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Employing tick-by-tick maximum likelihood estimation on several leading models from the financial
economics literature, we find that the market microstructure noise is mostly explained by a linear model
where the trade direction, that is, whether the trade is buyer or seller initiated, is multiplied by the dynamic
quoted bid-ask spread. Although reasonably stable intraday, this model manifests variability across days
and stocks. Among different observable high frequency financial characteristics of the underlying stocks,
this variability is best explained by the tick-to-spread ratio, implying that discreteness is the first residual
source of noise. We determine the bid-ask bounce effect as the next source of noise.

KEY WORDS: Efficient price; High frequency data; Market microstructure noise; Mid price; Trade
direction.

1. INTRODUCTION

In financial econometrics, a major topic is the estimation
of volatility gauging measures from high frequency asset (log-
)price data. A common assumption is that the vector of raw
prices consisting of the transaction, the best ask, the best
bid and the mid prices is generated by a latent efficient Itô-
semimartingale process which is contaminated by noise typ-
ically accounting for market frictions inherent in the trading
process such as: bid-ask spread, whether the trade is buyer
or seller initiated, discreteness due to the fact that trades lie
on the tick grid, bid-ask bounce effects, that is, the fact that
transactions are observed at the bid and ask prices albeit the
mid price stays constant, limited volume available, volume
imbalance, etc.

Hasbrouck (1995) applied cointegration to relate the vector
of raw prices on multiple markets to the efficient price common
to all markets. However, the model is initially restricted to
the transaction price. Subsequently, Hansen and Lunde (2006)
employed cointegration in a model incorporating the full vector
of prices. Exploiting Granger representation used in Hasbrouck
(2002), they construct an efficient price related to the vector,
which has the desired martingale property.

Another simple and familiar model related to the raw prices
vector is Roll (1984). In spite of being primarily stipulated with
no related efficient price, a generalized version incorporating
the latent price is specified in Hasbrouck (2002). In that model,
the mid price is de facto equal to the efficient price, and the
single source of market microstructure noise is the signed
spread, that is, the association of the effective spread along with
the trade direction. As a matter of fact, it is common practice in
the financial econometrics literature to use the mid price as a
measure of the efficient price. While this measure is noisy, it is
generally closer to the latent price than is the transaction price
since it does not suffer from bid-ask bounce effects.

In conjunction with the information on the trade direction,
prominent extensions include and are not limited to the infor-
mation about the traded volume (Glosten and Harris 1988), the
duration time between two trades (Almgren and Chriss 2001),
the quoted depth (Kavajecz 1999), and the quoted spread.
Estimation with high frequency data on models incorporating
trading information has been studied in a recent strand of
papers. Li, Xie, and Zheng (2016) and Chaker (2017) provided
general methods to estimate more efficiently volatility based
on such models. The general model they considered can be
described as

Zti︸︷︷︸
transaction price

= Xti︸︷︷︸
efficient price

+ φ(Qti , θ0)︸ ︷︷ ︸
explicative part

+ εti︸︷︷︸
residual noise︸ ︷︷ ︸

market microstructure noise

, (1)

where Qti correspond to the aforementioned (e.g., trade direc-
tion, traded volume, etc.) observable variables and φ is a
function known to the econometrician, such as the linear trade
direction in case of the Roll model. In a first step, they pre-
estimated the explicative part of the noise. They removed it
from the transaction price in a second step, thus reducing the
overall uncertainty about the efficient price. They also pro-
posed several pre-estimated price based volatility estimators.
Although the method works remarkably well in theory and in
numerical simulation to reduce the error related to volatility
estimation, it unfortunately requires that the econometrician
chooses a specific φ and a null/nonzero residual noise scenario.
Among other things, Clinet and Potiron (2019) developed tests
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for the presence of residual noise, thus solving partially the
problem. Yet, a specification of φ remains necessary, which is
the concern of this paper. Finally, Clinet and Potiron (2017) can
be seen as an extension of the original problem when consid-
ering other high frequency quantities, such as high frequency
covariance, powers of volatility or volatility of volatility, and
thus shares the same drawback.

Accordingly, our first objective in this article is to provide
a selection criterion to discriminate members of a class of
models considered. This is obtained working out the Bayesian
information criterion (BIC), for which we show the consis-
tency. Naturally this allows for a two-step volatility estimation
method, that is, model selection in a first step and aforemen-
tioned general methods in a second step. We document in our
numerical study that this BIC-based method outperforms the
concurrent methods to estimate volatility. Note that the BIC has
already been used in Da and Xiu (2017) for the same purpose,
but with a different structure on the noise process. Indeed, the
authors consider a non-observable noise process which follows
a generalized moving average distribution, and use the BIC to
determine the order of the process, whereas in the present paper
the noise is assumed observable with no particular structure
(apart from some ergodicity properties).

Our second objective in this article is to look at how the sev-
eral models based on the aforementioned trading information
perform. We find that the market microstructure noise is mostly
explained by the signed quoted spread. This corroborates the
empirical findings on French stocks of Clinet and Potiron
(2019). The BIC selects most of the time a larger model that
adds information about the signed effective spread and the
duration time between two trades to that of signed quoted
spread, indicating that there is meaningful information in those
two variables too.

Our third objective in this article is to study the empirical
properties of the signed quoted spread model. Roughly speak-
ing, it is reasonably stable intraday but manifests variability
across days and stocks. Thus our goal is to investigate (in the
model) the relation between the efficient price and the vector
of raw prices and to disentangle residual (in the sense that
they are not intraday, but rather explains variability in days
and stocks) sources of high frequency market microstructure
noise. As discussed above, one would expect that the efficient
price stays quite close to the mid price. In reality, how close
from each other are the efficient and the mid price, and more
generally what is its relation with the full vector of raw prices?
What are the residual prevailing causes of noise?

Finding empirically such a high role for the signed quoted
spread should not be surprising as its magnitude is classified as
the leading financial measure of liquidity in the high frequency
market microstructure noise regression from Aı̈t-Sahalia and
Yu (2009). The difference between our approach and that of
the cited article essentially lies in the model employed for
noise. The cited authors considered a common noise with no
information, whereas we use the richer signed quoted spread
model which notably includes the trade direction. Without this
essential information, they estimated the daily noise variance
but not the noise itself. Then, they worked with the daily noise
variance as a predicted value in the linear regression model. In

contrast with their method, we manage to estimate directly the
noise and we actually insert the effective-over-quoted-spread
parameter, that is, that of the signed quoted spread model, in
the regression.

It is widely acknowledged that the market microstructure
noise variance displays a U-shaped intraday pattern, that is,
noise variance is high at the open of the trading day, low
around noon, and somewhere in-between at the close of the
trading day. Such pattern was first observed on stock returns,
where the related empirical evidence seems to be traced back to
Wood, McInish, and Ord (1985) and Harris and Gurel (1986).
It is also well-known that the quoted spread exhibits similar
intraday patterns (see McInish and Wood 1992), and this is also
true for the noise variance (see, e.g., Chen and Mykland 2017,
although more recently the pattern could be more adequately
described as a half U-shape with no increasing at the end of
the trading day). In the signed quoted spread model, we notice
that the parameter is relatively constant intraday while the
spread unquestionably manifests the (half) U-shaped pattern,
suggesting that the spread is solely responsible for this pattern
in the market microstructure noise variance. These findings are
complementary to that of Christensen, Hounyo, and Podolskij
(2018), where diurnal pattern are found to be accounting for
a rather significant fraction of intraday variation in volatility.
Moreover, we will see that the parameter stays also fairly stable
whether we look at daily or stock variation.

We can sum up the main empirical findings on the signed
quoted spread model as follows. The mid price is consistently
quite close to the efficient price. There is additional informa-
tion in trade direction in the sense that the efficient price is
systematically between the mid price and the transaction price
yet not equal to the mid price. The variability in the parameter is
relatively small intraday. The variability across days and stocks
is best explained by the tick-to-spread ratio, hinting that the
first residual cause of noise is the discreteness. We determine
the proportion of bid-ask bounce as the second residual source
of noise. All those points will be carefully examined using a
dataset consisting of all tick-by-tick transactions and quotes
recorded between January 1, 2009, and December 31, 2017
from 50 constituents randomly selected from the S&P 500.

There are a few more prior studies related to our work, which
stands at the intersection between the literature of financial
econometrics and that of market microstructure. Diebold and
Strasser (2013) introduced leading financial economic models
to volatility estimation. On the grounds that the one-lag auto-
correlation in mid price returns is often found positive empir-
ically, Andersen, Cebiroglu, and Hautsch (2017) extended the
usual martingale-plus-noise setting to allow for positivity in the
one-lag serial autocorrelation.

We proceed as follows. The general model including several
leading financial economics environment as submodels, along
with maximum likelihood based strategies and goodness of fit
are described in Section 2. Selection criterion and BIC-based
volatility estimation are discussed in Section 3. An extensive
numerical study is provided in Section 4. The empirical study
including in particular data description, high frequency esti-
mates of the parameter, volatility, and residual noise, a compari-
son between five models using goodness of fit, an interpretation
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of the parameter in the signed quoted spread model in terms
of efficient and raw prices relation, stability of the parameter,
a description of the financial characteristics, an identification
of the residual sources of noise via linear regression of the
parameter on high-frequency financial characteristics and an
investigation of the existence of a common market-wide factor
in parameter measurements is detailed in Section 5. We con-
clude in Section 6. A proof of the BIC consistency can be found
in the supplementary materials available online.

2. MODEL, ESTIMATION AND GOODNESS OF FIT

In this section, we introduce the general model. Further-
more, we discuss about two complementary estimation strate-
gies based on maximum likelihood and goodness of fit to
compare submodels of this general model.

2.1. Model

The market microstructure noise is frequently stated as a
white noise in the financial econometrics literature following
the model specification of Hasbrouck (1993). Beyond the bid-
ask spread and transaction price effects in the Roll (1984)
model, additional sources of noise have been examined. For
example, the implications of the discreteness as a source of
measurement error are studied in Gottlieb and Kalay (1985),
Harris (1990a), Jacod (1996), and Delattre and Jacod (1997).
Harris (1990b) used additional effects (e.g., adverse selection
effects as in Glosten and Milgrom (1985), Glosten (1987), and
Glosten and Harris (1988), see also Madhavan, Richardson, and
Roomans 1997) in the market microstructure noise. Transaction
costs are investigated in, for example, Huang and Stoll (1996),
Chan and Lakonishok (1997), and Cao, Choe, and Hatheway
(1997). In what follows, we will be considering the trade
direction, the traded volume, the duration time between two
trades, the quoted depth, and the quoted spread as observed
variables.

Following Li, Xie, and Zheng (2016), Chaker (2017),
and Clinet and Potiron (2019), we incorporate the observed
microstructure variables explicitly in the noise. If we define the
possibly non regular observation times as 0 ≤ t0, . . . , tN ≤ T ,
where T corresponds to the horizon time—typically 1 day—
and N stands for the possibly random number of observations,
the general model can be written as

Zti︸︷︷︸
transaction price

= Xti︸︷︷︸
efficient price

+ φ(Qti , θ0)︸ ︷︷ ︸
explicative part

+ εti︸︷︷︸
residual noise︸ ︷︷ ︸

market microstructure noise

,

where Qti are the observed variables, and φ is a function known
to the econometrician. In this paper, we explicitly consider a
five dimensional linear form of φ defined as

φ(Qti , θ0) = Itiθ
(1)
0 + 1

2
Sti Itiθ

(2)
0

+ Vti Itiθ
(3)
0 + Iti

1 + �ti
θ

(4)
0 + Dti Itiθ

(5)
0 , (2)

where Iti corresponds to the trade direction, that is, 1 if the
transaction at time ti is buyer-initiated and −1 if seller-initiated,

Sti stands for the dynamic quoted spread (of log-price), Vti is
the traded volume, �ti := ti − ti−1 is the duration time between
two successive observation times, and Dti is the quoted depth.1

Table 1 provides a summary of some key submodels of (2)
used throughout the article. In particular, the specification (1)
rules out the possibility that the trade direction affects the effi-
cient price. For example, Madhavan, Richardson, and Roomans
(1997) incorporated this very realistic economic updating by
market makers.

