第4章の答え

1. この計算は同時確率を考慮していないため誤っています。

2. A大学に合格する事象をAとし、B大学に合格する事象をBとします。それぞれの確率はP{A}=0.1, P{B}=0.05, P{A∩B}=0.03ですから、少なくともどちらかの大学に合格（A∪B）する確率は、P{A∪B}=P{A}+P{B}-P{A∩B}=0.1+0.05-0.03=0.12です。

3. 加法定理からP{A∪A2}=P{A1}+P{A2}-P{A1∩A2}=2×(1/6)-(1/6)²=11/36です。ド・メレの間違いは同時確率（2回とも6の目が出る確率）を引かなかったことです。

4. ここで1個目の玉が赤である事象をA、2番目の玉が赤である事象をBとします。両方とも赤は、P{A∩B}=P{A}P{B|A}です。玉は計9個あり、そのうち赤は4個ですからP{A}=4/9です。1個目が赤なら、残り8個のうち3個が赤ですからP{B|A}=3/8です。よって、P{A∩B}=(4/9)×(3/8)=1/6です。

5. 事象Aを試合に勝つ、事象Bを雨が降るとします。このとき、P{B}=0.3、P{B}=0.7、P{A|B}=0.9です。試合に勝つ確率は、P{A}=P{A∩B}+P{A∩B}=P{A|B}P{B}+P{A|B}P{B}P{A|B}=0.7×0.3+0.9×0.7=0.84です。

6. 52枚から5枚を取り出すとき組み合わせは52C5通りあります（付録A参照）。取り出された5枚が全てハートであるとき、その組み合わせは計13C5通りあります。したがって、52枚から5枚取り出して全てハートの確率は、

\[
\begin{align*}
\frac{13C5}{52C5} &= \frac{\frac{13!}{5!(13-5)!}}{\frac{52!}{5!(52-5)!}} \\
&= \frac{13 \times 12 \times 11 \times 10 \times 9}{52 \times 51 \times 50 \times 49 \times 48} = 0.000495
\end{align*}
\]

7. 1)A1を全員が男、A2を全員が女と定義します。ここでP{A1}は3人全てが男の子である確率です。3人全てが男である確率は(1/2)^3です。同様に、3人全てが女である確率は(1/2)^3です。A1とA2が互いに排反ですから、全
部の子供が同姓の確率は、\(P\{A_1 \cup A_2 \} = P\{A_1 \} + P\{A_2 \} = (1/2)^3 + (1/2)^3 = (1/2)^2 \)。2)

を \(i \) 番目が女で他が男の事象と新たに定義します（たとえば、\(A_1 \) は女男）。\(A_1, A_2, A_3 \) は互いに排反ですから、女 1 人、男 2 人となる確率は

\[P\{A_1 \cup A_2 \cup A_3 \} = P\{A_1 \} + P\{A_2 \} + P\{A_3 \} = (1/2)^3 + (1/2)^3 + (1/2)^3 = 3/8. \]

HIV 感染者を \(A_1 \), HIV 非感染者を \(A_2 \), 陽性反应を \(B \) とします。それぞれの確率は、\(P\{A_1 \} = 0.001 \), \(P\{A_2 \} = 0.999 \), \(P\{B|A_1 \} = 1.0 \), \(P\{B|A_2 \} = 0.01 \)です。

このとき、陽性反応の確率は

\[P\{B\} = P\{B|A_1 \} P\{A_1 \} + P\{B|A_2 \} P\{A_2 \} = 1.0 \times 0.001 + 0.01 \times 0.999 = 0.01099. \]

よって、(HIV A1 | B) A1 = (1.0/0.01099) \times 0.001 = 0.0909 9.

9. 同時確率は以下として書けます。

\[P\{A_1 \cap A_2 \cap \ldots \cap A_n \} = \frac{P\{A_1 \cap A_2 \cap \ldots \cap A_{n-1} \cap A_n \}}{P\{A_1 \cap A_2 \cap \ldots \cap A_{n+1} \} \cap \ldots \cap A_n} \]

