2018/02/02

新谷元嗣、藪友良、高尾庄吾

4章:トレンドモデル

教科書の4章の内容を確認しよう。具体的には、単位根検定として ADF 検定、ERS 検定、ペロン検定、パネル単位根検定、またトレンド分解として HP 分解を説明する。

1. ADF 検定

教科書の4章7節の例(ラグの選択)を通して、単位根検定の手順を確認しよう。まず LAGLENGTH.XLSのデータを Workfile に読み込む。系列 y は $\Delta y_t = 0.5 + 0.5 \Delta y_{t-1} + 0.2 \Delta y_{t-3} + \varepsilon_t$ から発生させたデータであるが、ここでは DGP を知らないものとして分析しよう。

系列 Y を図示すると、正のトレンドが見てとれる。したがって、ドリフトありの単位根 過程、またはトレンド定常過程が考えられるだろう。ここでは、ADF 検定によって、どち らの確率過程が正しいかを確かめよう。

教科書4章7節で学習した通り、AR(p)過程は、確定的要因として何を含めるかによって定式化が異なる。

(定数項・トレンドなし) : $\Delta y_t = \gamma y_{t-1} + \sum_{i=1}^k \beta_i \Delta y_{t-i} + \varepsilon_t$

(定数項だけを含む): $\Delta y_t = a_0 + \gamma y_{t-1} + \sum_{i=1}^k \beta_i \Delta y_{t-i} + \varepsilon_t$

(定数項とトレンドを含む) : $\Delta y_t = a_0 + a_2 t + \gamma y_{t-1} + \sum_{i=1}^k \beta_i \Delta y_{t-i} + \varepsilon_t$

ADF 検定では、帰無仮説は $\gamma=0$ (単位根)、対立仮説は $\gamma<0$ となる。EViews では、ラグの 次数は、p ではなく、k=p-1として設定する。たとえば、AR(2)過程であれば、ラグの次数 は k=2-1=1と設定する。これは本質的問題ではないが、間違いやすいので注意してもらいた い。 ADF 検定を行うには、まず workfile ウィンドウから系列 Y をダブルクリックして、 Series ウィンドウを表示し、「View」→「Unit Root Test...」を選択する。

Series: Y Workfile: UNTITLED::Untitled\	. 🗆 X
ViewProc Object Properties Print Name Freeze Default View	t Edit+/-
SpreadSheet	
Graph	
Descriptive Statistics & Tests	— ĥ
One-Way Tabulation	
Correlogram	
Long-run Variance	
Unit Root Test	
Variance Ratio Test	
BDS Independence Test	
Label	
12 30.91900	

すると Unit Root Test ウィンドウが表示される(下図参照)。Test type(検定の種類) では Augmented Dickey-Fuller(ADF 検定)を選ぶ。また、Y の水準の検定であるから、 Test for unit root in で level を選択する(1 階の階差に対して単位根検定を行うなら 1st difference を選べばよい)。さらに、Include in test equation では回帰式を指定する。Y は 正のトレンドがあるため、Trend and intercept(トレンドと定数項)を選択しよう。

Unit Root Test	x
Test type Augmented Dickey-Fuller	
Iest for unit root in Level 1st difference 2nd difference Include in test equation Intercept	Lag length
 Trend and intercept None 	OUser specified: 4

ラグの次数の選択(Lag length)では、次数を自動選択する Automatic selection と、自 分で次数を選択する User selection がある。ここでは前者を行う。Automatic selection で は、次数選択の基準と最大次数を選択する必要がある。ドロップダウンメニューには、 いくつかの次数選択の方法が用意されている。たとえば、AIC は Akaike Info Criterion、 SBC は Schwarz Info Criterion、「一般からの特定」法は t-statistic、MAIC は Modified Akaike を選べばよい。ここでは Akaike Info Criterion を選択し、最大次数は 4 としよう(つまり、AR(5)までを考慮している)。OK を押すと、推定結果が表示される。