The submodel where θ
(2)
0 = θ

(3)
0 = θ

(4)
0 = θ

(5)
0 = 0 corre-

sponds to the Roll model, in which θ
(1)
0 stands for the effective

half-spread. As Roll (1984) pointed out, there is no reason for
the effective spread to be equal to the (daily averaged) quoted
spread. As a point of fact, it has been frequently observed that
the effective spread is smaller than the average quoted spread
(see, e.g., Petersen and Fialkowski 1994, who points out the
relatively high proportion of trades executed inside the quoted
spread as a possible reason to interpret the gap). Compared to
its form in Hasbrouck (2002), note that there is an extra error
term in the market microstructure noise which corresponds
to external shocks not captured by the spread component.
Moreover, the submodel where θ

(2)
0 = θ

(4)
0 = θ

(5)
0 = 0

corresponds to the Glosten–Harris model.
The case where θ

(1)
0 = θ

(3)
0 = θ

(4)
0 = θ

(5)
0 = 0

will be referred as signed quoted spread model (or simply
signed spread model). The parameter can be interpreted as the
effective-to-quoted spread ratio and there is no (theoretical)
restriction in its value. One obvious limitation of the model
is that this ratio is constant. Figure 1 contains an example of
the model. For present purposes, we assume that the residual
error is null and provide some key features of the signed
spread model in that case. First, the parameter can also be
interpreted as the noise-over-signed spread ratio. In particular,
note that the variance of the market microstructure noise is
equal to the product of one quarter of the spread variance and
(θ

(2)
0 )2. Second, there are three distinct regimes associated to

the parameter value. The most relevant regime—we will see
that this regime incontestably stands out on data—is when
0 ≤ θ

(2)
0 ≤ 1, which corresponds to an environment where the

efficient price lies between the mid price and the transaction
price. This regime is such that the effective spread is smaller or
equal to the quoted spread, which is in line with the aforemen-
tioned findings discussed on the Roll model. When θ

(2)
0 equals

unity, there is no additional informational content in the trade
direction as the efficient price coincides with the mid price and
the market microstructure noise is equal to the signed quoted
half-spread. The closer θ

(2)
0 gets to 0, the more informational

content in trade direction in the sense that the efficient price is
replicating the transaction price’s moves around the mid price
with a proportional coefficient equal to (1 − θ

(2)
0 ). When θ

(2)
0 is

null, the efficient price is equal to the transaction price, so that
the market microstructure noise is zero. Intuitively, we expect
that the parameter stays close to unity. If θ

(2)
0 > 1, then the

efficient price is on the side of the mid price opposite to the
transaction price. In case when θ

(2)
0 < 0, then the efficient price

1The ask (bid) depth specifies the volume available at the best ask (bid).
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Table 1. Five models for the information process

M1 M2 M3 M4 M5
Roll Signed Signed spread Signed spread General

Spread plus Roll Plus Roll
Plus duration time

φ(Qti , θ) Itiθ
(1) 1

2 Iti Stiθ
(2) Itiθ

(1) + 1
2 Iti Stiθ

(2) Itiθ
(1) + 1

2 Iti Stiθ
(2) Itiθ

(1) + 1
2 Iti Stiθ

(2)

+ Iti
1+�ti

θ(4) +Iti Vtiθ
(3) + Iti

1+�ti
θ(4)

+Iti Dtiθ
(5)

Figure 1. An example of the signed quoted spread model.

stays on the side of the transaction price opposite to the mid
price.

In what follows, the latent log-price Xt is assumed to be an
Itô-semimartingale of the form

dXt = btdt + σtdWt + dJt, (3)

dσt = b̃tdt + σ̃
(1)
t dWt + σ̃

(2)
t dW̃t + d̃Jt, (4)

where (Wt, W̃t) is a 2 dimensional standard Brownian
motion, the drift (bt, b̃t) is componentwise locally bounded,
(σt, σ̃

(1)
t , σ̃ (2)

t )2 is componentwise locally bounded, itself an Itô
process and

inf
t

(min(σt, σ̃
(2)
t )) > 0

a.s. We further assume that (Jt, J̃t) is a 2 dimensional pure jump
process3 of finite activity.

We now give the assumption on the observation times. In
developing limit theory, we require a latent index n which
will tend to infinity in our asymptotics. This is similar to, for
example, the remark after Assumption 1 in Li, Zhang, and
Zheng (2013). We consider the random discretization scheme
which can be found in Clinet and Potiron (2018a, sec. 4) and
which is adapted from Jacod and Protter (2011, sec. 14.1). We
assume that there exists an Itô-semimartingale αt > 0 which

2A very good review on the use of stochastic volatility in financial mathematics
is available in Ghysels, Harvey, and Renault (1996).
3Jumps in volatility have been observed in, for example, Todorov and Tauchen
(2011).

satisfies Assumption 4.4.2, p. 115 in Jacod and Protter (2011)
and is locally bounded and locally bounded away from 0, and
iid Ui > 0 that are independent with each other and from other
quantities such that

t0 = 0, (5)

ti = ti−1 + T

n
αti−1 Ui. (6)

We also assume that EUi = 1, and that for any q > 0, mq :=
EUq

i < ∞, is independent of n. If we define πt := supi≥1 ti −
ti−1 and the number of observations before t as N(t) = sup{i ∈
N|0 < ti ≤ t} we have that πt →P 0 and that4

N(t)

n
→P

1

T

∫ t

0

1

αs
ds. (7)

When there is no room for confusion, we sometimes drop T in
the expression, that is, we use N := N(T).

2.2. The Two Complemental Maximum-Likelihood
Based Strategies

High frequency data based estimation on models including
trading information such as the Roll model has been studied
recently. We consider two completing maximum likelihood
approaches based on two distinct scenarios, whether assuming
that the residual error is null or nonzero vanishing asymptoti-
cally. The first approach provides an estimate of the parameter
along with volatility, whereas the second one is also naturally
equipped with an additional estimator of residual error vari-
ance. One might think that we could rule out the first method,
but operating with the second method we find that the error
related to the signed quoted spread model is very small, to the
extent that it is virtually impossible to discriminate between the
two scenarios. For clarity of exposition, we focus explicitly on
the signed spread model hereafter, and emphasize that formula
can adapt straightforwardly for the other submodels.

2.2.1. First Approach. The first maximum likelihood
approach takes its roots in this simple model of returns where
the error is null

�Zti = �Xti + 1

2
�(IS)tiθ

(2)
0 , (8)

4Actually the convergence is u.c.p, that is, uniformly in probability on [0, t] for
any t ∈ [0, T]. Equation (7) can be shown using Lemma 14.1.5 in Jacod and
Protter (2011). The uniformity is obtained as a consequence of the fact that Nn
and

∫ .
0

1
αs

ds are increasing processes and Property (2.2.16) in Jacod and Protter
(2011).
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where �Yti := Yti − Yti−1 , Xt = σ0Wt with Wt a standard
Brownian motion, that is, the volatility is constant and the
drift is null, and the observations are regular �ti = T/N with
N = n. Only for the sake of statistical purposes and undeniably
economically untrue, we can consider the spread component
as the signal polluted by shocks in the efficient price. In that
case, we obtain that the maximum likelihood estimator, which
coincides with the least square estimator, is given by

θ̂
(2)
0 = 2

∑N
i=1 �(IS)ti�Zti∑N

i=1 �(IS)2
ti

, and (9)

σ̂ 2
0 = T−1

N∑
i=1

�X̂2
ti , where X̂ti = Zti − 1

2
ItiSti θ̂

(2)
0 .

(10)

In in-fill asymptotics, that is, when �ti → 0, Chaker (2017,
Theorems 1 and 4) showed the consistency and the central limit
theory of both estimators when the price is a continuous Itô-
semimartingale, and the error possibly not null. Li, Xie, and
Zheng (2016) demonstrated the consistency of the parameter
estimate (Theorem 1) along with the central limit theory of
the volatility estimator (Theorem 2) when the efficient price
incorporates possible jumps and observations are not regular.
As a corollary to our work, we prove in Clinet and Potiron
(2019) the central limit theory related to the parameter θ

(2)
0 .

2.2.2. Second Approach. The second approach is based
on the same model, while incorporating additional residual
noise, which can be defined as

�Zti = �Xti + 1

2
�(IS)tiθ

(2)
0 + �εti . (11)

In case when there is no spread component in this model, that
is, θ

(2)
0 = 0, and the volatility process is assumed to be a

constant σ0, it has long been observed that the observed returns
exhibit a MA(1) form. If we postulate that the error is normally
distributed with variance a2

0, the related log-likelihood is

l(σ 2, a2) = −1

2
log det(	) − N

2
log(2π) − 1

2
�ZT	−1�Z,

(12)

where �Z := (�Zt1 , . . . , �ZtN ) and 	 is the matrix

	 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ 2T/N + 2a2 −a2 0 · · · 0

−a2 σ 2T/N + 2a2 −a2
. . .

...

0 −a2 σ 2T/N + 2a2
. . . 0

...
. . .

. . .
. . . −a2

0 · · · 0 −a2 σ 2T/N + 2a2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(13)

(14)

When a2
0 is not shrinking to 0, Aı̈t-Sahalia, Mykland, and Zhang

(2005) established the consistency and central limit theory
of the maximum likelihood estimator of σ 2

0 and a2
0 and its

robustness to a nonzero drift, which is anyway economically
irrelevant at the frequencies we consider, and a nonnormally
distributed noise with constant variance. Subsequently, Xiu
(2010) demonstrated the robustness of the approach when the

price is a continuous Itô-semimartingale and the volatility is
changed to integrated volatility. Other papers related to this
maximum likelihood estimator and inclusive of the specific
case where a2

0 goes to 0 asymptotically are available in the
literature. For example, Aı̈t-Sahalia and Xiu (2016) tested for
the presence of market microstructure noise based on Hausman
statistics constructed with such estimation procedure. Clinet
and Potiron (2018a) showed that the estimators are efficient
when performed locally, and robust to jumps and nonregular
sampling times. Potiron and Mykland (2016) also considered
a local version of this estimator in their examples. Da and Xiu
(2017) considered a more general setting where in particular
noise is no longer iid.

If we define Z̃ti(θ) := Zti − 1
2 ItiStiθ0, we can easily see that

�Z̃(θ0) displays a MA(1) dynamic so that we can specify the
partial log-likelihood as

l̃(σ 2, θ , a2) = −1

2
log det(	) − N

2
log(2π)

− 1

2
�Z̃(θ)T	−1�Z̃(θ). (15)

We show in Clinet and Potiron (2019) the consistency and the
central limit theory of the estimator related to (15) in case when
the efficient price is an Itô-semimartingale with possible jumps
and observations are nonregular, and the information process IS
is stationary and satisfies reasonable stability conditions.

2.3. A Measure of Goodness of Fit to Compare Sub-
models

To assess the performance of the signed spread model or
any other submodel in terms of residual error magnitude, we
consider a measure of goodness of fit already employed in Li,
Xie, and Zheng (2016, Remark 8, p. 37). Here again we leave
out the other submodels, although all the subsequent definitions
can adapt directly. Assuming that ItiSti and εti are centered
and that EI2

ti S
2
ti = ES2

ti = a2
IS and Eε2

ti = a2
0, we define the

proportion of variance explained as

π := a2
IS(θ

(2)
0 )2/4

a2
IS(θ

(2)
0 )2/4 + a2

0

. (16)

Roughly speaking, the closer to 1 the proportion of variance
explained, the smaller the impact of the residual noise. An
estimator of the proportion of variance explained is naturally
given by

π̂ = â2
IS(θ̂

(2)
0 )2/4

â2
IS(θ̂

(2)
0 )2/4 + â2

0

, (17)

where the empirical variance of the signed spread is defined as

â2
IS := 1

N + 1

N∑
i=0

S2
ti , (18)

and the parameter and noise variance parameters are obtained
with the second aforementioned approach.
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3. SELECTION CRITERION AND VOLATILITY
ESTIMATION

In this section, we provide a selection criterion to discrim-
inate between the submodels of (2), and selection criterion-
based volatility estimation.

