2017/11/29

新谷元嗣、藪友良、玉江大将

7章: 非線形時系列モデル

ここでは7章6節と9節の内容を再現しよう。具体的には、非線形性の検定、TARモデル、LSTARモデル、ESTARモデルの推定である。

1. 非線形性の検定

教科書の7章6節の例(失業率)を用いて、非線形性に関する検定をしよう。まず、HP から UNRATE.XLS ダウンロードし Workfile に読み込もう。このデータは米国の月次失業率(1960年1月~2013年6月)である。また、失業率 unrate の階差を durate として定義する。

genr durate =d(unrate)

そして、「QUICK」→「Estimate Equation」を選択し、

durate c durate(-1) durate(-2) durate(-3) durate(-4) durate(-12)

と入力する(ラグは1から4まで連続しているので、durate c durate(-1 to -4) durate(-12) としてもよい)。OLS で推定するため、推定方法は LS を選択しよう。そして OK をクリッ クすると、以下の結果が得られる。

> Dependent Variable: DURATE Method: Least Squares Date: 11/27/17 Time: 11:20 Sample (adjusted): 1961M02 2013M06 Included observations: 629 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.000549	0.006166	0.088961	0.9291
DURATE(-1)	0.058121	0.039374	1.476101	0.1404
DURATE(-2)	0.227569	0.038673	5.884396	0.0000
DURATE(-3)	0.188357	0.038647	4.873758	0.0000
DURATE(-4)	0.140142	0.039080	3.586017	0.0004
DURATE(-12)	-0.127695	0.035694	-3.577481	0.0004
R-squared	0.180601	Mean deper	ndent var	0.001472
Adjusted R-squared	0.174025	S.D. depend	dent var	0.170068
S.E. of regression	0.154563	Akaike info	criterion	-0.886933
Sum squared resid	14.88336	Schwarz cri	terion	-0.844540
Log likelihood	284.9403	Hannan-Qu	inn criter.	-0.870465
F-statistic	27.46263	Durbin-Wat	son stat	2.012268
Prob(F-statistic)	0.000000			

最後に、残差をe、理論値(予測値)を pred として記録しておこう。これは、

genr e = resid

genr pred=durate-e

と入力すればよい (resid は Equation の残差である)。次に、残差と理論値をもとに、線形 性の仮定が妥当であったかを検証しよう。

RESET

非線形性の検定として RESET を行う。このため、残差系列を説明変数と回帰予測値の べき乗に回帰する。「Quick」→「Estimate Equation」を選択し、

e c pred² pred³ pred⁴ durate(-1 to -4) durate(-12)

と入力すると以下の結果が得られる(pred^2とは predの2 乗を表す)。

Dependent Variable: E Method: Least Squares Date: 11/27/17 Time: 11:24 Sample (adjusted): 1961M02 2013M06 Included observations: 629 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.006158	0.007309	-0.842512	0.3998
PRED ²	1.586283	1.007938	1.573790	0.1160
PRED ³	10.35561	7.003735	1.478584	0.1398
PRED^4	-33.93546	18.91378	-1.794219	0.0733
DURATE(-1)	-0.028927	0.041925	-0.689963	0.4905
DURATE(-2)	-0.044212	0.046985	-0.940965	0.3471
DURATE(-3)	-0.039290	0.044781	-0.877389	0.3806
DURATE(-4)	-0.035810	0.044075	-0.812482	0.4168
DURATE(-12)	0.014168	0.040231	0.352165	0.7248
R-squared	0.006856	Mean dependent var		-3.27E-18
Adjusted R-squared	-0.005959	S.D. depen	dent var	0.153947
S.E. of regression	0.154405	Akaike info	criterion	-0.884273
Sum squared resid	14.78132	Schwarz cri	terion	-0.820684
Log likelihood	287.1039	Hannan-Quinn criter.		-0.859572
F-statistic	0.534982	Durbin-Wat	son stat	2.002193
Prob(F-statistic)	0.830466			

pred²、pred³、pred⁴の係数の t 値はすべて小さいため、有意な結果となっていない。 しかし、個々の係数が 0 から有意に離れていないとしても、すべてのべき乗項の係数が同 時に 0 とした帰無仮説が棄却されるとは限らない。帰無仮説 (pred²、pred³、pred⁴の係 数が同時に 0) とした *F* 統計量を調べてみよう。Equation Window から「View」→ 「Coefficient Diagnostics」→「Wald Test」と選択する。