両辺が等しくなるのは、右辺の分母と分子が上手く打ち消し合っているからです。また、条件付き確率の定義から以下が成立します。

\[P\{A_2 | A_1 \} = \frac{P\{A_1 \cap A_2 \}}{P\{A_1 \}}, \ldots \]

\[P\{A_{n-1} | A_1 \cap A_2 \cap \ldots \cap A_{n-2} \} = \frac{P\{A_1 \cap A_2 \cap \ldots \cap A_{n-2} \cap A_{n-1} \}}{P\{A_1 \cap A_2 \cap \ldots \cap A_{n-2} \} \cap \ldots \cap A_n} \]

\[P\{A_n | A_1 \cap A_2 \cap \ldots \cap A_{n-1} \} = \frac{P\{A_1 \cap A_2 \cap \ldots \cap A_{n-1} \cap A_n \}}{P\{A_1 \cap A_2 \cap \ldots \cap A_{n-1}\}} \]

これらを同時確率の式に代入すると、同時確率が条件付き確率の積として表現できることが分かります。

\[P\{A_1 \cap A_2 \cap \ldots \cap A_{n-1} \cap A_n \} = P\{A_1 \} P\{A_2 | A_1 \} \ldots P\{A_{n-1} | A_1 \cap \ldots \cap A_{n-2} \} P\{A_n | A_1 \cap \ldots \cap A_{n-1}\} \]

10. 因人 1 が恩赦なら \(A_1 \), 因人 2 が恩赦なら \(A_2 \), 因人 3 が恩赦なら \(A_3 \), 「因人 2 が処刑される」といわれる場合を \(B \) とします。それぞれの確率は、

\(P\{A_1 \} = P\{A_2 \} = P\{A_3 \} = 1/3 \) です。因人 1 が恩赦なら、看守は因人 2 も 3 も処刑のためランダムに因人 2 が処刑といった、と考えられます。

\(P\{B|A_1 \} = 0.5 \)。因人 2 が恩赦なら、因人 2 が処刑といわれることはありません \(P\{B|A_2 \} = 0.0 \)。因人 3 が恩赦なら、因人 2 が処刑といわれます \(P\{B|A_3 \} = 1.0 \)。以上から、
\[P(B) = P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + P(B|A_3)P(A_3) = 0.5 \times (1/3) + 0.0 \times (1/3) + 1.0 \times (1/3) = 0.5. \] よって、\[P(A_1|B) = \frac{P(B|A_1)}{P(B)} = \frac{0.5}{0.5} \times (1/3) = 1/3. \]したがって、看守は「囚人 2 が処刑される」といったとき、囚人 1 が恩赦となる確率は 1/3 から変わっていません。また、囚人 3 に関しては、\[P(A_3|B) = \frac{P(B|A_3)}{P(B)} = \frac{1.0}{0.5} \times (1/3) = 2/3 \]から、看守は「囚人 2 が処刑される」といったとき、囚人 3 が恩赦となる確率は 1/3 から 2/3 に上がっています。

11.1 番に車が入っている場合を事象 A_1、2 番に車が入っている場合を事象 A_2、3 番に車が入っている場合を事象 A_3 とします。そして、「司会者が 2 番のドアを開ける」という場合を事象 B とします。それぞれの確率は、\[P(A_1) = P(A_2) = P(A_3) = 1/3 \]です。もし 1 番のドアに車が入っているなら、司会者は 2、3 番のどちらを開けてもよいので、ランダムにどちらかを開けます（P(B|A_1) = 0.5）。もし 2 番のドアに車が入っているなら、2 番のドアを開けるとクイズが終わるため、司会者は 3 番のドアを開けます（P(B|A_2) = 0.0）。もし 3 番のドアに車が入っているなら、司会者は 2 番のドアを開けます（P(B|A_3) = 1.0）。以上から、司会者が 2 番のドアを開ける確率は、\[P(B) = P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + P(B|A_3)P(A_3) = 0.5 \times (1/3) + 0.0 \times (1/3) + 1.0 \times (1/3) = 0.5 \]です。よって、2 番のドアが開けられた後で 1 番のドアに車が入っている確率は、\[P(A_1|B) = \frac{P(B|A_1)}{P(B)} = \frac{0.5}{0.5} \times (1/3) = 1/3 \]で変わりません。また、2 番のドアが開けられた後で 3 番のドアに車が入っている確率は、\[P(A_3|B) = \frac{P(B|A_3)}{P(B)} = \frac{1.0}{0.5} \times (1/3) = 2/3 \]です。以上から、1 番のドアであれば当選確率は 1/3 で、ドアを変えると 2/3 に増えるのです。

12. たとえば、左前輪といって、これが偶然に当たる確率は 1/16 です。タイヤは計 4 つですから、偶然当たる確率は 4 \times (1/16) = 1/4 です。

