2018/02/02 新谷元嗣、藪友良、高尾庄吾

3章:ボラティリティ

ここでは、条件付き不均一分散のモデルを紹介する。具体的には、ARCH、GARCH、 IGARCH、EGARCH、TGARCH、多変量 GARCH モデルである。

1. 分散不均一のモデル

標準的な回帰分析において、「分散は一定」と仮定される。しかし、実際のデータをみると分散が一定でないことがある。ファイル NYSE.XLS では、2000年1月4日~2012年7月16日における NYSE 指数の日次収益率rが含まれる。下図は、日次収益率の動きを示す。これをみると、平穏な時期もあれば、激しく動く時期もあることが見て取れる。つまり、このデータを見る限り、分散一定の仮定は妥当ではないかもしれない。

残差2乗のコレログラム

ここで AR(2)とし

と入力すると推定結果が得られる。それらをまとめると

$$r_t = 0.0046 - 0.0946r_{t-1} - 0.0575r_{t-2}$$

$$(0.209)$$
 (-5.416) (-3.293)

となる(教科書は RATS で推定しており推定値は多少異なる)。また、残差(residuals)のコレログラムを確認すると、自己相関 AC と偏自己相関 PAC は0に近い値を取り、修正Q 統計量も全て有意とはならない。つまり、残差はホワイトノイズである。

ここで、残差2乗(squared residuals)のコレログラムを確認しよう。Equation ウィンドウの 「View」→「Residual Diagnostics」→「Correlogram Squared Residuals」を選択する。

そうすると、以下の表が表示される。これをみると、AC と PAC は大きな値をとり、修 正 Q 統計量は有意となっている。つまり、残差 2 乗には系列相関がある。以下では、より 厳密に LM 検定によって、調べてみよう。

	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
-	þ		1	0.198	0.198	128.27	0.000
			2	0.408	0.384	673.88	0.000
			3	0.200	0.091	805.11	0.000
			4	0.287	0.122	1074.5	0.000
			5	0.331	0.234	1434.2	0.000
			6	0.289	0.126	1708.8	0.000
			7	0.342	0.143	2091.9	0.000
			8	0.256	0.066	2307.6	0.000
		1 1	9	0.287	0.057	2577.3	0.000
			10	0.253	0.045	2788.1	0.000
			11	0.335	0.132	3156.5	0.000
	i de la constante de la consta	1 1	12	0.279	0.061	3412.7	0.000
		•	13	0.251	-0.021	3619.7	0.000
	i i i i i i i i i i i i i i i i i i i	📫	14	0.155	-0.121	3699.0	0.000
	i de la constante de la consta	0	15	0.203	-0.037	3835.0	0.000
		¢	16	0.236	0.042	4017.9	0.000
	i de la constante de la consta	1	17	0.252	0.038	4226.9	0.000
	i de la constante de la consta	•	18	0.248	0.021	4428.5	0.000
	i di la constante di la consta	0	19	0.177	-0.037	4531.9	0.000
	_	1	20	0.222	0.033	4694.2	0.000
	<u> </u>	I L	I				

LM 検定

マクラウド=リーの LM 検定を用いて、ARCH/GARCH 効果の存在を調べよう。Equation ウィンドウの「View」→「Residual Diagnostics」→「Heteroskedasticity Tests」を選択する。

Specification ボックスの Test type で ARCH を選択する。LM 検定は、残差2乗を、残差2乗のラグで回帰し、その係数が有意に0と異なるかを調べる。このため、Number of lags で何期分のラグを説明変数として含めるかを指定する。ここでは5としよう。

Heteroskedasticity Tests Specification Test type: Provent Press Codfeen	Dependent variable: RESID^2
Arch Write Custom Test Wizard	The ARCH Test regresses the squared residuals on lagged squared residuals and a constant.
	Number of lags: 5
	Cancel