	Equation: UNTITLED Workfile: U	NTI	TLED::Untit	led\			- 🗆 ×
\langle	View Proc Object Print Name Fre	eze	Estimate	Forecast	Stats	Resids]
	Representations	1					
	Estimation Output						
	Actual, Fitted, Residual	12	2				
	ARMA Structure	ıst	ments				
	Gradients and Derivatives		Std. Err	or t-s	Statisti	c F	Prob.
	Covariance Matrix	H					
		1	0.0083	10 0.4	15595	/ 0	.6486
	Coefficient Diagnostics		Scaled	Coefficier	nts		
	Residual Diagnostics	•	Confide	ence Inter	vals		
	Stability Diagnostics	•	Confide	ence Ellip	se		
	Label		Varianc	e Inflatio	n Facto	ors	
	DURATE:-41 0.0120	-	Coeffic	ient Varia	nce De	ecompo	osition
	DURATE(-12) 1.81E-(05					
		_	Wald To	est- Coeff	ficient	Restric	tions
	R-squared 0.0016	2	Omitte	d Variable	. Test	Likeli	haad Patia
	Adjusted R-squared -0.01249	99	Omitte		is rest	- LIKEII	noou katio
	S.E. of regression 0.1674	15	Redund	lant Varia	bles Te	est - Lik	elihood Ra
	Sum squared resid 15.863	7	Factor	Breakpoin	t Test.		
	Loa likelihood 216.330	9					

そうすると以下の画面がでてくるので、係数制約を明示的に書こう。

Wald Test	x
Coefficient restrictions separated by commas	
(z)=0, ((3)=0, ((7)=0]	
Examples	
	e

ここでは、pred²、pred³、pred⁴は2番目、3番目、4番目の係数なので、 c(2)=0,c(3)=0,c(4)=0

と入力し、OK をクリックする (c(2)=c(3)= c(4)=0 としても同じ結果が得られる)。

Test Statistic	Value	df	Probabilit
F-statistic	1.426619	(3, 620)	0.2339
Chi-square	4.279857	3	0.2328
Null Hypothesis Null Hypothesis	C(2)=0,C(3)=0 Summary:	C(4)=0	
Null Hypothesis: Null Hypothesis Normalized Res	C(2)=0,C(3)=0, Summary: triction (= 0)	C(4)=0 Value	Std. Err.
Null Hypothesis: Null Hypothesis Normalized Rest	C(2)=0,C(3)=0, Summary: triction (= 0)	C(4)=0 Value	Std. Err.
Null Hypothesis: Null Hypothesis Normalized Rest C(2) C(3)	C(2)=0,C(3)=0, Summary: triction (= 0)	C(4)=0 Value 1.586283 10.35561	Std. Err. 1.007938 7.003735

これをみると、F値は 1.426 であり、その p値は 0.234 である。したがって、帰無仮説を棄 却できない。以上から、非線形性を否定する結果が得られたといえる。