3.1. Bayesian Information Criterion

We now introduce the BIC related to the likelihood function
with no residual noise (i.e., adopting the first approach)

lexp(σ
2, θ) := l̃(σ 2, θ , 0), (19)

where l̃ was introduced in (15). In what follows, we prove
that when there is no residual noise, the BIC-based model
selection scheme is consistent, in the sense that given a set of
competing models containing the actual model that generated
the observations, the correct model is picked by the procedure
with probability tending to 1. Note that we limit ourselves to
the case a2

0 = 0 because our empirical study suggests that
in practice the best submodels of (2) feature an estimated
proportion of variance explained π̂ very close to 100%.

Let 
 ⊂ R
d̄, d̄ ≥ 1, represent the maximal model for the

information process (more precisely, 
 is the set of admissible
values for θ̂0). We then consider a family of submodels M of
the form m = {θ = (θ(1), . . . , θ(d)) ∈ 
|∃(i1, . . . , ip), θ(i1) =
· · · = θ(ip) = 0}. Then we say that m has d̄ − p parameters,
and we often identify m as a subset of Rd̄−p for convenience.
By assumption, there exists m0 ∈ M and d0 ≥ 1 such that: (i)
d0 is the number of parameters of m0 (ii) θ0 ∈ m0, (iii) there
is no m ∈ M with less than d0 parameters which contains θ0.
We call l(m)

exp the restriction of lexp to the subset (submodel) m,
and accordingly we write υ̂(m) = ((̂σ 2)(m), θ̂ (m)) the related
maximum likelihood estimator. Finally, we define BIC for each
model m ∈ M with d parameters as

BIC(m) = dlogN − 2l(m)
exp(υ̂

(m)).

A selected model is thus defined as

m̂BIC ∈ argminm∈MBIC(m).

Similarly we call d̂BIC the estimated number of parameters.

Proposition 1. Assume [A] and [B]. Moreover, assume that
there is no residual noise (εt = 0). We have

P [m̂BIC = m0] → 1.

In particular,

d̂BIC →P d0.

The detailed proof along with assumptions [A] and [B] are
relegated to the appendix in the supplementary material.

Remark 1 (Generalized information criterion). A careful
inspection of the proof of Proposition 1 shows that the con-
sistency property remains true if BIC is replaced by any
generalized information criterion of the form

GIC(m) = dg(N) − 2l(m)
exp(υ̂

(m)),

where g is any function such that g(N) → +∞ and g(N)/N →
0 as n → +∞.

Remark 2 (BIC in the presence of residual noise). It is
possible to take into account a possible nonzero residual noise
εt by simply replacing in the BIC formula the term lexp(υ̂

(m)) by
the general log-likelihood l̃(̂ξ (m)) where ξ̂ (m) is one maximizer
of l̃ restricted to the submodel m. Following a similar proof as
that of Proposition 1 and using Theorem 4.1 from Clinet and
Potiron (2019), the consistency of the BIC could be adapted in
that case.

3.2. Volatility Estimation

In this section, the object of interest is the so-called quadratic
variation defined as

Tσ 2
0 :=

∫ T

0
σ 2

s ds +
∑

0<s≤T

�J2
s ,

where �Js = Js − Js−. In addition to the two maximum
likelihood based procedures described in Section 2.2, Li, Xie,
and Zheng (2016) also provide a small noise robust estimation
method and Chaker (2017) employs a modification of the
two-scale realized volatility (TSRV) estimator from Zhang,
Mykland, and Aı̈t-Sahalia (2005). If the econometrician knows
a priori the model for the market microstructure noise (e.g.,
null, including explicative part of a known specific model but
no residual noise, including both explicative part of a known
specific model and residual noise). In practice, this is not the
case.

Subsequently, Clinet and Potiron (2019) provide in Section
4.3 a sequence to estimate volatility σ̂ 2

seq defined as

σ̂ 2
seq := σ̂ 2

RV if no market microstructure noise, (20)

σ̂ 2
seq := σ̂ 2

MLE1 if explicative part with no residual noise, (21)

σ̂ 2
seq := σ̂ 2

MLE2 if both explicative part and residual noise,
(22)

where σ̂ 2
RV = T−1 ∑

i(Zti − Zti−1)
2 is the realized volatility

estimator, σ̂ 2
MLE1 the volatility estimator related to the first

maximum likelihood approach, and σ̂ 2
MLE2 the volatility esti-

mator related to the second maximum likelihood approach.
The three possible scenarios are discriminated as follows. The
econometrician should implement the Hausman tests from Aı̈t-
Sahalia and Xiu (2016) to test for the presence of market
microstructure noise. If those tests indicate the presence of
noise, adaptation of those tests should also be implemented to
test for the presence of residual noise with a given explicative
part. This still requires in practice to choose a submodel of
the explicative part of the market microstructure noise, and this
choice is not discussed in the article. To see the problem more
formally, we have that

σ̂ 2
seq := σ̂ 2

seq(msel), (23)

for some ad-hoc msel ∈ M chosen by the econometrician.
Thus the simple adaptation we consider consists in picking a
submodel in a first step by BIC, and then plugging it in (23).
The resulting quadratic variation estimator can be thus defined
as

σ̂ 2
sel := σ̂ 2

seq(m̂BIC). (24)
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4. FINITE SAMPLE

We carry out a Monte Carlo exercise to assess finite sample
performance of the two maximum likelihood approaches, esti-
mation and confidence intervals of the proportion of variance
explained, model selection, and volatility estimation.

4.1. Setup

We draw M = 1000 Monte Carlo paths of high-frequency
returns, for which T = 1/252 is annualized. One working day
stands for 6.5 hr of trading activity, that is, n = 23,400 sec.

4.1.1. The Efficient Price. We bring forward the Heston
model with U-shape intraday seasonality component and jumps
in both price and volatility, which is defined as

dXt = bdt + σtdWt + dJt,

σt = σt−,Uσt,SV ,

where

σt,U = C + Ae−at/T + De−c(1−t/T) − βστ−,U�{t≥τ },
dσ 2

t,SV = α(σ̄ 2 − σ 2
t,SV)dt + δσt,SVdW̄t,

with b = 0.03, dJt = ∇StdNt, ∇ = Tσ̄ 2, the signs of
the jumps St = ±1 are iid symmetric, Nt is a homogeneous
Poisson process with parameter λ̄ = T so that the contribution
of jumps to the total quadratic variation of the price process
is about 50%, C = 0.75, A = 0.25, D = 0.89, a = 10,
c = 10, the volatility jump size parameter β = 0.5, the
volatility jump time τ follows a uniform distribution on [0, T],
α = 5, σ̄ 2 = 0.1, δ = 0.4, W̄t is a standard Brownian motion
such that d〈W, W̄〉t = φdt, φ = −0.75, σ 2

0,SV is sampled from

a Gamma distribution of parameters (2ασ̄ 2/δ2, δ2/2α), which
corresponds to the stationary distribution of the CIR process.
One can consult Clinet and Potiron (2018a) to obtain more
information about the model, which strongly takes its roots in
Andersen, Dobrev, and Schaumburg (2012) and Aı̈t-Sahalia and
Xiu (2016).

4.1.2. The Observation Times. We consider two levels
of sampling: tick-by-tick and 5 sec. For the latter, the observa-
tion times are generated regularly. For the tick-by-tick case, we
assume that αt = 1/(eβ1 +{eβ2 +eβ3}2(t/T−eβ2/(eβ2 +eβ3))2),
and that Ui are drawn from an exponential distribution with
parameter 2T/23400. We have that the rate of arrival times
α−1

t manifests a usual U-shape intraday pattern, as discussed
in Engle and Russell (1998, see discussions in secs. 5 and 6 and
Figure 2) and Chen and Hall (2013, sec. 5, pp. 1011–1017). We
fix β1 = −0.84, β2 = −0.26, and β3 = −0.39 following the
empirical values exhibited in Clinet and Potiron (2018b), thus
the sampling frequency is on average slightly faster than 1 sec.

4.1.3. The Information. We implement five variables:
trade direction, traded volume, the duration time between two
trades, the quoted depth, and the quoted spread. The trade
direction Iti is simulated featuring a Bernoulli process with
parameter p = 1/2 and with a serial autocorrelation chosen
equal to 0.3. The traded volume is simulated as an AR(1)
process with mean 100, variance equal to 165,000 and auto-
correlation parameter set to 0.017. The duration time between

two trades is simulated as described in the above section. The
quoted depth follows an AR(1) process with corresponding
mean equal to 180, a variance equal to 27,500, and a serial
autocorrelation parameter set to 0.47. For each path, the quoted
spread is simulated as

Si := TS(1 + B(S)
i ), (25)

pi := max(0, min(1, pi−1 + ρ(2B(p)
i − 1)), (26)

where TS, which stands for “tick size,” is fixed to 0.0001,5 the
size of the spread in ticks B(S)

i follows a binomial distribution
of max size 4 and probability pi, the probability pi is a
random walk bounded between 0 and 1 with increment equal
to ρ = 0.1, and B(p)

i is a Bernoulli distribution with probability
parameter 0.5. In (25) and (26), the closer pi to 1, the closer the
quoted spread to 4, and the closer pi to 0, the closer the quoted
spread to 1. The parameter ρ is related to the volatility of the
spread.

We implement three “true” models: the signed spread model
(M2), the signed spread plus Roll model (M3), and the signed
spread plus Roll plus duration time model (M4). The other two
variables from the general model (2), that is, quoted depth and
traded volume, are consistently reported as nonsignificant for
most days and stocks in our empirical study, which is the reason
why we do not incorporate them in possible components of
the “true” model. In M2, we fix θ

(2)
0 = 0.86. In M3, we fix

θ
(1)
0 = −10−5 and θ

(2)
0 = 0.90. In M4, we fix θ

(1)
0 = −10−5,

θ
(2)
0 = 0.90, and θ

(4)
0 = 10−5. The values of the parameters

correspond roughly to the fitted values.6 Note that although the
quoted depth and the traded volume are not used for generating
the “true” model, they are nonetheless required to implement
the maximum likelihood approaches on the general model.

4.1.4. The Residual Noise. When there is residual noise
in the model, we fix the proportion of variance explained to
90%. In terms of residual variance, we have that the residual
variance a2

0 is ranging from 1.4×10−9 to 1.6×10−9 depending
on the model considered, which is in line with the empirical
findings.

4.1.5. Truncation Method to Estimate the Asymptotic
Variance. Despite the fact that both maximum likelihood
estimation approaches are jump-in-price-robust in view of The-
orem 3.1 in Clinet and Potiron (2019), the asymptotic variance
estimators require truncation (see the expression of V̂2 in (3.14)
in the cited paper). If we introduce k̃ which is random and satis-
fies k̃T/N →P 0 and ũi = α̃(ti−ti−1)

ω, the asymptotic variance
estimators use truncated expressions such as 1{|�X̂i|≤̃ui}, and

spot volatility estimation on the block of size k̃. We choose
ω = 0.48, α̃ = α0σ̂exp, α0 = 4, and k̃ = 
N1/2�, consistently
with the cited paper.