🗹 Series: Y 🛛 Workfile: U	NTITLED::Untit	led\			x			
View Proc Object Prope	erties [Print] Na	ame Freeze Sa	ample Genr S	iheet Graph	Sta			
Augmented Dickey-Fuller Unit Root Test on Y								
Null Hypothesis: Y has Exogenous: Constant, I Lag Length: 3 (Automat	a unit root Linear Trend lic - based on A	IC, maxlag=4)	>		Â			
			t-Statistic	Prob.*				
Augmented Dickey-Full Test critical values:	er test statistic 1% level 5% level 10% level		-2.569981 -4.005562 -3.432917 -3.140265	0.2946	Ш			
*MacKinnon (1996) one	sided n-value	s						
Augmented Dickey-Full	or Tost Equation	n						
Dependent Variable: D(Method: Least Squares Date: 03/17/14 Time: 1 Sample (adjusted): 5 2 Included observations:	(Y) 12:04 00 196 after adjus	stments						
Dependent Variable: D(Method: Least Squares Date: 03/17/14 Time: 1 Sample (adjusted): 5 20 Included observations: Variable	(Y) 12:04 00 196 after adjus	stments Std. Error	t-Statistic	Prob.				
Variable Variable Variable Variable Y(-1) D(Y(-1)) D(Y(-2)) D(Y(-3)) C @TREND("1")	(Y) 12:04 00 196 after adjus Coefficient -0.024852 0.394827 0.087943 0.144298 1.405096 0.047006	Std. Error 0.009670 0.070816 0.075164 0.071380 0.307359 0.018428	t-Statistic -2.569981 5.575382 1.170026 2.021559 4.571512 2.550859	Prob. 0.0109 0.0000 0.2435 0.0446 0.0000 0.0115				
Adjusted R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(E-statistic)	(Y) 12:04 00 196 after adjus Coefficient -0.024852 0.394827 0.087943 0.144298 1.405096 0.047006 0.272891 0.253757 1.106286 232.5353 -294.8628 14.26177 0.000000	stments Std. Error 0.009670 0.070816 0.075164 0.071380 0.307359 0.018428 Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	t-Statistic -2.569981 5.575382 1.170026 2.021559 4.571512 2.550859 dent var ent var ent var iterion rion in criter. on stat	Prob. 0.0109 0.0000 0.2435 0.0446 0.0000 0.0115 2.085306 1.280641 3.070029 3.170379 3.110655 1.976810				

帰無仮説は、系列 y は単位根過程がある(Y has a unit root)である。確定的要因は、 定数項とトレンドとしている(Exogenous: Constant, Linear Trend)。また、ラグの次数 としては、k=3 が選ばれている(Lag Length:3 (Automatic-based on AIC, maxlag=4))。ADF 検定の統計量は-2.569 と小さく、帰無仮説を棄却できない(対応する p 値は 0.2946 であ るため、有意水準 10%でも帰無仮説は棄却されない)。ちなみに、ADF 統計量の下に は、臨界値(Test critical values)をまとめている。有意水準 1%なら-4.00、5%は-3.43、10% は-3.14 となる。

2. DF-GLS 検定

教科書 2 章 10 節の実証例にならって、DF-GLS 検定(もしくは ERS 検定と呼ぶ)を実際に行ってみよう。ERSTEST.XLS には、系列 Y が含まれている。この系列は、 $y_t = 1 + 0.95y_{t-1} + 0.01t + \epsilon_t$ から発生させている。データを読み込み、先と同様、系列 Y の Series ウィンドウから、「View」→「Unit Root Test...」を選択し、Test type で Dickey-Fuller GLS(ERS)を選択しよう。モデルはトレンドと定数項を含むとする。ストックらは、ラグの長さ p を SBC によって選択することを勧めていたため、ここで SBC(Schwarz Info Criterion)を選択しよう(最大次数:14)とする。

OK を選択すると推定結果が表示される。次数 k は 0 となっている。つまり、AR(1)過程 が選択されている。また、γ は-0.097 であり、t 統計量は-3.154 である。臨界値(Test critical values)をみると、有意水準 1%で-3.46、5%で-2.93、10%で-2.64 となる。したがって、単位 根仮説は有意水準 1%では棄却できないが、有意水準 5%では棄却される。以上から、系列 Y は定常過程であるといえる。

Se Se	eries: \	Work	file: EF	STES	T::Unt	itled\					-
View	Proc	Object	Prope	rties	Print	Name	Freeze	Sample	Genr	Sheet	Graph
	()*			C	F-GL	S Unit I	Root Tes	t on Y	0		
Null I Exog Lag L	Hypot enou: _engt	hesis: ` s: Cons h: 0 (Au	Y has a stant, L tomati	a unit linear ic - ba	root Trend sed o	d n SIC,	maxlag=	:14)			
										t-Sta	tistic
Elliot	t-Roth	nenberg	g-Stoc	k DF-0	GLS te	est stat	istic			-3.15	3967
Test	critica	al value:	S:	1%	level					-3.46	1200

-2.931000

5% level	
10% level	

*Elliott-Rothenberg-Stock (1996, Table 1)

DF-GLS Test Equation on GLS Detrended Residuals Dependent Variable: D(GLSRESID) Method: Least Squares Date: 03/17/14 Time: 03:35 Sample (adjusted): 2 200 Included observations: 199 after adjustments

	Variable	Coefficient	Std. Error	t-Statistic	Prob.
	GLSRESID(-1)	-0.097503	0.030914	-3.153967	0.0019
R-s	quared	0.047750	Mean depend	lent var	0.009274
Adj	usted R-squared	0.047750	S.D. depende	ent var	0.976182
S.E	of regression	0.952590	Akaike info cr	iterion	2.745748
Sur	m squared resid	179.6707	Schwarz crite	rion	2.762297
Log likelihood		-272.2019	Hannan-Quinn criter.		2.752446
Du	bin-Watson stat	2.009960			

