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Forward – Versus Backward – Looking Solutions 

This Material Follows Section 9 of Chapter 1 

 

Note that the equations are numbered consecutively following those in the text.  

 As suggested by equation (1.82), there is a forward-looking solution to any linear 
difference equation. This text will not make much use of the forward-looking solution since 
future realizations of stochastic variables are not directly observable. However, knowing how to 
obtain forward-looking solutions is useful for solving rational expectations models. Let's return 
to the simple iterative technique to consider the forward-looking solution to the first-order 
equation yt = a0 + a1yt-1 + t. Solving for yt-1, we obtain 

                                                                          

0 1 1-1 ( ) / /t tt a a y ay                                                 (1.83)  

 

Updating one period 

                                                   yt =  (a0 + t+1)/a1 + yt+1/a1                                                                 (1.84)   

Since yt+1 = (yt+2 - a0 - t+2)/a1, begin iterating forward:  

 

                       yt = (a0 + t+1)/a1 + (yt+2  a0  t+2)/(a1)
2  

                           = (a0 + t+1)/a1  (a0 + t+2)/(a1)
2 + yt+2/(a1)

2 

                                =  (a0 + t+1)/a1  (a0 + t+2)/(a1)
2 + (yt+3  a0  t+3)/(a1)

3 

Therefore, after n iterations, 

0 1 1 1
1 1

/
n n

i i n
t i t nt

i i

a a a y ay  
 

 

                                           (1.85) 

If we maintain thata1 < 1, this forward-looking solution will diverge as n gets infinitely 
large. However, if a1 > 1, the expression a1

-n goes to zero while a0(a1
-1 + a1

-2 + a1
-3 + ... ) 

converges to a0/(1a1). Hence, we can write the forward-looking particular solution for yt as 

0 1 1
1

/(1 )
n

i
t it

i

a a ay  


                                                  (1.86) 

Note that (1.86) is identical to (1.82). The key point is that the future values of the   
disturbances affect the present. Clearly, if a1 > 1 the summation is convergent so that (1.86) is 
a legitimate particular solution to the difference equation. Given an initial condition, a stochastic 
difference equation will have a forward- and a backward-looking solution. To illustrate the 
technique using lag operators, we can write the particular solution to yt = a0 + a1yt-1 + t as (a0 + 
t)/(1-a1L). Now multiply the numerator and denominator by -a1

-1L-1 to form 
1 1 1 1

0 1 1 1/(1 ) /(1 )t ty a a a L a L        
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so that 

    0 1
1

/(1 ) i
t i t i

i

y a a a 







      (1.87) 

More generally, we can always obtain a forward-looking solution for any nth-order equation. 
(For practice in using the alternative methods of solving difference equations, try to obtain this 
forward looking solution using the method of undetermined coefficients.) 

Properties of the Alternative Solutions 
The backward- and forward-looking solutions are two mathematically valid solutions to any n-th 
order difference equation. In fact, since the equation itself is linear, it is simple to show that any 
linear combination of the forward- and backward-looking solutions is also a solution. For 
economic analysis, however, the distinction is important since the time paths implied by these 
alternative solutions are quite different. First consider the backward looking solution. If a1 < 
1, the expression a1

i converges towards zero as i  . Also, notice that the effect of t-i on yt is 
a1

i; if a1 < 1, the effects of the past t also diminish over time. Suppose instead that a1 > 1; 
in this instance, the backward-looking solution for yt explodes.  

The situation is reversed using the forward solution. Here, if a1 < 1, the expression a1
-i 

becomes infinitely large as i approaches . Instead, if a1 > 1, the forward- looking solution 
leads to a finite sequence for {yt}. The reason is that a1

-i converges to zero as i increases. Note 
that the  effect of t+i on yt is a1

-i; if a1 > 1, the effects of the future values of t+i have a 
diminishing influence on the current value of yt.  

From a purely mathematical point of view, there is no "most appropriate" solution. However, 
economic theory may suggest that a sequence be bounded in the sense that the limiting value for 
any value in the sequence is finite. Real interest rates, real per capita income, and many other 
economic variables can hardly be expected to approach either plus or minus infinity. Imposing 
boundary restrictions entails using the backward-looking solution if a1 < 1 and using the 
forward-looking solution if a1 > 1. Similar remarks hold for higher-order equations.  

An Example: Cagan's Money Demand Function 

Cagan's model of hyperinflation provides an excellent example of illustrating the appropriateness 
of forward- versus backward-looking solutions. Let the demand for money take the form 

 

mt  pt =    ( 1
e
tp   pt )      > 0                            (1.88) 

 

where:  mt = logarithm of the nominal money supply in t 

       pt  = the logarithm of price level in t 

      1
e
tp  = the logarithm of the price level expected in period t+1 

The key point of the model is that the demand for real money balances (mt - pt) is negatively 
related to the expected rate of inflation ( 1

e
tp    pt). Because Cagan was interested in the 
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relationship between inflation and money demand, all other variables were subsumed into the 
constant . Since our task is to work with forward-looking solutions, let the money supply 
function simply be the process: 

mt = m + t 

where m = the average value of the money supply 

      t = a disturbance term with a mean value of zero 

As opposed to the cobweb model, let individuals have forward-looking perfect foresight so 
the expected price for t+1 equals the price that actually prevails: 

1
e
tp   = pt+1 

Under perfect foresight, agents in period t are assumed to know the price level in t+1. In the 
context of the example, agents are able to solve difference equations and can simply "figure out" 
the time path of prices. Thus, we can write the money market equilibrium condition as 

m + t  pt =    ( pt+1  pt ) 

or 

     pt+1  (1+1/)pt = (m  ) /  t/(1.89) 

 

For practice, we use the method of undetermined coefficients to obtain the particular 
solution. (You should check your abilities by repeating the exercise using lag operators.)  We use 
the forward-looking solution because the coefficient (1+1/) is greater than unity in absolute 
value. Try the challenge solution 

 i+ti

=i

p
t   + b = p     



0
0  

Substituting this challenge solution into the above, we obtain 

10 0
0 0

- -1
- t

i t i i t i

i i

 m  
    b b      

   
 

 

  
 

 
   

 
                        (1.90) 

For (1.90) to be an identity for all possible realizations of {t}, it must be the case that 

 

b0 - b0(1+)/ = ( - m)/      b0      =  m -  

                                  -0(1+)/ = -1/          0   =  1/(1+) 

                                   0 - 1(1+)/ = 0          1    =  /(1+)2 

                                          . 

                                     . 

                                     . 

                                  i - i+1(1+)/ = 0          i    =  i/(1+)i+1 
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In compact form, the particular solution can be written as 
1

0

1

1

+i
p

t+it
i=

      = m -  + p
+

 
 

  
 
 

                                           (1.91) 

The next step is to find the homogeneous solution. Form the homogeneous equation pt+1 - 
(1+1/)pt = 0. For any arbitrary constant A, it is easy to verify that the solution is 

ph
t = A (1+1/)t 

Therefore, the general solution is 

1

0

1
( ) (1 1 )
1

+i
t

t+it
i=

      = m -  +  + A + /p
+


 



                                (1.92) 

If you examine (1.92) closely, you will note that the impulse response function is convergent; 
the expression [/(1+)]1+i converges to zero as i approaches infinity. However, the 
homogeneous portion of the solution is divergent. For (1.92) to yield a non-explosive price 
sequence, we must be able to set the arbitrary constant equal to zero. To understand the 
economic implication of setting A = 0, suppose that the initial condition is such that the price 
level in period zero is p0. Imposing this initial condition, (1.92) becomes 

1

0
0

1
( )
1

+i

i
i=

= m -  +  + Ap
+


 



  

Solving for A yields 

1

0
0

1
( )
1

+i

i
i=

A= + mp
+


 



    

Thus, the initial condition must be such that 

1

0
0

1
( )0
1

+i

i
i=

A =    or    = m -  + p
+


 



                                    (1.93)  

Examine the three separate components of (1.92). The deterministic expression m -  is the 
same type of long-run "equilibrium" condition encountered on several other occasions; a stable 
sequence tends to converge toward the deterministic portion of its particular solution. The second 
component of the particular solution consists of the short-run responses induced by the various t 
shocks. These movements are necessarily of a short-term duration because the coefficients of the 
impulse response function must decay. The point is that the particular solution captures the overall 
long-run and short-run equilibrium behavior of the system. Finally, the homogeneous solution can 
be viewed as a measure of disequilibrium in the initial period. Since (1.91) is the overall 
equilibrium solution for period t, it should be clear that the value of p0 in (1.93) is the equilibrium 
value of the price for period zero. After all, (1.93) is nothing more than (1.91) with the time 
subscript lagged t periods. Thus, the expression A(1+1/)t must be zero if the deviation from 
equilibrium in the initial period is zero. 

Imposing the requirement that the {pt} sequence be bounded necessitates that the general 
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solution be 





 i+t

i+

=i
t  

+
 +  - m = p ]

1
[

1 1

0



 

Notice that the price in each and every period t is proportional to the mean value of the 
money supply; this point is easy to verify since all variables are expressed in logarithms and 
pt/m = 1. Temporary changes in the money supply behave in an interesting fashion. The 
impulse response function indicates that future increases in the money supply, represented by the 
various t+i, serve to increase the price level in the current period. The idea is that future money 
supply increases imply higher prices in the future. Forward-looking agents reduce their current 
money holdings, with a consequent increase in the current price level, in response to this 
anticipated inflation.  

Practice question: Consider the Cagan demand for money function: mt - pt =  - [pt+1 - 
pt]. Show that the backward-looking particular solution for pt is divergent. 

 
Answer:  Using lag operators, rewrite the equation as pt+1 - (1 + )pt =  - mt. 
Combining terms yields [1 - (1 + 1/)L]pt+1 = ( - mt)/ so that lagging by one period 
results in 

 
[1 - (1 + 1/)L]pt = ( - mt-1)/ 

 
Since  is assumed to be positive, the expression (1 + 1/) is greater than unity.  Hence, 
the backward-looking solution for pt is divergent.   
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Stability of Higher-Order Systems 
Supplement to Appendix 1.2 

From equation (A1.12) of Appendix 1.2, the characteristic equation of an nth-order difference 
equation is  

  0...2
2

1
1  

n
nnn aaa   (A1.12) 

Denote the n characteristic roots by 1, 2, ... nGiven the results in Section 4, the linear 
combination A11

t + A22
t + ... + Ann

t is also a solution to (A1.12).  

 In practice, it is difficult to find the actual values of the characteristic rootsUnless the 
characteristic equation is easily factored, it is necessary to use numerical methods to obtain the 
characteristic rootsHowever, for most purposes it is sufficient to know the qualitative properties 
of the solution; usually it is sufficient to know whether all of the roots lie within the unit circle. 
The Schur Theorem gives the necessary and sufficient conditions for stabilityGiven the 
characteristic equation of (A1.12), the theorem states that if all of the n determinants below are 
positive, the real parts of all characteristic roots are less than one in absolute value. 

1

1

1
n

n

a

a


 


 

10

10

01

01

1

1

1

1

2

nn

n

n

nn

aa

aa

aa

aa












 

100

100

100

001

001

001

12

11

21

12

11

21

3

nnn

nn

n

n

nn

nnn

aaa

aaa

aaa

aaa

aaa

aaa


















. . .  

 

1...00..

1..000..

............

...100..0

..10..00

..0001..

............

..000..1

...00..01

...0..001

321

1432

21

121

321

312

21

11

n

nnn

nn

nnnn

n

n

nn

n

aaaa

aaaa

aaa

aaaa

aaaa

aaaa

aaa

aaa






















 

 



 

Supplementary Manual for Enders AETS  Page 9 
 

To understand the way each determinant is formed, note that each can be partitioned into four 
subareasEach subarea of iis a triangular i× i matrixThe northwest subarea has the value 1 on 
the diagonal and all zeros above the diagonalThe subscript increases by one as we move down 
any column beginning from the diagonalThe southeast subarea is the transpose of the northwest 
subareaNotice that the northeast subarea has an on the diagonal and all zeros below the 
diagonalThe subscript decreases by one as we move up any column beginning from the 
diagonalThe southwest subarea is the transpose of the northeast subareaAs defined above, the 
value of a0 is unity.  