5Here, the tick size is much smaller than the typical value of 0.01 units for
stocks, because it refers to the tick size in log price. For instance a 0.01 tick size
on a 30 units price gives a tick on log-price equals to log(30) − log(29.99) ≈
0.0001, which corresponds roughly to our setting. Of course our setting is not
realistic in the sense that the tick in log-price is fixed whereas it is not the case
in practice, but this does not affect estimation procedure as the price intraday
price variation is very small.
6This is nonetheless not fully reported in the empirical study.
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Table 2. Finite sample properties of the two maximum likelihood approaches when residual noise is null

Samp. freq. Param. MLE Bias SD 0.50% 2.50% 5.00% 95.00% 97.50% 99.50%

Unfeasible statistics
Tick-by-tick σ 2

0 1 0.049 1.401 0.08% 0.79% 1.90% 99.54% 99.89% 99.99%
5-sec σ 2

0 1 −0.041 1.020 0.38% 2.12% 4.46% 95.67% 97.98% 99.69%
Tick-by-tick θ0 1 0.040 0.770 2.93% 7.05% 10.79% 90.51% 94.04% 98.18%
5-sec θ0 1 −0.024 0.857 1.40% 4.90% 7.38% 91.74% 95.60% 98.95%
Tick-by-tick σ 2

0 2 0.041 1.150 0.34% 1.58% 3.48% 97.54% 99.04% 99.97%
5-sec σ 2

0 2 0.000 1.025 0.38% 1.82% 4.59% 95.11% 97.71% 99.69%
Tick-by-tick θ0 2 0.043 0.825 2.14% 5.78% 8.96% 91.75% 95.13% 98.69%
5-sec θ0 2 −0.025 0.859 1.29% 4.65% 7.47% 91.90% 95.78% 98.94%
Tick-by-tick a2

0 2 −0.018 1.032 0.16% 1.78% 4.00% 95.09% 97.82% 99.28%
5-sec a2

0 2 −0.029 1.002 0.32% 2.13% 4.95% 94.99% 96.97% 99.41%
Feasible statistics

Tick-by-tick σ 2
0 1 0.005 1.452 0.12% 0.38% 1.16% 99.46% 99.89% 99.99%

5-sec σ 2
0 1 −0.087 1.164 0.10% 0.73% 2.28% 96.01% 98.39% 99.73%

Tick-by-tick θ0 1 0.030 0.809 2.41% 6.13% 9.36% 90.75% 94.57% 99.25%
5-sec θ0 1 −0.019 0.906 0.93% 4.30% 7.13% 92.36% 96.15% 99.52%
Tick-by-tick σ 2

0 2 0.015 1.212 0.13% 0.89% 2.15% 97.74% 99.01% 99.98%
5-sec σ 2

0 2 −0.025 1.135 0.03% 0.76% 2.96% 96.10% 98.38% 99.70%
Tick-by-tick θ0 2 0.043 1.174 0.19% 1.29% 2.86% 97.63% 99.15% 99.94%
5-sec θ0 2 −0.030 1.223 0.04% 0.99% 2.28% 97.41% 99.14% 99.98%
Tick-by-tick a2

0 2 −0.016 1.094 0.08% 1.66% 3.40% 96.22% 98.40% 99.78%
5-sec a2

0 2 −0.031 1.097 0.17% 1.67% 3.79% 96.11% 98.35% 99.90%

NOTES: This table shows summary statistics and empirical quantiles benchmarked to the N(0,1) distribution for the infeasible and feasible Z-statistics related to the two maximum
likelihood approaches when residual noise is null. The simulation design is M2 with M = 1000 Monte Carlo paths. The column “SD” reports the standard errors.

4.1.6. Concurrent Volatility Estimators and Simulated
Data for Comparison. To assess the performance of the BIC-
based volatility estimator, we consider a group of eight concur-
rent alternative volatility estimators which is a mix of estima-
tors considered in Clinet and Potiron (2019) and leading esti-
mators from the literature. First, we have σ̂ 2

seq(M1), σ̂ 2
seq(M2),

σ̂ 2
seq(M3), σ̂ 2

seq(M4), and σ̂ 2
seq(M5). We also implement some

popular estimators: QMLE of Aı̈t-Sahalia, Mykland, and Zhang
(2005), pre-averaging estimator (PAE) from Jacod et al. (2009),
realized kernels (RK) in Barndorff-Nielsen et al. (2008).7

The simulated model for the market microstructure noise is
picked uniformly from {M2, M3, M4}, and then the presence of
residual noise in the simulated model is further given uniformly
by a Bernoulli variable. Finally, as in Clinet and Potiron (2019)
we consider volatility estimation in the absence of jumps as
most methods are actually not robust to this feature.

4.2. Results and Discussion

4.2.1. Finite Sample Properties of the Two Maximum
Likelihood Approaches. In this part, we study nonfeasible
and feasible version of Theorem 3.1 in Clinet and Potiron
(2019). In particular, in the notation of the cited paper, we
estimate the quarticity, where the formal definition is given
in Theorem 3.1 in the cited paper, Q with V̂2 (whose formal

7Details on the choice of tuning parameters for the PAE and the RK can be
obtained upon request to the authors.

definition can be found in (3.14) in the cited paper) and U−1
θ0

as

U−1
θ̂0

(whose formal definitions can be found in Theorem 3.1).

Table 2 reports the finite sample properties of the two max-
imum likelihood approaches when residual noise is null. Both
approaches are robust to this framework. Given all the misspec-
ification of the likelihood function—time-varying volatility,
nonregular observation times, the results are quite decent. The
bias is relatively small for all the statistics, and the standard
deviation is ranging from around 0.80 to 1.40, which is reason-
ably close to unity.

Table 3 reports the finite sample properties of the second
likelihood approach when residual noise is nonzero, that is,
with related proportion of variance explained set to 90%. We do
not report the results of the first approach as it is not designed
for this framework. In that case, the studentized statistics
standard deviation and bias explode, and this is most likely due
to the fact that the residual noise is so small (i.e., with variance
a2

0 ≈ 1.60 × 10−9, which is in line with the values exhibited in
the empirical study) to the extent that the large noise asymptotic
is not appropriate to explain the finite sample of the normalized
statistics.

4.2.2. Estimation and Confidence Intervals of the Pro-
portion of Variance Explained. Table 4 reports summary
statistics and confidence intervals for the noise variance and the
proportion of variance explained when residual noise is null or
nonzero. The three confidence intervals are computed using the
central limit theory with three different asymptotics: no noise,
small noise, and large noise. The theoretical validation of the
confidence intervals in the no noise and large noise case are
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Table 3. Finite sample properties of the second maximum likelihood approach when nonzero residual noise

Samp. freq. Param. MLE Bias SD 0.50% 2.50% 5.00% 95.00% 97.50% 99.50%

Unfeasible statistics
Tick-by-tick σ 2

0 2 0.055 1.972 0.00% 0.01% 0.13% 99.96% 99.99% 100.00%
5-sec σ 2

0 2 −0.025 2.335 0.00% 0.00% 0.00% 100.00% 100.00% 100.00%
Tick-by-tick θ0 2 0.040 2.459 0.00% 0.00% 0.00% 100.00% 100.00% 100.00%
5-sec θ0 2 −0.057 4.441 0.00% 0.00% 0.00% 100.00% 100.00% 100.00%
Tick-by-tick a2

0 2 −0.338 13.185 0.00% 0.00% 0.00% 100.00% 100.00% 100.00%
5-sec a2

0 2 −0.174 39.401 0.00% 0.00% 0.00% 100.00% 100.00% 100.00%
Feasible statistics

Tick-by-tick σ 2
0 2 0.176 4.846 0.00% 0.00% 0.00% 100.00% 100.00% 100.00%

5-sec σ 2
0 2 0.269 2.727 0.00% 0.00% 0.00% 100.00% 100.00% 100.00%

Tick-by-tick θ0 2 0.046 2.459 0.00% 0.00% 0.00% 100.00% 100.00% 100.00%
5-sec θ0 2 −0.057 4.441 0.00% 0.00% 0.00% 100.00% 100.00% 100.00%
Tick-by-tick a2

0 2 −2.486 19.140 0.00% 0.00% 0.00% 100.00% 100.00% 100.00%
5-sec a2

0 2 −121.5 1969 0.00% 0.00% 0.00% 100.00% 100.00% 100.00%

NOTES: This table shows summary statistics and empirical quantiles benchmarked to the N(0,1) distribution for the infeasible and feasible Z-statistics related to the second maximum
likelihood approach when residual noise is nonzero. The simulation design is M2 with M = 1000 Monte Carlo paths. The column “SD” reports the standard errors.

Table 4. Estimation and confidence intervals for the proportion of variance explained

Sp. freq. Par. Mod. Mean SD CI1 size CI1 cvr. CI2 size CI2 cvr. CI3 size CI3 cvr.

No residual noise
Tick-by-tick a2

0 M2 −2.83e−12 1.88e−10 8.79e−10 92.1% 8.84e−10 93.0% 1.93e−11 3.0%
5-sec a2

0 M2 −1.66e−11 1.24e−9 5.77e−9 92.9% 5.84e−9 94.7% 1.38e−10 5.5%
Tick-by-tick π M2 1.000 0.014 0.063 91.9% 0.063 92.8% 0.001 3.0%
5-sec π M2 1.018 0.136 0.594 93.0% 0.621 96.2% 0.013 5.5%
Tick-by-tick a2

0 M3 −3.10e−12 1.87e−10 8.79e−10 92.1% 8.83e−10 92.8% 1.92e−11 3.0%
5-sec a2

0 M3 −2.33e−11 1.24e−9 6.82e−9 97.8% 6.88e−9 98.2% 1.62e−10 4.8%
Tick-by-tick π M3 1.000 0.014 0.066 91.9% 0.063 92.8% 0.001 2.9%
5-sec π M3 1.001 0.132 0.598 97.7% 0.621 98.8% 0.017 4.4%
Tick-by-tick a2

0 M4 −3.19e−12 1.24e−9 6.83e−9 92.2% 0.063 92.9% 0.001 2.9%
Tick-by-tick π M4 1.000 0.014 0.066 91.9% 0.063 92.8% 0.017 4.4%

Nonzero residual noise
Tick-by-tick a2

0 M2 1.60e−9 1.92e−10 8.79e−10 91.5% 8.91e−10 92.7% 1.93e−11 3.0%
5-sec a2

0 M2 1.55e−9 1.27e−9 5.76e−9 92.0% 5.92e−9 94.1% 1.38e−10 5.5%
Tick-by-tick π M2 0.900 0.010 0.061 94.4% 0.061 95.0% 0.001 2.2%
5-sec π M2 0.880 0.100 0.572 95.2% 0.643 98.2% 0.013 4.9%
Tick-by-tick a2

0 M3 1.60e−9 1.92e−10 8.79e−10 91.5% 8.91e−10 92.8% 1.93e−11 3.0%
5-sec a2

0 M3 1.45e−9 1.24e−9 6.82e−9 97.9% 6.93e−9 98.4% 1.75e−10 3.8%
Tick-by-tick π M3 0.900 0.010 0.063 94.4% 0.063 95.0% 0.001 2.2%
5-sec π M3 0.877 0.099 0.569 95.3% 0.641 98.3% 0.013 5.0%
Tick-by-tick a2

0 M4 1.60e−9 1.92e−10 8.79e−10 91.5% 8.91e−10 92.8% 1.93e−11 3.0%
Tick-by-tick π M4 0.900 0.010 0.063 94.4% 0.063 95.0% 0.001 2.2%

NOTES: This table shows summary statistics and confidence intervals for the noise variance and the proportion of variance explained when residual noise is null or nonzero. In the no
residual noise case, a2

0 = 0 and π = 1. In the nonzero residual noise case, a2
0 = 1.60e−9 (on average) and π = 0.90. The confidence intervals are obtained, respectively, with asymptotics

“no noise”, “small noise” and “large noise”. The columns “cvr.” denotes the proportion of trajectories where the 95% confidence interval overlapped with the target value. The simulation
design is M2, M3, and M4 with M = 1000 Monte Carlo paths. M4 does not include 5 sec regular setting because the duration time is included in that model. The column “SD” reports
the standard errors.

straightforward corollaries of, respectively, Theorems 3.1 and
3.3 in Clinet and Potiron (2019). The small noise case is also a
corollary of Theorem 3.1 but would require a longer proof. The
main motivation behind implementing the confidence intervals
is the fact that the proportion of variance explained is often
estimated above 100% in our empirical study. We have chosen
not to focus on the intervals in the theoretical part of our

paper. Note that the quantities used to estimate the confidence
intervals have already been discussed in Section 4.2.1.