マクラウド=リー検定

マクラウド=リー検定のために、補助回帰式を推定する。「Quick」→「Estimate Equation」とし、

e^2 c e(-1)^2 e(-2)^2

と入力すると、以下の画面が表示される。

Equation: UNTITLED	Workfile: UN	ITITLED	::Untitle	d¥			×	
View Proc Object Print N	Name Freeze E	stimate	Forecast	Stats	Resids	:		
Dependent Variable: E^2 Method: Least Squares Date: 11/27/17 Time: 11:27 Sample (adjusted): 1961M04 2013M06 Included observations: 627 after adjustments								
Variable	Coefficient	Std.	Error	t-Sta	tistic	Prob) .	
	0.018077	0.00	2083	8 68	0223	0.00	00	
E(-1)^2	0.143016	0.03	9848	3.58	9039	0.00	04	
E(-2)^2	0.095534	0.03	9840	2.39	7956	0.01	68	
R-squared Adjusted R-squared	0.033919	Mean	depende	dent v	ar r	0.0237	35 17	
S.E. of regression	0.042152	Akaik	e info cr	iterior	'n	-3.4903	07	
Sum squared resid	1.108706	Schw	arz crite	rion		-3.4690	58	
Log likelinood	1097.211	Flann	an-Quin	in crit	er.	-3.4820	51	
F-statistic	10.95421	Durbi	n-Watso	on sta	t	1.9954	85	
Prob(F-statistic)	0.000021							

この結果から、e(-1)² は 1%有意であり、e(-2)² も 5%で有意となる。また、e(-1)² と e(-2)² の係数が同時に 0 という帰無仮説を検定する F 値は 10.95 となっており、帰無仮説は 棄却される (ここで表示される F 値は定数項以外の係数がすべて 0 という仮説検定に対応 している)¹。

以上から、RESET では非線形性が検出されなかった一方、マクラウド=リー検定では、 非線形が検出された。

2. 閾値自己回帰モデル(TAR)

ここでは、失業率のデータを用いて、閾値自己回帰(TAR)モデルを推定してみよう。

「QUICK」→「Estimate Equations」と選択し、Method を THRESHOLD とする²。

cification	Options			
Equation :	specification			
Depende	nt variable followed by list of	threshold regre	essors:	
durate c	durate(-1 to -4) durate(-12)			
List of no	on-threshold regressors:			
Threshold	variable specification			
Threshold Enter a se	variable specification eries, group, list of series, inter	ger, or range pa	airs. Integers or	range pairs
Threshold Enter a se may be u	variable specification eries, group, list of series, inter ised for self-exciting models. I	ger, or range pa Multiple variab	airs. Integers or les indicate mo Ex: "3", "3	range pairs odel selection. 6" (SETAR), or
Threshold Enter a se may be u	variable specification eries, group, list of series, inter sed for self-exciting models. I	ger, or range pa Multiple variab	airs. Integers or les indicate mo Ex: "3", "3 "Z1 Z2" (T	range pairs odel selection. 6" (SETAR), or AR)
Threshold Enter a so may be u 1 Estimation	variable specification eries, group, list of series, inte used for self-exciting models.	ger, or range pa Multiple variab	airs. Integers or les indicate mo Ex: "3", "3 "Z1 Z2" (T	range pairs idel selection. 6" (SETAR), or AR)
Threshold Enter a si may be u 1 Estimation Method:	variable specification eries, group, list of series, inter used for self-exciting models. a settings THRESHOLD - Threshold Reg	ger, or range pa Multiple variab gression	hirs. Integers or les indicate mo Ex: "3", "3 "Z1 Z2" (T	range pairs odel selection. 6" (SETAR), or AR)
Threshold Enter a si may be u 1 Estimation Method: Sample:	variable specification eries, group, list of series, inter used for self-exciting models. I e settings THRESHOLD - Threshold Reg 1960m01 2013m06	ger, or range pa Multiple variab gression	hirs. Integers or les indicate mo Ex: "3", "3 "Z1 Z2" (T	range pairs odel selection. 6" (SETAR), or AR)
Threshold Enter a si may be t 1 Estimation Method: Sample:	variable specification eries, group, list of series, inter sed for self-exciting models. I e settings THRESHOLD - Threshold Reg 1960m01 2013m06	ger, or range pa Multiple variab gression	eirs. Integers or les indicate mo Ex: "3", "3 "Z1 Z2" (T	range pairs odel selection. 6° (SETAR), or AR)

ここで推定式は、以前と同様、durate c durate(-1 to -4) durate(-12)である。また、Threshold variable specification は 1 としよう(遅れのパラメータが d=1 ということ)³。ここで OK をク リックすると以下の画面が表示される。