Special Cases:As stated above, the Schur Theorem gives the necessary and sufficient 
conditions for all roots to lie in the unit circleRather than calculate all of these determinants, it 
is often possible to use the simple rules discussed in Section 6Those of you familiar with matrix 
algebra may wish to consult Samuelson (1941) for formal proofs of these conditions.  
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Additional Practice in Finding Homogeneous Solutions 
Example 1:  The AR(2) case: yt = a0 + 0.5yt-1 + 0.4yt-2  

      

Try yt = A0rt as the homogeneous solution. Hence, substitute yt = A0rt into yt  0.5yt-1  0.4yt-2 = 0 to 

obtain 
   

A0rt  - 0.5A0rt-1 - 0.4A0rt-2 = 0. 

 
There are two solutions for r: r1 = 0.43 and r2 = 0.93. Given the initial conditions, yt-2 = 0 and yt-1 = 2, 
the time path of the series is shown in the figure below.  

0 10 20 30
0

1

2

yt

t
 

Example 2: Another AR(2) model: yt = a0 + 0.9yt-1  0.2yt-2  

      

Again, try yt = A0rt for the solution to the homogeneous part of the equation. Substitute yt = A0rt into 

yt 0.9yt-1 + 0.2yt-2 = 0 to obtain  

 

 A0rt  - 0.9A0rt-1 + 0.2A0rt-2 = 0 

 
There are two solutions for r:  r1 = 0.4 and r2 = 0.5. For the initial conditions given in exercise 1, the 
time path of the series is: 

0 10 20 30
0

1

2

yt

t
 

Example 3: A third AR(2) model:  yt = .55yt-1 + 0.2yt-2                                                      
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Form the homogeneous equation: 
 

   yt - 0.55yt-1 - 0.2yt-2 = 0 

 
After forming the homogenous equation we check the discriminant (d) to see if the roots will 
be real and distinct or, alternatively, imaginary.  Using our definition of the discriminant, and 
Table 1, we find that d = (0.55)2 + 4(0.2) = 1.1025.  Thus we conclude that because d is 
greater than zero, the roots to this particular equation will be real and distinct. 

Table 1:  Discriminant = d = a1
2 + 4a2 

d > 0 d < 0 

Roots are real and distinct Roots are imaginary 

 

1. We know that the trial solution will have the form ݕ௧ ൌ  ௧ and we use this informationߙ
to obtain 
 

௧ߙ െ ௧ିଵߙ55. െ ௧ିଶߙ2. ൌ 0                                      

2. By dividing by ߙ௧ିଶ we obtain the characteristic equation: 
 

ଶߙ െ ௧ߙ55. െ ߙ2. ൌ 0                                            

3. We can now compute the two characteristic roots: 
 

ଵߙ ൌ 0.5൫ܽଵ ൅ ݀ଵ/ଶ൯ ൌ   ଶߙ 8. ൌ 0.5൫ܽଶ െ ݀ଵ/ଶ൯ ൌ  െ.25 

 

4. The last step is to write out the homogenous solution: 

 

ଵሺ.8ሻ௧ܣ ൅                                                    ଶሺെ.25ሻ௧ܣ

 
The following graph shows the time path of this equation for the case in which the arbitrary 

constants equal unity and t runs from 1 to 20. 
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Example 4:   Fibonacci’s Sequence 
 
The famed sequence of Leonardo Fibonacci can be represented by the following second-

order difference equation and initial conditions 
 

yt = yt-1 + yt-2; y1 = 1, y2 = 1                    
 

We know the homogeneous solution to this equation has the formݕ௧
௛ ൌ  ௧.  Substitutingߙܣ

this form into the above and setting the equation equal to zero yields 
 

௧ߙܣ െ ௧ିଵߙܣ െ ௧ିଶߙܣ ൌ 0            
 
Dividing both sides by ߙܣ௧ିଶ reduces our equation to 
 

ଶߙ െ ߙ െ 1 ൌ 0 
 

Using the quadratic formula we find the roots of this characteristics equation to be 

,ଵߙ ଶߙ ൌ
1 േ √5
2

 

 
We can now substitute these characteristic roots into the functional form to get 
 

௧ݕ ൌ ଵሺܣ 
ଵା√ହ

ଶ
ሻ௧ ൅ ܣଶሺ

ଵି√ହ

ଶ
ሻ௧            

 
Utilizing the first order conditions y1 = 1 and y2 = 1 we can now solve for the constants ܣଵ 

and ܣଶ. 
 

ଵݕ ൌ 1 = ܣଵሺ
ଵା√ହ

ଶ
ሻଵ ൅ ܣଶሺ

ଵି√ହ

ଶ
ሻଵ 



 

Supplementary Manual for Enders AETS  Page 13 
 

ଶݕ ൌ 1 = ܣଵሺ
ଵା√ହ

ଶ
ሻଶ ൅ ܣଶሺ

ଵି√ହ

ଶ
ሻଶ 

,ଵܣ ଶܣ ൌ  
1

√5
 

 

Therefore the homogeneous solution is ݕ௧ ൌ  
ଵ

√ହ
ሺଵା√ହ

ଶ
ሻ௧ ൅  ଵ

√ହ
ሺଵି√ହ

ଶ
ሻ௧  

 
The following graph shows the time path of the solution for the case in which the arbitrary 

constants equal unity and t runs from 1 to 20. 
 
 

 
 
 

Example 5: An example with complex roots 
 
Let us analyze the homogenous solution to a second-order differential equation with complex 

roots and no initial conditions 
 

௧ݕ ൌ  െ
ଵ

ଶ
௧ିଵݕ െ

ଵ

ସ
               ௧ିଶݕ

 

Calculating the discriminant (d) with ܽଵ ൌ
ଵ

ଶ
 and ܽଶ ൌ

ଵ

ସ
 yields ݀ ൌ  െ ଷ

ସ
.  This indicates that 

the characteristic roots to this difference equation will be complex.  The homogenous solution to 
the difference equation will then have the form ݕ௧

௛ ൌ ݐߠ௧cos ሺݎଵߚ  ൅ ݎ ଶሻ whereߚ ൌ

 ඨሺ௔భ
ଶ
ሻଶ ൅ ሺ݅ · ௗ

భ
మ

ଶ
ሻଶ and cos ߠ ൌ   ௔భ

ଶ௥
.  After solving for the values of r and θ we get  

ଵ

ଶ
 and 

గ

ଷ
, 

respectively.  Therefore the homogenous solution is 

௧ݕ
௛ ൌ ଵߚ  ·

ଵ

ଶ೟
cos ሺగ

ଷ
ݐ ൅         ଶሻߚ

 
The following graph shows the time path of the above for the case in which the arbitrary 

constants equal unity and t runs from 1 to 20. 
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Backward Solution with Stochastic Term 
 
Investigating difference equations with stochastic terms is very important in time-series.  The 

stochastic terms are i.i.d and normally distributed ߝ௧~ܰሺ0,  ,௧ߝ ,ఌଶ).  Let us add a stochastic termߪ
to a Example 3 above. Consider: 

 
yt = 2 + 0.55yt-1 + 0.2yt-2 + ߝ௧              

 
The solution to this second-order difference equation with a stochastic term takes the form 
 

௧ݕ ൌ ܿ ൅ ∑ ܿ௜ · ௧ି௜ߝ
ஶ
௜ୀ଴             

 
where c and ci are constants for all i.  The question now becomes what are the values for these 
constants.  To solve for these constants we will employ the method of undetermined 
coefficients, which is tantamount to equating like terms (according to the stochastic term and its 
lags) on both sides of the equation and solving for the constant in question. 

 
 

ܿ ൅ ܿ଴ߝ௧ ൅ ܿଵߝ௧ିଵ ൅ ܿଶߝ௧ିଶ ൅ ڮ ൌ 0.55ሾܿ ൅ ܿ଴ߝ௧ିଵ ൅ ܿଵߝ௧ିଶ ൅ ܿଶߝ௧ିଷ ൅ ڮ ሿ 
 

+0.2[ሾܿ ൅ ܿ଴ߝ௧ିଶ ൅ ܿଵߝ௧ିଷ ൅ ܿଶߝ௧ିସ ڮ ሿ + ߝ௧ + 2            
 

Now we can start grouping according to the constants 
 

ܿ ൌ 0.55ܿ ൅ 0.2ܿ ൅ 2 

ܿ ൌ   ଶ

ଵି଴.ହହି଴.ଶ
 = 4 

 
This is the same solution if we were finding the particular solution for this difference 

equation 
 

lim௧՜ஶ  തݕ =௧ݕ
തݕ ൌ തݕ0.55 ൅ തݕ0.2 ൅ 2 

 ത = 4ݕ
 

The other constant terms can be found in the same manner as c was found 
 

 
ܿ଴ߝ௧ ൌ    ௧ߝ
ܿ଴ ൌ 1 

 
ܿଵߝ௧ିଵ ൌ 0.55ܿ଴ߝ௧ିଵ 
ܿଵ ൌ 0.55 · 1 ൌ 0.55 

 
ܿଶߝ௧ିଶ ൌ  0.55ܿଵߝ௧ିଶ + 0.2ܿ଴ߝ௧ିଶ 

ܿଶ ൌ 0.55 · 0.55 ൅ 0.2 · 1 ൌ  0.5025 
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ܿଷߝ௧ିଷ ൌ 0.55ܿଶߝ௧ିଷ ൅ 0.2ܿଵߝ௧ିଷ 

ܿଷ ൌ 0.55 · 0.5025 ൅ 0.2 · 0.55 ൌ  0.386375 

 ڭ
ܿ௜ߝ௧ି௜ ൌ  0.55ܿ௜ିଵߝ௧ି௜ + 0.2ܿ௜ିଶߝ௧ି௜ ֜ ܿ௜ ൌ 0.55ܿ௜ିଵ ൅ 0.2ܿ௜ିଶ 

 
This last equation should look familiar.  It is of the same form as our non-stochastic AR(2) 

model example.  Therefore it should have the same form of homogenous solution as found in 
Example 3 above.  

 
ܿ௜ ൌ ଵሺ0.8ሻ௜ܣ ൅  ଶሺെ0.25ሻ௜ܣ
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A Forward­Looking Model with a Stochastic Term 
 
 Consider the model:  yt = 2 yt-1 + εt. 

 
It should be clear that the backward looking-solution is explosive. However, we can obtain 

the forward-looking solution as follows. Consider: 
 
yt-1 = 0.5yt – 0.5εt   
 
and updating one period: 
 
yt = 0.5yt+1 – 0.5εt+1   
 
Continuing to iterate forward: 
 
yt = 0.5yt+1 – 0.5εt+1  = 0.5[0.5yt+2 – 0.5εt+2]   
 
   = 0.25yt+2 – 0.25εt+2  – 0.5εt+1   
 
You should be able to convince yourself that the continued forward iteration yield (0.5)iyt+i. 

so that the coefficient on the “future” values of yt+i converge to zero. This type of model is often 
used to model stock prices. Using a well known identity we have the following formula: 

 

Pt = 
ா೟ሾ௉೟శభሿ

ଵା௥
 + dt 

 
where Pt is the market price of a stock in period t, dt is the dividend, and r is the one-period 

interest rate. In other words the current price of a stock is equal to the expected price in the next 

period, discounted by the interest rate plus any current dividends.  Let’s look at Pt = 
ଵ

ଵା௥
Pt+1 + dt 

more closely. 
 