最後に、通常の DF 検定をしてみよう。そうすると、γの推定値は-0.0979、仮説 γ=0 に対する t 値は-3.124 となる。τ_r 統計量の臨界値は、有意水準 5%なら-3.45、10%なら-3.15 である。したがって、DF 検定では、単位根仮説を棄却できない。

Augmented Dickey-Fuller Unit Root Test on Y									
Null Hypothesis: Y has Exogenous: Constant, Lag Length: 0 (Automa	s a unit root Linear Trend atic - based or	n SIC, maxlag	=14)						
			t-Statistic	Prob.*					
Augmented Dickey-Fu	Iler test statist	ic	-3.123959	0.1036					
Test critical values:	1% level		-4.004836						
	5% level		-3.432566						
	10% level		-3.140059						
*MacKinnon (1996) on Augmented Dickey-Fu Dependent Variable: D	e-sided p-valu Iller Test Equa O(Y)	ies. ition							
*MacKinnon (1996) on Augmented Dickey-Fu Dependent Variable: D Method: Least Square Date: 11/15/17 Time: Sample (adjusted): 2 Included observations	e-sided p-valu Iller Test Equa D(Y) s 18:06 200 : 199 after adji	ies. ition ustments							
*MacKinnon (1996) on Augmented Dickey-Fu Dependent Variable: D Method: Least Square Date: 11/15/17 Time: Sample (adjusted): 2 2 Included observations Variable	e-sided p-valu Iller Test Equa D(Y) s 18:06 200 : 199 after adji Coefficient	ies. ition ustments Std. Error	t-Statistic	Prob.					
*MacKinnon (1996) on Augmented Dickey-Fu Dependent Variable: D Method: Least Square Date: 11/15/17 Time: Sample (adjusted): 2 2 Included observations Variable Y(-1)	e-sided p-valu Iller Test Equa D(Y) s 18:06 200 : 199 after adji Coefficient -0.097852	ustments Std. Error 0.031323	t-Statistic -3.123959	Prob.					
*MacKinnon (1996) on Augmented Dickey-Fu Dependent Variabie: D Method: Least Square Date: 11/15/17 Time: Sample (adjusted): 2 2 Included observations Variable Y(-1) C	e-sided p-valu Iller Test Equa (Y) s 18:06 200 : 199 after adji Coefficient -0.097852 2.096740	ustments Std. Error 0.031323 0.641942	t-Statistic -3.123959 3.266243	Prob. 0.0021 0.0013					
*MacKinnon (1996) on Augmented Dickey-Fu Dependent Variable: D Method: Least Square Date: 11/15/17 Time: Sample (adjusted): 2 / Included observations Variable Y(-1) C @TREND("1")	e-sided p-valu Iller Test Equa (Y) s 18:06 200 : 199 after adji Coefficient -0.097852 2.096740 0.015839	ustments Std. Error 0.031323 0.641942 0.005099	t-Statistic -3.123959 3.266243 3.106227	Prob. 0.0021 0.0013 0.0022					
*MacKinnon (1996) on Augmented Dickey-Fu Dependent Variable: D Method: Least Square Date: 11/15/17 Time: Sample (adjusted): 2 / Included observations Variable Y(-1) C @TREND("1") R-squared	e-sided p-valu Iller Test Equa (Y) s 18:06 200 : 199 after adji Coefficient -0.097852 2.096740 0.015839 0.047820	ustments Std. Error 0.031323 0.641942 0.005099 Mean depe	t-Statistic -3.123959 3.266243 3.106227 ndent var	Prob. 0.0021 0.0013 0.0022 0.171333					
*MacKinnon (1996) on Augmented Dickey-Fu Dependent Variable: D Method: Least Square Date: 11/15/17 Time: Sample (adjusted): 2 3 Included observations Variable Y(-1) C @TREND("1") R-squared Adjusted R-squared	e-sided p-valu Iller Test Equa (Y) s 18:06 200 : 199 after adji Coefficient -0.097852 2.096740 0.015839 0.047820 0.038104	ustments Std. Error 0.031323 0.641942 0.005099 Mean depe S.D. depen	t-Statistic -3.123959 3.266243 3.106227 ndent var dent var	Prob. 0.0021 0.0013 0.0022 0.171333 0.976182					

3. ペロン検定

構造変化が存在する系列では、単位根過程が採択される方向でバイアスが発生する。 したがって、構造変化の可能性がある系列では、構造変化を考慮した単位根検定を行う 必要がある。教科書の4章8節の例をもとに、ペロン検定の手順をみていこう。データ は BREAK.XLS から利用できる。データは $y_t = 0.5y_{t-1} + \varepsilon_t + D_L$ から発生しているが、こ こでは DGP は未知として分析を進める。まず系列 y1 を図示してみよう。