OK を押すと、検定結果が表示される。

Equation: UNTITLED Workfile: UNTITLED::Untitled\										
View Proc Object Print Name Freeze Estimate Forecast Stats Resids)
н	Heteroskedasticity Test: ARCH									
F O	F-statistic 209.9818 Prob. F(5,3257) Obs*R-squared 795.4319 Prob. Chi-Squared							5)	(().0000).0000
T D M D S Ir	Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 11/10/16 Time: 11:07 Sample (adjusted): 8 3270 Included observations: 3263 after adjustments									
	Variable	(Coeffic	cient	Std. E	Error	t-S	Statisti	ic I	Prob.
	C RESID ⁴ 2(-1) RESID ⁴ 2(-2) RESID ⁴ 2(-3) RESID ⁴ 2(-4) RESID ⁴ 2(-5)	0.487 0.047 0.309 0.003 0.104 0.233	352 466 012 580 148 878	0.086506 5.63374 0.017036 2.78624 0.016958 18.2222 0.017801 0.20111 0.016956 6.14227 0.017034 13.7303			9 0 0 0 2 0 2 0 9 0 7 0	0.0000 0.0054 0.0000 0.8406 0.0000 0.0000		
RASS	R-squared djusted R-square S.E. of regression sum squared resid	b	0.243 0.242 4.433 6401	773 612 230 1.55	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion			1.6 5.0 5.8 5.8	15212 94026 17971 29170	

残差2乗のラグは、3期前以外は有意に0と異なる。また、*TR*² (Obs*R-squared)は795.432 と高い値となり、有意水準1%で帰無仮説 $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = 0$ は棄却される(対応する p 値は0.000)。小標本では、 χ^2 検定ではなく、*F*検定を行う方がよいため、帰無仮説 $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = 0$ とした *F*値を求めると、209.982と高い値となり、やはり有意水準1%で帰無仮説 は棄却される(対応する p 値は0.000)。以上から、ARCH/GARCH 効果が存在するといえる。

ARCH/GARCH モデルの推定

平均のモデルは AR(2)とし、誤差項は GARCH(1,1)としよう。「Quick」→「Estimate Equation」を選択して、Equation Estimation ウィンドウを表示する(下図)。そして平均の式を AR(2)としよう。そして、推定法 Method として、LS ではなく、ARCH-Autoregressive Conditional Heteroskedasticity を選ぶ。

Specification	Options	_
-Equation	specification 4.	
	Dependent variable followed by list of regressors including ARMA and PDL terms, OR an explicit equation like Y=c(1)+c(2)*X.	
r c r(-1	to -2)	
Estimatio	settinger*	
Estimatio	1 settings:0-	
Estimatio	1settings:s	
Estimatio Method: Sample:	Isettings:: Is - Least Squares (NLS and ARMA) US - Least Squares (NLS and ARMA) TSLS - Two-Step Least Squares (TSLS and ARMA)	
Estimatio Method: Sample:	Isettings:= LS - Least Squares (NLS and ARMA) TSLS - Two-Stoge Last Squares (TSNLS and ARMA) GMM - Generatized Method of Moments GMM - Generatized Method of Moments	

推定法 Method を選択すると、ウィンドウが切り替わり、Specification の画面が表示される(下図)。平均の式(Mean equation)には、先ほど定義した AR(2)モデルが書かれている。分散の式(Variance and distribution specification)をみると、規定値としてGARCH(1,1)が選択されている。もし ARCH(2)が推定したいなら、Order ボックスにおいて、ARCH の次数を2とし、GARCH の次数を0に変更すればよい。また Error distributionがNormal(正規分布)になっているが、これをt分布に変更することも可能である。

Equation Estimation
Variance and distribution specification is:: Variance regressors: Variance regressors: ArcH: Threshold order: 0
GARCH: 1 Restrictoris: None Normal (Gaussian)
Estimation settings:
Method: ARCH - Autoregressive Conditional Heteroskedasticity
Sample: 1 3270
ОК +++>tzи

そして、OK とすると、以下の推定結果が得られる。

Equation: UNTITLEC View Proc Object Print Dependent Variable: Method: ML ARCH - N Date: 11/02/17 Time Sample (adjusted): 3 Included observations Convergence achieve Coefficient covariance: Presample variance: I GARCH = C(4) + C(5)	Workfile: UN Name Freeze E R Normal distribu : 11:54 3270 : 3268 after ac d after 26 itera computed us backcast (para *RESID(-1)*2	ITITLED::Untitl istimate Foreca tion (BFGS / I djustments tions ing outer prod meter = 0.7) + C(6)*GARC	ed¥ st_Stats_Resid: Marquardt st luct of gradie H(-1)	eps)	
Variable	Coefficient	Std. Error	z-Statistic	Prob.	
С	0.043589	0.015510	2.810456	0.0049	ままうせ
R(-1)	-0.057988	0.020047	-2.892610	0.0038	平均の氏
R(-2)	-0.038039	0.018295	-2.079193	0.0376	
	Variance	Equation			
с	0.013753	0.001812	7.590604	0.0000	
RESID(-1)^2	0.084006	0.006466	12.99157	0.0000	ハサート
GARCH(-1)	0.906260	0.006882	131.6852	0.0000	プ取り氏
R-squared	0.008757	Mean deper	ndent var	0.004093	
Adjusted R-squared	0.008150	S.D. depen	dent var	1.278381	
S.E. of regression	1.273161	Akaike info	criterion	2.844324	
Sum squared resid	5292.366	Schwarz cri	terion	2.855509	
Log likelihood	-4641.626	Hannan-Qu	inn criter.	2.848330	
Durbin-Watson stat	2.069276	NO.ADIA DI			