Again the backwards solution of Pt+1 = (1+r)Pt + (1+r)dt makes no sense.  What about the 

forward solution?  Using the method of undetermined coefficients we have: 
 

Pt = ∑ܿ௜݀௧ା௜ ൌ   ܿ଴݀௧ ൅ ܿଵ݀௧ାଵ ൅ ܿଶ݀௧ାଶ ൅ ڮ ൌ ଵ

ଵା௥
ሺܿ଴݀௧ାଵ ൅ ܿଵ݀௧ାଶ ൅ ܿଶ݀௧ାଷ ൅  ሻڮ

 
With, 

ܿଵ ൌ
ܿ଴

1 ൅ ݎ
 

 

ܿଶ ൌ
ܿ଴

ሺ1 ൅ ሻଶݎ
 

 ڭ
 ڭ

ܿ௜ ൌ
ܿ଴

ሺ1 ൅ ሻ௜ݎ
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Therefore, 
 

Pt = 
ଵ

ଵା௥
௧ሾܧ ௧ܲାଵሿ ൅ ݀௧, where dt = d0 + εt 

 
Using our results from above, we can solve for the specific coefficient values using 

substitution.  We know, Pt = c0 + c1dt, and therefore, E[Pt+1] = E[c0 + c1dt+1] 
Using this equality we can now solve for the value of c0 and c1 

 

c0 + c1dt = 
ଵ

ଵା௥
(c0 + c1d0) + dt 

 

c0 = 
௖బା௖భௗబ
ଵା௥

 = c0 = 
ଵ

ଵା௥
(c0 + d0) 

 
c1dt = dt  1 = c1 
 

c0 = 
ଵ

௥
d0 ≈ the value of a perpetuity 

 
Combining terms we are left with a final solution of: 
 

Pt = 
ௗబ
௥
൅ ݀௧ 

 
Hence, the market price of the stock is equal to the current dividend plus the present 

discounted value of the dividend stream.  
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Expected Values and Variance 
This material is key to understanding the material in Chapter 2 

1.  Expected value of a discrete random variable. 

A random variable x is defined to be discrete if the range of x is countable.  If x is discrete, 
there is a finite set of numbers x1, x2...xn such that x takes on values only in that set.  Let f(xj) = the 
probability that x=xj.  The mean or expected value of x is defined to be: 

1

( ) ( )
n

j j
j

E x x f x


   

Note:  

1. We can let n go to infinity; the notion of a discrete variable is that the set be "denumerable" or a 
countable infinity.  For example, the set of all positive integers is discrete. 

2. If Σxjf(xj) does not converge, the mean is said not to exist. 

3. E(x) is an "average" of the possible values of x; in the sum, each possible value of xj is weighted 
by the probability that x = xj; i.e., 

 

E(x) = w1x1 + w2x2 + ... + wnxn     where wj = 1 

 

2.  Expected value of a continuous random variable. 

Now let x be a continuous random variable.  Denote the probability that x is in the interval (x0, 
x1) be denoted by f(x0  x  x1).  It follows that: 

1

0
0 1( ) ( )

x

x
f x x x f x dx     

The mean, or expected value, of x is: 

( ) ( )E x xf x dx




   

3.  Expected value of a function. 

 Let x be a random variable and let g(x) be a function.  The mean or expected value of g(x) is: 

E[g(x)] = 
1

( ) ( )
n

j j
j

g x f x

  for discrete x  

or 

             [ ( )] ( ) ( )E g x g x f x dx



   for continuous x. 

Note:  if g(xj)  xj, we obtain the simple mean. 

4.  Properties of the expectations operator: 



 

Supplementary Manual for Enders AETS  Page 20 
 

a. The expected value of a constant c is the value of the constant:   i.e., E[c] = c. 

 Proof: Since we can let c = g(x), 

( ) ( ) ( )E c cf x dx c f x dx c
 

 
     

   

b. The expected value of a constant times a function is the constant times the expected value of the 
function:  

 Proof:  E[cg(x)] =  [ ( )] ( ) ( ) ( ) ( ) [ ( )]E cg x cg x f x dx c g x f x dx cE g x
 

 
     

c.  The expected value of a sum is the sum of the expectations: 

E[c1g1(x) + c2g2(x)] = c1Eg1(x) + c2Eg2(x) 

 Proof:   

1 1 2 2 1 1 2 2[ ( ) ( )] ( ) ( ) ( ) ( ) ( )c g x c g x f x dx c g x f x dx c g x f x dx
  

  
      

                            = c1Eg1(x) + c2Eg2(x) 

5.  The Variance of a Random Variable:   

   The variance of x is defined such that var(x) = E{[x  E(x)]2} so that: 

 

var(x) = E{x2  2x E(x) + E(x) E(x)} 

 

 Since E(x) is a constant, E[E(x)] = E(x) and E[xE(x)] = [E(x)]2. Using these results and the 
property that expectation of a sum is the sum of the expectations: 

 

var(x) =  E(x2)  2E{xE(x)} + E(x)2 

                      

              =  E(x2)  [E(x)]2 

6. Jointly Distributed Discrete Random Variables 

 Let x and y be random variables such that x takes on values x1, x2 ,... , xn and y takes on 
values y1, y2, ..., ym.  Also let fij denote the probability that x = xi and y = yj. If g(x, y) denotes a 
function of x and y, the expected value of the function is: 

1 1

[ ( , )] ( , )
n m

ij i j
i j

E g x y f g x y
 

   

 

Expected value of a sum:  Let the function g(x, y) be x + y.  The expected value of x + y is: 
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1 1

( ) ( )
n m

ij i j
i j

E x y f x y
 

    

  
1 1 1 1

( )
n m n m

ij i ij j
i j i j

E x y f x f y
   

     

  1 1 2 2 1 1 2 2
1 1

( ... ) ( ... )
m n

j j nj n i i im m
j i

f x f x f x f y f y f y
 

          

Note that (f11 + f12 + f13 + ...  + f1m) is the probability that x takes on the value x1 denoted by f1.  
More generally, (fi1 + fi2 + fi3 + ...  + fim) is the probability that x takes on the value xi denoted by fi 

or f(xi). Since (f1i + f2i + f3i + ...  + fni) is the probability that y = yi [denoted by f(yi)], the two 
summations above can be written as: 

 

E[x + y] = Σxif(xi) + Σyif(yi) 

                   = E(x) + E(y) 

Hence, we have generalized the result of 4c above to show that the expected value of a sum is 
the sum of the expectations.  

7. Covariance and Correlation 

The covariance between x and y, denoted by cov(x, y)is defined to be: 

 

cov(x, y) = E{[x  E(x)] [y  E(y)]}  xy 

  

Multiply [x  E(x)] by [y  E(y)] and use the property that the expected value of a sum is the 
sum of the expectations: 

 

  cov(x, y) = E[x y]  E[x E(y)]  E[y E(x)] + E [E(x) E(y)] 

                    

      = E(x y)  E(x) E(y) 

The correlation coefficient between x and y is defined to be: 

xy = cov(x, y)/[var(x) var(y)]1/2 

Since cov(x, y) = E(xy)  E(x)E(y), we can express the expectation of the product of x and y--
E(xy)--as: 

    E(xy) = E(x)E(y) + cov(x, y) 

        

           = E(x)E(y) + xy xy 
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where the standard deviation of variable z (denoted by z) is the positive square root of z.  

8.  Conditional Expectation 

Let x and y be jointly distributed random variables where fij denotes the probability that x = xi 
and y = yj.  Each of the fij values is a conditional probability; each is the probability that x takes 
on the value xi given that y takes on the specific value yj.   

The expected value of x conditional on y taking on the value yj is: 

E[ x | yj ] = f1jx1 + f2jx2 + … + fnjxn 

 

9. Statistical Independence 

If x and y are statistically independent, the probability of x = xi and y = yj is the probability 
that x = xi multiplied by the probability that y = yj: using the notation in section 6, two events are 
statistically independent if and only if fij = f(xi)f(yj).  For example, if we simultaneously toss a fair 
coin and roll a fair die, the probability of obtaining a head and a three is 1/12; the probability of a 
head is 1/2 and the probability of obtaining a three is 1/6.  

An extremely important implication follows directly from this definition. If x and y are 
independent events, the expected value of the product of the outcomes is the product of the 
expected outcomes:   

E[ x y ] = E(x)E(y). 

The proof is straightforward. Form E[ x y ] as: 

 E[x y] = f11x1y1 + f12x1y2 + f13x1y3 +...+ f1mx1ym + f21x2y1 + f22x2y2 + f23x2y3 +... + f2mx1ym  

             + .... + fn1xny1 + fn2xny2 + fn3xny3 +... + fnmxnym 

or more compactly: 

Since x and y are independent, fij = f(xi)f(yj) so that: 

E[xy] = 
n


i=1

f(xi)f(y1)xiy1 + 
n


i=1

f(xi)f(y2)xiy2 + ...+ 
n


i=1

f(xi)f(ym)xiym 

Recall f(xi)xi = E(x): 

 

    E[xy] = E(x)[f(y1)y1 + f(y2)y2 + ... + f(ym)ym] 

 

so that E[x y] = E(x)E(y).   

 

Since cov(x, y) = E(x y)  E(x)E(y), it immediately follows that the covariance and correlation 
coefficient of two independent events is zero.  

 

10.  An Example of Conditional Expectation 
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Since the concept of conditional expectation plays such an important role in time-series 
econometrics, it is worthwhile to consider the specific example of tossing dice.  Let x denote the 
number of spots showing on die 1, y the number of spots on die 2, and S the sum of the spots (S = x 
+ y).  Each die is fair so that the probability of any face turning up is 1/6.  Since the outcome on die 
1 and die 2 are independent events, the probability of any specific values for x and y is the product 
of the probabilities.  The possible outcomes and the probability associated with each outcome S 
are:  

S 2 3 4 5 6 7 8 9 10 11 12 

f(S) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 

 

To find the expected value of the sum S, multiply each possible outcome by the probability 
associated with that outcome.  As you well know if you have been to Las Vegas, the expected 
value is 7.   Suppose that you roll the dice sequentially and that the first roll turns up 3 spots.  What 
is the expected value of the sum given that x = 3?  We know that y can take on values 1 through 6 
each with a probability of 1/6.  Given x = 3, the possible outcomes for S are 4 through 9 each with 
a probability of 1/6.  Hence, the conditional probability of S given three spots on die 1 is: 

E[ Sx = 3] = (1/6)4 + (1/6)5 + (1/6)6 + (1/6)7 + (1/6)8 + (1/6)9 = 6.5 

11. Testing the significance of i  

Under the null hypothesis of i = 0, the sample distribution of ̂  is: 

a. approximately normal (but bounded at -1.0 and +1.0) when T is large  

b. distributed as a students-t when T is small.  

The standard formula for computing the appropriate t value to test significance of a 
correlation coefficient is: 

 2
2

ˆ1
ˆ

i
i

Tt


 


  with df = T  2 

In reasonably large samples, the test for the null that i = 0 is simplified to ˆi  T1/2. 

Alternatively, the standard deviation of the correlation coefficient is (1/T)0.5.  
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Improving Your Forecasts and the Presentation of Your Results 
 
1. It is important for you and your reader to know the type of data you are using. There 
are many ways to measure certain variables. Stock prices may be opening, closing, or daily 
average values. Unemployment may or may not be seasonally adjusted. The point is that 
it is necessary to tell your reader what data you are using and where it comes from. 
 
2. Looking at the time path of a series is the single most important step in forecasting the 
series. Examining the series allows you to see if it has a clear trend and to get a reasonable 
idea if the trend is linear or nonlinear. Similarly, a series may or may not have periods of 
‘excess’ volatility. Graphs should be properly labeled and dates on the ‘time’ axis should be 
clear. 
 
3. There usually are several plausible models that confirm to the data. Such models should be 
compared as to their in-sample fit and their forecasts. 
 
4. It is standard to plot the forecasts in the same graph as the series being forecasted. Sometimes 
it is desirable to place confidence intervals around the forecasted values. If you chose 
a transformation of the series [e.g., log(x) ] you should forecast the values of the series, not 
the transformed values. 
 
5. The steps in the Box-Jenkins methodology entail: 

Identification 
Graph the data–see (2) above–in order to determine if any transformations are necessary 
(logarithms, differencing, ... ). 
 
Examine the ACF and the PACF of the transformed data in order to determine the 
plausible models. 
 
Estimation 
Estimate the plausible models and select the best. You should entertain the possibility 
of several models and estimate each. The ‘best’ will have coefficients that are 
statistically signifcant and a good fit. (use the AIC or SBC to determine the fit). 
 
Diagnostic Checking 
The residuals of a properly estimated model cannot contain any significant autocorrelations. 
Examine the ACF and PACF of the residuals to check for significant autocorrelations. Use 
the Q-statistics to determine if groups of autocorrelations are statistically significant. 
 
Other diagnostic checks include splitting the sample, and overfitting (adding a lagged value 
that should be insignificant). Be sure to check for coefficient instability. Check to see that the 
variance of the residuals is constant.  
 