¹ この F 値が正しいことを確認したいなら、Equation Window から「View」→「Coefficient Dagnostics」→「Wald Test」 と選択し、c(2)=c(3)=0 と入力すればよい。そうすると、同じ結果が得られることが確認できる。

² Eviews の古い version だと Method の中に THRESHOLD がないので注意してほしい。

³ Threshold variable specification において、整数を入力すると、EViews は TAR モデルの遅れのパラメータと判断する。 たとえば、3 と入力すると、dunrate(-3)の値に応じてモデルが変化すると考える。もし threshold variable が被説明変数の ラグでなく、他の変数、たとえば失業率のラグ unrate(-1)であれば、Threshold variable specification に整数でなく、 unrate(-1)と入力すればよい。

Dependent Variable: DURATE Method: Threshold Regression Date: 11/29/17 Time: 09:55 Sample (adjusted): 1961M02 2013M06 Included observations: 629 after adjustments Threshold type: Bai-Perron tests of L+1 vs. L sequentially determined thresholds

Threshold variable: DURATE(-1)

Threshold selection: Trimming 0.15, Max. thresholds 5, Sig. level 0.05 Threshold value used: 0.07799999

Variable	Variable		Std. Error	t-Statisti	c Prob.
С		-0.005089	0.008856	-0.57462	5 0.5658
DURATE(-	1)	-0.045480	0.067511	-0.67366	3 0.5008
DURATE(-2	2)	0.117178	0.048500	2.41604	3 0.0160
DURATE(-	3)	0.181127	0.04/6/4	3.79924	4 0.0002
DURATE(-4	4)	0.161966	0.046740	3.46526	2 0.0006
DURATE(-1	2)	-0.125236	0.040310	-3.10682	7 0.0020
	0.077	799999 <= DUF	RATE(-1) 17	'6 obs	
С		-0.071263	0.022761	-3.13085	0 0.0018
DURATE(-	1)	0.383925	0.102634	3.74072	5 0.0002
DURATE(-:	2)	0.365583	0.067780	5.39366	5 0.0000
DURATE(-	3)	0.113141	0.066857	1.69228	8 0.0911
DURATE(-4	4)	0.079416	0.068516	1.15908	7 0.2469
DURATE(-1	2)	-0.155242	0.074064	-2.09604	5 0.0365
R-squared		0.215156	Mean deper	ndent var	0.001472
Adjusted R-squ	ared	0.201164	S.D. depend	dent var	0.170068
S.E. of regression	on	0.152003	Akaike info	criterion	-0.910942
Sum squared re	sid	14.25570	Schwarz cri	terion	-0.826157
Log likelihood		298.4912	Hannan-Qu	inn criter.	-0.878007
F-statistic		15.37672	Durbin-Wat	son stat	2.006114

この結果から、閾値は 0.078、SSR は 14.256 であることが確認できる。また、それぞれ のシステムにおける係数の値も表示されている。

TAR モデルの妥当性を考えるうえで F 検定を行いたいが、教科書の 7 章で言及されてい るように閾値を推定したため、通常の F 分布表を用いることができない。そこで、 Equation Window において、「view」→「Threshold Specification」を選択する。以下の画面 は、推定結果の一部だけを切り取ったものである。0 vs 1 とは、閾値がないケースを帰無 仮説とし、対立仮説を閾値が 1 つとした F 検定の値である。Scaled F 値は 28.29 であり、有 意水準 5%とした臨界値 20.08 を上回っている。したがって、閾値を考えないモデルより、 閾値モデルの方が優れていることが分かる。また、1 vs 2(帰無仮説は閾値が 1 つ、対立仮 説は閾値が 2 つ)をみると、Scaled F 値は 14.42 であり、臨界値 22.11 を下回る。したがっ て、閾値は 1 つだけであるといえる。

Sequential F-statis	1		
Threshold Test	F-statistic	Scaled F-statistic	Critical Value**
0 vs. 1 * 1 vs. 2	4.716394 2.403164	28.29836 14.41898	20.08 22.11

* Significant at the 0.05 level.