これをまとめると、以下となる。

$$s_t = 0.044 - 0.058s_{t-1} - 0.038s_{t-2}$$

$$(2.81) \quad (-2.89) \quad (-2.08)$$

$$h_t = 0.014 + 0.084 \ \varepsilon_{t-1}^2 + 0.906h_{t-1}$$

$$(7.59) \quad (12.99) \quad (131.67)$$

t 分布

次に、Error distribution を Student's t(t 分布)に変更しよう。

ecification	Optio	ns				
Mean equi Depende	ation. nt follow	wed by regressors &	ARMA	terms OR explicit equation		
r c r(-1	to -2)	ARCH-M None				
Variance a	nd distr	bution specification is				
Model	GARCH	I/TARCH	-	Variance regressors		_
Order: ARCH GARC	1	Threshold order	0	Sure databation		
		Marca		Error oistroution	-	
Pestrict	ons.	(NOCIO		Normal (Gaussian)	-	
Estimation	and the second	14	C	Student's 1		
Method	ARCH	I - Autoregressive	Conditio	Generalized Error (GED) and GED with fixed drameter		•
Sample	1 327	0			_	
	1000					

そうすると、以下の結果が得られる。ここでt分布の自由度はT-DIST.DOFであり、6.14 となっている。自由度は小さいため、誤差項の分布は正規分布ではなくt分布の方が適当で あるといえる。ただし、その他のパラメータの推定値は、正規分布を仮定しても、t分布を 仮定しても、あまり変化はない。以下では、t分布を仮定して推定する。

最後に、IGARCHを推定するには、Variance and distribution specification にある Restriction を None から IGARCH に変更すればよい。EViews では、IGARCH を推定すると分散の式か

ら定数項が外される。また、定数項を外した影響からか、係数は上手く推定できなかった ため、以下では IGARCH ではなく、t 分布を仮定した GARCH モデルに基づいて分析を進め る。以下では、GARCH を用いているため、教科書と推定結果が多少異なる。

診断テスト

条件付き分散、標準化残差の動きをみたいのであれば、Equation Window から View→Garch Graph→Conditional Variance とすると以下の図が出力される。教科書では h_i に該当する。

また、標準化残差を診断分析に使いたいなら、Equation Window において、Proc→Make Residual Series とし Standardized とすると標準化残差が新しい系列として作成される。 Make Residual Window において Name for Resid ボックスで名前を決めることができる。 ここでは教科書と同様に s と名前を付けておこう。

Make Residuals	X
Residual type Ordinary Standardized Generalized	ОК
Name for resid series	Cancel

いくつかの診断テストをしてみよう。まず、 s^2 の系列を作成し、 s^2 という名前を付けて おこう(genr $s^2 = s^2$)。そして、 s^2 を、1次と2次のラグで回帰すると以下となる。

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.998386	0.042272	23.61811	0.0000
S2(-1)	-0.045179	0.017494	-2.582587	0.0098
S2(-2)	0.032927	0.017496	1.881931	0.0599
R-squared	0.003265	Mean deper	ndent var	0.986265
Adjusted R-squared	0.002654	S.D. depen	dent var	1.951456
S.E. of regression	1.948864	Akaike info	criterion	4.173289
Sum squared resid	12393.11	Schwarz cri	4.178884	
Log likelihood	-6811.981	Hannan-Qu	4.175293	
F-statistic	5.344041	Durbin-Wat	1.999142	
Prob(F-statistic)	0.004818			

s2のラグは有意であるが、0に近い値をとっている。

次に、s2を、1次と2次のsのラグで回帰してみよう。sのラグは、両方とも有意になっており、何らかの非対称性が存在すると考えられる。

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.969305	0.034106	28.42071	0.0000
S(-1) S(-2)	-0.096157 -0.178760	0.034259 0.034273	-2.806771 -5.215819	0.0050
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood E-statistic	0.010657 0.010051 1.941624 12301.19 -6799.824 17 57497	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.986265 1.951456 4.165844 4.171440 4.167848 2.138108
Prob(F-statistic)	0.000000	Durbin-wat	Son Stat	2.100100

