for any i = 1, · · · , d, any j = 1, · · · , d and any q = 1, · · · ,m − d. We denote the space of latency

parameters by Θl. We now give a set of conditions required for the central limit theorem of latency

estimation.

Condition 2. (a) The latency function F : Θl → Rd×d is twice continuously differentiable.

(b) The matrix M has rank d2.

Condition 2 (a) puts some regular smoothness restrictions on F that are needed to apply Taylor

expansions in the proofs. Condition 2 (b) ensures the existence of a standard normal vector in the

limit of the central limit theorem. In practice, this implies that d2 ≤ l. However, this condition is

automatically satisfied since we use at least one parameter for each component of the latency matrix.

Condition 2 already appears in [Potiron and Volkov, 2025] (Conditions [B] and [C]).

We now turn our attention to the central limit theorem for estimation of latency. The results are

obtained with in-fill asymptotics when n→ ∞ and the final time T is finite. This extends Corollary 3

in [Potiron and Volkov, 2025] to the more realistic case of polynomial periodic kernel. Before stating

the corollary, we introduce the standard normal vector υ of dimension m2.
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Corollary 1. We assume that Conditions 1 and 2 hold. We have the central limit theorem for latency

estimation based on Hawkes processes with parametric intensity and polynomial periodic kernel, i.e.

√
n(L̂− L)

D→
√
TΓ

−1/2
υ. (24)

Moreover, we have the feasible normalized central limit theorem

Γ̂
1/2√

nT (L̂− L)
D→ υ. (25)

To obtain joint tests based on the latency vector L, the baseline parameters ν∗ and the parameters

of the kernel which are not used in the definition of latency θ∗o , we provide the central limit theorem for

estimation of the parameter vector κ∗ = (ν∗, θ∗o , L). The results are obtained with in-fill asymptotics

when n → ∞ and the final time T is finite. This general result is novel to the literature on latency.

Before stating the proposition, we introduce the standard normal vector υκ of dimension dκ.

Proposition 1. We assume that Conditions 1 and 2 hold. We have the central limit theorem for

estimation of the vector κ∗ = (ν∗, θ∗o , L) based on Hawkes processes with parametric intensity and

polynomial periodic kernel, i.e.

√
n(κ̂− κ∗)

D→
√
TΓ−1/2

κ υκ. (26)

Moreover, we have the feasible normalized central limit theorem

Γ̂1/2
κ

√
nT (κ̂− κ∗)

D→ υκ. (27)

Finally, we consider joint tests based on the latency vector L, the baseline parameters ν∗ and the

parameters of the kernel which are not used in the definition of latency θ∗o . The following corollary

shows that the Wald test statistic S converges in distribution to a chi-squared distribution with q

degrees of freedom under the null hypothesis and is consistent under the alternative hypothesis. We

consider in-fill asymptotics when n → ∞ and the final time T is finite. This general result is novel

to the literature on latency and extends Corollary 6 in [Potiron and Volkov, 2025], which is restricted

to the latency vector. In the corollary, we define Q(u) as the quantile function of the chi-squared

distribution with q degrees of freedom.
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Corollary 2. We assume that Conditions 1 and 2 hold. Then, the test statistic S converges in distri-

bution to a chi-squared random variable with q degrees of freedom under the null hypothesis H0. The

test statistic S is consistent under the alternative hypothesis H1, i.e. we have P(S > Q(u) | H1) → 1

for any 0 < u < 1.

5 Conclusion

In this paper, we have studied estimation of latency. We have considered Hawkes mutually exciting

processes such that their intensity has a parametric form. We also assumed that that the kernel is

polynomial and periodic. We defined latency as a known function of kernel parameters. Our parametric

inference was based on maximum likelihood estimation. We have given three central limit theorems

for the estimation procedure. We have proposed a Wald test statistic. A numerical study corroborated

the asymptotic theory and showed that we improved latency estimation with this more realistic kernel.

Our empirical application examined.

Supplementary materials

All proofs of the theory can be found in the supplementary materials. These proofs are based on
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Supplementary materials
This part corresponds to the supplementary materials of "Estimation of latency for Hawkes processes

with a polynomial periodic kernel" by Deniz Erdemlioglu, Yoann Potiron, Vladimir Volkov and Taiyu

Xu submitted to the Journal of the American Statistical Association. All the proofs of the theory can

be found in Section 6.

6 Proofs

We first introduce some notations that we will be using throughout this section. We use C for any

constant, and the value of the constant can change from one line to the next. Any operation with

two vectors of the same size means the operation component by component. When Y and Z are two

sequences of real numbers, we define the notation big tau as Y = O(Z), which means that Y
Z 1{Z ̸=0}

is bounded. Finally, any convergence refers to the convergence when n → ∞ and the final time T is

finite.

Our proof strategy follows the general machinery of [Clinet and Yoshida, 2017] and [Potiron, 2025],

which consider asymptotics where T → ∞. To rewrite our problem with in-fill asymptotics as

a problem with large-T asymptotics, we consider a time change as in [Clinet and Potiron, 2018],

[Kwan et al., 2023], [Potiron and Volkov, 2025] and [Erdemlioglu et al., 2025]. Namely, we define the

time-changed filtration as (F t)t∈[0,nT ], where F t = F t
n
. For any i = 1, · · · , d the ith process of

the time-changed point process N (i)
t has events at times (τ

(i)
1 , · · · , τ (i)

N(i)), defined as τ (i)k = nτ
(i)
k for

k = 1, · · · , N (i). We also define the rescaled time-changed F t-intensity process as λt =
λt/n

n for

t ∈ [0, nT ].

In this first lemma, we rewrite the rescaled time-changed intensity in terms of the time-changed

point process. This corresponds exactly to Lemma C1 in Supplement C from [Potiron and Volkov, 2025].