Forecasting 
Forecast using several plausible modes. Compare the out-of-sample forecast accuracy of the 
alternatives.  
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Heteroskedasticity­Autocorrelation­Consistent (HAC) 
Estimator 
 

Within the framework of the Distributed Lag Model Assumption, ordinary least squares 
yields consistent estimators and a normal sampling distribution of the estimators.  Unfortunately, 
the variance of the sampling distribution suffers from autocorrelation and therefore OLS standard 
errors are wrong.  The solution to this problem rests in standard errors that are robust to 
autocorrelation as well as heteroskedasticity.  Let us return to a no lag framework.  Our model 
takes the form yt = 0 + 1xt + ut .  The OLS estimator for this model is 

 
 

መଵߚ ൌ  

1
ܶ ∑ ሺܺ௧ െ തܺሻሺ ௧ܻ െ തܻሻ்

௧ୀଵ

1
ܶ ∑ ሺܺ௧ െ തܺሻଶ்

௧ୀଵ

 

 
Taking the difference between the predicted estimator and the actual estimator we get 
 

መଵߚ െ ଵߚ ൌ  

1
ܶ ∑ ሺܺ௧ െ തܺሻݑ௧்

௧ୀଵ

1
ܶ ∑ ሺܺ௧ െ തܺሻଶ்

௧ୀଵ

 

 
Therefore when the sample is large 
 

መଵߚ െ ଵߚ ൌ  

1
ܶ ∑ ௧்ߥ

௧ୀଵ

௫ଶߪ
 

 
Where νt = ሺܺ௧ െ ܺሻݑ௧.  Taking the variance of both sides yields 
 

መଵ൯ߚ൫ݎܸܽ ൌ  
1

ሺߪ௫ଶሻଶ
ሺݎܸܽ

1
ܶ
෍ߥ௧

்

௧ୀଵ

ሻ 

 
In large samples.  Now let us consider the simple case when T = 2 
 

ݎܸܽ ൭
1
2
෍ߥ௧

ଶ

௧ୀଵ

൱ ൌ ሾݎܸܽ
1
2
ሺߥଵ ൅  ଶሻߥ

 

ൌ ଵ

ସ
ሾܸܽݎሺߥଵሻ ൅ ଶሻߥሺݎܸܽ ൅  ଶሻሿߥ ,ଵߥሺݒ݋ܥ2

 

= ଵ
ସ
ሾ2ߪఔଶ ൅ ఔଶߪଵߩ ఔଶ]    whereߪଵߩ2 ൌ  ଶሻߥ ,ଵߥሺݒ݋ܥ2
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= 
ଵ

ଶ
  ଶݓఔଶߪ

Where ݓଶ ൌ ሺ1 ൅  ଵሻ.  It is important to note that when there is no correlation betweenߩ
ଵߩ) ଶߥ ଵandߥ ൌ 0) then ݓଶ ൌ 1 which gives the usual formula for the variance estimate in cross-
section data.  But in time series data ߩଵ ് 0 so the usual variance formula does not apply.  
Therefore OLS standard errors are wrong in the presence of auto-correlated error terms.   

 
Let us now derive an expression for the variance of estimators with general T 
 

ݎܸܽ ൭
1
ܶ
෍ߥ௧

்

௧ୀଵ

൱ ൌ  
ఔଶߪ

ܶ
 ்ݓ

 
Therefore  
 

መଵ൯ߚ൫ݎܸܽ ൌ  
1
ܶ

ఔଶߪ

ሺߪ௫ଶሻଶ
 ்ݓ

 

Where ்ݓ ൌ 1 ൅ 2∑ ሺ்ି௝
்
ሻ்ିଵ

௝ୀଵ  ௝.  The key to creating standard errors that are robust toߩ

autocorrelation as well as heteroskedasticity is finding the appropriate estimates of the weights, 
 It is not possible to find the actual weights since these weights depend upon unknown  .்ݓ
autocorrelations.  In essence, the Heteroskedasticity Autocorrelation Consistent Estimator (HAC) 
finds these appropriate estimates of the weights. 

 
The most commonly used weight estimates are sometimes referred to as the ‘Newey-West” 

weights: 
 

்ݓ
כ ൌ 1 ൅ 2 ෍ሺ

݉ െ ݆
݉

ሻ

௠ିଵ

௝ୀଵ

 ෤௝ߩ

 
Where ߩ෤௝ is an estimator of ߩ௝ and m is called the truncation parameter which is left up to the 

practitioner to choose its magnitude. 
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Value at Risk 
This material is supplementary to the GARCH modeling presented in 
Chapter 3 

Value at Risk (VaR) is a concept used by portfolio managers to measure the downside risk of a 
particular portfolio of financial instruments. For any pre-specified probability level p, the VaR is 
the value of the loss that will occur with probability p. Usually, the time period is a single day, 
but other time horizons are possible. For example, if a portfolio of stocks has a one-day 5% VaR 
of $10 million, there is a 5% probability that the portfolio will fall in value by more than $10 
million over a one day period.  

 
One way to calculate VaR is to use a GARCH model. Suppose that the continually 

compounded daily return of a portfolio (rt) follows a conditional normal distribution such that:  
 
Et-1rt ~ N(0, ht) 

 
where the conditional variance ht follows an IGARCH process. Let 

 
ht = 0 + 1(et-1)

2 + (1 – 1)(ht-1)
2  

 
Now suppose that you want to know the value at risk of a portfolio using a 5% 

probability. As such, you can 1.64 standard deviations [ = 1.64(ht+1)
1/2 ] to measure the risk of the 

portfolio. In general, the Value at Risk for one day is: 
 

    VaR = Amount of Position x 1.64(ht+1)
1/2 and for k days is 

 
and the Value at Risk for k days is 
 
   VaR(k) = Amount of Position x 1.64(k ht+1)

1/2  
 

To take a specific example, suppose that the model of the mean for the return on a 
particular stock (or a portfolio of stocks) is: 

 
rt = 0.001 + 0.02rt-1 + t 

 
and that    
              

ht = 0.004 + 0.1(t-1)
2 + 0.9(ht-1)

2  
 

Also suppose that the values of rt, t-1 and ht-1 are such that 
 
Et(rt+1) = 0.025 

 
and 
 

Et(ht+1) = 0.005 
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Now, the issue is to find the amount that is 1.64 standard deviations below the expected 
return. The 5% quantile is calculated to be  

 
0.025 – 1.64*(0.005)1/2 = –0.091 
 

 
As such, –0.091 is the value that is 1.64 standard deviations below the expected return of 

0.025. Thus, is you had $1 invested in this stock, you would expect a 0.025 return but there 
would be a 5% chance of a return less than or equal to 0.091. The VaR for a portfolio size of 
$10,000,000 with probability 0.05 is ($10,000,000 )(0.091) = $910,000. As such, with 95% 
chance, the potential loss of the portfolio is $910,000 or less. 
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Random Number Generation 
Random number generation is an essential feature of the Monte Carlo methods described 
in Chapter 4.  

 Computers are not capable of generating truly random numbers--any sequence generated 
is actually a deterministic sequence.  If you are aware of the algorithm used to generate the 
sequence all values of the sequence can be calculated by the outside observer.  Computers 
generate pseudo-random numbers--the numbers generated are indistinguishable from those 
obtained from independent draws from a uniform distribution. 
 
 A common algorithm used in random number generation involved the mod( ) function:  
mod(x, z) means divide x by z and keep only the remainder.  For example, mod (3, 5) = 3, mod(6, 
5) = mod(11, 5) = 1, and mod(11.3, 5) = 1.3. Of course, in a computer, 1/3 will be an 
approximate value since it is not possible to write a decimal equivalent of 1/3 using a finite 
number of digits. 
  
 Consider the nonlinear difference equation:  
  

zt+1 = mod(zt+ , m) 
 

              yt = zt/m 
 
where: m, , and  are parameters.  
 
 If we use z1 = 1,  = 2, m = 10 and  = 5, the next 5 values of the {zt} and {yt} sequences 
are: 
  
 z2 = mod(2*1 + 5, 10) = 7   so that y2 = 0.7 
 z3 = mod(2* 7 + 5, 10) = 9  so that y3 = 0.9 
 z4 = mod(2*9 + 5, 10) = 3  so that y4 = 0.3 
 z5 = mod(2*3 + 5, 10) = 1   so that y5 = 0.1 
 
so that the series repeats itself.  
 

 The point is that not all parameter choices for , m, and  are well-behaved. Note that  is 

called the multiplier.  Clearly,  needs to be greater than unity so that the numbers do not 
converge to zero. Nevertheless, some values of  > 1 will lead to poorly behaved sequences. 
Also note that m is should be a very large number to ensure that the sequence does not repeat 
itself very quickly. A series produced by this type of random number generator will repeat itself 
in no more than m steps. In addition, some values of m will display serial correlation; it is 
important to select a value of m such that the degree of serial correlation is small. A random 
number generation module for Mathcad uses the values m = 732289,  = 9947, and  = 67. If we 
start using the seed value z1 = 1, it follows that  

 
 z2 = mod(9947*732289*1+ 67, 732289) = 10014  so that y2 = 1.36536 x 10-6 
 z3 = mod(9947*732289*10014+ 67, 732289) = 4421 so that y3 = 0.01367 
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 z4 = mod(9947*732289*4421+ 67, 732289) = 32414 so that y4 = 0.04426 
 z5 = mod(9947*732289*32414+ 67, 732289) = 170965 so that y5 = 0.23343 
The numbers generated by this set of parameter values will closely approximate a set of serially 
uncorrelated uniformly distributed random variables over the interval [0, 1]. The time path of the 
first 100 values of the {yt} series is given by: 
 

0 20 40 60 80 100

0.5

1
Figure 1:  100 Pseudo-Random Numbers

y t

t
 

 
 By construction, zt must be less than m. As such each value of yt is between zero and 

unity. For this particular value of m, the correlation coefficient between yt and yt-1 is 0.02617. 
However, if m = 992 is selected, the correlation coefficient will be 0.30176.   

Given the values of {yt}, it is possible to make other transformations of the series so as to 
generate distributions other than a uniform distribution.  

Note the important difference between correlation and independence. Each pseudo-random 
number is perfectly predicable if you know the initial seed value and the algorithm generating 
the numbers. Nevertheless, it is possible to generate sets of numbers that are serially 
uncorrelated. Recall that correlation is simply a measure of linear dependence. The random 
number generating routine described here is clearly nonlinear.  
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Phillips­Perron Test Statistics 
This Material Supplements the Discussion on Pages 219 – 222 of Chapter 4 

Given the discussion on pages 219 – 222, most people now use the Dickey-Fuller test in 

conjunction with the MAIC when a large and negative MA term is suspected to be in the data 

generating process. However, since the Phillips-Perron (1988) test is still popular in such 

circumstances this modification of the Dickey-Fuller test merits some discussion.  

The distribution theory supporting the Dickey-Fuller tests assumes that the errors are 

statistically independent and have a constant variance.  In using test, care must be taken to ensure 

that these assumptions are not violated.  Phillips and Perron (1988) developed a generalization of 

the Dickey-Fuller procedure which allows for fairly mild assumptions concerning the distribution 

of the errors.   

The Phillips-Perron (1988) statistics modify the Dickey-Fuller t-statistics to account for 

heterogeneity in the error process. The Phillips-Perron (1988) test was a popular unit root test for 

the case of a large and negative moving average term in the data generating process. Suppose that 

we observe the first 1, 2, ... , T realizations of the {yt} sequence and estimate the regression 

equation:  

 yt =  + (t   T/2) + yt-1 + t 

where , , and  are the conventional least squares regression coefficients.  The error term is 

denoted by t to indicate that the series may be serial correlated. Phillips and Perron (1984) derive 

test statistics for the regression coefficients under the null hypothesis that the data is generated by:  

 yt = yt-1 + t 

Do not be deceived by the apparent simplicity of these two equations.  In actually, they are far 

more general than the type of data generating process allowable by the Dickey-Fuller procedure.  

For example, suppose that the {μt} sequence is generated by the autoregressive process μt = 

[C(L)/B(L)]εt where B(L) and C(L) are polynomials in the lag operator.  Given this form of the 

error process, we can write the first equation in the form used in the Dickey-Fuller tests; i.e.,  

 B(L)yt = B(L) + B(L)(t   T/2) + B(L)yt-1 + C(L)εt.  

Thus, the Phillips-Perron procedure can be applied to ARIMA order processes in the same way 

as the Dickey-Fuller tests. The difference between the two tests is that there is no requirement that 

the disturbance term be serially uncorrelated or homogeneous. Instead, the Phillips-Perron test 

allows the disturbances to be weakly dependent and heterogeneously distributed.   