エングルらの符号バイアス検定をしてみよう。まずは、s<0 なら1となるダミー変数を作成する(genr dummy=s<0)。そして、s2を、1から3次までの dummy のラグで回帰すると以下となる。やはり dummy の係数は有意となっており、非対称性の存在が疑われる。

Dependent Variable: 6	20			
Method: Least Square	52			
Date: 11/02/17 Time:	12:26			
Sample (adjusted): 6	3270			
ncluded observations	: 3265 after ac	djustments		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
с	0.620248	0.069683	8.900978	0.000
DUMMY(-1)	0.292166	0.067962	4.298939	0.0000
DUMMY(-2)	0.281908	0.067964	4.147911	0.0000
DUMMY(-3)	0.140728	0.067961	2.070711	0.0385
R-squared	0.011917	Mean depend	dent var	0.98647
djusted R-squared	0.011008	S.D. depende	ent var	1.951719
S.E. of regression	1.940946	Akaike info cr	iterion	4.165453
Sum squared resid	12285.08	Schwarz crite	rion	4.17291
og likelihood	-6796.102	Hannan-Quir	in criter.	4.168125
F-statistic	13.11050	Durbin-Watso	on stat	2.12752
	0 000000			

さらに一般化した推定を行ってみよう。これは

ls s2 c dummy(-1) dummy(-1)*s(-1) (1-dummy(-1))*s(-1)

と入力すればよい。

Equation: UNTITLED	Workfile: UN	TITLED	::Untitle	d¥	_		<u> </u>	
View Proc Object Print N	ame Freeze E	stimate	Forecast	Stats	Resids			
Dependent Variable: S2 Method: Least Squares Date: 11/02/17 Time: 12:30 Sample (adjusted): 4 3270 Included observations: 3267 after adjustments								
Variable	Coefficient	Std.	Error	t-Sta	tistic	Pro	ob.	
C	1.006964	0.07	7014	13.0	7508	0.0	0000	
DUMMY(-1)*S(-1)	0.179254	0.06	4557	2.77	6695	0.0	055	
(1-DUMMY(-1))*S(-1)	-0.239446	0.08	5585	-2.79	7746	0.0	0052	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log IRelihood F-statistic Prob(E-statistic)	0.010123 0.009213 1.942565 12313.13 -6802.990 11.12298 0.000000	Mean S.D. (Akaik Schw Hann Durbi) dependent var dependent var (e info criterion varz criterion nan-Quinn criter. in-Watson stat			0.986 1.951 4.167 4.174 4.169 1.999	8973 1576 7119 1578 9791 9531	

ここでも、これらの変数は有意となっており、非対称性が生じているのが分かる。また、 dummy(-1)、dummy(-1)*s(-1)、(1-dummy(-1))*s(-1)の係数が全て0であるかを検定するには、 F-statistic (定数項以外の係数が全て0という帰無仮説を検定する)をみればよい。これは 11.12298となっており、帰無仮説が棄却される¹。

ARCH-M

もし ARCH-M モデルを推定したいなら、Equation Estimation ウィンドウの右上にある ARCH-M ボックスで、None と設定されているのを、Variance に変更すればよい。こうす ると、平均の式に、新たに ht が説明変数として追加される。

Decification Options	
Mean equation. Dependent followed by regressors &	ARMA terms OR explicit equation:
r c r(-1 to -2)	ARCH-M: None
Variance and distribution specification 🖶	None Std. Dev. Variance
Model: GARCH/TARCH	Variance regressors. Log(Var)
Order: ARCH: 1 Threshold order: GABCH: 1	0
Restrictions: None	 ✓ Student's t
Estimation settings:	
Method: ARCH - Autoregressive	Conditional Heteroskedasticity
Sample: 1 3270	

そして OK をおすと以下の結果が得られる。ここで平均の式に GARCH という項目が加 わっているのが確認できる。その係数は 0.016 とプラスであるが t 値は 1.04 と低く有意で はない。