Lemma 1. We have that

λt = ν∗ +

∫ t

0
h(t− s, θ∗)dN s. (28)
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Proof of Lemma 1. If we substitute the definitions of λt and N t into Definition (2), we obtain the

lemma.

We define the compensated rescaled time-changed point process as

M t = N t −
∫ t

0
λsds. (29)

The next lemma shows that the rescaled time-changed point process M t is an F t-local martingale and

that the time-changed point process N t is a parametric Hawkes process with the same kernel h, baseline

parameter ν∗ and kernel parameter θ∗. This corresponds to Lemma C2 in [Potiron and Volkov, 2025].

Lemma 2. We have that the rescaled time-changed point process M t is an F t-local martingale with

intensity λt. Moreover, the time-changed point process N t is a parametric Hawkes process with the

same kernel h, baseline parameter ν∗ and kernel parameter θ∗.

Proof of Lemma 2. By definition of a compensator, we have that

Mt = Nt −
∫ t

0
λsds (30)

is an Ft-local martingale. First, we will show that M t is an F t-local martingale. We have

M t = N t −
∫ t

0
λsds

= Nt/n −
∫ t

0

λs/n

n
ds

= Nt/n −
∫ t

n

0
λydy

=Mt/n.

Here, we use Equation (29) in the first equality, the definitions of N t and λt in the second equality,

integral change of variable in the third equality and Equation (30) in the fourth equality. As Mt

is an Ft-local martingale, we also have that the time-changed local martingale Mt/n is an F t-local

martingale. Since M t = Mt/n, it means that M t is an F t-local martingale. Then, we can deduce

that N t is a parametric Hawkes process with the same kernel h, parameters ξ∗, and F t-intensity λt by

Theorem 3.17 (p. 32) in [Jacod and Shiryaev, 2003].
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For any parameter ξ ∈ Ξ and any time t ∈ [0, nT ], we define the rescaled time-changed intensity

at the parameter value ξ as λt(ξ) =
λt/n(ξ)

n . We also define the log likelihood process of the rescaled

time-changed point process N on the time interval [0, nT ] as

l(ξ) =

d∑
i=1

∫ nT

0
log(λ

(i)
t (ξ))dN

(i)
t −

d∑
i=1

∫ nT

0
λ
(i)
t (ξ)dt. (31)

Then, the maximum likelihood estimator is defined as the maximizing parameter of the log likelihood

process, i.e.

ξ̂ ∈ argmaxξ∈Ξ l(ξ).

Here, we have that the estimator ξ̂ has the form ξ̂ = (ν̂, θ̂), where ν̂ ∈ Φ and θ̂ ∈ Θ.

The following lemma states that a.s. the maximum likelihood estimator of the point process on the

interval [0, T ) is equal to the maximum likelihood estimator of the rescaled time-changed point process

on the interval [0, nT ). This corresponds to Lemma C3 in Supplement C from [Potiron and Volkov, 2025].

Lemma 3. We have that

P(ξ̂ = ξ̂) = 1.

Proof of Lemma 3. By Definition (31), the definition of ξ̂ and Lemma 2, the lemma follows.

In what follows, we verify that Assumption 2 from [Potiron, 2025] is satisfied. In the following

lemma, we show that Assumption 2(a) from [Potiron, 2025] holds.

Lemma 4. Under Condition 1 (a), we have that the parameter space Ξ ⊂ Rm is such that its closure

Ξ is a compact space.

Proof of Lemma 4. This can be obtained by Condition 1 (a) with Lemma 2.

In the following lemma, we consider Assumption 2(b) from [Potiron, 2025].

Lemma 5. Under Condition 1 (b), there exists a positive constant ν− > 0 such that for any baseline

parameter ν ∈ Φ and any index i = 1, · · · , d we have ν(i) > ν−.

Proof of Lemma 5. This can be deduced from Condition 1 (b) with Lemma 2.
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We introduce now a lemma which proves Assumption 2(c) from [Potiron, 2025]. This lemma is

about the positivity of the kernel h.

Lemma 6. We assume that Conditions 1 (c) and (d) hold. Then, we have that the kernel is positive,

i.e. h(t, θ) > 0, for any kernel parameter θ ∈ Θ and any time t ∈ R+.

Proof of Lemma 6. From Equation (17) and Condition 1 (c), we get for any line index i = 1, · · · , d

and any column index j = 1, · · · , d that

h(i,j)(t, θ(i,j)) = γ(i,j)(1 +A(i,j) cos(π(i,j)t))
β(i,j)tβ

(i,j)−1

(α(i,j))β
(i,j)

(1 + (t/α(i,j))β
(i,j)

)2
.

Finally, we can deduce that h(t, θ) > 0 from its above expression and Condition 1 (d).

Before we turn to the case of Assumption 2(d) from [Potiron, 2025], we deliver a couple of lemmas.

For that purpose, we need some more notation. For any line index i = 1, · · · , d and any column index

j = 1, · · · , d, we define the component (i, j) of the log-logistic kernel as

h̃(i,j)(t, θ̃(i,j)) = γ(i,j)
β(i,j)tβ

(i,j)−1

(α(i,j))β
(i,j)

(1 + (t/α(i,j))β
(i,j)

)2
. (32)

Here, we assume that the kernel parameter θ̃ is of the form

θ̃ = (θ̃(i,j))1≤i,j≤d = (θ̃(1,1), θ̃(1,2), · · · , θ̃(d,d−1), θ̃(d,d)), (33)

θ̃(i,j) = (γ(i,j), α(i,j), β(i,j)).