 Let tμ, tα, and tβ be the usual t-test statistics for the null hypotheses  = 0,  = 1, and  = 0, 
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respectively. In essence, Phillips and Perron (1988) use robust standard errors so as to modify the 

Dickey-Fuller statistics to allow for weakly dependent errors. The expressions are extremely 

complex; to actually derive them would take us far beyond the scope of this book.  However, many 

statistical time-series software packages now calculate these statistics so they are directly available. 

The modified statistics are:  

3 1/ 2 2 2( ) ( / ) ( / 4 3 )( )T T TZ t S t T D S          

3 1/ 2 2 2 3 / 2
1( ) ( / ) ( / 24 )( )( )T x T T tZ t S t T D E S T y       
     

3 1/ 2 2 2 1/ 2 2 2 3 / 2 5 / 2
1 1 1 1( ) ( / ) ( / 2 )[ ( ) ] ( )(0.5 ])T T t T t tZ t S t T D E T y y S T y T ty         

          

where D = det(xx), the determinant of the regressor matrix x, 

EX = [ ]T-6DX + ( )112 ( )T-32yt-1
2 121 

S2 is the standard error of the regression, 

2 1 2 1

1 1
2

T T T

T l t t ss l t s
T T    

  
    3 

and ω is the number of estimated autocorrelations. 

 Note that S2 and 2
T are consistent estimates of 2

  = lim E( )u2

t
 and σ2 = lim E( )T-1 S2

T

where ST  = T and all summations run over t. For the joint hypothesis β = 0 and α = 1, use 

their Z(φ3) statistic. Fortunately, many software packages calculate these statistics. The critical 

values for the Phillips-Perron statistics are precisely those given for the Dickey-Fuller tests.  For 

example, the critical values for Z(t) and Z(t) are those given in the Dickey-Fuller tables under the 

headings  and , respectively.  The critical values of Z(φ3) are given by the Dickey-Fuller φ3 

statistic.  

Foreign Exchange Market Efficiency.  Corbae and Ouliaris (1986) used Phillips-Perron tests 

to determine whether exchange rates follow a random walk and whether the return to forward 

exchange market speculation contains a unit root.  Denote the spot dollar price of foreign exchange 

on day t as st.  An individual at t can also buy or sell foreign exchange forward.  A 90-day forward 

contract requires, that on day t+90, the individual take delivery (or make payment) of a specified 

amount of foreign exchange in return for a specified amount of dollars.  Let ft denote the 90-day 

forward market price of foreign exchange purchased on day t.  On day t, suppose that an individual 

speculator buys forward pounds at the price: ft = $2.00/pound.  Thus, in 90 days the individual is 

obligated to provide $200,000 in return for £100,000.  Of course, the agent may choose to 

immediately sell these pounds on the spot market.  If on day t+90, the spot price happens to be st+90 

= $2.01/pound, the individual can sell the £100,000 for $201,000; ignoring any transactions costs, 
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the  individual earns a profit of $1000.  In general, the profit on such a transaction will be st+90 - ft 

multiplied by the number of pounds transacted.  (Note that profits will be negative if st+90 < ft ).    

Of course, it is possible to speculate by selling forward pounds too. An individual selling 90-day 

forward pounds on day t will be able to buy them on the spot market at st+90.  Here, profits will be ft 

- st+90 multiplied by the number of pounds transacted.  The efficient market hypothesis maintains 

that the expected profit or loss from such speculative behavior must be zero.  Let Etst+90 denote the 

expectation of the spot rate for day t+90 conditioned on the information available on day t.  Since 

we actually know ft on day t, the efficient market hypothesis for forward exchange market 

speculation can be written as: 

 Etst+90 = ft. 

or: 

 st+90 - ft = pt. 

where: pt = per unit profit from speculation; and Etpt = 0.  

 Thus, the efficient market hypothesis requires that for any time period t, the 90-day forward 

rate (i.e., ft) be an unbiased estimator of the spot rate 90 days from t.  Suppose that a researcher 

collected weekly data of spot and forward exchange rates.  The data set would consist for the 

forward rates ft, ft+7, ft+14, ... and the spot rates st, st+7, st+14, .... . Using these exchange rates, it is 

possible to construct the sequence: st+90 - ft = pt, st+7+90 - ft+7 = pt+7, st+14+90 - ft+14 = pt+14, ... .  

Normalize the time period to 1 week so that y1  = pt, y2 = pt+7, y3 = pt+14, ... and consider the 

regression equation: 

 yt = a0 + a1yt-1 + a2t + μt 

 The efficient market hypothesis asserts that ex ante expected profit must equal zero; hence, 

using quarterly data it should be the case that a0 = a1 = a2 = 0.   However, the way that the data set 

was constructed means that the residuals will be correlated.   As Corbae and Ouliaris (1986) point 

out, suppose that there is relevant exchange market "news" at date T.  Agents will incorporate this 

news into all forward contracts signed in periods subsequent to T. However, the realized returns for 

all pre-existing contracts will be affected by the news.  Since there are approximately 13 weeks in a 

90 day period, we can expect the μt sequence to be an MA(12) process.  Although ex ante expected 

returns may be zero, the ex post returns from speculation at t will be correlated with the returns 

from those engaging forward contracts at weeks t+1 through t+12. 

 Meese and Singleton (1982) assumed white noise disturbances in using a Dickey-Fuller test 

to study the returns from forward market speculation. One surprising result was that the return 

from forward speculation in the Swiss franc contained a unit root.  This finding contradicts the 
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efficient market hypothesis since it implies the existence of a permanent component in the 

sequence of returns.  However, the assumption of white noise disturbances is inappropriate if the 

{μt} sequence is an MA(12) process.  Instead, Corbae and Ouliaris use the more appropriate 

Phillips-Perron procedure to analyze foreign exchange market efficiency; some of their results are 

contained in the table below 

 First consider the test for the unit root hypothesis (i.e., a1 = 1).  All estimated values of a1 
exceed 0.9; the first-order autocorrelation of the returns from speculation appear to be quite high.  
Yet, given the small standard errors, all estimated values are over four standard deviations from 
unity.  At the 5% significance level, the critical values for a test of a1 = 1, is -3.43.  Note that this 
critical value is the Dickey-Fuller ττ statistic with 250 observations.  Hence, as opposed to Meese 
and Singleton (1982), Corbae and Ouliaris are able to reject the null of a unit root in all series 
examined.  Thus, shocks to the return from forward exchange market speculation do not have 
permanent effects.  

 
 A second necessary condition for the efficient market hypothesis to hold is that the 

intercept term a0 equal zero.  A non-zero intercept term suggests a predictable gap between the 
forward rate and the spot rate in the future.  If a0  0, on average, there are unexploited profit 
opportunities.  It may be that agents are risk averse or that profit maximizing speculators are not 
fully utilizing all available information in determining their forward exchange positions.  In 
absolute value, all of the Z-statistics are less than the critical value so that Corbae and Ouliaris 
cannot reject the null a0 = 0. In the same way, they are not able to reject the null hypothesis of no 
deterministic time trend (i.e., that a2 = 0).  The calculated Z(t) statistics indicate that the estimated 
coefficients of the time trend are never more than 1.50 standard errors from zero.  

 
 Returns To Forward Speculation 

       a0       a1        a2 
Switzerland -0.117E-2 

(0.106E-2) 
Z(t)=  -1.28 

0.941 
(0.159E-1) 
Z(t) = -4.06 

-0.111E-4 
(0.834E-5) 
Z(t) =  -1.07 

Canada -0.651E-3 
(0.409E-3) 
Z(t)=  -1.73 

0.907 
(0.191E-1) 
Z(t) = -5.45 

0.116E-5 
(0.298E-5) 
Z(t) =  -1.42 

United Kingdom -0.779E-3 
(0.903E-3) 
Z(t)=  -.995 

0.937 
(0.163E-1) 
Z(t) = -4.69 

-0.132E-4 
(0.720E-5) 
Z(t) = -1.50 

Notes: Standard errors are in parenthesis and Z(t) and Z(t) are the Phillips-Perron adjusted t-statistics 

for the hypothesis that a0 = 0 and a2 = 0, respectively. Z(t) is the Phillips-Perron adjusted t-statistic for the 

hypothesis that a1 = 1.  
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At this point, you might wonder whether it would be possible to perform the same sort of 

analysis using an Augmented Dickey-Fuller (ADF) test.  After all, Said and Dickey (1984) showed 

that the ADF test can be used when the error process is a moving average.   The desirable feature 

of the Phillips-Perron test is that it allows for a weaker set of assumptions concerning the error 

process.  Also, Monte Carlo studies find that the Phillips-Perron test has greater power reject a 

false null hypothesis of a unit root.  However, there is a cost entailed with the use of weaker 

assumptions.  Monte Carlo studies have also shown that in the presence of negative moving 

average terms, the Phillips-Perron test tends to reject the null of a unit root whether or not the 

actual data generating process contains a negative unit root.  It is preferable to use the ADF test 

when the true model contains negative moving average terms and to use the Phillips-Perron test 

when the true model contains positive moving average terms.   

 In practice, the choice of the most appropriate test can be difficult since you never know 

the true data generating process.  A safe choice is to use both types of unit roots tests.  If they 

reinforce each other, you can have confidence in the results.  Sometimes economic theory will be 

helpful in that it suggests the most appropriate test.  In the Corbae and Ouliaris example, excess 

returns should be positively correlated; hence, the Phillips-Perron test is a reasonable choice. 
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Unobserved Component Models 
Supplement to Section 4.1 

The purpose of this section is to expand the discussion of unobserved component models. 
Harvey (1989) contains a detailed treatment of the issue. The random walk plus noise model and 
the general trend plus irregular model are examples of processes with several unobserved 
components. Reconsider the general trend plus irregular model of (4.9). The variable yt might 
represent real GDP, t might represent a productivity shock and t might represent a demand-side 
shock. The specification in (4.9) implies that productivity shocks, but not demand shocks, have 
permanent effects on real GDP.  

The local linear trend (LLT) model is built by combining several random walk plus noise 
processes. Let {εt}, {ηt} and {t} be three mutually uncorrelated white noise processes.  The 
local linear trend model can be represented by 

 yt = μt + ηt  

 μt =  μt-1 + at + εt  

 at = at-1 + δt  

The local linear trend model consists of the noise term ηt plus the stochastic trend term μt.  
What is interesting about the model is that the change in the trend is a random walk plus noise: 
that is, Δμt is equal to the random walk term at plus the noise term εt. Since this is the most 
detailed model thus far, it is useful to show that the other processes are special cases of the local 
linear trend model.  For example: 

 

1. The random walk plus noise: If all values of the {at} sequence are equal to zero, the LLT 
model degenerates into a random walk (μt = μt-1 + εt) plus noise (ηt). Let var(δ) = 0, so that at = 
at-1 = ... = a0.  If a0 = 0, μt = μt-1 + εt  so that yt is the random walk μt plus noise term ηt. 

2. The random walk plus drift: Again, let var(δ) = 0, so that at = at-1 = ... = a0.  Now if a0 
differs from zero, the trend is the random walk plus drift: μt = μt-1 + a0 + εt.  Thus, the LLT 
model becomes trend plus noise model. If we further restrict the model such that var(ηt) = 0, 
the model becomes the pure random-walk plus drift model.  

  

The solution for yt can easily be found as follows.  First, solve for at as: 

0
1

t

it
i

    a a 


   

     Next, use this solution to write μt as 

0-1
1

t

i tt t
i

      a     


     

so that 
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( ) ( 1) ( 3) ...
t

i tt
i

     t a t t       


           

Since, y0 = μ0 + η0, the solution for yt is 
t

i 0 1 2 3 tt 0t 0
i=1

      =  + (   -  ) +   + t (   +  ) + (t -1)  + (t - 2)  + ... + y y a        

Here we can see the combined properties of all the other models. Each element in the {yt} 
sequence contains a deterministic trend, a stochastic trend, and an irregular term.  The stochastic 
trend is εi and the irregular term is ηt. Of course, in a more general version of the model, the 
irregular term could be given by A(L)ηt. What is most interesting about the model is the form of 
the deterministic time trend. Rather than being deterministic, the coefficient on the time depends 
on the current and past realizations of the {δt} sequence. If in period t, the realized value of the 
sum a0 + δ1 + .. + δt happens to be positive, the coefficient of t will be positive. Of course, this 
sum can be positive for some values of t and negative for others.  