この図を見ると、50期前後に水準シフトが起こっていると考えられる。構造変化を無視して、ADF検定を行ってみよう。定数項とトレンドを含めると、以下の推定結果となる。 ADF統計量は-2.73であり、単位根仮説を棄却できない。

View Proc Object Prope		lieuv		-	— ×				
	rties Print Na	me Freeze S	ample Genr S	heet Graph	Stats]				
Augmented Dickey-Fuller Unit Root Test on Y1									
Null Hypothesis: Y1 has Exogenous: Constant, L Lag Length: 0 (Automati	a unit root inear Trend c - based on A	IC, maxlag=12	2)						
			t-Statistic	Prob.*	_				
Augmented Dickey-Fulle	er test statistic		-2.733966	0.2256					
Test critical values:	1% level		-4.053392						
	5% level		-3.455842						
	10% level		-3.153710						
Augmented Dickey-Fulle Dependent Variable: D(Method: Least Squares Date: 03(17(14, Time: 1	er Test Equatio Y1)	'n							
Sample (adjusted): 2 10 Included observations: 9	2:36 00 99 after adjustr	ments	t Statiatia	Brob					
Sample (adjusted): 2 10 Included observations: 9 Variable	2:36)0 99 after adjusti Coefficient	ments Std. Error	t-Statistic	Prob.					
Variable Y1(-1)	2:36)0 99 after adjusti Coefficient -0.152233	Std. Error 0.055682	t-Statistic	Prob. 0.0075					
Variable Y1(-1) C	2:36 00 99 after adjustr Coefficient -0.152233 -0.044705	Std. Error 0.055682 0.069365	t-Statistic -2.733966 -0.644489	Prob. 0.0075 0.5208					
Variable Variable Y1(-1) C @TREND("1")	2:36 00 99 after adjustr Coefficient -0.152233 -0.044705 0.004099	Std. Error 0.055682 0.069365 0.001935	t-Statistic -2.733966 -0.644489 2.118232	Prob. 0.0075 0.5208 0.0367					

ペロン検定を行ってみよう。回帰式は以下とする。

 $y_t = a_0 + a_1 y_{t-1} + a_2 t + \mu_1 D_P + \mu_2 D_L + \varepsilon_t$

トレンド、ダミー変数を定義しよう。

genr trend=@trend+1

genr DL = @date > @dateval("50")

genr DP=d(DL)

と定義しよう。ここで DP は t=51 のときに 1 をとるダミー変数である¹。そして、これらの 変数を用いて、

ls y1 c y1(-1) trend DP DL

とすると、以下の推定結果が得られる。

Dependent Variable: Y1 Method: Least Squares Date: 11/15/17 Time: 20:40 Sample (adjusted): 2 100 Included observations: 99 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.082569	0.063395	1.302460	0.1959
Y1(-1)	0.478737	0.086670	5.523646	0.0000
TREND	-0.002409	0.001922	-1.253819	0.2130
DP	0.025028	0.327715	0.076372	0.9393
DL	1.115841	0.202110	5.520965	0.0000
R-squared	0.930388	Mean deper	ndent var	0.994771
Adjusted R-squared	0.927426	S.D. depen	0.996485	
S.E. of regression	0.268449	Akaike info	criterion	0.256872
Sum squared resid	6.774086	Schwarz criterion		0.387938
Log likelihood	-7.715153	Hannan-Quinn criter.		0.309902
F-statistic	314.0864	Durbin-Wat	son stat	1.751218
Prob(F-statistic)	0.000000			

帰無仮説 *a*₁ = 1(γ=0)とした *t* 値は-6.01(=(0.479-1)/0.0867)となる。構造変化日の相対的位置 は λ=τ/T=50/100=0.5 であり、ペロンの臨界値は有意水準 5%で-3.76 であることから、 単位根仮説は棄却される。

構造変化日が未知の場合

構造変化日を未知とした単位根検定として、Zivot-Andrews(ZA)検定がある。EViews では、Add-ins から ZAURoot アドインをダウンロードすることで、ZA 検定を行うことができる(ただし、EViews の学生版では、Add-ins は制限のため利用できないことに注意されたい)。まず EViews の「Add-ins」から「Download Adds -ins」を選択する。

¹ DL は 50 期までは 0、51 期以降は 1 の値をとる変数と定義される。したがって、DL の階差をとると(d(DL))、51 期 だけが 1 となり、その他の期では 0 となる。

E\	/iews												 -
File	Edit	Object	View	Proc	Quick	Options	Add-in	s Wi	ndow	Help			
								wnloa anage	d Add-ins d Add-i User Ob	ns			
111	Work	file: UNT	ITLED				Do	wnloa	d User (Objects	5 	×	
Vie	ew Pro	oc Object	Save	Freeze	Details	+/- Sh	w Fetch	Store	Delete	Genr	Sample		
Ra	ange:	1 100	100 0	obs							Filt	ter: *	
Sa	imple:	1 100	100 0	obs						C	Order: Na	ame	
) c resi	d											
Ž	y2												