We denote the parameter space of θ̃ by Θ̃. The next lemma shows that the log-logistic kernel is

continuously differentiable with respect to its parameter and gives its partial derivatives.

Lemma 7. For any line index i = 1, · · · , d, any column index j = 1, · · · , d and any time t ≥ 0, we

have that the log-logistic kernel h̃(i,j)(t, θ̃(i,j)) is continuously differentiable with respect to its parameter
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θ̃(i,j) and its partial derivatives are equal to

∂h̃(i,j)(t, θ̃(i,j))

∂γ(i,j)
=

β(i,j)tβ
(i,j)−1

(α(i,j))β
(i,j)

(1 + (t/α(i,j))β
(i,j)

)2
, (34)

∂h̃(i,j)(t, θ̃(i,j))

∂α(i,j)
= γ(i,j)

(β(i,j))2tβ
(i,j)−1

((
t

α(i,j)

)β(i,j)

− 1

)
(α(i,j))−β(i,j)−1((

t
α(i,j)

)β(i,j)

+ 1

)3 , (35)

∂h̃(i,j)(t, θ̃(i,j))

∂β(i,j)
= γ(i,j)

(
−
tβ

(i,j)−1

(((
t

α(i,j)

)β(i,j) (
2 ln

(
t

α(i,j)

)
− ln (t) + ln

(
α(i,j)

)))
β(i,j)

)
(α(i,j))β

(i,j)

((
t

α(i,j)

)β(i,j)

+ 1

)3

−
tβ

(i,j)−1

((
− ln (t) + ln

(
α(i,j)

))
β(i,j) −

(
t

α(i,j)

)β(i,j)

− 1

)
(α(i,j))β

(i,j)

((
t

α(i,j)

)β(i,j)

+ 1

)3

)
. (36)

Proof of Lemma 7. By differentiating Definition (32) with respect to γ(i,j), we get Equation (34) for

any line index i = 1, · · · , d, any column index j = 1, · · · , d and any time t ≥ 0. Then, we obtain by

differentiating Definition (32) with respect to α(i,j), for any line index i = 1, · · · , d, any column index

j = 1, · · · , d and any time t ≥ 0 that

∂h̃(i,j)(t, θ̃(i,j))

∂α(i,j)
= γ(i,j)

(
2(β(i,j))2tβ

(i,j)−1
(

t
α(i,j)

)β(i,j)

(α(i,j))−β(i,j)−1((
t

α(i,j)

)β(i,j)

+ 1

)3

−(β(i,j))2tβ
(i,j)−1(α(i,j))−β(i,j)−1((
t

α(i,j)

)β(i,j)

+ 1

)2

)
.

After some algebraic manipulation, this can be reexpressed as Equation (35). Finally, we can deduce

by differentiating Definition (32) with respect to β(i,j), for any line index i = 1, · · · , d, any column

index j = 1, · · · , d and any time t ≥ 0, that

∂h̃(i,j)(t, θ̃(i,j))

∂β(i,j)
= γ(i,j)

(
ln
(
α(i,j)

)
tβ

(i,j)−1β(i,j)

(α(i,j))β
(i,j)

((
t

α(i,j)

)β(i,j)

+ 1

)2 +
tβ

(i,j)−1 ln (t) β(i,j)

(α(i,j))β
(i,j)

((
t

α(i,j)

)β(i,j)

+ 1

)2

−
2tβ

(i,j)−1
(

t
α(i,j)

)β(i,j)

ln
(

t
α(i,j)

)
β(i,j)

(α(i,j))β
(i,j)

((
t

α(i,j)

)β(i,j)

+ 1

)3 +
tβ

(i,j)−1

(α(i,j))β
(i,j)

((
t

α(i,j)

)β(i,j)

+ 1

)2

)
.

After some algebraic manipulation, this can be reexpressed as Equation (36).
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The next lemma shows that the integral for the product of the log-logistic kernel with its partial

derivatives is finite uniformly in the parameter value θ̃ ∈ Θ̃.

Lemma 8. We assume that Conditions 1 (a), (c), (e) and (f) hold. For any line index i = 1, · · · , d

and any column index j = 1, · · · , d, we have that the integral for the product of the log-logistic kernel

with its partial derivatives is finite uniformly in the parameter value θ̃ ∈ Θ̃, i.e.

sup
θ̃∈Θ̃

∣∣∣∣ ∫ ∞

0
h̃(i,j)(s, θ̃(i,j))

∂h̃(i,j)(s, θ̃(i,j))

∂γ(i,j)
ds

∣∣∣∣ < +∞, (37)

sup
θ̃∈Θ̃

∣∣∣∣ ∫ ∞

0
h̃(i,j)(s, θ̃(i,j))

∂h̃(i,j)(s, θ̃(i,j))

∂α(i,j)
ds

∣∣∣∣ < +∞, (38)

sup
θ̃∈Θ̃

∣∣∣∣ ∫ ∞

0
h̃(i,j)(s, θ̃(i,j))

∂h̃(i,j)(s, θ̃(i,j))

∂β(i,j)
ds

∣∣∣∣ < +∞. (39)

Proof of Lemma 8. To prove Expression (37), supremum properties give for any line index i = 1, · · · , d

and any column index j = 1, · · · , d that

sup
θ̃∈Θ̃

∣∣∣∣ ∫ ∞

0
h̃(i,j)(s, θ̃(i,j))

∂h̃(i,j)(s, θ̃(i,j))

∂γ(i,j)
ds

∣∣∣∣ ≤ ∫ ∞

0
sup
θ̃∈Θ̃

∣∣∣∣h̃(i,j)(s, θ̃(i,j))∂h̃(i,j)(s, θ̃(i,j))∂γ(i,j)

∣∣∣∣ds. (40)

Moreover, we get by Definition (32), Equation (34) from Lemma 7, Conditions 1 (a) and (e) that

sup
θ̃∈Θ̃

∣∣∣∣∣h̃(i,j)(s, θ̃(i,j))∂h̃(i,j)(t, θ̃(i,j))∂γ(i,j)

∣∣∣∣∣ = O

(
sup
θ̃∈Θ̃

t−2(β(i,j)+1)

)
.