The results of the estimation procedures are in line with
the theory. As expected from the limit theory, we can see that
overall the tick-by-tick based estimation procedure perform
better than the 5 sec based estimation procedures. In addition,
the presence of residual noise does not seem to be affecting
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Table 5. Finite sample fit of the second maximum likelihood estimation approach

θ
(1)
0 mean θ

(1)
0 SD θ

(2)
0 mean θ

(2)
0 SD θ

(3)
0 mean θ

(3)
0 SD θ

(4)
0 mean θ

(4)
0 SD θ

(5)
0 mean θ

(5)
0 SD

No residual noise, M2
−3.66e−8 2.72e−6 0.86 0.01 2.96e−12 4.88e−12 6.73e−8 7.00e−7 4.47e−13 1.60e−10

No residual noise, M3
−1.05e−5 2.74e−6 0.90 0.01 −3.07e−12 6.75e−12 −7.07e−8 7.21e−7 1.74e−12 1.62e−10

No residual noise, M4
−1.02e−5 2.75e−6 0.90 0.01 −2.76e−12 7.67e−12 1.07e−5 6.92e−7 1.26e−11 1.61e−10

Nonzero residual noise, M2
6.92e−8 3.19e−6 0.86 0.01 4.53e−12 2.50e−11 −4.92e−8 1.23e−6 −1.06e−11 1.84e−10

Nonzero residual noise, M3
−9.82e−6 3.27e−6 0.90 0.01 3.77e−12 2.65e−11 −6.15e−8 1.43e−6 −1.99e−11 2.03e−10

Nonzero residual noise, M4
−9.76e−6 3.14e−6 0.90 0.01 2.64e−12 2.81e−11 1.04e−5 1.31e−6 1.16e−12 1.88e−10

NOTES: This table shows finite sample fit of the second maximum likelihood estimation approach when residual noise is null or nonzero. The results are produced fitting the general

model (M4) whereas the data are generated with “true” models M2, M3, and M4. For M2, we have θ
(2)
0 = 0.86 and θ

(1)
0 = θ

(3)
0 = θ

(4)
0 = θ

(5)
0 = 0. For M3, we have θ

(1)
0 = −10−5,

θ
(2)
0 = 0.90 and θ

(3)
0 = θ

(4)
0 = θ

(5)
0 = 0. For M4, we have θ

(1)
0 = −10−5, θ

(2)
0 = 0.90, θ

(4)
0 = 10−5 and θ

(3)
0 = θ

(5)
0 = 0. The simulation design is tick-by-tick with M = 1000 Monte

Carlo paths. The table does not show 5 sec setting because the duration time is included in the general model. The column “SD” reports the standard errors.

Table 6. BIC

Model M2 mean M2 sel. M3 mean M3 sel. M4 mean M4 sel. M5 mean M5 sel.

No residual noise
M2 −354,073 100.0% −354,064 0.0% −354,055 0.0% −354,037 0.0%
M3 −354,003 5.2% −354,064 94.8% −354,055 0.0% −354,037 0.0%
M4 −354,036 35.2% −354,040 6.8% −354,055 58.0% −354,013 0.0%

Nonzero residual noise
M2 −348,525 100.0% −348,516 0.0% −348,507 0.0% −348,488 0.0%
M3 −348,751 6.6% −348,783 93.4% −348,773 0.0% −348,749 0.0%
M4 −348,390 37.5% −348,388 8.7% −348,391 53.8% −348,359 0.0%

NOTES: This table shows BIC mean and proportion of model selected for M2, M3, M4, and M5 when the data are generated with M2, M3, and M4. Each row includes a different
setting which corresponds to the simulated model. Each column corresponds to different model used for selection. In particular the columns “mean” report the BIC mean, and “sel.” the
proportion of time the was model selected. The simulation design is tick-by-tick with M = 1000 Monte Carlo paths. The table does not show 5 sec setting because the duration time is
included in the general model.

the performance of the procedure. In particular, the proportion
of variance explained—which is equal to 100% in case of no
residual noise and 90% when there is nonzero residual noise—
is estimated just fine in both cases. As for the confidence
intervals, the no noise and small noise cases produce almost
the same results, whereas the large noise case is far off. This
is in line with the results reported in Table 3. The large noise
asymptotics is not adapted for residual noise whose variance is
as small as a2

0 ≈ 1.60 × 10−9. Yet this is the typical value that
we find empirically.

4.2.3. Finite Sample Fit of the Second Maximum Like-
lihood Estimation Approach on Different Models. Table 5
reports the finite sample fit of the second maximum likelihood
estimation approach when fitted on the general model (M5). We
can see that the procedure is working well overall. For M2, the
signed spread parameter is nicely estimated and all the other
parameters are close to 0, and nonsignificantly different from
0. For M3, the signed spread parameter and the Roll parameter
are estimated very closely from their respective values, and the
other parameters are not significantly different from 0. This also
works similarly for M4.

4.2.4. Model Selection. Table 6 reports the BIC mean
and proportion of model selected for M2, M3, M4, and M5
when the simulated model is M2, M3, or M4. When the sim-
ulated model is M2, M2 is selected all the time. When M3 is
the simulated model, it is selected with a proportion around
0.95. When the simulated model is M4, the BIC is not as good,
although M4 remains selected most of the time, around 55%
of the days, and M2 around 35%. This is still reasonable. The
reason why the BIC does not perform that good in that case
might be that the trade direction and the signed duration time
are highly correlated.

4.2.5. Comparison of the Performance of Volatility Esti-
mators. Table 7 reports the performance of the BIC-based
volatility estimator along with eight alternatives. Undoubtedly,
the former performs better than the alternatives. The gain is
small but not negligible when compared to the non BIC-based
estimators of Clinet and Potiron (2019). The gain is much more
substantial when compared to common volatility estimators
from the literature such as QMLE, PAE, and RK, consistently
with the numerical studies of Li, Xie, and Zheng (2016) and
Clinet and Potiron (2019). In particular, this indicates that the
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Table 7. Comparison of the performance of volatility estimators

Est. Bias SD RMSE

σ̂ 2
sel 2.04 8.69 8.93

σ̂ 2
seq(M1) 3.29 8.78 9.38

σ̂ 2
seq(M2) 2.12 8.73 8.98

σ̂ 2
seq(M3) 2.11 8.73 8.98

σ̂ 2
seq(M4) 2.09 8.73 8.98

σ̂ 2
seq(M5) 2.06 8.76 9.00

QMLE 8.44 9.43 12.66
PAE 1.57 9.99 10.11
RK 8.44 9.83 12.96

NOTES: This table shows the bias and the standard deviation of several volatility
estimators. Values are scaled by a factor 105. The simulation design is a mix of M2, M3,
M4 for the explicative with a mixing of residual noise, tick-by-tick with M = 1000 Monte
Carlo paths. The table does not show 5 sec setting because the duration time is included
in the general model. The column “SD” reports the standard errors. The column “RMSE”
reports the root mean square errors.

relative imprecision of the BIC in some cases do not impact too
badly the BIC-based volatility estimation procedure.

5. EMPIRICAL ANALYSIS

We are now ready to analyze estimation results obtained on
real data, and to compare five models based on the goodness of
fit measure π̂ and BIC. We will see that while more general
models are often selected, the signed spread model already
explains the major part of the market microstructure noise with
a single parameter. Accordingly, we will work with this model
to interpret its parameter mean value in terms of raw prices
vector relation, to look at its parameter variability compared to
the signed spread variability, and to look for the residual sources
of noise by relating its parameter to various observable financial
characteristics of the stocks.

5.1. Data Description and High Frequency Estimates
of the Parameters, Volatility, and the Residual Noise
Variance in Five Models

Our empirical study is conducted on a sample of 50 stocks
randomly selected from the S&P 500 during the period between
January 1st, 2009 and December 31st, 2017. Our dataset con-
sists of intraday transaction price, bid price, ask price, trade
time-stamps, traded volumes, and volumes standing at the first
limits of the order book collected from the tick-by-tick Trade
and Quote (TAQ) database. Following the prominent algorithm
described in Lee and Ready (1991), we reconstruct the trade
direction. The time resolution is equal to the microsecond.

We compute the likelihood (15) of the second approach
based on sampling the data at the highest frequency available,
that is, tick-by-tick. All along this empirical study, we consider
five competing models, that is, M1–M5 described in Table 1.

For each model, we estimate for each stock i and day t the
integrated volatility σi,t, the vector of parameters θi,t and the
residual noise variance a2

i,t. In addition, we estimate the daily

variance of the signed spread defined in (18) as a2
IS,i,t and the

noise-to-signal ratio for the signed spread model as ξ2
i,t :=

(a2
i,t + (θ

(2)
i,t )2a2

IS,i,t)σ
−2
i,t . We exclude stock-day combinations

with fewer than 500 intraday transactions or with problems
in the data (such as price values that are missing or dropping
suddenly to 0, or bid price recorded higher than the ask price).

Table 8 reports the descriptive statistics related to the full
period 2009–2017, number of days included and daily trades.
38 stocks over 50 are included during the full period, whereas
the period of the others typically does not cover several years
of the full period. This is due to the fact that S&P Dow Jones
Indices updates the components of the S&P 500 periodically,
mainly in response to acquisitions, or to keep the index up to
date as various companies grow or shrink in value. The number
of days included is on average equal to 1905, ranging from
543 to 2239. The total number of days included across the 50
stocks amounts to 95,255. The average number of daily trades
is 18,400, with a minimum of 3900 for ARG and a maximum
of 100,700 for AAPL.

Table 9 reports the basic summary statistics for the volatility
σi,t, the noise-to-signal ratio ξ2

i,t, the parameter in the signed

spread model θ
(2)
i,t and the parameter in the Roll model θ

(1)
i,t .

The volatility (when normalized by the mid price) is estimated
to 3.10 × 10−3 on average. The noise-to-signal ratio averages
to 3.97 × 10−4. The parameter in the signed spread model
equals 0.861, while the parameter in the Roll model (scaled
by the daily average half quoted spread) is slightly smaller,
equal to 0.816. For the sake of conciseness, we do not report
the parameters related to the concurrent models, although we
document a model selection study in the next section.

We will employ the first maximum likelihood based esti-
mates as control variables for the other approach results, by
rerunning the regressions with the estimates coming for the
first approach. By doing so, we make sure that unusual results
are due to the data itself, and not a recurrent problem in
the optimization procedure of the second likelihood method.
The results are very similar and do not imply economically
meaningful differences. For the sake of brevity, we do not report
the related results obtained with the first approach.

5.2. Goodness of Fit and Model Selection for Five Com-
peting Models

It is of interest to assess whether on real data a market
microstructure noise model systematically stands out or not.
Accordingly, we start our empirical investigation with a com-
parative study of the five explicative noise models, that is, M1–
M5 described in Table 1. To do so, we examine them through
the lenses of BIC-based model selection, proportion of market
microstructure noise variance explained π̂ and significance of
parameters of the general model including all five variables.