13. 確率の公理は、
(1) 任意の事象 A に対して 0 \leq P(A) \leq 1
(2) \Omega に対して P(\Omega) = 1
(3) A と B が互いに排反ならば P(A \cup B) = P(A) + P(B)
となります。以下では、先験的確率、経験的確率、条件付き確率について確率
の公理が全て満たされることを証明します。

まずは、先驗的確率が確率の公理を満たすことを確認しましょう。公理(1)については、\(n>0 \)と\(n(A)\geq 0 \)ですから\(P\{A\}=n(A)/n\geq 0 \)となります。公理(2)は、\(n(\Omega)=n \)ですから、\(P\{\Omega\}=n(\Omega)/n=1 \)です。公理(3)についても、\(A \)と\(B \)が互いに排反であれば、\(A \)と\(B \)に何らの共通点もありませんから、\(n(A\cup B)=n(A)+n(B) \)です。よって、\(P\{A\cup B\}=n(A\cup B)/n=n(A)/n+n(B)/n=P\{A\}+P\{B\} \)となります。

経験的確率も、確率の公理を満たします。公理(1)については、\(n>0 \)、\(n(A)\geq 0 \)ですから、\(P\{A\}=n(A)/n\geq 0 \)が成立します。次に、公理(2)について考えましょう。何度試行をしても、その結果は標本空間\(\Omega \)のどれかが生じます。よって、観察回数\(n \)は\(n(\Omega) \)に等しくなります。よって、\(P\{\Omega\}=n(\Omega)/n=1 \)です。公理(3)についても、\(A \)と\(B \)が互いに排反であれば、\(n(A\cup B)=n(A)+n(B) \)です。たとえば、コインを投げて、表か裏が出た回数を求めるには、表が出た回数+裏が出た回数を求めればよいです。よって、

\[
P\{A\cup B\}=n(A\cup B)/n= n(A)/n+ n(B)/n=P\{A\}+P\{B\}
\]

条件付き確率も確率の公理を満たします。公理(1)については、\(P\{A\cap B\}\geq 0 \)、\(P\{B\}>0 \)ですから、\(P\{A\mid B\}=P\{A\cap B\}/P\{B\}\geq 0 \)です。また、公理(2)については、\(P\{B\cap \Omega\}=P\{B\} \)ですから、\(P\{\Omega\mid B\}=P\{\Omega\cap B\}/P\{B\}=P\{B\}/P\{B\}=1 \)となります。公理(3)について考えましょう。2つの排反する事象\(A_1 \)と\(A_2 \)を考えます。下図の通り、事象\(A_1 \)と\(A_2 \)は排反しているため、標本空間は\(A_1 \)と\(A_2 \)に分けられます。

新たに事象\(B \)を考えると、\((A_1\cup A_2)\cap B=(A_1\cap B)\cup (A_2\cap B) \)となります。\(A_1 \)と\(A_2 \)が互いに排反ですから、\((A_1\cap B) \)と\((A_2\cap B) \)も互いに排反です。よって、

\[
P\{A_1\cup A_2\mid B\}=P\{(A_1\cup A_2)\cap B\}/P\{B\}
\]

\[
=P\{(A_1\cap B)\cup (A_2\cap B)\}/P\{B\}
\]

\[
=(P\{A_1\cap B\}+P\{A_2\cap B\})/P\{B\}
\]

\[
=P\{A_1\cap B\}/P\{B\}+P\{A_2\cap B\}/P\{B\}
\]

\[
=P\{A_1\mid B\}+P\{A_2\mid B\}
\]
14. 事象 A と B が独立とは、$P(A) = P(A | B)$, $P(B) = P(B | A)$ が成立することだったのを思い出してください。ここで事象 A と B が排反であるとしましょう。このとき、両者が排反であるという情報が条件付き確率に大きな影響を与えることを示します。

事象 A と B が排反であれば、両事象に何らの共通点もないため、事象 A と B は同時に生じることはありません（$P(A \cap B) = 0$）。よって、事象 B が生じるなら、事象 A は生じないといえます。つまり、条件付き期待値は $P(A | B) = P(A \cap B) / P(B) = 0$ となるわけです。以上から、事象 A と B が排反であれば、両者は独立ではないことが確認できました。排反と独立とは異なる概念ですが、混同しやすい概念でもあるので気を付けてください。