Then, we can deduce by Condition 1 (f) that

sup
θ̃∈Θ̃

∣∣∣∣∣h̃(i,j)(s, θ̃(i,j))∂h̃(i,j)(t, θ̃(i,j))∂γ(i,j)

∣∣∣∣∣ = O((t−2(β−+1)). (41)

Finally, we obtain Expression (37) by Expressions (40), (41) and the criteria for finiteness of integrals.

To prove Expression (38), supremum properties for any line index i = 1, · · · , d and any column

index j = 1, · · · , d yield

sup
θ̃∈Θ̃

∣∣∣∣ ∫ ∞

0
h̃(i,j)(s, θ̃(i,j))

∂h̃(i,j)(s, θ̃(i,j))

∂α(i,j)
ds

∣∣∣∣ ≤ ∫ ∞

0
sup
θ̃∈Θ̃

∣∣∣∣h̃(i,j)(s, θ̃(i,j))∂h̃(i,j)(s, θ̃(i,j))∂α(i,j)

∣∣∣∣ds. (42)

Moreover, we get by Definition (32), Equation (35) from Lemma 7, Conditions 1 (a) and (e) that

sup
θ̃∈Θ̃

∣∣∣∣∣h̃(i,j)(s, θ̃(i,j))∂h̃(i,j)(t, θ̃(i,j))∂α(i,j)

∣∣∣∣∣ = O

(
sup
θ̃∈Θ̃

t−2(β(i,j)+1)

)
.
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Then, we can deduce by Condition 1 (f) that

sup
θ̃∈Θ̃

∣∣∣∣∣h̃(i,j)(s, θ̃(i,j))∂h̃(i,j)(t, θ̃(i,j))∂α(i,j)

∣∣∣∣∣ = O(t−2(β−+1)). (43)

Finally, we obtain Expression (38) by Expressions (42), (43) and the criteria for finiteness of integrals.

To prove Expression (39), supremum properties for any line index i = 1, · · · , d and any column

index j = 1, · · · , d deliver

sup
θ̃∈Θ̃

∣∣∣∣ ∫ ∞

0
h̃(i,j)(s, θ̃(i,j))

∂h̃(i,j)(s, θ̃(i,j))

∂β(i,j)
ds

∣∣∣∣ ≤ ∫ ∞

0
sup
θ̃∈Θ̃

∣∣∣∣h̃(i,j)(s, θ̃(i,j))∂h̃(i,j)(s, θ̃(i,j))∂β(i,j)

∣∣∣∣ds. (44)

Moreover, we obtain by Definition (32), Equation (36) from Lemma 7, Conditions 1 (a) and (e) that

sup
θ̃∈Θ̃

∣∣∣∣∣h̃(i,j)(s, θ̃(i,j))∂h̃(i,j)(t, θ̃(i,j))∂β(i,j)

∣∣∣∣∣ = O

(
sup
θ̃∈Θ̃

t−2(β(i,j)+1) ln(t)

)
.

Then, we can deduce by Condition 1 (f) that

sup
θ̃∈Θ̃

∣∣∣∣∣h̃(i,j)(s, θ̃(i,j))∂h̃(i,j)(t, θ̃(i,j))∂β(i,j)

∣∣∣∣∣ = O(t−2(β−+1) ln(t)). (45)

Finally, we get Expression (39) by Expressions (42), (43) and the criteria for finiteness of integrals.

For any time t ∈ R+, we denote by θ+t,2 the maximum argument parameter of the squared kernel

spectral radius ρ(h2(t, θ)). It is defined through

h2(t, θ+t,2) = sup
θ∈Θ

ρ(h2(t, θ)). (46)

Then, we define the matrix ϕ2 of dimension d× d as the integral of h2(t, θ+t,2) over time, i.e.

ϕ2 =

∫ ∞

0
h2(s, θ+s,2)ds. (47)

We deliver in the following a lemma which shows Assumption 2(d) from [Potiron, 2025]. More

specifically, we have the spectral radius of the matrix ϕ is smaller than unity, i.e. ρ(ϕ) < 1, and the

spectral radius of the matrix ϕ2 is finite, i.e. ρ(ϕ2) < +∞.

Lemma 9. We assume that Conditions 1 (a), (c), (d), (e), (f) and (g) hold. Then, we have the spectral

radius of the matrix ϕ is smaller than unity, i.e. ρ(ϕ) < 1, and the spectral radius of the matrix ϕ2 is

finite, i.e. ρ(ϕ2) < +∞.
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Proof of Lemma 9. First, we have ρ(ϕ) < 1 by Condition 1 (g). Second, we prove in what follows that

ρ(ϕ2) < +∞. By Definition (17) and Condition 1 (d), it is sufficient to prove that

ρ(ϕ̃2) < +∞. (48)

Here, we denote for any t ∈ R+ by θ̃+t,2 the maximum argument parameter of the squared kernel spectral

radius ρ(h̃2(t, θ̃)). It is defined through

h̃2(t, θ̃+t,2) = sup
θ̃∈Θ̃

ρ(h̃2(t, θ̃)). (49)

Then, we define the matrix ϕ̃2 of dimension d× d as the integral of h̃2(t, θ̃+t,2) over time, i.e.