そうすると、Add in Objectsのウィンドウが表示される。ここで、ZAURootを選択し、 Installをクリックすると、ZAURootがインストールされる。

EViews Add-Ins					▼	Retresh
Name	Туре	Published	Versi	Status		
Roll	eqn	19 Apr 2010	1.1			Install
rtadf	series	28 Aug 2013	1.1			
SignifCoefs	eqn	10 Feb 2010	1.0			Website
SpectralAnalysis	series	18 Feb 2014	1.0			
SVARPatterns	var, matrix	15 Jan 2014	1.2			
tarcoint	global, group	22 Feb 2012	1.1			
tbl2tex	table	17 Dec 2010	1.0			
TechAsis	global, series, g	07 Apr 2010	1.0			
Trim	series, group	24 Nov 2010	1.0			
TSDGP	global	14 Jul 2011	1.0			
TVAR	global	25 Oct 2011	1.0		-	
VADE process	var	10 Feb 2010	1.0		=	
ZAURoot		07 Apr 2010				

インストールが終了したら、系列 y1 について ZA 検定を行ってみよう。Workfile ウ ィンドウから y1 を選択し、メニューバーの「Add-ins」から「Zivot-Andres unit root test」 を選択する(左下図)。そうすると、Zivot-Andrews test というウィンドウが表示され る(右下図)。Select a break location で、構造変化のタイプを選択する。ここでは、 定数項だけの構造変化を考慮するため、A-Intercept を選択しよう。

EViews		EViews	
File Edit Object View Proc Quict Options Add-ins Zivot	Window Help st-Andrews unit root test	File Edit Object View Pro	oc Quick Options Add-ins Window Help
Man Dow Man View Proc[Object] Save Freeze Details+/- Show Range: 1 100 - 100 obs Sample: 1 100 - 100 obs Sample: 1 100 - 100 obs C G G G C M G G O V resid M resid M resid M V V2	nage Add-ins Inload Add-ins Inage User Objects Inload User Objects Filter: * Order: Name	Workfile: UNTITLED View Proc Object Save Free Range: 1100 - 100 obs Sample: 1100 - 100 obs Sample: 1100 - 100 obs Sample: 100 - 100 obs Sample: 100 - 100 obs Image: 100 - 100 obs View Proc Object Sample: 100 - 100 obs Image: 100	Zivot-Andrews test

そうすると、下図の推定結果が表れる。ZA 検定では、構造変化のすべての候補日で ペロン検定を行っている。それを示したのが、Zivot-Andrews Breakpoints という図に なる。この図では、構造変化日を横軸とし、そのときのペロン検定の値を縦軸において いる。図を見ると、ちょうど 51 期で検定量が最も小さくなる。換言すれば、51 期にお いて、単位根仮説を最も棄却しやくなっている²。

2章の SupF 検定では、F 値が大きいほど帰無仮説(構造変化なし)を棄却しやすい ということで、統計量として F 値の最大値を用いた。同様に、ZA 検定では、単位根仮 説を最も棄却しやすい t 値の最小値を統計量とする。この統計量は、t 値の極小値 (infimum)ということで、Inf-t と呼ばれる(EViews では Zivot-Andrews test statistic と表記 している)。推定結果をみると、Inf-t=-7.24 となり、その p 値はほぼ 0 である。したが って、単位根仮説は棄却される³。

 ² EViews の推定結果をみると、構造変化は 51 期となっている。これは 50 期から 51 期にかけて構造変化が生じたことを意味する。この場合、教科書では 50 期を構造変化日としているが、EViews では 51 期を構造変化日としている。
 ³p 値は 1.75E-10 である。1.75E-10 とは 1.75×10⁻¹⁰を意味している。

4. IPS 検定

パネルデータを用いれば、サンプルサイズが大きくなり、ひいては単位根検定の検出力 も上昇する。ここでは、PANEL.XLS を用いて、IPS 検定を説明しよう(4章11節参照)。 このデータは、1980Q1~2013Q1までの8か国(Australia, Canada, France, Germany, Japan, Netherlands, UK, US)の実質実効為替レートからなる。

まず、実質為替レートの対数の系列を作ろう。

- genr y1 = log(australia)
- genr y2 = log(canada)
- genr y3 = log(france)
- genr y4 = log(germany)
- genr y5 = log(japan)
- genr y6 = log(netherlands)
- genr y7 = log(uk)
- genr y8 = log(us)