** Bai-Perron (Econometric Journal, 2003) critical values.

ここで、 $I_t\Delta u_{t-4}$ 、 $(1-I_t)\Delta u_{t-1}$ 、定数項($\Delta u_{t-1} \leq 0.078$ の場合)は有意ではなかったため、こ れらの変数を除いた方がよいかもしれない。また $I_t\Delta u_{t-12}$ と($1-I_t$) Δu_{t-12} の係数はほぼ同じで ため、単純に Δu_{t-12} のみをモデルに含めるべきであるかもしれない。以下では、これらを考 慮したモデルを推定してみよう。これは「QUICK」→「Estimate Equations」と選択し、 Equation specification に式を入力すればよい。

options Options		
Equation specification Dependent variable and PDL terms, OR	e followed by list of regressors including ARMA an explicit equation like Y=c(1)+c(2)*X.	
durate=(durate(-1)>0.07799 *durate(-3))+(1-(durate(-1): *durate(-4))+c(8)*durate(-1)	9999)*(c(1)+c(2)*durate(-1)+c(3)*durate(-2)+c(4) >0.07799999))*(c(5)*durate(-2)+c(6)*durate(-3)+c(7) 2)	
Estimation settings		
Estimation settings Method: LS - Least Square	es (NLS and ARMA) ~	
Estimation settings Method: LS - Least Square Sample: 1960m01 2013m0	es (NLS and ARMA) ~	

入力が面倒な読者は、以下を画面にはりつけてもらいたい。

 $\begin{aligned} & durate = (durate(-1) > 0.07799999) * (c(1) + c(2) * durate(-1) + c(3) * durate(-2) + c(4) * durate(-3)) + (1 - (durate(-1) > 0.07799999)) * (c(5) * durate(-2) + c(6) * durate(-3) + c(7) * durate(-4)) + c(8) * durate(-12) \end{aligned}$

```
そして OK をクリックすると、以下の結果が得られる。
```

Dependent Variable: DURATE Method: Least Squares (Gauss-Newton / Marquardt steps) Date: 11/29/17 Time: 10:51 Sample (adjusted): 1961M02 2013M06 Included observations: 629 after adjustments DURATE=(DURATE(-1)>0.07799999)*(C(1)+C(2)*DURATE(-1)+C(3) *DURATE(-2)+C(4)*DURATE(-3))+(1-(DURATE(-1)>0.07799999))) *(C(5)*DURATE(-2)+C(6)*DURATE(-3)+C(7)*DURATE(-4))+C(8) *DURATE(-12)								
	Coefficient	Std. Error	t-Statistic	Prob.				
C(1)	-0.070106	0.022578	-3.105080	0.0020				
C(2)	0.391663	0.102065	3.837394	0.0001				
C(3)	0.392758	0.062153	6.319238	0.0000				
C(4)	0.118301	0.065650	1.801994	0.0720				
C(5)	0.118897	0.048218	2.465846	0.0139				
C(6)	0.179811	0.046840	3.838861	0.0001				
C(7)	0.159258	0.046059	3.457731	0.0006				
C(8)	-0.131361	0.035253	-3.726238	0.0002				
R-squared	0.212728	Mean deper	ndent var	0.001472				
Adjusted R-squared	0.203854	S.D. depen	dent var	0.170068				
S.E. of regression	0.151747	Akaike info	criterion	-0.920571				
Sum squared resid	14.29981	Schwarz cri	terion	-0.864048				
Log likelihood	297.5195	Hannan-Qu	inn criter.	-0.898614				
Durbin-Watson stat	2.031547							

SSR(Sum squared resid)は、他のモデルよりも低下しているが、これは単に説明変数が 減少したためである。AIC と SBC をみてみると、他のモデルよりも低下していることが確 認できる。

3. LSTAR モデル

TAR モデルでは閾値を境にしてモデルが急激に移行するような状況をとらえることがで きるが、緩やかに構造が変化することも考えられる。このような場合、平滑推移モデル (smooth transition model)が有用となってくる。教科書の7章9節の例(仮想データの LSTAR モデル推定)を再現してみよう。