ϕ̃2 =

∫ ∞

0
h̃2(s, θ̃+s,2)ds. (50)

By Definition (50), we have that

ρ(ϕ̃2) = ρ

(∫ ∞

0
h̃2(s, θ̃+s,2)ds

)
. (51)

We can rewrite ρ(ϕ̃2) as

ρ(ϕ̃2) = ρ

(∫ ∞

0
h̃2(s, θ̃)ds

)
+ ρ

(∫ ∞

0
h̃2(s, θ̃+s,2)ds

)
− ρ

(∫ ∞

0
h̃2(s, θ̃)ds

)
, (52)

where θ̃ ∈ Θ̃.

To show that ρ
( ∫∞

0 h̃2(s, θ̃)ds
)
< +∞, it is sufficient to prove for any line index i = 1, · · · , d and

any column index j = 1, · · · , d that
∫∞
0 h̃(i,j)(s, θ̃(i,j))2ds < +∞. Definition (32) yields

∫ ∞

0
h̃(i,j)(s, θ̃(i,j))2ds =

∫ ∞

0
(γ(i,j))2

(β(i,j))2s2(β
(i,j)−1)

(α(i,j))2β
(i,j)

(1 + (t/α(i,j))β
(i,j)

)4
ds. (53)

As s→ +∞, we have by Condition 1 (e) that

(γ(i,j))2
(β(i,j))2s2(β

(i,j)−1)

(α(i,j))2β
(i,j)

(1 + (t/α(i,j))β
(i,j)

)4
= O(s−2β(i,j)−2). (54)

Then, the criteria for finiteness of integrals with Condition 1 (f) yield

∫ ∞

0
(γ(i,j))2

(β(i,j))2s2(β
(i,j)−1)

(α(i,j))2β
(i,j)

(1 + (t/α(i,j))β
(i,j)

)4
ds < +∞. (55)
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By Equation (53), we can deduce that

∫ ∞

0
h̃(i,j)(s, θ̃(i,j))2ds < +∞. (56)

Thus, we get

ρ

(∫ ∞

0
h̃2(s, θ̃)ds

)
< +∞. (57)

To show that ρ
( ∫∞

0 h̃2(s, θ̃+s,2)ds
)
− ρ
( ∫∞

0 h̃2(s, θ̃)ds
)
< +∞, it is sufficient to prove for any line

index i = 1, · · · , d and any column index j = 1, · · · , d that

∫ ∞

0

(
h̃(i,j)(s, θ̃

+,(i,j)
s,2 )2 − h̃(i,j)(s, θ̃(i,j))2

)
ds < +∞.

By an application of Lemma 7, we have that h̃(i,j)(t, θ̃(i,j)) is continuously differentiable with respect

to its parameter θ̃(i,j) for any line index i = 1, · · · , d and any column index j = 1, · · · , d. Thus, we can

use a Taylor expansion

h̃(i,j)(s, θ̃
+,(i,j)
s,2 )2 − h̃(i,j)(s, θ̃(i,j))2 =

(
θ̃
+,(i,j)
s,2 − θ̃(i,j)

)
∇h̃(i,j)(s, θ̃(i,j)e )2. (58)

Here, ∇F is the gradient of a function F and θ̃
(i,j)
e is between θ̃(i,j) and θ̃

+,(i,j)
s,2 . The right side of

Equation (58) can be rewritten as

(
θ̃
+,(i,j)
s,2 − θ̃(i,j)

)
∇h̃(i,j)(s, θ̃(i,j)e )2 = 2

(
γ
+,(i,j)
s,2 − γ(i,j)

)
h̃(i,j)(s, θ̃(i,j)e )

∂h̃(i,j)(s, θ̃
(i,j)
e )

∂γ(i,j)
(59)

+ 2
(
α
+,(i,j)
s,2 − α(i,j)

)
h̃(i,j)(s, θ̃(i,j)e )

∂h̃(i,j)(s, θ̃
(i,j)
e )

∂α(i,j)

+ 2
(
β
+,(i,j)
s,2 − β(i,j)

)
h̃(i,j)(s, θ̃(i,j)e )

∂h̃(i,j)(s, θ̃
(i,j)
e )

∂β(i,j)
.

For the first term on the right side of Equation (59), we have by supremum properties that

∫ ∞

0
2
(
γ
+,(i,j)
s,2 − γ(i,j)

)
h̃(i,j)(s, θ̃(i,j)e )

∂h̃(i,j)(s, θ̃
(i,j)
e )

∂γ(i,j)
ds (60)

≤ sup
θ̃+∈Θ̃

∣∣∣∣ ∫ ∞

0
2
(
γ
(i,j)
+ − γ(i,j)

)
h̃(i,j)(s, θ̃

(i,j)
+ )

∂h̃(i,j)(s, θ̃
(i,j)
+ )

∂γ(i,j)
ds

∣∣∣∣.
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By Condition 1 (a), we can deduce that

sup
θ̃+∈Θ̃

∣∣∣∣ ∫ ∞

0
2
(
γ
(i,j)
+ − γ(i,j)

)
h̃(i,j)(s, θ̃

(i,j)
+ )

∂h̃(i,j)(s, θ̃
(i,j)
+ )

∂γ(i,j)
ds

∣∣∣∣ (61)

≤ C sup
θ̃+∈Θ̃

∣∣∣∣ ∫ ∞

0
h̃(i,j)(s, θ̃

(i,j)
+ )

∂h̃(i,j)(s, θ̃
(i,j)
+ )

∂γ(i,j)
ds

∣∣∣∣.
By Expression (37) from Lemma 8, we obtain

sup
θ̃+∈Θ̃

∣∣∣∣ ∫ ∞

0
h̃(i,j)(s, θ̃

(i,j)
+ )

∂h̃(i,j)(s, θ̃
(i,j)
+ )