We first consider our goodness-of-fit criterion π̂ for each
model. The mean and standard deviation (across stocks and
days) of the proportion of variance explained are reported in
Table 11. Apart from the Roll model (M1), not only the average
π̂ are all extremely close to 100%,8 but their standard deviation

8Note that the presence of estimated proportions larger than 100% is due to
the fact that the residual noise variance may be estimated negative when the
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Table 8. Descriptive statistics: period, number of days included and
daily trades in 2009–2017

Number of days Number of daily
Ticker Period included trades

AAPL 2009–2017 2232 100,700
ACE 2009–2016 1711 8900
ALTR 2009–2015, 2017 1690 14,000
ALXN 2009–2017 1772 8300
AMAT 2009–2017 2208 29,700
ARG 2009–2016 1813 3900
BCR 2009–2017 2188 4300
BMY 2009–2017 2218 26,200
CELG 2009–2017 2120 20,400
CHRW 2009–2017 2175 8400
CL 2009–2017 2236 13,700
CMI 2009–2017 2172 12,000
CMS 2009–2017 2216 9000
CPB 2009–2017 2219 8500
DHI 2009–2017 2057 16,900
EOG 2009–2017 2174 17,600
ES 2009–2017 1230 7200
F 2009–2017 1937 41,500
FB 2013–2017 1360 94,000
FIS 2009–2017 2196 8300
FISV 2009–2017 2193 6200
FLIR 2009–2017 2106 5400
GT 2009–2017 1855 12,900
HCBK 2009–2015 1599 8700
HES 2009–2017 2148 17,300
HRS 2009–2017 2183 5400
KHC 2015–2017 608 21,600
KIM 2009–2017 1691 10,700
KMX 2009–2017 2090 10,100
LH 2009–2017 2188 5700
LYB 2010–2017 1698 17,100
MAS 2009–2017 2087 13,800
MAT 2009–2017 2158 14,900
MCK 2009–2017 2146 10,300
MWV 2009–2015 1526 5200
NAVI 2011, 2014–2017 797 13,200
NE 2009–2017 2025 19,700
NFLX 2009–2017 2101 31,200
NLSN 2011–2017 1605 8900
PYPL 2015–2017 610 43,500
QCOM 2009–2017 2239 40,000
RHI 2009–2017 2098 6300
SRE 2009–2017 2194 7500
SYY 2009–2017 2209 13,200
TRV 2009–2017 2197 13,000
TSO 2009–2017 1986 15,300
TXN 2009–2017 2193 24,700
WRK 2015–2017 543 11,000
WU 2009–2017 2187 14,400
YHOO 2009–2017 2086 38,100

Mean 1905 18,400
SD 451 19,100
5% 694 5300
Median 2103 13,100
95% 2226 42,600

are quite small, indicating a strong stability of their explanatory
power. On the other hand, the Roll model only achieves around
80% of explained variance and can be reasonably ruled out.
We note that the proportion found for the Roll model is in line
with the empirical results of Li, Xie, and Zheng (2016, Tables
4–7) and our own work Clinet and Potiron (2019, Table 6). We
notice that the second simplest model, the signed spread model,
already features an estimated average proportion of 100.3%.
Although not reported, it turns out that, all the other submodels
with one parameter feature estimated proportions of variance
explained below 85%, making the signed spread incontestably
the most explicative variable.

These findings have two consequences. First, the signed
spread variable stands out with a real explanatory power very
close to 100%. Second, the other three bigger models only
allow for (at most) very small improvements in terms of
goodness of fit (100.29%, 100.00%, 100.46%). We now give
additional results for the signed spread model. In Table 10,
we have reported details about confidence intervals for the real
proportion of variance explained π using two distinct methods.
We recall that the first method is an application of Theorem 3.1
from Clinet and Potiron (2019) along with the delta method,
assuming no residual noise. The second method consists in
the same protocol except that we now assume a small residual
noise variance of order 1/N. We can see that both average
confidence intervals intercept 1 and are quite close to each
other. We have also reported the proportion of days where 1
lies within their boundaries. We found that more than half of
the time the estimated level of variance explained for the signed
spread model is consistent with a perfect fit π = 1. Finally,
unsurprisingly, a model selection scheme based on π̂ largely
advantages more complex models such as M3 (26.3%) and M4
(56.7%), whereas the signed spread model (M2) was selected
only 8% of the time as documented in Table 11. This may
be due to the fact that π̂ tends to be mechanically higher for
models with more parameters than for submodels (although,
unlike the R2 of a linear regression, it does not necessarily
increase when adding new parameters).

We now turn to the BIC model selection as introduced in
Section 3.1. In Table 11, we can see that the larger model
M4 is selected most often (54.25%), followed by the global
model M5 (45.14%). The signed spread models M2 and M3
are selected less than 1% of the days, while the Roll model
is systematically ruled out by the procedure. In practice, such
findings indicate that there is some nonnegligible residual
information in models M4 and M5 that the signed spread model
fails to capture. In particular, the signed trade inter-arrival time
variable unequivocally boosts both M4 and M5 for the selection
process. This finding is largely corroborated in Table 12, where
we have reported the t-statistics of each parameter in the global
model (M5). Indeed, the parameter related to the signed trade
inter-arrival is significantly different from zero 86.4% of the
days. This is less clear for the other two variables that appear
in M5. While the signed quoted depth is significant 28% of the
time, the signed volume is significant less than 1% of the days

residual noise is very close or equal to 0. Such extension of the parameter space
is necessary to get a consistent likelihood optimization procedure. We refer the
reader to the discussion before Theorem 3.1, p. 9 in Clinet and Potiron (2019).



30 Journal of Business & Economic Statistics, January 2021

Table 9. Daily estimates of volatility, noise-to-signal ratio, parameter in the signed spread model (M2), and parameter in the Roll model (M1)
obtained using the second maximum likelihood based approach

Mean SD 5% Median 95%

Volatility σi,t scaled by mid price (×102) 0.310 0.176 0.121 0.260 0.685
Noise-to-signal ratio ξ2

i,t (×103) 0.397 0.596 0.052 0.255 1.193

Signed spread parameter θ
(2)
i,t 0.861 0.073 0.726 0.869 0.961

Roll parameter θ
(1)
i,t over daily half-spread 0.816 0.084 0.669 0.821 0.943

Table 10. Confidence intervals for the proportion of variance
explained in the signed spread model

π̂ 1.0030

[π̂low, π̂up] (Method 1) [0.9972, 1.0087]
[π̂low, π̂up] (Method 2) [0.9970, 1.0089]
Prop. “1 ∈ [π̂low, π̂up]” (Method 1) 52.7%
Prop. “1 ∈ [π̂low, π̂up]” (Method 2) 53.5%

NOTES: This table shows the average confidence intervals for the proportion of variance
explained in the signed spread model across stocks and time, and computed according to
two distinct methods. Method 1 corresponds to a consistent estimate assuming no residual
noise. Method 2 assumes a small residual noise variance proportional to N−1. “Prop.
1 ∈ [π̂low, π̂up]” (Method i) stands for the proportion of days where 1 belongs to the
corresponding confidence interval.

so that it can probably be ruled out with very few changes in
the regression results. Finally, in terms of interpretability, the
larger models M4 and M5 perform poorly as they suffer from an
important instability of their parameters across days and stocks
(For instance, the five parameters are positive between 25% and
62% of the time). This is due to the high-level of collinearity
between variables.

Two conclusions can be drawn from the above investiga-
tion. First, according to BIC and the market microstructure
noise variance explained, larger models such as M4 and M5
are undoubtedly closer to the truth than are submodels M1,
M2, and M3. In particular, for statistical applications such as
volatility estimation as described in Section 3.2, we advocate
the practitioner to select first a model by BIC, and then keep

the estimated volatility from this specific model. Second, in
contrast with BIC and pure goodness-of-fit criteria, it is also
clear from the above results that the model only incorporating
the signed spread (M2) captures already a proportion of MMN
that is estimated very close to 100% (Table 13). As we will
see later, it also features a reasonable stability across time and
stocks which makes it a good candidate to work with on empir-
ical data whereas larger models feature unstable parameters.
Although we wanted to use the BIC based exhibited models
for our empirical analysis, the subsequent analysis was not
working very well. This is a clear limitation and drawback of
the BIC method. Therefore, we focus on a thorough analysis of
the signed spread model (M2) for our empirical analysis in the
remainder of this paper.

5.3. Interpreting the Effective-to-Quoted-Spread Param-
eter in the Signed Spread Model in Terms of Efficient and
Vector of Raw Prices Relation

From now on, we reduce our study to the case of the signed
spread model where

φ(Qti , θ0) = 1

2
Sti Itiθ

(2)
0 .

For ease of notation, we hereafter denote the single parameter
of the model θ0 ∈ R, also called effective-to-quoted-spread
parameter. While not reported, the daily estimates θi,t range
from 0.5 to 1.01 where the threshold value 1 is crossed over
only for a few days over 95,255 points. It is thus reasonable to

Table 11. π̂-based and BIC-based model selection for the five models across days and stocks

M1 M2 M3 M4 M5

Mean π̂ 0.7976 1.0030 1.0029 1.0000 1.0046
SD π̂ 0.126 0.008 0.008 0.0003 0.027
Prop. best model (π̂) 0.00% 8.00% 26.90% 56.70% 8.30%
Prop. best model (BIC) 0.00% 0.29% 0.31% 54.25% 45.14%

NOTES: This table reports for each model the mean proportion of variance explained and its standard deviation, along with the proportions of days where it was selected by the goodness
of fit measure π̂ and BIC.

Table 12. t-statistics for each parameter of the global model across days and stocks

θ
(1)
0 θ

(2)
0 θ

(3)
0 θ

(4)
0 θ

(5)
0

Mean |t-stat| 31.44 207.5 0.069 7.928 2.471
Prop. |t-stat| > 1.96 96.9% 100% 0.026% 86.4% 28.0%

NOTES: This table shows the mean value of each parameter of M5, the average absolute value of the t-statistic for each parameter of the global model, along with the proportion of days
where the absolute value was above the threshold 1.96.
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Table 13. Signed spread model in 2009–2017

Ticker π̂i,t

AAPL 1.002
ACE 1.020
ALTR 1.003
ALXN 1.028
AMAT 0.997
ARG 1.035
BCR 1.027
BMY 0.997
CELG 1.016
CHRW 1.03
CL 1.014
CMI 1.015
CMS 0.990
CPB 1.004
DHI 0.994
EOG 1.024
ES 1.008
F 1.000
FB 0.998
FIS 1.008
FISV 1.022
FLIR 1.014
GT 0.999
HCBK 0.999
HES 1.027
HRS 1.026
KHC 1.003
KIM 0.987
KMX 1.021
LH 1.024
LYB 1.017
MAS 0.995
MAT 0.994
MCK 1.026
MWV 1.017
NAVI 0.997
NE 1.012
NFLX 1.007
NLSN 1.013
PYPL 0.998
QCOM 0.997
RHI 1.022
SRE 1.019
SYY 0.995
TRV 1.008
TSO 1.007
TXN 0.993
WRK 1.010
WU 0.997
YHOO 0.996

say that the spread parameter θ0 virtually satisfies 0 ≤ θ0 ≤ 1,
that is, the first regime discussed in Section 2. This implies that
the efficient price stays systematically between the mid price

and the transaction price. Moreover, for almost every day there
is additional information (in the sense that the efficient price is
different from the mid price, i.e., θ0 �= 1) in trade direction.

5.4. The Effective-to-Quoted-Spread Parameter Vari-
ability

Prior to introducing the financial characteristics and to relate
the signed spread model parameter to those characteristics, we
document in this section about the reasonable stability of θ0
(compared to the quoted spread size) whether we look at the
variation within a day, daily or across stocks. This corroborates
the predominance of the bid-ask spread among the possible
sources of market microstructure noise.

We recall a key relation between the market microstructure
noise variance a2

MMN, the parameter and the quoted spread
variance varIS discussed in Section 2 as

a2
MMN ≈ θ2

0 varIS

4
, (27)

where the use of “approximation” instead of “equal” in the
relation is due to the fact that there may be some (very small)
residual noise.

Table 14 reports the parameter estimates and the daily aver-
aged quoted spread across stocks. The parameter mean value
ranges from 0.767 for MWV to 0.916 for AAPL, with a mean
across stocks equal to 0.862 and a standard deviation equal to
0.042. The quoted spread (when multiplied by 1000) ranges
from 0.150 for AAPL to 0.801 for HCBK, with an average
equal to 0.394 and a standard deviation of 0.141. Obviously,
the variation (when normalized by the mean) of the parameter
is only about one tenth that of the daily averaged quoted spread.