これらの全系列を選択し、Open Group とする。そして Group Window の View をクリ ックし、Unit Root Test を選択する。

Range: 1980Q1 2013Q1	122 aba		r in	and a			
Sample: 1980Q1 2013Q1 -	1 Group:	UNTITLED Work	file: UNTITLED:	Untitled¥			×
🖾 australia	View Proc	Object Print Nam	Freeze Default	 ✓ Sort 	Edit+/- Smpl+/-	Compare+/- T	rans
Ø C		¥1	Y2	¥3	¥4	¥5	
🖾 canada		¥1	Y2	Y3	¥4	Y5	~
M france	1980Q1	4.646830	4.635864	4.740418	4.740225	4.246307	
germany	1980Q2	4.658882	4.620817	4,740016	4,713729	4.295529	
M japan	1980Q3	4.666745	4.626707	4,751424	4,694032	4.329601	
M netheriands	1980Q4	4.675330	4.616773	4,733792	4,648230	4.379787	
	1981Q1	4.697913	4.632883	4,708349	4.616605	4,426127	
	1981Q2	4.731521	4.668427	4,686741	4.604500	4.385321	
Ø v1	1981Q3	4,775369	4.690035	4.694179	4,589346	4.348612	
✓ √2	1981Q4	4.767748	4,700935	4,688242	4.622882	4.351103	
⊠ y3	1982Q1	4,753832	4,718918	4.682094	4,610456	4.324411	
⊠ y4	1982Q2	4,753021	4,718883	4.678439	4.626472	4.287537	
	1982Q3	4,739386	4.741422	4.611768	4.628203	4,248510	
፼ y6	1982Q4	4,736909	4,775141	4.618274	4,640151	4,259492	
⊠ y7	1983Q1	4,729103	4.767544	4.645698	4.651386	4.341127	
⊠ y8	1983Q2	4,684979	4,775900	4,606989	4,643843	4.356029	
() Untitled New Page	1983Q3	4,724090	4,794716	4.596321	4.621703	4.349387	
ondied New rage /	1983Q4	4.764999	4.789323	4.591740	4.613168	4.390577	
	1984Q1	4.781708	4.778258	4.590625	4.606000	4,408389	
	1984Q2	4,752564	4,748578	4.597733	4.601263	4.415872	
	1984Q3	4,729430	4,759118	4.594847	4,578179	4,386815	
	1984Q4	4,763378	4.767689	4.591771	4.564452	4,399707	
	1985Q1	4,688905	4,769158	4,588360	4,551421	4.385284	
	1985Q2	4.557177	4.739762	4.605730	4.549626	4.390007	
	1985Q3	4,573690	4,723602	4,629043	4,561772	4,410578	
	1985Q4						
	400004					,	

そうすると、Group Unit Root Test Window が開かれるため、Test Type を Individual root-Im,Pesaran,Shin とし、Lag Length を Automatic Sleclection とし t-statistic を選ぶ。また、Max lag を 10、p-val を 0.05 としよう。これはラグの長さは、最大 10 までとし、一般からの特定法でラグの次数を選択する。

est type	Automatic selection:
Individual root - Im, Pesaran, Shin 🗸	t-statistic ~
est for unit root in • Level	Max lag: 10 p-val: 0.05
0 1st difference	(Use * to indicate obs-based
○ 2nd difference	
nclude in test equation	User specified:
Individual intercept	Spectral estimation
O Individual intercept and trend	Kernel method: Bartlett 🗸 🗸
None	Bandwidth selection
Intions	Automatic: Newey-West
Use balanced sample	User specified: 2

これで OK とすると、以下の結果が表示される。

下部では、個別系列 (y1~y8)の ADF 検定の結果が示されている。例えば、y1の ADF 検定では、ラグの次数は k=5 となり、t 値は-1.678 となっている。また、各系列の t_i統計量の期待値 E(t)と分散 E(Var)が表記されている。選択されたラグの長さの違いにより、 サンプルサイズ Obs が異なるため、E(t)と E(Var)の値が少し異なっている。t_i統計量の 平均は-2.4393、E(t)の平均は-1.516、E(Var)の平均は 0.759 である。

教科書では、IPS 検定は、 t_i の標本平均 \overline{t} を標準化した統計量 $Z_{\overline{t}}$ を用いるとした。

$$Z_{\bar{i}} = \frac{\sqrt{n} \left(\bar{t} - E[t_i]\right)}{\sqrt{\operatorname{var}(t_i)}}$$

しかし、系列*i*によってラグ次数 k_i が異なるため、分析に用いられるサンプルサイズ T_i 、ひいては $E[t_i]$ と var(t_i)も異なる。このとき統計量は

$$Z_{\bar{i}} = \frac{\sqrt{n} \left(\bar{t} - \frac{1}{n} \sum_{i=1}^{n} E[t_i]\right)}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} \operatorname{var}(t_i)}}$$

として求める。上の結果を用いると、統計量は

$$Z_{\bar{t}} = \frac{\sqrt{8(-2.4393 + 1.516)}}{\sqrt{0.759}} = -2.9968$$

として計算される。対応する p 値を見ると、0.0014 であるから、有意水準 5%で帰無仮説「全 系列に単位根がある」が棄却される。IPS 検定において、帰無仮説の棄却は、どれかの系列 が定常であることを示しているが、どの系列が定常であるとはいえない。