∂γ(i,j)
ds

∣∣∣∣ < +∞. (62)

By Expressions (60), (61) and (62), we get∫ ∞

0
2
(
γ
+,(i,j)
s,2 − γ(i,j)

)
h̃(i,j)(s, θ̃(i,j)e )

∂h̃(i,j)(s, θ̃
(i,j)
e )

∂γ(i,j)
ds < +∞. (63)

For the second term on the right side of Equation (59), we have by supremum properties that∫ ∞

0
2
(
α
+,(i,j)
s,2 − α(i,j)

)
h̃(i,j)(s, θ̃(i,j)e )

∂h̃(i,j)(s, θ̃
(i,j)
e )

∂α(i,j)
ds (64)

≤ sup
θ̃+∈Θ̃

∣∣∣∣ ∫ ∞

0
2
(
α
(i,j)
+ − α(i,j)

)
h̃(i,j)(s, θ̃

(i,j)
+ )

∂h̃(i,j)(s, θ̃
(i,j)
+ )

∂α(i,j)
ds

∣∣∣∣.
By Condition 1 (a), we can deduce that

sup
θ̃+∈Θ̃

∣∣∣∣ ∫ ∞

0
2
(
α
(i,j)
+ − α(i,j)

)
h̃(i,j)(s, θ̃

(i,j)
+ )

∂h̃(i,j)(s, θ̃
(i,j)
+ )

∂α(i,j)
ds

∣∣∣∣ (65)

≤ C sup
θ̃+∈Θ̃

∣∣∣∣ ∫ ∞

0
h̃(i,j)(s, θ̃

(i,j)
+ )

∂h̃(i,j)(s, θ̃
(i,j)
+ )

∂α(i,j)
ds

∣∣∣∣.
By Expression (38) from Lemma 8, we obtain

sup
θ̃+∈Θ̃

∣∣∣∣ ∫ ∞

0
h̃(i,j)(s, θ̃

(i,j)
+ )

∂h̃(i,j)(s, θ̃
(i,j)
+ )

∂α(i,j)
ds

∣∣∣∣ < +∞. (66)

By Expressions (64), (65) and (66), we get∫ ∞

0
2
(
α
+,(i,j)
s,2 − α(i,j)

)
h̃(i,j)(s, θ̃(i,j)e )

∂h̃(i,j)(s, θ̃
(i,j)
e )

∂α(i,j)
ds < +∞. (67)

For the third term on the right side of Equation (59), we have by supremum properties that∫ ∞

0
2
(
β
+,(i,j)
s,2 − β(i,j)

)
h̃(i,j)(s, θ̃(i,j)e )

∂h̃(i,j)(s, θ̃
(i,j)
e )

∂β(i,j)
ds (68)

≤ sup
θ̃+∈Θ̃

∣∣∣∣ ∫ ∞

0
2
(
β
(i,j)
+ − β(i,j)

)
h̃(i,j)(s, θ̃

(i,j)
+ )

∂h̃(i,j)(s, θ̃
(i,j)
+ )

∂β(i,j)
ds

∣∣∣∣.
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By Condition 1 (a), we can deduce that

sup
θ̃+∈Θ̃

∣∣∣∣ ∫ ∞

0
2
(
β
(i,j)
+ − β(i,j)

)
h̃(i,j)(s, θ̃

(i,j)
+ )

∂h̃(i,j)(s, θ̃
(i,j)
+ )

∂β(i,j)
ds

∣∣∣∣ (69)

≤ C sup
θ̃+∈Θ̃

∣∣∣∣ ∫ ∞

0
h̃(i,j)(s, θ̃

(i,j)
+ )

∂h̃(i,j)(s, θ̃
(i,j)
+ )

∂β(i,j)
ds

∣∣∣∣.
By Expression (39) from Lemma 8, we obtain

sup
θ̃+∈Θ̃

∣∣∣∣ ∫ ∞

0
h̃(i,j)(s, θ̃

(i,j)
+ )

∂h̃(i,j)(s, θ̃
(i,j)
+ )

∂β(i,j)
ds

∣∣∣∣ < +∞. (70)

By Expressions (68), (69) and (70), we get

∫ ∞

0
2
(
β
+,(i,j)
s,2 − β(i,j)

)
h̃(i,j)(s, θ̃(i,j)e )

∂h̃(i,j)(s, θ̃
(i,j)
e )

∂β(i,j)
ds < +∞. (71)

Moreover, Expressions (58), (59), (63), (67) and (71) yield

∫ ∞

0

(
h̃(i,j)(s, θ̃

+,(i,j)
s,2 )2 − h̃(i,j)(s, θ̃(i,j))2

)
ds < +∞. (72)

Thus, we get

ρ

(∫ ∞

0
h̃2(s, θ̃+s,2)ds

)
− ρ
( ∫ ∞

0
h̃2(s, θ̃)ds

)
< +∞. (73)

Finally, Expressions (52), (57) and (73) give ρ(ϕ2) < +∞.

We introduce a lemma which proves Assumption 2(e) from [Potiron, 2025], i.e. some smoothness

assumptions on the kernel h.

Lemma 10. We assume that Conditions 1 (a) and (c) hold. For any time s ∈ R+ a.e., we have the

kernel function θ → h(s, θ) is continuously differentiable twice from the kernel parameter space Θ to

the space Rd×d
+ and there exists a continuous extension to Θ.