We next examine the intraday stability of θ0 (aggregated over
the fifty stocks and over the full period 2009–2017). In Figure 2,
we show the average intraday variations of θ0 (blue, solid), the
quoted spread (green, dashed), and the market microstructure
noise standard deviation (red, dot-dashed), where we have split
the trading day in eight periods of equal length. We have
normalized the three variables so that they daily average to
1. We can see that despite the fact that θ0 exhibits a U-shape
over the trading period, it is much smaller than that of the bid-
ask spread. Indeed, we find a daily average parameter high-
low variation of 9%, whereas the average market microstructure
noise standard deviation’s deviation is as high as 74%. Further-
more, we can see that the market microstructure noise standard
deviation exhibits a half U-shape pattern rather than a full one.
This is in line with, for example, the recent findings of Chen and
Mykland (2017, Figure 8) where the authors report lower noise
levels in the afternoon and around noon than in the morning.
The same pattern is observed for the quoted spread, and this
is also consistent with the relation (27). Consequently, the
aforementioned findings suggest that over a day, the variation
of the market microstructure noise is mainly driven by the bid-
ask spread.

Now we turn to the daily parameter variation along with
the evolution of other quantities related to the microstructure
noise over the period 2009–2017. The evolution of the monthly
averaged parameter is shown in the top left panel of Figure 3.
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Table 14. The effective-to-quoted-spread parameter and daily aver-
aged quoted spread in 2009–2017

Signed spread Quoted bid-ask

Ticker parameter θ
(2)
i,t spread (×103)

AAPL 0.916 0.150
ACE 0.866 0.258
ALTR 0.770 0.349
ALXN 0.896 0.603
AMAT 0.901 0.611
ARG 0.864 0.391
BCR 0.887 0.407
BMY 0.874 0.288
CELG 0.904 0.335
CHRW 0.872 0.299
CL 0.856 0.192
CMI 0.910 0.384
CMS 0.826 0.435
CPB 0.836 0.296
DHI 0.816 0.563
EOG 0.897 0.340
ES 0.875 0.265
F 0.895 0.735
FB 0.870 0.210
FIS 0.832 0.324
FISV 0.864 0.311
FLIR 0.797 0.427
GT 0.833 0.568
HCBK 0.914 0.801
HES 0.866 0.305
HRS 0.871 0.382
KHC 0.923 0.277
KIM 0.839 0.529
KMX 0.825 0.380
LH 0.887 0.376
LYB 0.877 0.339
MAS 0.832 0.557
MAT 0.813 0.405
MCK 0.888 0.339
MWV 0.767 0.406
NAVI 0.863 0.671
NE 0.784 0.383
NFLX 0.936 0.528
NLSN 0.844 0.378
PYPL 0.867 0.277
QCOM 0.835 0.196
RHI 0.809 0.392
SRE 0.864 0.298
SYY 0.857 0.309
TRV 0.859 0.222
TSO 0.852 0.501
TXN 0.830 0.291
WRK 0.915 0.425
WU 0.896 0.567
YHOO 0.869 0.442

Mean 0.862 0.394
SD 0.042 0.141
5% 0.790 0.202
Median 0.865 0.379
95% 0.920 0.644

Figure 2. Intraday variations of the effective-to-quoted-spread
parameter and the quoted spread in normalized units.

After a first period of decreasing trend between 2009 and
the stock markets fall in August 2011 where it reached a
minimum value of 0.77, we can see a clear positive trend
since 2011 until the end of 2017, where the parameter attained
0.91. Coincidentally, the market noise variance (top right panel)
decreased from 2009 to 2014 where it seems to have stabilized
on average. While not shown, the evolution of the quoted spread
mimicks that of the noise variance. Finally, the noise-to-signal
ratio (middle left panel) shows a general tendency to increase
over those last 9 years, suggesting that the volatility levels of the
market actually decreased faster than the noise variance since
the 2008 financial crisis.

We have seen that in terms of intraday, daily or variation
across stocks, the parameter is far more stable than the quoted
spread. Consequently, we determine the signed quoted spread,
that is, that we recall to be the association of the effective spread
along with the trade direction effects, as the main source of
market microstructure noise. In addition, the high frequency
financial characteristics explaining the parameter variability
will be classified as supplementary sources in Section 5.6.

Furthermore, in light of the above findings, trade direc-
tion seems to have become less informative over time as the
efficient-to-mid price deviation has decreased globally, now
counting for less than 10% of the quoted bid-ask half-spread.
One possible interpretation is that market makers tend to track
the efficient price (through their order submissions) more and
more precisely, making de facto the mid price stick to the
efficient price. In addition, the decreasing of the noise variance
over time parallel to that of the spread suggests that the
better tracking of the efficient price along with a reduction of
transaction costs.

We finally examine the serial autocorrelation of the param-
eter’s daily returns. Figure 4 contains the first 30 lags of the
parameter’s autocorrelation function. Essentially, the returns
feature a nonnegligible negative first lag autocorrelation,
whereas further lags are at most barely significant. In particular,
there is no evidence of long range dependence in the increments
of the effective-to-quoted-spread parameter. The negative first
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Figure 3. Monthly averages of five quantities over the period 2009–2017. The top left panel documents the evolution of the effective-to-
quoted-spread parameter. The top right panel shows the market microstructure noise variance. The middle left panel reports the noise-to-signal
ratio whereas the middle right panel shows RATIOTS. Finally, the bottom left panel corresponds to BOUNCE.

Figure 4. Autocorrelation function of the parameter’s daily returns.
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Table 15. Summary table of the financial characteristics

Name Symbol Mean SD 5% Median 95%

Tick/spread ratio RATIOTS 0.690 0.290 0.155 0.778 0.997
Tick/price ratio (×104) RATIOTP 2.602 1.891 0.644 1.985 6.835
Spread/price rRatio (×103) RATIOSP 0.374 0.168 0.169 0.335 0.735
Bid-ask bounce proportion BOUNCE 0.749 0.163 0.465 0.756 0.973
Log-number of trades logN 9.373 0.857 8.083 9.307 10.934
Log-number of volumes logV 14.724 1.085 13.056 14.652 16.759
Volatility (×102) σ 0.310 0.176 0.121 0.260 0.685
Trade direction autocorrelation TDCORR 0.398 0.112 0.242 0.379 0.596
Absolute order flow imbalance (×102) AOFI 5.741 4.783 0.422 4.580 15.037
Order book asymmetry OBA 0.374 0.067 0.255 0.382 0.473
Average trade size ATS 0.804 0.534 0.131 0.700 1.658

lag also suggests a slight mean-reversion effect in θ0 (and thus
in the noise level of the market, by (27)) in time.

5.5. High Frequency Financial Characteristics of the
Underlying Stocks

We look at a collection of financial characteristics that are
typically identified as potential sources of market frictions in
the literature. These characteristics are commonly interpreted
as financial measures of liquidity. A summary of these financial
characteristics can be found in Table 15.

In addition to the volatility σi,t introduced in Section 5.1,
we let RATIOTSi,t be the daily average ratio of the price tick
size over the spread. We see this measure, which by definition
lies between 0 and 1, as primarily accounting for the impact of
discreteness on the market microstructure noise. Indeed, a stock
with RATIOTSi,t ≈ 1 (also called large-tick asset), which in
particular can be considered as liquid since transaction costs are
reduced to their minimum, suffers directly from discreteness
effects. Correspondingly, a stock featuring RATIOTSi,t ≈ 0 can
be considered as relatively free from those effects. Similarly,
RATIOTPi,t (respectively, RATIOSPi,t) stands for the ratio of
one tick over the average mid price (respectively, the average
ratio of the quoted spread over the mid price). While those
three measures are related, there are conceptually very distinct
and appeal to distinct audiences. On the one hand, RATIOTSi,t
corresponds to discreteness effects of special interest to the
market maker, as its objective is usually to “make the spread.”
On the other hand, a fundamental investor may be interested
in RATIOSPi,t (or even RATIOTPi,t, there are both very close
to each other in practice) to value the impact of discreteness
effects in her balance sheet.

We define the proportion of trades that are exclusively due
to the bid-ask bounce mechanism, which is defined in the
present work as transactions which do not induce a shift in
the mid price, as BOUNCEi,t. We also let logNi,t denote the
daily logarithm of the number of trades, and similarly logVi,t
be the daily logarithm of the traded volume. TDCORRi,t is the
daily first lag autocorrelation of the trade direction. Writing
NBIDi,t (respectively, NASKi,t) the number of market orders
executed at the best bid price (respectively, best ask price), we
define the absolute order-flow imbalance AOFIi,t = |NASKi,t −

NBIDi,t|/(NASKi,t + NBIDi,t) ∈ [0, 1], which measures the
(average) asymmetry in the trade order flow.

Finally, we consider two additional measures, respectively,
related to the shape and the depth of the first level of the order
book. We define the order book asymmetry OBAi,t as the daily
average of the quantity |VASK − VBID|/(VASK + VBID) ∈
[0, 1], where VASK (respectively, VBID) stands for the pending
volume at the best ask limit (respectively, best bid limit). OBAi,t
is related to the micro-price (see, e.g., Gatheral and Oomen
2010, sec. 4.3, for corresponding definition and interpretations),
which is a popular proxy for the efficient price. An OBAi,t close
to 1 indicates that one limit of the order book is nearly empty. It
is well-known that the sign of short term mid price increments
is negatively correlated with the signed OBAi,t. In fact, this
corresponds to the signaling and barrier effects described in
Huang and Stoll (1994). The second volume-based measure
is defined as the daily average trade size ATSi,t, scaled by the
pending volume at the best limit where the trade was executed.
ATSi,t is thus the daily average of VTRADE/VBEST ∈ [0, 1]
where, for each trade, VTRADE is the size of the order, and
VBEST corresponds to VASK if the order was buyer-initiated
and VBID otherwise.

5.6. The Effective-to-Quoted-Spread Parameter and
Financial Characteristics: Looking for the Residual
Sources of Noise

We now proceed to relate our high frequency estimates of
θ0 to the financial characteristics discussed in Section 5.5. By
regressing θ0 on other variables, we aim at looking for residual
sources of noise (in the sense that they are not intraday, but
rather explains variability in days and stocks). Indeed, recalling
the key relation (27), we see that a measure which has an impact
on θ0 directly affects the general variance level of the related
MMN. It can therefore be seen as a source of MMN since it
contributes to determine the size of the noise on a given day
for a given stock. (However, note that in view of the intraday
stability of θ0, such contribution does not seem to vary at high-
frequency time scales.) It is also worth noting that, alternatively,
the effect of the aforementioned measures could be studied by
considering more general models than the additive approach of
(1). For instance, Li, Zhang, and Li (2018) and Tang and Zhang
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Figure 5. Scatterplots of the effective-to-quoted-spread parameter versus five financial characteristics.

(2018) recently proposed new volatility estimation methods for
models which explicitly feature price discreteness in addition
to the additive MMN. We consider the set of measures

M := {RATIOTS, RATIOTP, RATIOSP, BOUNCE,

logN, logV , σ , TDCORR, AOFI, OBA, ATS}.
Moreover, for computational tractability, we conduct our
regression analysis on yearly averaged-values of the effective-
to-quoted spread parameter and of the aforementioned financial
characteristics.9 Accordingly, for each x ∈ M, each year
y = 2009, . . . , 2017 and each stock i, we look at the yearly
averages θi,y and xi,y of our daily estimates. Figure 5 shows
scatterplots of θi,y versus five measures taken from M. We can
see that a linear relation seems reasonable for three measures,
but θi,y seems to exhibit a strong nonlinear relationship with
RATIOTSi,y and BOUNCEi,y. In both cases, the V-shape
of the scatterplot suggests a structural break in θ0 when
RATIOTS (respectively, BOUNCE) approaches 0.9, with a
negative pre-breakpoint slope, and a positive post-breakpoint

9Although not reported in the article, we have also considered shorter periods
such as 6 or 3 months. Apart from slightly lower R2, the significance, the
rankings of the financial measures and their estimated coefficients in the
regressions reported in Tables 16 and 17 are unchanged.

slope. Accordingly, we begin our investigation by running the
following simple regressions

θi,y = β0 + β1xi,y + εi,y (28)

for x ∈ M0 := {RATIOTP, RATIOSP, logN, logV , σ , TDCORR,
AOFI, OBA, ATS}. Moreover, we explicitly incorporate the
presence of a structural break in the regressions of θ0 on
BOUNCE and RATIOTS by running the regression

θi,y = β0 + β1(xi,y − x∗)1{xi,y≤x∗} + β2(xi,y − x∗)1{xi,y>x∗} + εi,y

(29)

for x ∈ M1 := {RATIOTS, BOUNCE}. The estimation of
(β0, β1) in (28) and the quadruplet (β0, β1, β2, x∗) in (29) is
performed by an ordinary least square method (OLS).