5. HP 分解

トレンド分解の方法としてHP分解を紹介する。1947Q1~2012Q4米国実質GDP(rgdp) にHPフィルターをかけて、トレンド部分と定常部分に分解しよう。まず、データ RGDP.XLSを読み込んだら、Workfile ウィンドウにある rgdp をダブルクリックして Series ウィンドウを表示する。メニューバーから「Proc」→「Hodrick-Prescott Filter」 を選択すると、下図のように Hodrick-Prescott Filter ウィンドウが表示される。

Hodrick-Prescott Filter	X
Output series	
Smoothed series: hptrend	101
Cycle series: hpcycle	01
Blank fields will not gene	rate
- Smoothing Parameter	
Lambda: 1600	
Edit lambda directly	
🔘 Set lambda by Ravn Uhlig	g frequency rule
Power: 2	
Power does not matter f	or quarterly
ОК	Cancel

Output series で、系列に名前を付けると、Workfile に系列が保存される。ここでは トレンド部分を hptrend01、循環部分を hpcycle01 として保存しよう。また、このデー タの頻度は四半期であるため、Smoothing Parameter の Lambda には 1600 と入力す る(実証分析では、四半期データなら λ =1600、月次データなら λ =14400 と設定する)。

OK を押すと、分解の結果が図として表示される。また Workfile には hptrend01、 hpcycle01 という系列が保存される。青線が実質 GDP、赤線がトレンド、緑線が循環

部分を表している。景気循環に興味があるなら、循環部分である hpcycle01 を分析すれ ばよい。トレンド部分なら hptrend01 を調べればよい。

消費額、投資額、政府支出についても、HP 分解を用いて、トレンドと循環部分に分 解をしてみよう。

6. BN 分解

BN 分解は、Add-ins から BNDecom アドインをダウンロードすることで、BN 分解を行 うことができる(学生版では Add-ins は使えないので注意)。まず EViews の「Add-ins」 から「Download Adds -ins」を選択する。そうすると、Add in Objects のウィンドウが 表示される。ここで、BNDecom を選択し、Install をクリックすると、BNDecom がイ ンストールされる。

talled Available				
Source:				
EViews Add-Ins				
Name	Туре	Publis V	Status	
aim_solve	model	07 Feb 1.0		
ARDLbound	series	23 Jan 2.1		
ARIMASel	series	28 Ma 1.0		
BackTest	global	12 No 1.0		
BaiPerron	eqn	12 Apr 1.0		
BayesLinear	global	03 Sep 1.1		
BFAVAR	global	28 De 1.0		
BiProbit	global	28 Sep 1.0		
PAA	global	13 Ma 1.0		
BNDecom	series	07 Jul 1.0		
OPTest	eqn	16 Apr 1.0		
BVAR	global	11 No 1.0		
CanCor	global	08 Jul 1.0		
CDTest	eqn	06 Jun 1.1		
confcast	var	05 Jul 1		
Crossvalid	eqn	12 Ma 1.1		
Croston	series	25 Ma 1.0		

まず、RGDPの対数系列を y としよう。そして、この系列をチェックして Series Window を開こう。そして Add-ins をチェックして Beveridge-Nelson Decomposition を選択する。

EViews						
File Edit Object View Pro	c Quick Op	tions Add-ins	Vindow Help			
Command						
genr y=log(rgdp)						
Command Capture						
⊠ resid ⊠ radp	Series:	Y Workfile: UN	ITITLED::Untitl	ed¥		
፼ trend ፼ u	View Proc	Object Properties	Print Name	reeze Default	✓ Sort Edit+/	/- Smpl+/- Adj
⊠ y		L Modifi	ast updated: ed: 1947Q1 2	11/17/17 - 13:0 012Q4 // v=log	(radp)	^
		mount	ou. Ioirar 2	onzar <i>n</i> y log	(igap)	
	1947Q1	7.479130				
	1947Q2	7.477604				
	1947Q3	7.476755				

そうすると、下の Window が表示されるので、設定を入力しよう。このアドインでは、 ARMA(p,1,q)が想定されているので、p と q を入力する必要がある。GDP のモデルは ARMA(2,1,0)であるから、AR specification は 2、MA specification は空欄のままにしよう。 Paramter value は教科書の s 期先予測に該当するので、ここでは 100 としておく。そして OK としよう。

Beveridge-Nelson Decomposition X	
ARIMA(p,1,q) approximation: AR specification: p order component 2 MA specification: q order component	
Parameter value: s steps ahead prediction 100	
Trend output name trend	
Cycle output name cycle	
Estimation sample 1947Q1 2012Q4	
OK Cancel	