 

Signal Extraction     
Signal extraction issues arise when we try to decompose a series into its individual components. 
Suppose we observe the realizations of a stationary sequence {yt} and want to find the optimal 
predictor of its components.  Phrasing the problem this way, it is clear that the decomposition 
can be performed using the minimum MSE criterion discussed above. As an example of the 
technique, consider a sequence composed of two independent white-noise components:  

 

yt = t + t 

where   Et    = 0 

       Et  = 0 

      Ett = 0 

      Et
2  = 2 

        Et
2  = 

2. 

Here the correlation between the innovations is assumed to be equal to zero; it is 
straightforward to allow non-zero values of Ett.  The problem is to find the optimal prediction, 
or forecast, of t (called t*) conditioned of the observation of yt. The linear forecast has the form 

t* = a + byt 

In this problem, the intercept term a will be zero so that the MSE can be written as 

                                           MSE = E( t - t*)2 

                                                     = E( t - byt )
2 

= E[ t - b(t + t) ]
2 

Hence the optimization problem is to select b so as to minimize: 



 

Supplementary Manual for Enders AETS  Page 38 
 

                            MSE = E[ (1-b)t - bt ]
2  

=  (1-b)2Et
2 + b2Et

2      since Ett = 0. 

The first-order condition is 

-2(1-b)2 + 2b
2 = 0 

so that  

b = 2/(2 + 
2) 

Here, b partitions yt in accord with the relative variance of t; i.e., 2 /(2 + 
2).  As 2 

becomes very large relative to 
2, b  1; as 2 becomes very small relative to 

2, b  0. 
Having extracted t, the predicted value of t is: t* = yt - t*. However, this optimal value of b 
depends on the assumption that the two innovations are uncorrelated. Although the computation 
becomes far more complex with a model like the LLT, the methodology is the same.  

Signal Extraction and Least­Squares Projection 
The problem for the econometric forecaster is to select an optimal forecast of a random variable 
y conditional on the observation of a second variable x. Since the theory is quite general, for the 
time being we ignore time subscripts. Call this conditional forecast y* so that the forecast error is 
(y-y*) and the mean square forecast error (MSE) is E(y - y*)2. One criterion used to compare 
forecast functions is the MSE; the optimal forecast function is that with the smallest MSE.   

Suppose x and y are jointly distributed random variables with known distributions.  Let the 
mean and variance of x be x and 2

x, respectively. Also, suppose the value of x is observed 
before having to predict y. A linear forecast will be such that the forecast y* is a linear function 
of x.  The optimal forecast will necessarily be linear if x and y are linearly related, and/or if they 
are bivariate normally distributed variables. In this text, only linear relationships are considered; 
hence, the optimal forecast of y* has the form 

 

y*  = a + b(x - x) 

 

The problem is to select the values of a and b so as to minimize the MSE: 

 

 Min E(y - y*)2 = E[y - a - b(x-x)]
2 

   {a, b} 

   = E[y2 + a2 + b2 (x-x)
2 - 2ay + 2ab (x-x) - 2by(x-x)]  

 

Since E(x - x) = 0, Ey = y, E(x-x)
2 = 2

x, and E(xy) - xy = Cov(x , y) = xy, it follows       
that 

 

E(y - y*)2 = Ey2 + a2 + b22
x - 2ay - 2bxy 
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Minimizing with respect to a and b yields 

 

a = y,     b = xy/2
x 

 

Thus, the optimal prediction formula is 

 

y* = y - (xy/2
x)x + (xy/2

x)x 

 

The forecast is unbiased in the sense that the mean value of the forecast is equal to the       
mean value of y. Take the expected value of y* to obtain:  

 

Ey* = E[y - (xy/2
x)x + (xy/2

x)x] 

 

Since, y, xy, and 2
x are constants, and that x = Ex, it follows that 

 

Ey* =  y 

 

You should recognize this formula from standard regression analysis; a regression equation is 
the minimum mean square error, linear, unbiased forecast of y*.  The argument easily 
generalizes forecasting y conditional on the observation of the n variables x1 through xn and to 
forecasting yt+s conditional on the observation of yt, yt-1, ... .  For example, if yt = a0 + a1yt-1 + t 
the conditional forecast of yt+1 is: Etyt+1 = a0 + a1yt. The forecasts of yt+s can be obtained using 
the forecast function (or iterative forecasts) discussed in section 11 of Chapter 2.  

 

Forecasts of a Non-stationary Series Based on Observables         

Muth (1960) considers the situation in which a researcher wants to find the optimal forecast of yt 
conditional on the observed values of yt-1, yt-2, ... .  Let {yt} be a random-walk plus noise. If all 
realizations of {t} are zero for t  0, the solution for yt is: 

 

 ti

t

=i
t  +  = y     

1

                                                    (A4.1)  

 

where   y0 is given and 0 = 0.  

Let the forecast of yt be a linear function of the past values of the series so that: 
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-
1

* i t it
i

  y yv




                                                         (A4.2)  

                        

where   the various values of vi are selected so as to minimize the mean square forecast error.  

Use (A4.1) to find each value of yt-i and substitute into (A4.2) so that: 

 

   -2 -3-1

-2 -32 31 -1
1 11

* ...
t tt

i it ti tt
i ii

    y v v v        
 

 
    

 
     

 

Thus, optimization problem is to select the vj so as to minimize the MSE:  

 





  



















  ... -  +   -  +   -  + -ti

t

=i
-ti

t

i
ti

t

=i
tt vv  E = * y - y E    2

2-

1
21

1-

1=
1

1

2

2][  

 

Since the expected value of all cross products are zero, the problem is to select the vj so as to 
minimize 

2 2 2 2 2

1 =1 1

MSE 1
i

jj
i= j j=

 =  +  +    -   +  t v v      
  
 
  

    

For each value of vk, the first-order conditions is: 

 

... ,= k    = v  -      - v       i

j

=ik=j
k 2 1, 0122

1

22












                               (A4.3)  

  

All {vk} will satisfy the difference equation given by (A4.3). To characterize the nature of the 
solution, set k = 1, so that the first equation of (A4.3) is 

  

2 2
1

1 1

2 2  1 0
j

i
j= i=

  v  -  -    = v  
  
 
 

   

 

and for k = 2, 
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2 2
2

2 1

2 2 1 0
j

i
j= i=

   -    -    = v v  
  
 
 

   

 

so that by subtraction, 

0)()1 ( 12
2

1
2  = v - v   + v -                                                         (A4.4)   

 

Now take the second-difference of (A4.3) to obtain: 

 

2

-1 12
2 0 for 2, 3k k k+  -  +  +    -  =    k = ,...v v v








 
 
 

 

 

The solution to this homogeneous second-order difference equation has the form: vk = A11
k 

+ A22
k where A1 and A2 are arbitrary constants and 1 and 2 are the characteristic roots. If you 

use the quadratic formula, you will find that the larger root (say 2) is greater than unity; hence, 
if the {vk} sequence is to be convergent, A2 must equal zero. The smaller root satisfies 

 

1
2 - (2 + 2

 /2
)1 + 1 = 0                                            (A4.5)  

 

To find the value of A1, substitute v1 = A11 and v2 = A11
2 into (A4.4): 

 

2
(1 - A11) - 2

A1(1
2 - 1) = 0 

 

If you solve (A4.5) for 1, it is possible to verify: 

 

A1 = (1 - 1)/1 

 

Hence the vk are determined by:  

 

vk = (1 - 1)1
k-1 

 

The one-step ahead forecast of yt is 
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yλ   -  =* y     j-t
j

=j
t

1-
1

1
1 )(1 



  

Since 1 < 1, the summation is such that: (1-1)1
j-1 = 1. Hence, the optimal forecast of yt 

can be formed as a geometrically weighted average of the past realizations of the series.    
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Introduction to the Kalman Filter 
The Signal Extraction Problem 

Many researchers now use unobserved components models and the Kalman filter to estimate 
nonlinear processes. Before reading this section, you might want to reread some of the supplementary 
material to Chapter 4.  

Suppose that we observe a variable, , and want to decompose it into two orthogonal components. 
Let: 

  (1) 

where:  and  are the unobserved stochastic components. Although we do not observe the individual 
components, we know their distribution is such that ,  and 

 Hence, it follows that: 

 

 

Our aim is to from a prediction of , called , having observed the variable . Consider the 
prediction equation: 

  (2) 

Notice that the prediction equation is linear in that the prediction of  is a linear function of 
the observed variable . Of course, the predicted value of , called , is equal to 

. The selection of the coefficients  and  is not arbitrary in that we 
want to minimize the expected value of the squared prediction error. Hence, a formal statement 
of the problem is: 

  (3) 

Minimizing the expected prediction error with respect to  and  yields to two first order 
conditions: 

  (4) 

The rest is simply arithmetic. From the first equation, 

     (5) 

Since  and  it follows that  Now rewrite the second equation using 
the facts that  and  so that: 

 

Since the cross‐product term  we can write 

 

or recognizing that  and  we have 
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If you solve for  you should find 

  (6) 

Thus, the optimal forecast rule is such that  is the percentage of the total variance of  that 
is due to . If, for example, , all of the variance of  is due to . In this case,  so 
that the forecast of  On the other hand, if , all of the variation in  is due to . As 

such,  and the optimal forecast of  is simply the current value of  If  and  are equally 
variable (so that ), the optimal forecast rule simply splits the observed value of  in half; 
one half is equal to the predicted value of  and the other is equal to the predicted value of . 

Exercises 

 Derive the optimal values of  and  assuming that the expected values of  and  
differ from zero. Specifically, let  and  

 Derive the optimal values of  and  under the assumption that  does not have a 
 effect on . Specifically, let the model for  be given by 

 

 Explain the difference between the regression model   and the 
unobserved components model. 

Signal Extraction for an Autoregressive Process 
    The problem of decomposing a series into two constituent components is more difficult 

when one of the processes is autoregressive. The reason is that the conditional mean of the 
autoregressive component will be changing over time. The optimal predictor of such a 
component will take these changes into account when forecasting. Consider the process: 

  (7) 

Time subscripts have been introduced since the conditional mean of , and hence the 
conditional mean of , is changing over time. Although we do not observe the ,  or  
directly, we know their distribution is such that ,  and 

. Note that the model of the previous section is the special case of an  process 
such that  and  

The goal is to minimize the squared prediction error of  conditional on the observation of . If you 
were not very careful, you might guess that it is optimal to select a forecasting rule of the form 

  (8) 

However, this would not be quite correct since the optimal value of  changes over time. 
Remember that  is an autoregressive process plus a noise term due to the presence of . If 
you observed that the  series exhibited no serial correlation, you might properly surmise that 
all of the shocks were due to the noise term . If you observed that the  series had 
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autocorrelations equal to , you might infer that all of the shocks were due to . The 
point is that from an initial observation of the series, you would want to adjust the values of  
and  as additional values of  became available. 

As will be explained in more detail below, the optimal forecasting rule has the form: 

 

where  is a ‘weight’ that changes as new information becomes available. Suppose that at 
the end of period  we forecast the values of  and . Hence, we forecast these two values 
before observing the realized value of . Our conditional forecast of  is  and our 
conditional forecast of  is . These forecasts are conditional in the sense that they are 
made without knowledge of the realized value of . The nature of the formula is such that  will 
equal  if . Hence, if our conditional forecast of  turns out to be correct (so 
that ), we will not alter our forecast of of . However, if  we 
will modify our conditional forecast of by  percent of the discrepancy. The issue is to find the 
optimal value of  

Now we will change our notation to be consistent with that found in the literature. Let the 
symbol  denote the forecast of variable  once  is realized and  denote the forecast of 
variable  before  is realized. Hence: 

 denotes  

 denotes  

 denotes  

Just to ensure that you understand the notation, we can rewrite the equation for  as: 

  (9) 

Now we are in a position to select the optimal value of  so as to minimize the mean square 
prediction error ( ). Suppose we enter period  having observed the values  through  
and have made the forecast for  and . The optimization problem for period  is: 

  (10) 

Since , and , it follows that . We can rewrite the 
optimization problem as: 

 

Combining terms: 

 

Since  and  are uncorrelated, we can square the term in square brackets to obtain 

  (11) 

Optimizing with respect to  yields the first‐order condition: 
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Let  denote the expression  so that the first‐order condition becomes: 

 

Solving for  yields: 

  (12) 

The result is only partially helpful. If we knew the value of , we 
would be able to calculate the optimal value of . Of course, there are instances in which  
is known. For example, in the example above, where there is no serial correlation, it should be 
clear that . Since  had a mean of zero and was not serially correlated, 

 and . The problem is a bit more complicated here since  evolves over 
time. 