The results of the individual OLS regressions can be found in
Table 16. We have sorted the individual regressions according
to their adjusted regression R-squared. Overall, the tick-over-
spread ratio explains most variation in θ0 (52.1%), followed
by the order book asymmetry (26.7%), and the bid-ask bounce
proportion (22.9%). We find a negative correlation between
RATIOTS and θ0 and BOUNCE and θ0 before the breakpoint.
The regression slope then turns sharply positive when those
variables approach 1. It is difficult to interpret the relationship
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Table 16. Simple linear regressions of the effective-to-quoted-spread parameter on financial characteristics

Variable Coeff Breakpoint Adj R2 t-stat

RATIOTS −0.15, 6.90 0.98 52.1% −19.20, 15.07
OBA −0.51 26.7% −12.10
BOUNCE −0.16, 1.62 0.91 22.9% −8.16, 10.32
TDCORR 0.23 13.4% 7.93
DATE (×10−5) 2.22 12.2% 7.53
logN (×10−1) 0.25 10.1% 6.76
RATIOSP (×10−1) 0.77 4.7% 4.53
σ (×10−1) −0.57 2.2% −3.15
RATIOTP −36.00 1.3% −2.48
logV (×10−2) 0.70 1.0% 2.11
ATS (×10−1) −0.14 0.7% −1.86−
AOFI 0.11 −0.2% 0.54−

NOTES: This table documents the simple linear regressions described in (28) and (29). The column “Coeff” shows the slope coefficients (prior and post breakpoint for RATIOTS and
BOUNCE). The column “Breakpoint” contains the values where the structural break occurs. “Adj R2” corresponds to the adjusted R2 of the regressions and finally the last column
documents the t-statistics of the regressions, where the presence of − on the right indicates that the p-value was above the 5% level.

between θ0 and both variables individually, especially because
they are highly correlated. OBA is negatively correlated with
θ0. This indicates that trades from asymmetric order books tend
to feature lower θ0, or, in other words, more additional infor-
mational content. We also find that both variables TDCORR
and logN explain, respectively, 13.4% and 10.1% of the vari-
ability in θ0 with a positive correlation. In addition to the
other variables, we have also run the regression on time (row
DATE in Table 16) to confirm our findings of Section 5.4.
Unsurprisingly, we find a positive linear trend in θ0 over time.
Finally, the other variables explain less than 5% of the variation
in θ0.

Due to high correlations across the financial characteristics,
the individual regression results are hard to interpret. Accord-
ingly, we now proceed to disentangle the effects of the measures
on θ0 by running the following global multiple linear regression

θi,y = β0 +
∑

j|xj∈M0

βjxj,i,y +
∑

j|xj∈M1

{
β1,j(xj,i,y − x∗

j )1{xj,i,y≤x∗
j }

+ β2,j(xj,i,y − x∗
j )1{xj,i,y>x∗

j }
}

+ εi,y.

The results of the above regression are presented in the left
panel of Table 17. Overall, we find that the financial char-
acteristics from the literature account for 90.4% (in terms of
adjusted R2) of the variability in θ0. The two most significant
variables are by far RATIOTS and BOUNCE. We note that
the order book asymmetry variable is no longer relevant in
the multiple regression context, most likely due to its high
level of correlation with the two aforementioned variables.
Most importantly, we can see that RATIOTS and BOUNCE
now present slopes of constant sign on both sides of their
respective breakpoints. Other things equal, the tick-over-spread
ratio, accounting for the level of discreteness of the stock,
affects negatively θ0, that is, increasing the tick size in spread
units tends to shift the efficient price away from the mid price.
The negativity of the relation is puzzling as we expect that
more liquid stocks are less noisy (see Aı̈t-Sahalia and Yu 2009),
but can be interpreted as follows. When the tick-over-spread

ratio is smaller and other things are held constant, the market
makers placed on both sides of the spread can track the shocks
in the efficient price more meticulously since the tick grid is
denser, thus reducing the deviation between the efficient price
and the mid price. In conjunction with this relation, we find
a positive relation between θ0 and the proportion of bid-ask
bounce. The obvious interpretation is that, all other things being
equal, the trade direction is less informative in stocks with a
bigger proportion of bid-ask bounce. Now, given the high level
of correlation between both variables (ρ ≈ 0.87), the two-
regime behavior of θ0 as a function of discreteness (see Figure 5
along with the individual regression on RATIOTS) can be easily
explained as follows. As long as RATIOTS is not too close to
unity, increasing the discreteness level mainly negatively affects
the way market makers can track the efficient price. However,
when the tick-over-spread ratio becomes too close to unity (i.e.,
hits the breakpoint 0.98 found in Table 16), it becomes virtually
impossible to insert new orders inside the spread, which implies
a high level of bid-ask bounce and pulls back the efficient-to-
mid price deviation to 0.10

We next investigate whether it is possible or not to reach a
similar level of goodness of fit (here adjusted R2) with a subset
of the regressors in the above regression. It turns out that, as
reported in the right panel of Table 17, the combined effects
of RATIOTS and BOUNCE already gives an adjusted R2 of
86.5%, which is quite close to 90.4%.

Finally, we look at the best submodel selected by
Akaike’s information criterion (AIC). We find that {RATIOTS,
BOUNCE, TDCORR, RATIOTP, logN, σ } is the most infor-
mative model among all possible combinations, suggesting
that {TDCORR, RATIOTP, logN, σ } should contain additional
minor sources of market microstructure noise. The regression
results are very similar to the global ones for each variable and
have been omitted for the sake of brevity.

10Note that in the limit of a pure bid-ask bounce, Equation (9) in the dynamic
case immediately yields θ0 = 1.
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Table 17. Multiple linear regressions of the effective-to-quoted-spread parameter on financial characteristics

All characteristics Main characteristics

Variable Coeff t-stat Breakpoint Coeff t-stat Breakpoint

RATIOTS −0.31, −0.98 −15.30, −23.73 0.76 −0.27, −0.93 −29.54, −28.98 0.76
BOUNCE 0.42, 1.30 12.37, 17.71 0.79 0.39, 1.40 19.85, 34.21 0.79
TDCORR −0.15 −5.86
σ −0.10 −5.08
RATIOTP 113.38 4.50
logN 0.01 1.99
ATS −0.01 −1.97
RATIOSP 0.035 1.45−
AOFI −0.16 −1.39−
OBA 0.05 1.22−
logV (×10−1) 0.03 0.54−

Intercept 0.76 18.41 0.87 297.10
Adj R2 90.4% 86.5%

NOTES: This table documents two multiple linear regressions of θ0. The left panel corresponds to the regression of θ0 on all the financial characteristics. The right panel stands for
the regression on the submodel consisting of the set {RATIOTS, BOUNCE}. The columns “Coeff” show the slope coefficients (pre and post breakpoint for RATIOTS and BOUNCE).
The columns “Breakpoint” contain the values where the structural break occurs. The columns “t-stat” document the t-statistics of the regressions, where the presence of − on the right
indicates that the p-value was above the 5% level. The row “Adj R2” corresponds to the adjusted R2 of the regressions.

Table 18. Market factor regression for the effective-to-quoted parameter and market microstructure noise standard deviation

θ0 aMMN

βi |t-stat| Adj R2 βi |t-stat| Adj R2

Mean 0.79 10.76 7.54% 0.57 7.14 3.32%
SD 0.53 6.24 6.47% 0.31 2.96 2.68%
Min 0.07 0.52 −0.10% −0.05 0.20 −0.05%
Median 0.70 9.59 5.62% 0.63 7.05 3.21%
Max 1.91 24.7 22.5% 1.15 13.2 8.11%
Positive 100% 94%
Significant 100% 88%

NOTES: In this table, we have reported the results of the regression (30). The left panel corresponds to the case θ0, whereas the right panel shows the results for aMMN. The row
“Positive” gives the proportion of stocks with a positive βi. The row “Significant” corresponds to the proportion of stocks for which the two-sided test of the null hypothesis βi = 0 was
rejected with 5% significance level.

Overall, we deduce that discreteness can reasonably be
considered as the main source to explain variability in effective-
to-quoted-spread parameter, and accordingly bid-ask bounce as
the second source.

5.7. Market Factor in the Effective-to-Quoted-Spread
Parameter

We conclude this empirical analysis by investigating
whether the parameter and the market microstructure noise
standard deviation contain a market factor or not. Co-
movements in aMMN have already been reported in Aı̈t-Sahalia
and Yu (2009). The authors show that over the period 1995–
2005, even though regressing on a common market factor yields
poor adjusted R2 levels, a nonnegligible portion of stocks
features a nonzero slope coefficient, suggesting that there is
commonality in microstructure noise variation.

To assess the presence of a market wide factor in both
variables, we look for each stock i at the regression of
the daily relative change of θi,t (respectively, ai,t,MMN) on

the daily relative change of the (equally weighted) market-
wide variable θ−i,t = 1

49

∑
j �=i θj,t (respectively, a−i,t,MMN =

1
49

∑
j �=i aj,t,MMN), excluding the stock i itself

log

(
yi,t

yi,t−1

)
= αi + βilog

(
y−i,t

y−i,t−1

)
+ εi,t, (30)

where yi,t ∈ {θi,t, ai,t,MMN}. By excluding the stock that appears
on the left-hand side of the regression from the market index
on the right-hand side, we stay away from getting artificially
biased coefficients.

Results of both regressions are reported in Table 18. In most
cases we find positive slopes, which are statistically significant
in 100% of cases (respectively, 88%) for θ0 (respectively,
aMMN). It indicates the presence of a market effect in the
daily returns of both variables. Moreover, we can clearly see
that such effect is stronger in θ0 than it is for the market
microstructure noise. This is confirmed by a higher level of
adjusted regression R2 for θ0 (7.54% on average) than for the
noise (3.32%). Since price discreteness and bid-ask bounce are
the main constituents of θ0 (Table 17), and θ0 and the quoted
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signed spread variance determine the market microstructure
noise variance (by the relation (27)), the fact that θ0 is more
often significantly correlated to its market index counterpart
than is aMMN suggests that price discreteness and bid-ask
bounce mechanisms are more subject to such a market effect
than the quoted signed spread variance.

6. CONCLUDING REMARKS

In this paper, we investigate the consistency of a BIC
to discriminate between several financial models of market
microstructure noise. We also give a BIC-based volatility esti-
mation procedure, although not considering the according limit
theory. We identify the quoted spread as a simple model which
explains a very large proportion of the market microstructure
noise. We investigate the relation between the efficient price
and the vector of raw prices in this model. We find that the
efficient price is systematically between the mid price and
the transaction price. We also document that the variability of
the parameter is low compared to that of the signed spread.
We explain the parameter variability with several financial
characteristics, and accordingly identify discreteness as the first
residual source of noise, and bid-ask bounce effects as the
second residual source.

SUPPLEMENTARY MATERIALS

Supplemental materials consist of proofs related to the BIC (Section 3).
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