LSTAR.XLS を Workfile に読み込もう。このデータは、次の LSTAR モデル

 $y_t = 1 + 0.9y_{t-1} + (3 - 1.7y_{t-1})/[1 + \exp(-10(y_{t-1} - 5))] + \varepsilon_t$

から 250 個の実現値を発生させたものである。まずは、系列 y に関して AR(1)モデルを推定しよう。「QUICK」→「Estimate Equation」とし、y c y(-1)と入力し OK をクリックすると、次の推定結果が得られる。

$$y_t = 0.277996 + 0.552494y_{t-1} + e_t$$

(1.503229) (10.41585)

そして、モデルの残差と被説明変数の理論値を記録しておこう。これは

genr e = resid

genr pred = y-e

と入力すればよい。

ここで、教科書で行われている非線形性の検定をしてみよう。まず、RESET を行うため、「Quick」→「Estimate Equation」を選択する。そうすると、Equation Estimation Window

が表示されるので、Equation Specification に

e c y(-1) pred^2 pred^3 pred^4

と入力し、OK をクリックする。そうすると、以下の推定結果が得られる。これは教科書の結果とほぼ同じである。

Equation: UNTITLED Workfile: UNTITLED::Untitled\									x	
ViewPro	c Object	Print	Name	Freeze	Estimate	Forecast	Stats	Resids		
Dependent Variable: E Method: Least Squares Date: 09/15/15 Time: 12:27 Sample (adjusted): 2 250 Included observations: 249 after adjustments										
	/ariable		Coef	ficient	Std. Err	or t-	Statist	ic F	Prob.	
	C Y(-1) PRED ⁴ 2 PRED ⁴ 3 PRED ⁴ 4		0.93 0.71 0.05 -0.15 -0.03	32197 10069 58359 56936 34198	0.21987 0.07855 0.08988 0.01671 0.00706	72 4.3 53 9.0 35 0.0 19 -9.3 51 -4.3	23972 03939 64926 38659 84355	5 0 6 0 0 0 6 0 1 0	.0000 .0000 .5168 .0000 .0000	
R-squar Adjusted S.E. of ro Sum sq Log like F-statist Prob(F-s	ed I R-square egression uared resi ihood ic statistic)	ed d	0.54 0.53 1.95 936 -518 71.7 0.00	40318 32782 58976 .3714 .2233 70040 00000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat			-4.0 2.86 4.20 4.21 4.23 2.14	1E-17 55955 2597 73229 31027 42555	

非線形項 (pred², pred³, pred⁴) の有無に関する F統計量を計算してみよう。これは Equation Window から「View」→「Coefficient Diagnostics」→「Wald Test」と選択し、

c(3)=c(4)=c(5)=0 と入力することで、F 値=95.60 という結果が得られる。以上から、何らかの非線形性があることが確認できる。

次に、テラスバータの検定をしてみよう。これは *d* = 1 であれば Equation Specification に e c y(-1) y(-1)^2 y(-1)^3 y(-1)^4

と入力すればよい。非線形項 (y(-1)²、y(-1)³、y(-1)⁴)の有無に関する F 統計量を求めて、係数が同時に0 とういう帰無仮説が棄却されることを確認してほしい。また、y(-1)⁴の係数の t 値が十分に大きいことも確認してほしい。したがって、ESTAR モデルではなく LSTAR モデルが選ばれる。

同様に、*d*=2であれば

e c y(-1) y(-1)*y(-2) y(-1)*y(-2)^2 y(-1)*y(-2)^3

と入力すればよい。自分で推定してみると、遅れのパラメータがd=1の方が、d=2よりも当てはまりが良いことが分かるだろう。

以下では、適切な推移変数として 1 期前の被説明変数の値を採用する。また、以下の LSTAR モデルを推定する。

$$y_t = \alpha_0 + \alpha_1 y_{t-1} + (\beta_0 + \beta_1 y_{t-1})/(1 + \exp(-\gamma (y_{t-1} - c))) + \varepsilon_t$$