 

Regrouping Equations 
    We know that  so that our forecasts of  will be linked over time. 

Specifically, since , it must be the case that: 

 

or using the notation  

  (13) 

Similarly, we can take the conditional variance of each side of  to obtain: 

 

or, if we use the notation  and  

  (14) 

Equations (13) and (14) are called the prediction equations. The other equations we need, called the 
updating equations, are given by 

  (15) 

  (16) 

and 

  (17) 

This last equation follows from substituting the formula for  into the formula for
. It should be clear from equation (11) that  can be written as 
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or 

 

Now consider the formula for . Since 
, it follows that 

 

Collecting terms, it is easy to show that: 

  

Summary 
The basic Kalman filtering problem has the form 

  (18) 

Although  is observed, the values of and  cannot be directly observed by the 
researcher. However, it is known that the influence of  on  is  and that  and  are 
orthogonal to each other. The issue is to form the optimal predictors of  and  If the  series 
was observed, we could view (18) as a simple autoregression and use it to forecast  Once we 
forecasted  we could use this value to forecast Given that and  are unobserved, we need to 
use a different method. The Kalman filter allows us to decompose the  series into two constituent 
components. Given that we use the weight  from (15) equations (13) and (16) are the optimal predictors 
of  conditional on the information set at  (i.e.,  and conditional on the information set at  

(i.e.,  respectively. Equations (14) and (17) yield the mean square prediction errors. The properties of 
the forecasts are: 

The Conditional Expectation of  

Since  is unobserved, there are two different ways to think about predicting its realized 
value. First, the value  can be predicted, or ‘estimated’ using the information set available in 
period . We denoted this value as  Alternatively, the value of  can be predicted 
using the information set available in  We denoted this value as . Of course,  should be a 
better predictor of the actual value of  than  since it uses more information. It was shown 
that the optimal predictor of  is 

 

where  is determined in (15). Of course, any predictor will not be entirely accurate. In (17), we 
calculated that the  of  is  If you take the conditional expectation of the 

second equation in (18) with respect to the information set in  you should find 
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As shown in (14), the  of this estimate is  

The Conditional Expectations of  

Although  can be observed in , it can be forecasted in . Simple take the conditional 
expectation of the first equation in (18) with respect to the information set in period  to obtain 

 

MSPE of  

The forecast of  from the perspective of period  will contain error. The mean square 
prediction error of  can be calculated from 

 

Since  and it follows that 

  

If you square the term in brackets and recognize that  is independent of  and you 
should find 

  

Thus, the  of  has two sources,  and . Note that  is the pure noise term 
that is unforecastable from period  the variance of this term is  The other source of 
forecast error variance is due to the fact that  itself needs to be predicted. The variance of this 
prediction error is  and the influence of  on  is  Hence, the influence of the prediction 
error of  on the prediction error variance of  is  

Example of Kalman Filtering 

    The Kalman filter consists of two prediction equations and three updating equations. 
Although we have derived the filter for a simple  process, more complicated functions all 
work in the same fashion. This section illustrates the use of the filter to predict the successive 
values of  generated from the same  discussed in the previous section. It is important to 
understand that Kalman filtering is a dynamic process. You begin with a specific information set 
and make predictions about the current state of the system. As such, in period , we observe  
and make a prediction about the value of . If you understand the notation, it should be clear 
that this prediction is . We then use the observed value of  to make a prediction about the 
value of ; again, if you understand the notation, this value of  since it is the forecast of  
given the observation of  Of course, once we enter period , we will be able to observe  and 
so update our forecast of –the updated forecast is . We continue to repeat this process until 
the end of the data set. 

To take the simplest case possible, first consider the case in which  From the first example, we 
already know that the optimal forecasting rule is to partition the observed values of according to the 
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relative variance /( . We can now use the prediction and updating equations of the Kalman 

filter to achieve this same result. Since  the two prediction equations are: 

 

 

The updating equation equations are: 

 

 

 

If , it follows that: 

 

 

 

In period , your forecast is  and the variance of this forecast error is  Once 
 is observed, you can update your forecasts such that . The variance of this forecast 

error,  The fact that  follows fro the simple fact that the forecast error 
made after  is observed is smaller than that without the knowledge of . 

The situation is only slightly more complicated when  If we take the case in which  and 
further assume that  the prediction and updating equations become: 

Prediction:         

  

   Updating:         

  

Suppose that the first five occurrences of the  series are given by: 

 

Although we do not know the initial conditions of the system, suppose that we are at the very 
beginning of period  and have not, as yet, observed . If the system was just beginning–so that 

–it might be reasonable to set  and to assign an initial value of  As such, 
we have the initial conditions necessary to use the Kalman filter. Now, we can consider the 
iterations for the Kalman filter. Given these initial conditions, we use the prediction equations to 
obtain  and  In essence, we forecast a value of zero for the first realization  
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and let variance of the forecast error be unity. Once we observe  we use the updating 
equations to form: 

 

 

 

We next use this information to form  and  From the prediction equations, we obtain: 

 

 

Once we observe , we use the updating equations to obtain: 

 

 

 

    Continuing in this fashion, we can obtain the complete set of forecasts for the series. 
The subsequent calculations are reported in Table 1. For each time period, , the simulated values 
of  and  are shown in the second through fourth columns, respectively, The fifth column 
shows Columns 6 and 7 show the values of  and  calculated using the 
prediction equations. If you read down the entries in the sixth column, you will see that 

 and  (Note that the entries in the table are rounded to three 
decimal places). Columns 8 through 10 show the values of  and  calculated using the 
updating equations. As shown in Figure 1, the Kalman filter forecasts  are reasonable. The 
solid line in the figure shows the values of  and the dashed line shows the predicted values. 
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Table 1: Decomposition of the AR(1) Process 

t t vt t yt t|t-1 Pt|t-1 kt t|t Pt|t 

   0 0 0

1 1.341 0.716 0.716 2.058 0.000 1.000 0.500 1.029 0.500 

2 -0.347 0.487 0.845 0.498 0.514 1.125 0.529 0.506 0.529 

3 0.457 0.352 0.775 1.231 0.253 1.132 0.531 0.772 0.531 

4 -1.341 -0.643 -0.256 -1.597 0.386 1.133 0.531 -0.667 0.531 

5 0.483 1.899 1.771 2.254 -0.334 1.133 0.531 1.041 0.531 

6 -2.392 0.572 1.458 -0.934 0.520 1.133 0.531 -0.252 0.531 

7 -0.502 1.747 2.475 1.974 -0.126 1.133 0.531 0.989 0.531 

8 -0.473 -0.829 0.409 -0.064 0.495 1.133 0.531 0.198 0.531 

9 0.565 1.129 1.334 1.899 0.099 1.133 0.531 1.055 0.531 

10 -0.087 0.260 0.926 0.840 0.528 1.133 0.531 0.693 0.531 

11 1.115 0.324 0.787 1.902 0.347 1.133 0.531 1.173 0.531 

12 1.871 0.825 1.219 3.091 0.586 1.133 0.531 1.916 0.531 

13 0.126 0.219 0.829 0.955 0.958 1.133 0.531 0.956 0.531 

14 0.992 -2.509 -2.094 -1.102 0.478 1.133 0.531 -0.361 0.531 

15 -1.701 -0.368 -1.416 -3.117 -0.181 1.133 0.531 -1.740 0.531 

16 -0.749 0.805 0.097 -0.651 -0.870 1.133 0.531 -0.754 0.531 

17 -0.254 0.757 0.806 0.551 -0.377 1.133 0.531 0.116 0.531 

18 -1.106 -0.680 -0.277 -1.384 0.058 1.133 0.531 -0.708 0.531 

19 0.319 -1.623 -1.762 -1.444 -0.354 1.133 0.531 -0.933 0.531 

20 1.549 1.352 0.471 2.020 -0.466 1.133 0.531 0.854 0.531 

 

Notes: t and vt are uncorrelated i.i.d. normally distributed random variables such that 2
 and 

2
v  both equal unity. The values of t were constructed as t = 0.5t-1 + vt and values of yt are t + 

t. The  values of t|t-1 and Pt|t-1 are constructed using the prediction equations and the values of  

kt, t|t, and Pt|t are constructed using the updating equations. The twenty values of t and t|t 
are shown in Figure 1.  
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Exercise 

The file Table1.xls is an Excel worksheet that contains the data shown in the first five 
columns of Table 1. However, the entries for  and  shown in columns 6 
through 10 of Table 1 are missing. Open the worksheet and construct the formulas for the 
prediction and updating equations in the appropriate columns. For example, the cell  contains 
the value  The formula " "  is entered in cell , the value of  will 
equal  Copy this formula to the other cells in column  in order to obtain the predicted values 
of  If you construct the formulas for the other cells properly, you should be able to 
completely reproduce Table 1. 

Convergence 
In order to use the Kalman filter, it is necessary to posit initial values for  and . In the 

example, we used  and  since it was assumed that we knew that  With 
such knowledge, the period zero forecast of  is obviously zero and, since there is no 
uncertainty about this forecast,  In general, the choice of the initial values to use in the 
filter may not be so obvious. What would happen if a different set of initial values for  and 

 had been chosen? If you are not sure of the answer, you can get a good hint by examining 
columns 6 and 10 of Table 1. Notice that the successive values of  and  both quickly 
converge to particular values;  converges to  and  converges to . With this 
hint, it should not surprise you to know that  and  would converge to the same numbers 
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regardless of the initial values used for the filter. To show this more formally, notice that we can 
collapse the system in order to obtain a difference equation in . Write as: 

  

For notational simplicity, let  denote , so that  denotes  as such, the 
difference equation becomes: 

  

Note that the slope of this nonlinear difference equation,  is less than 
one so that the system is convergent. The steady state solution is obtained by setting 

 Hence: 

 

If , we can write: 

     

The two solutions for  are: and  Since only the positive solution is 
feasible for the variance, we find:  From the first of the updating equations, we 
know that the solution for  Since 

 it follows that the convergent solution for is such that: 
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The Kalman Filter and State Space Models 
    In a simple dynamic model, the variable of interest, , can often be described by the 

 process: 

 

In the econometrics literature, the symbol  usually denotes the magnitude of the variable of 
interest at time period . Here, we will call  the state variable and the equation of motion 
describing  is the state equation. The reason for this terminology is that Kalman filtering 
problems were first used in engineering applications wherein the physical position of an object in 
motion is usually called the state of the object.1 As such, we can think of  as an equation of 
motion describing the current state of the system as a function of the state in the previous period. 
To be more general, we can allow the state variable to be a vector so that the state equation 
becomes: 

  (1) 

where:  is an  vector of state variables,  is an  vector of constant terms,  is 
an  matrix of coefficients, and  is an  vector of random error terms. Obviously, the 
univariate  model is a special case of (1) such that . Although the individual elements 
of –called –are assumed to be normally distributed and serially uncorrelated, it is generally 
that case that  

The key feature of state space models is that the elements of  are not observed directly. As 
in the last chapter, suppose we observe the variable, , and need to infer the value of the state 
. To be more general, we can let the relationship between  and  be given by: 

  (2) 

where:  is an  vector of observed variables,  is an  matrix of coefficients, and 
 is an  vector of error terms. Equation (2) is called the observation equation, or measurement 

equation, and  is called the observation error. The individual elements of the observation error–called 
–are assumed to be normally distributed and serially uncorrelated. We allow for the possibility that the 
 are contemporaneously correlated (so that  although we assume that all . 

Together, equations (1) and (2) form a state space model. An essential feature of any state space 
model is such that the state equation for  must be a first‐order stochastic difference equation. More 
general forms allow the coefficient vectors ,  and  to be time‐varying and allow the presence of 
exogenous variables. However, at this point, we work with the simple form of (1) and (2). 