Proof of Lemma 10. By Condition 1 (c), it is sufficient to show that, for any time s ∈ R+ a.e., any line

index i = 1, · · · , d and any column index j = 1, · · · , d, we have θ(i,j) → h(i,j)(s, θ(i,j)) is continuously
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differentiable twice from the kernel parameter space Θ(i,j) to the space Rd×d
+ and there exists a con-

tinuous extension to Θ
(i,j). Here, Θ(i,j) denotes the parameter space Θ restricted to the parameters of

the component (i, j). By Definition (17), we have

h(i,j)(t, θ(i,j)) = γ(i,j)(1 +A(i,j) cos(π(i,j)t))
β(i,j)tβ

(i,j)−1

(α(i,j))β
(i,j)

(1 + (t/α(i,j))β
(i,j)

)2
.

By Definition (32), we can deduce that

h(i,j)(t, θ(i,j)) = (1 +A(i,j) cos(π(i,j)t))h̃(i,j)(t, θ̃(i,j)).

First, we have that h(i,j)(t, θ(i,j)) is the product of (1 +A(i,j) cos(π(i,j)t)) and h̃(i,j)(t, θ̃(i,j)). Secondly,

we directly get that θ(i,j) → (1 +A(i,j) cos(π(i,j)t)) is continuously differentiable twice from the kernel

parameter space Θ(i,j) to the space Rd×d
+ and there exists a continuous extension to Θ

(i,j) by Condition

1 (a) for any time s ∈ R+ a.e., any line index i = 1, · · · , d and column index j = 1, · · · , d. Thirdly,

we obtain by an application of Lemma 7 that θ(i,j) → h̃(i,j)(t, θ̃(i,j)) is continuously differentiable twice

from the kernel parameter space Θ(i,j) to the space Rd×d
+ and there exists a continuous extension to

Θ
(i,j) by Condition 1 (a) for any time s ∈ R+ a.e., any line index i = 1, · · · , d and any column index

j = 1, · · · , d. Thus, we can deduce that θ(i,j) → h(i,j)(t, θ(i,j)) is continuously differentiable twice from

the kernel parameter space Θ(i,j) to the space Rd×d
+ and there exists a continuous extension to Θ

(i,j)

for any time s ∈ R+ a.e., any line index i = 1, · · · , d and any column index j = 1, · · · , d.

The next lemma shows that Assumption 2(f) from [Potiron, 2025] is satisfied. Namely, we have the

spectral radius of the matrix ϕ3 is smaller than ϕ+, i.e. ρ(ϕ3(θ)) < ϕ+, and the spectral radius of the

matrix ϕ4 is smaller than ϕ+, i.e. ρ(ϕ4(θ)) < ϕ+.

Lemma 11. We assume that Condition 1 (h) holds. For any kernel parameter θ ∈ Θ, we have the

spectral radius of the matrix ϕ3(θ) is smaller than ϕ+, i.e. ρ(ϕ3(θ)) < ϕ+, and the spectral radius of

the matrix ϕ4(θ) is smaller than ϕ+, i.e. ρ(ϕ4(θ)) < ϕ+.

Proof of Lemma 11. This is exactly Condition 1 (h).
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We define the matrix ϕ5 of dimension (n− d)× (n− d) as the integral of
∣∣∂θh(i,j)(s, θ∗)(k(i,j)t,3 )

∣∣2 over

time, i.e.

ϕ
(i,j)
5 =

∫ ∞

0

∣∣∂θh(i,j)(s, θ∗)(k(i,j)t,3 )
∣∣2ds,

for any line index i = 1, · · · , d and any column index j = 1, · · · , d. Finally, we define the matrix ϕ6 of

dimension d× d as the integral of
∣∣∂2θh(i,j)(s, θ∗)(k(i,j)t,4 ,l

(i,j)
t,4 )

∣∣2 over time, i.e.

ϕ
(i,j)
6 =

∫ ∞

0

∣∣∂2θh(i,j)(s, θ∗)(k(i,j)t,4 ,l
(i,j)
t,4 )

∣∣2ds,
for any i = 1, · · · , d and j = 1, · · · , d.

Moreover, we give the following lemma proving Assumption 2(g) from [Potiron, 2025]. Namely, we

have the spectral norm of the matrix ϕ5 is finite, i.e. ρ(ϕ5) < +∞, and the spectral norm of the matrix

ϕ6 is finite, i.e. ρ(ϕ6) < +∞.

Lemma 12. We assume that Conditions 1 (a), (c), (d), (e), (f) and (g) hold. Then, we have the

spectral norm of the matrix ϕ5 is finite, i.e. ρ(ϕ5) < +∞ and the spectral norm of the matrix ϕ6 is

finite, i.e.ρ(ϕ6) < +∞.

Proof of Lemma 12. This can be proven by extending the arguments from the proof of Lemma 9.

To prove Assumption 2(h) from [Potiron, 2025], we give two prior lemmas. First, the follow-

ing lemma states that Xt is stable. This corresponds to Lemma 13 in [Potiron, 2025]. See also

Lemma A.6 (p. 1834) in [Clinet and Yoshida, 2017] and Proposition C1 (ii) in Supplement C of

[Potiron and Volkov, 2025]. Its proof is based on [Brémaud and Massoulié, 1996] (see Theorem 1 and

Lemma 4).

Lemma 13. We assume that Conditions 1 (b), (c) and (g) hold. Xt is stable for any ξ ∈ Ξ, i.e. for

any i = 1, · · · , d there exists an R∗
+-valued random variable λ(i)l (ξ) such that we have

X
(i)
nT

D→
(
λ
(i)
l (ξ∗), λ

(i)
l (ξ), ∂ξλ

(i)
l (ξ)

)
.
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Proof of Lemma 13. The proof is obtained by [Brémaud and Massoulié, 1996] (see Theorem 1 and

Lemma 4) with Conditions 1 (b), (c) and (g).

In what follows, we provide the definition of ergodicity. This corresponds to Definition 3.1 (p. 1805)

in [Clinet and Yoshida, 2017]. See also Definition C1 in Supplement C of [Potiron and Volkov, 2025].