これは「QUICK」→「Estimate Equation」を選択し、Equation Specification に推定式をy=c(1)+c(2)*y(-1)+(c(3)+c(4)*y(-1))/(1+exp(-c(5)*(y(-1)-c(6))))

と入力すればよい。

Equation :	specification A Dependent variable followed by list of regressors including ARMA	
	and PDL terms, OR an explicit equation like Y=c(1)+c(2)*X	
y=c(1)+c	.(2)*y(-1)+(c(3)+c(4)*y(-1))/(1+exp(-c(5)*(y(-1)-c(6))))	
-Estimation	1 settings:5	
-Estimation Method:	n settings:c	
-Estimation Method:	LS - Least Squares (NLS and ARMA)	•
-Estimation Method: Sample:	settings:5- LS - Least Squares (NLS and ARMA) 1 250	
- Estimation Method: Sample:	settings:5- LS - Least Squares (NLS and ARMA) 1 250	_

そして OK をクリックすると、以下の推定結果が得られる。

Equation: UNTITLED Workfile: UNTITLED::Untitled\										
View Proc Object Print	Name Freeze	Estimate	Forecast	Stats	Resids					
Dependent Variable: Y Method: Least Squares Date: 09/15/15 Time: 13:11 Sample (adjusted): 2 250 Included observations: 249 after adjustments Convergence achieved after 18 iterations Y=C(1)+C(2)*Y(-1)+(C(3)+C(4)*Y(-1))/(1+EXP(-C(5)*(Y(-1)-C(6))))										
	Coefficient	Std. Err	or t-S	Statisti	c P	rob.				
C(1)	0.941528	0.06525	59 14	.4276	5 0.	0000				
C(2)	0.922875	0.02043	39 45	.1520	1 0.	0000				
C(3)	-5.862800	2.82071	13 -2.0	07848	2 0.	0387				
C(4)	-1.179275	0.47975	55 -2.4	45808	0 0.	0147				
C(5)	11.20696	1.65424	41 6.7	77468	30.	0000				
C(6) 5.002021 0.016015 312.3354 0.0000										
R-squared 0.921818 Mean dependent var 0.620246										
Adjusted R-squared 0.920209 S.D. dependent var					3.43	8228				
S.E. of regression 0.971204 Akaike info		o criterion		2.80	3242					
Sum squared resid	229.2068	Schwarz criterion			2.88	8000				
Log likelihood	-343.0036	Hannan-Quinn criter. 2.83			7358					
F-statistic	573.0268	Durbin-W	atson sta	t	2.11	8327				
Prob(F-statistic)	0.000000									

この結果をまとめると、

$$y_t = 0.941 + 0.923y_{t-1} + (-5.86 - 1.18y_{t-1})/[1 + \exp(-11.207(y_{t-1} - 5.00))] + \varepsilon_t$$

(14.43) (45.15) (-2.03) (-2.45) (6.77) (312.33)

もし LSTAR ではなく、ESTAR モデルとして

 $y_t = \alpha_0 + \alpha_1 y_{t-1} + (\beta_0 + \beta_1 y_{t-1})(1 - xp(-\chi y_{t-1} - c)^2) + \varepsilon_t$ を推定したいのであれば、Equation Specification に推定式を

 $y=c(1)+c(2)*y(-1)+(c(3)+c(4)*y(-1))*(1-exp(-c(5)*(y(-1)-c(6))^{2}))$

と入力すればよい。

4. 単位根と非線形過程

7章 11節で紹介したエンダース=グレンジャー(Enders and Granger,1998)の結果を再現してみよう。GRANGER.XLSを読み込んで、金利スプレッドを定義する。

genr s=r_10-r_short

ここでモデルは、

$$\Delta s_t = I_t \rho_1(s_{t-1} - \tau) + (1 - I_t) \rho_2(s_{t-1} - \tau) + \alpha_1 \Delta s_{t-1} + \varepsilon_t$$
$$I_t = \begin{cases} 1 & s_{t-1} > \tau \mathcal{O} \geq \mathbb{B} \\ 0 & s_{t-1} \le \tau \mathcal{O} \geq \mathbb{B} \end{cases}$$