If you understand the terminology, you should be able to properly identify the two equations 
used in the last section. Reconsider the equations:   

 yt = xt + t   (3) 

 xt = xt-1 + vt   (4) 

                                                 
1 In some texts, the state equation is called the transition equation. 
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 Clearly, (3) is the observation equation in that it expresses the observed variable, , as the sum 
of the state variable, , and a noise term. The second equation is the state equation in that the 
state variable, , is expressed as an  process. 

State Space Representations of Unobserved Components 
The state space model and the Kalman filter go hand‐in‐hand. To use the Kalman filter, it is 

necessary to be able to write the model in state space form. Since any state equation must be a 
first‐order stochastic difference equation, you might incorrectly jump to the conclusion that the 
Kalman filter is of limited use. However, it is often possible to rewrite a very complicated 
dynamic process as a vector  process. Once this  system has been obtained, it is 
possible to use the Kalman filter. 

Some unobserved components models have very natural state space representations. Clearly, 
the system of equations represented by (3) and (4) are already in state space form: (3) is the 
observation equation and (4) is the state equation. To use another example, suppose that  is 
composed of a trend plus a noise term. The variable  is observed but neither the trend nor the 
noise term are directly observable. Specifically, let 

  

Here,  consists of a trend component, , plus the pure random noise component, . Notice 
that the trend is a random walk plus drift. Again, the state space representation is trivial since the 
observation equation is nothing more than . The state equation expresses the 
evolution of  as an  process. Hence the state equation is Now take a 
more interesting case in which the intercept of the trend is time varying so that we can write the 
model as 

  

This model, called the local linear trend (LLT) model, is such that drift term of the trend is a 
random walk process. The observation equation is unchanged so that is can be written as 

. Note that the random walk plus noise model above is a special case of the LLT 
model such that  implying that One way to work with the model is to allow 
the state variables to be the trend, and the intercept,  However, it is more convenient to 
allow the state variables to be  and . As such, the equation describing the evolution of the 
state variables can be written as 

  

A vexing problem in economic analysis is to decompose an observed time series variable, 
such as real GDP, into its trend and cyclical component. The nature of the problem is that the 
trend and cyclical components are not observed. Nevertheless, it is of interest to know whether 
GDP is above or below trend. Consider a simple formulation of the problem such that 
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where  is the level of real GDP in period ,  is the trend component, and  is the cyclical 
component. 

   Notice that the formulation is such that the trend is a random walk plus a drift term. As 
such, on average, the trend increases by  each period. Notice that a  shock represents a 
change in the intercept of the trend. There are good economic reasons to suppose that the cyclical 
component, , follows an  process. After all, the cyclical component is the deviation of 
GDP from its trend (i.e., ) that can be thought of as a recession if  is negative or as 
an expansion if  is positive. Since recessions and expansions are persistent, it makes sense to 
model the cyclical component as an  process. There are several state space representations for 
this model. The transition equation needs to adapted since we need to write that  process 
for  as an . The technique is to actually write  as one of the unobserved components 
in the system. 

 

Clearly, this is in the form of (1) such that  

 =  

and  the 3 x 3 coefficient matrix.  

   The observation equation relates the observed variable, , to the unobserved components. 
Hence, in matrix form, we can write the observation equation as 

 

Another important example involves two cointegrated variables. According to Engle and 
Granger (1987), two  variables are cointegrated if there exists a linear combination of the 
variables that is Another way to think about cointegrated variables is that they share a single 
stochastic trend. Suppose that it is possible to observe the variables  and  but that the trend 
component and the noise components are unobservable. To be specific, consider the process 

  

Here,  is composed of the stochastic trend component  plus a pure noise term . Notice 
that  shares the same trend as  although the noise components,  and  differ. The 
stochastic trend,  is assumed to be a pure random walk process. Clearly each of the variables is 
a nonstationary  process. However, they are cointegrated since they share the same trend–as 
such, it is possible to form a linear combination of the two variables that is stationary. Obviously, 
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the difference between  and  is stationary since To write the system in 
state space form, note that the state variable is The state equation is nothing more than 

 

The measurement equation relates the observables to the unobservables. The measurement 
equation can be written as 

 

The State Space Representation of an  Process 

    For the examples in the last section, it seemed quite natural to express the model in state 
space form. However, in other circumstances, appropriately transforming the model can be 
tricky. The best way to learn is through practice. Towards this end, the remainder of this section 
consists of a number of examples. There is no particular reason apply a Kalman filter to an 

 equation since the variable of interest can be observed directly. However, transforming an 
 process into state space form is a good illustration of the technique. 

Example 1: The AR(2) model:  

 

Since  is identical to itself, it is always possible to write: 

 

As such, it is possible to define the matrices , and  such that: 

 

The important point is that we have transformed the  process into the state equation: 

 

The measurement equation is trivial in that it expresses . Since  is actually observed 
in an  model, the observation error is necessarily equal to zero. Hence, we can write the 
measurement equation: 

 

Example 2: The AR(3) model with an intercept 

 

Define the matrices and  such that: 

  (5) 
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You should be able to verify that . If you read back the individual 
equations of this system, it should be clear that the first equation is 

 the second is , and the third is 
 The measurement equation is . At this point, you should be able to 

pick up the general pattern for any  process. The details are given in the next example. 

  

 

Example 3: The State Space Representation of an  Process 

 

First consider the MA(1) model xt = t + 1t-1.  

Define  such that: 

 

Hence, it is possible to write: 

  

    The observation equation is  Note that there are several state space 
representations of  processes. Another way to write the  model in state space form is 
to define ,  and  as follows: 

 

As such, it is possible to write the measurement equation as  and state 
equation as , or: 

 

Now consider the MA(2) model xt = t + 1t-1 + 2t-2. 

The ‘trick’ here is to recognize that the moving average component  can 

be represented in the same way as an  process. Let:  so that the 
state equation becomes: 
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Now, it is trivial to put the model in state space form. If the observation 
equation is: 

 

Estimation of State Space Models 
In almost every economic application, the full set of the model’s parameters are unknown 

and need to be estimated. Even if the coefficients of and measurement equations are known 
the variances of  and  are usually unknown. It turns out the it is possible to estimate the 
parameters of the model using maximum likelihood methods. Once the parameters are known, it 
is possible to write the model in state space form and apply the Kalman filter. As such, it is 
worthwhile to review the use of maximum likelihood methods for a model with unobserved 
components. To begin, suppose we have a series of  independently drawn observations for 

 The likelihood of each observation will depend on all of the parameters of the data 
generating process (such as the mean and variance). Obviously, if the parameters of the data 
generating process change, the likelihood of any particular realization will change as well. To 
keep the notation simple, let  denote the likelihood of  conditional on the value of the 
parameter vector  Since we are assuming that the observations are independent, the likelihood 
of the sample of observations  is the product of the likelihoods. If you understand the 
notation, it should be clear that this joint likelihood,  is 

  

Another way to think about the issue is to recognize that  is an indirect function of a 
different value of  would have lead to a different realization of  and a different value of 
We can let this dependence be denoted by  Once you recognize that different values of  
make some draws for the  sequence more likely than others, it is is natural to want to know 
the particular value of  that is the most probable one to have generated the observed realization 
of the  sequence. In other words, we want to know, conditional on , what is the most 
likely value of  that maximizes ? Formally, we want to seek the value of  that solves the 
following problem 

  (6) 

The details of maximum likelhood estimation should be familiar to anyone who has taken an 
introductort econometric class. However, the issue becomes more difficult with processes that 
are not independent. To take the simplest case, suppose that you want to estimate the values of 
and  in the  model . Although you could estimate a regression equation 
directly, the goal is to illustrate some of the issues involved with maximum likelihood 
estimation. If you are willing to assume that the individual values of the  series are 
independently drawn from a normal distribution, it is straightforward to obtain the estimates. 
Recall that the log of the likelihood of each value of  is 
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  (7) 

Since the individual values of the  are independent of each other, the log likelihood of the 
joint realization of the entire series  is the sum of the individual log likelihoods. As 
such, the log of the joint likelihood  is 

  (8) 

The next step is to express  in terms of the observed values of the  series. The problem 
is that we began to observe the series in period   (i.e., the first observation is  and this value is 
conditional on the value in period . One way to tackle the issue is to impose the initial condition 

 so that 

  

Given that we impose , it follows that 

  

Notice that  can be viewed as a function of the values of the  sequence. We seek to 
determine the parameter set that makes the observed sequence the most likely. Now, to obtain 
the first‐order conditions for a maximum, find the values  and  that satisfy  and 

. The resultant values,  and are the maximum likelihood estimates of  and . 
The well‐known solution to the first‐order conditions is 

  (9) (10) 

Similar remarks hold for the maximum likelihood estimates for  and  in the  
model If the errors are normally distributed, the log likelihood of  is indentical 
to that in (7). However, it is not possible to estimate a linear regression equation to find the best 
fitting value of  because the individual values of the  series. As in the  example, it is 
necessary to express  in terms of the observable  sequence. Again, to make the 
transition from the  sequence to the  sequence it is necessary to impose an initial 
condition. Specifically, if we assume that  we can write the  sequence in terms of the 

 sequence as 
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  (11) 

Note that (11) is a convergent sequence as long as the  process is invertible (i.e., as 
long as  If (11) is substituted into (8), we obtain the desired expression for  

  

There are several important points to note about this example. Unlike a regression equation, 
if you were to actually obtain the first‐order conditions for a maximum, you would not get 
analytic solutions for  and  Instead of being able to directly solve the first‐order equations 
(9) and (10), you would need to use numerical methods to find the solution. It is also important 
to note that it is necessary to initialize the system. In any dynamic model, it is necessary to have 
a set of initial conditions pertaining to the behavior of the variables in the model prior to the first 
observation. Finally, it is necessary to express the unobserved variables in terms of the 
obsevables. In models more sophisticated than an  or an , all of these issues can 
become quite difficult. 

The maximium likelihood estimation of a state space model a bit more difficult in that there 
are more parameters to estimate. To best understand the the method, suppose that we want to 
forecast  based on all information up to and including  In the last chapter, we showed 

 

As such, the one‐step ahead forecast error is 

 

In the last section, it was also shown that the variance of this error is 

 

If we are willing to maintain the assumption that the forecast error for normally distributed, 
the conditional distribution of  is such that 

 

so that the log likelihood of the forecast error is 

  

Given that , we can write this likelihood function as 
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If we have a sequence of  such forecast errors, under the assumption that are all 
independent, we can write the joint log likelihood as 

   

In the case where  is observable, the forecast error variance of  (i.e.,  is zero and 
 would be nothing more than the actual value of As such, it would be 

straightforward to maximize the likelihood function to obtain estimates of  and . Clearly, 
this possibility is ruled out in the unobserved components framework so that another estimation 
strategy needs to be employed. Before proceeding, you should take a moment to try and devise 
an algorithm that uses the Kalman filter to enable the maximum likelihood estimation. If you 
understand the logic of the method, you should have reasoned as follows: 

1. Write the model in state space form and impose a set of initial conditons for   and   

2. Select an initial set of values of   and  For this set of initial values and the initial 

conditions, use the Kalman filter to obtain the subsequent values of   and   Use 

these values to evaluate the likelihood function   

3. Select a new set of values for   and   and use the Kalman filter to create the resultant set 

of values for   and   Evaluate the likelihood function   

4. Continue to select values for   and   until the likelihood function in maximized. 

There are a number of numerical techniques that are able to efficiently select new values for 
 and  so that the maximized value of the log likelihood function can be reached quickly. 

For our purposes, the details of the search strategies used in the various algorithms are not 
important. What is important is to note that there is no simple way to obtain a closed form 
solution for the parameters of the model. 

Example: The Regression Model with Time Varying Parameters 

An important example is the case of a regression equation with time‐varying parameters. The 
usual regression set‐up is in the form such that the dependent variable,  is linearly related to an 
independent variable,  such that: . In the standard regression context, the 
coefficients and  are assumed to be constant. Instead, suppose that theses coefficients are 
allowed to evolve over time. In particular, suppose that each of the coefficients is an 
autoregressive process such that 

  

The state equation is straightforward to write once it is recognized that we can observe  and  
but the time‐varying coefficients the unobservables. The state equation describes the dynamic 
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evolution of the unobserved state variables  and . Let the vector of state variables be 
Hence, the state equation is 

 

The measurement equations related the observables to the unobservables. Let 

 

Now that the model is in state space for, it can be estimated using the Kalman filter. 