そうすると、トレンドは trend、循環要素は cycle という名前で新しい系列として保存される。ここで系列 cycle をチェックして図にしてみると以下となる。これはまさに教科書で紹介した系列になる。

7. モンテカルロ実験

ここでは4章4節の例3のモンテカルロ実験を再現してみよう。つまり、 $y_{f=a}y_{t1}+a$ とする。ただし、 $y_{0}=0$ 、T=100、N=5000(繰り返し回数)である。繰り返し回数を増やせば、綺麗な図になるので時間がある方はN=10000にしたらよい。

EViews の File をクリックし program を選択する(EViews の学生版では、program を 使うことができないことに注意されたい)。

mand

そうすると、下の画面が出力されるので、code を入力して Run をチェックしよう(緑色の 文字は code の説明なので入力する必要はない)。ここで以下の code を入力して Run しよう。

	Program: UNTITLED				•	×
(Run Pint Save SaveAs Cut	Copy Paste InsertTxt	Find Replace	Wrap+/-	LineN	um+/-
	!draws=5000 '繰り返し回数					
	!series =100 'サンプルサ-	(ズ				
	!a=1 'AR(1)の係数	k.				
	workfile dftest u Idraws	workfileをdftestという	名前にする			
	vector(!draws) vec_a=0 'v	rec_aというベクトルを	定義			
	vector(!draws) vec_t=0 ' smpl 1 1	vec_tというベクトルをう	定義			
	series y=0	1=0とする				
	for !i=1 to !draws '1 smpl 2 !series	から!drawsまで繰り返	す			
	series y=!a*y(-1)+nrnd	'y2、、yTまでをAR(1)から生成す	3		
	equation eq1.ls y c y(-1) 'yをcとy(-1)で回帰す	する			
	vec_a(!i)=@coefs(2) '	系数をvec_alに収納す	3			
	vec_t(!i)=(@coefs(2)-1)	/@stderrs(2) 't値をve	ec_tlc収納す	3		
	smpl 1 !draws					
	mtos(vec_a,vec_ahat) 'べク	トルvec_aをvec_aha	tという時系列	データに	変換す	ける
	mtos(vec_t,vec_that)'ベクト	ルvec_tをvec_thatとい	う時系列デー	タに変換	する	
	vec_that.hist	CIEBRA O				

入力が面倒なら以下の左側だけを Program Window に貼り付ければよい。左側が code で、 右側に追加的な説明をしている。

!draws=5000	N:繰り返し回数
!series =100	T:サンプルサイズ
!a=1	a: AR(1)の係数、ここでは単位根を仮定
workfile dftest u !draws	
vector(!draws) vec_a=0	

vector(!draws) vec_t=0	
smpl 1 1	
series y=0	
for !i=1 to !draws	これは for 文と言われて、for から next まででひとま
smpl 2 !series	とまりになっている。ここで!iは1で始まって、!draws
series y=!a*y(-1)+nrnd	で終わる。まず、!iを1としてデータをAR(1)で生成
equation eq1.ls y c y(-1)	する(rnmd は標準正規乱数)。そして OLS で推定して
vec_a(!i)=@coefs(2)	AR(1)の係数を得る。その結果を、ベクトル vec_a の
vec_t(!i)=(@coefs(2)-1)/@stderrs(2)	第一要素に収納する。今度は、!iを2として同じこと
next	をする。
smpl 1 !draws	
mtos(vec_a,vec_ahat)	ベクトルのままだと計算しにくいので、vec_a、vec_t
mtos(vec_t,vec_that)	を時系列データに変換する。
vec_ahat.hist	
vec_that.hist	

そうすると、以下の図が表示される(ただし、乱数を発生させているため、全く同じ結果 が得られるわけではないことに注意)。左下の図では、AR(1)の係数の分布を示している。 これをみると、真の値は1であるが、平均は約0.95であり、左にひずんだ分布になってい る。右下の図では、t値の分布を示しており、分布の中心は0ではなく、約-1.5となってい る。

現状では、度数分布になっているが、これを相対頻度にしたり、密度関数にしたりもで きる。たとえば、AR(1)係数の値は vec_ahat に保存されているので、vec_ahat の workfile から、view→graph とする。ここで Graph Options の Specific から Distribution を選択し、 Detail の Distribution を Histogram から Kernel Density に変更しよう。

buon rages				
Graph Type Basic type	Graph type General: Basic graph	Details Graph data:	Raw data	
Axes & Scaling	Specific:	Distribution:	Histogram	~ Options
Graph Elements	Line & Symbol Bar	Axis borders:	None	
Templates & Objects	Spike	Multiple series:	Single graph	
	uantile - Juantile Boxpior			

そうすると、左下画面のようなAR(1)係数の密度関数が出力される。同様に、vec_that の workfile window から同じようにすると、右下のようなt 検定の密度関数が得られる。

興味のある読者は、モンテカルロ実験の設定を変えて、AR係数、t統計量の分布を求めてもらいたい。