としよう。

このモデルを推定するには、「Quick」→「Estimate Equation」を選択し、Equation Estimation Window の Equation Specification に以下を入力すればよい。 d(s)=(s(-1)>c(1))*c(2)*(s(-1)-c(1))+(s(-1)<c(1))*c(3)*(s(-1)-c(1))+c(4)*d(s(-1))

	Equation Estimation				×
	Specification Ontings	ri.			
	Options				
	Equation specificatio	'n			
	Dependent and PDL ter	variable followed b ms, OR an explicit e	y list of regresso equation like Y=c	rs including ARI :(1)+c(2)*X.	MA
	d(s)=(s(-1)>c(1))*c(2)*(s(-1)-c(1))+(s(-1)-	<c(1))*c(3)*(s(-1)-< td=""><td>c(1))+c(4) +d(s(-1</td><td>))</td></c(1))*c(3)*(s(-1)-<>	c(1))+c(4) +d(s(-1))
	Estimation settings	Squares (NI S and	ARMA)		
	include. Es ceus	squares (res and	raaniy		
	Sample: 1958q1 19	94q1			
			1.4		
~			, _	OK	キャンセル
そして OK をおす	-と、以下の画[面が出力さ	れる。		
	Equation: UNTITLE	D Workfile: UN	TITLED::Untit	ed¥ 🗖 🗖	
	View Proc Object Print	Name Freeze E	stimate Foreca	st Stats Reside	5
	Dependent Variable: Method: Least Squar Date: 11/29/17 Time Sample (adjusted): 1 Included observation Failure to improve ss Coefficient covarianc: D(S)=(S(-1)>C(1))*C(+C(4)*D(S(-1))	D(S) es (Gauss-New e: 14:55 958Q3 1994Q1 s: 143 after adju r (non-zero grad e computed usia (2)*(S(-1)-C(1))+	ton / Marquar ustments dients) after 0 ng outer prod -(S(-1) <c(1))*< td=""><td>rdt steps) iterations luct of gradie C(3)*(S(-1)-C</td><td>nts C(1))</td></c(1))*<>	rdt steps) iterations luct of gradie C(3)*(S(-1)-C	nts C(1))
		Coefficient	Std. Error	t-Statistic	Prob.
	C(1)	-0.270001	0.900360	-0.299881	0.7647
	C(2)	-0.065547	0.049055	-1.336209	0.1837
	C(3)	-0.285971	0.128005	-2.234067	0.0271
		0.1/1/28	0.003228	2.003341	0.0409
	R-squared	0 106185	Mean deper	ndent var	0.006154
	IX-Squared	0.100100	moun aopoi		0.000104
	Adjusted R-squared	0.086894	S.D. depen	dent var	0.895665
	Adjusted R-squared S.E. of regression	0.086894 0.855866 101.8185	S.D. depen Akaike info	dent var criterion terion	0.895665 2.554169 2.637045
	Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.086894 0.855866 101.8185 -178.6231	S.D. depen Akaike info Schwarz cri Hannan-Qu	dent var criterion terion inn criter.	0.895665 2.554169 2.637045 2.587846

ここで τ は-0.27 であり、 ρ_1 は-0.065、 ρ_2 は-0.285 として推定されている。

次に、調整が階差に依存するモデルを推定してみよう。

$$\Delta s_{t} = I_{t}\rho_{1}(s_{t-1} - \tau) + (1 - I_{t})\rho_{2}(s_{t-1} - \tau) + \alpha_{1}\Delta s_{t-1} + \varepsilon_{t}$$
$$I_{t} = \begin{cases} 1 & \Delta s_{t-1} > 0 & \mathcal{O} \succeq \aleph \\ 0 & \Delta s_{t-1} \le 0 & \mathcal{O} \succeq \aleph \end{cases}$$

これは Equation Specification において以下を入力すれば教科書と同じ結果が得られる。 d(s)=(d(s(-1))>0)*c(1)*(s(-1)-c(2))+(d(s(-1))<0)*c(3)*(s(-1)-c(2))+c(4)*d(s(-1))