Definition 1. We say that X is ergodic if for any index i = 1, · · · , d there exists a function π(i) :

Cb(E,R) → R such that for any function ψ ∈ Cb(E,R) we have

1

nT

∫ nT

0
ψ(X(i)

s )ds
P→ π(i)(ψ).

The following lemma states that Xt is ergodic in the sense of Definition 1. This is a direct conse-

quence to Lemma 14 in [Potiron, 2025]. See also Lemma 3.16 (p. 1815) in [Clinet and Yoshida, 2017]

and Proposition C1 (iii) in Supplement C of [Potiron and Volkov, 2025].

Lemma 14. We assume that Condition 1 holds. For any parameter ξ ∈ Ξ, the process Xt is ergodic

in the sense of Definition 1. Moreover, for any index i = 1, · · · , d we have

π(i)(ψ) = E
[
ψ(λ

(i)
l (ξ∗), λ

(i)
l (ξ), ∂ξλ

(i)
l (ξ))

]
.

Proof of Lemma 14. This is a direct consequence to Lemma 14 in [Potiron, 2025] with Condition 1.

Since the functions that are used in the definition of the Fisher information matrix (10) are

not bounded, we need to extend from Cb(E,R) to C↑(E,R) the space of functions in which the

ergodicity condition holds. We also give a more explicit form to the functions π(ψ). The follow-

ing lemma is Proposition 3.8 (pp. 1806-1807) in [Clinet and Yoshida, 2017]. See also Lemma 1 in

[Potiron, 2025]. The proof follows the arguments from the proof of Proposition 3.8 (pp. 1822-1824) in

[Clinet and Yoshida, 2017].

Lemma 15. We assume that Condition 1 holds. For any ξ ∈ Ξ, we have

(a) The starting space of the limit function π in Definition 1 of ergodicity can be extended from

Cb(E,R) to C↑(E,R).
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(b) For any i = 1, · · · , d, there exists a probability measure π(i)ξ on E such that, for any ψ ∈ C↑(E,R),

we have π(i)(ψ) =
∫
E ψ(u, v, w)π

(i)
ξ (du, dv, dw).

Proof of Lemma 15. We can use the arguments from the proof of Proposition 3.8 (pp. 1822-1824) in

[Clinet and Yoshida, 2017] with Conditions 1 (a), (b), (c), (d), (e), (f), (g) and (h).

Finally, we introduce the lemma proving Assumption 2(h) from [Potiron, 2025], which corresponds

to the last condition of the statistical inference theory.

Lemma 16. We assume that Condition 1 holds. Then, we have P
(
λl(ξ

∗) = λl(ξ)
)
= 1 implies that

ξ∗ = ξ.

Proof of Lemma 16. We assume that P
(
λl(ξ

∗) = λl(ξ)
)
= 1. In particular, for any k = 1, · · · , 5d we

get

E[λkl (ξ)] = E[λkl (ξ
∗)]. (74)

By properties of the Hawkes processes, we can deduce that

E[λl(ξ)] = (I −BR(θ))−1ν. (75)

Here, I denotes the unity matrix of dimension d × d. Moreover, the branching ratio matrix BR of

dimension d× d is defined for any line index i = 1, · · · , d and any column index j = 1, · · · , d as

BR(i,j)(θ) = ∥h(i,j)(., θ)∥1 =
∫ ∞

0
h(i,j)(t, θ) dt.

Then, we have by Definition (17) that

h(i,j)(t, θ(i,j)) = γ(i,j)(1 +A(i,j) cos(π(i,j)t))
β(i,j)tβ

(i,j)−1

(α(i,j))β
(i,j)

(1 + (t/α(i,j))β
(i,j)

)2
.

When evaluating Equation (75) at the point ξ∗, we get

E[λl(ξ
∗)] = (I −BR(θ∗))−1ν∗. (76)

Moreover, we can obtain explicit formulae of E[λl(ξ)k] and E[λl(ξ)k] for any k = 2, · · · , 5d. These

explicit formulae are different from Equations (75) and (76). This leaves us with a system of 5d2

equations with 5d2 parameters. Finally, this yields ξ∗ = ξ by Equation (74).
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We turn our attention to the proof of Theorem 1. This is an application of Theorem 2 in

[Potiron, 2025].

Proof of Theorem 1. The central limit theorem (22) is obtained by an application of Theorem 2 in

[Potiron, 2025] with Lemmas 4, 5, 6, 9, 10, 11, 12 and 16. With the same arguments as in the proof

of Theorem 1 in Supplement C of [Potiron and Volkov, 2025], we can show the consistency of the

asymptotic covariance estimator, i.e.

Γ̂−1 P→ Γ−1. (77)

The feasible normalized central limit theorem (23) is deduced by an application of Slusky’s theorem

with the central limit theorem (22) and Expression (77).

We now deliver the proof of Corollary 1. This is a consequence to Theorem 1.

Proof of Corollary 1. We can get the corollary by an application of Theorem 1, a Taylor expansion

and Condition 2. More specifically, we can use the arguments from the proof of Proposition 2 and

Corollary 3 in Supplement C of [Potiron and Volkov, 2025].

Moreover, we give the proof of Proposition 1.

Proof of Proposition 1. We can get the proposition by an application of Theorem 1, Corollary 1, and

another Taylor expansion.

Finally, we give the proof of Corollary 2.

Proof of Corollary 2. Under the null hypothesis H0, we can show that the Wald test statistic S defined

in (16) converges in distribution to a chi-squared distribution with q degrees of freedom using Propo-

sition 1. Under the alternative hypothesis H1, we can show that the Wald test statistic S is consistent

using Proposition 1.
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