Equation: UNTITLED	Workfile: UN	TITLED::Untit	ed¥	
View Proc Object Print	Name Freeze E	stimate Foreca	st Stats Reside	5
Dependent Variable: f Method: ML ARCH - S Date: 11/02/17 Time: Sample (adjusted): 3 Included observations Convergence achieve: Coefficient covariance Presample variance: b GARCH = C(5) + C(6)	R tudent's t distr 11:58 3270 : 3268 after ac d after 40 itera computed usi backcast (para *RESID(-1)*2	tibution (BFG tions ing outer prod meter = 0.7) + C(7)*GARC	S / Marquard luct of gradie H(-1)	it steps) ints
Variable	Coefficient	Std. Error	z-Statistic	Prob.
GARCH	0.016628	0.016005	1.038958	0.298
C	0.048737	0.018329	2.000080	0.0076
R(-1)	-0.062793	0.019206	-3.269363	0.0011
R(-2)	-0.045367	0.017519	-2.589534	0.0096
	Variance	Equation		
с	0.009432	0.002864	3.293668	0.0010
RESID(-1)^2	0.089281	0.010693	8.349419	0.0000
GARCH(-1)	0.908600	0.009759	93.09972	0.0000
T-DIST. DOF	6.150786	0.718304	8.562930	0.0000
R-squared	0.006198	Mean dependent var		0.004093
Adjusted R-squared	0.005284	S.D. dependent var		1.278381
S.E. of regression	1.274999	Akaike info	criterion	2.804052
Sum squared resid	5306.033	Schwarz cri	terion	2.818965
Log likelihood	-4573.821	Hannan-Qu	inn criter.	2.809393
Durbin-Wateon etat	2 050970			

¹ p 値の値が知りたいなら、View → Coefficient Diagnostic → Wald test - Coefficient Restrictions から、dummy(-1)、 dummy(-1)*s(-1)、 (1-dummy(-1))*s(-1)の係数がすべて 0 (c(2)=c(3)=c(4)=0) を帰無仮説とした F 検定を行えばよい。

2. 非対称のモデル

金融市場では、「悪いニュースは良いニュースよりボラティリティに大きな効果を持つ」といわれる。収益率の下落がボラティリティをより大きく増加させる傾向は、レバレッジ効果と呼ばれる。ここでは、こうした非対称性を捉えるモデル(TARCH、EGARCH)を推定しよう。

TARCH モデル

分散の式は TARCH とする。 TARCH では、ダミー変数

$$d_{t-1} = 1 \qquad \Leftrightarrow \ \bigcup \ \varepsilon_{t-1} < 0$$
$$= 0 \qquad \Leftrightarrow \ \bigcup \ \varepsilon_{t-1} \ge 0$$

を導入し、条件付き分散を

$$h_t = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2 + \lambda_1 d_{t-1} \varepsilon_{t-1}^2 + \beta_1 h_{t-1}$$

と定式化する。ここで、λ₁>0 であれば、負のショックは、正のショックよりもボラティリ ティを増大させる(レバレッジ効果がある)。

先と同じように、ARCH の specification ウィンドウを開いて、Mean equation は r c r(-1 to -2)とし、Variance and distribution specification の Order は ARCH を 1、GARCH を 1 とし、新たに Threshold order に 1 を入力しよう(下図参照)。これで分散式に、 $d_{t-1}\varepsilon_{t-1}^2$ が追加される。

Equation Estimation
Specification Options
Mean equation Dependent followed by regressors & ARMA terms OR explicit equation: r c r(-1 to -2) ARCH-M: None
Variance and distribution specification ion. Model: GARCH/TARCH Variance regressors: Order:
ARCH: 1 Threshold order: 1 GARCH: 1 Error distribution: Restrictions: None
Estimation settings:c Method: ARCH - Autoregressive Conditional Heteroskedasticity Sample: 1 3270
OK +++)tzh

ここで、OK を押すと以下の推定結果が得られる(下図)。つまり *d*_{t-1€t-1}²の係数 (resid(-1)^2*(resid(-1)<0))は 0.154 であり、有意水準 1%で帰無仮説(係数=0)が棄却される。 この係数は有意に正であり、負のショックは正のショックよりもボラティリティを増大さ せることが分かる。

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	0.034712	0.013840	2.508126	0.0121
R(-1)	-0.060215	0.018665	-3.226108	0.0013
R(-2)	-0.037651	0.017275	-2.179501	0.0293
	Variance	Equation		
С	0.009803	0.001776	5.520851	0.0000
RESID(-1) ²	-0.021903	0.007605	-2.880210	0.0040
RESID(-1)^2*(RESID(-1)<0)	0.154186	0.014940	10.32045	0.0000
GARCH(-1)	0.933515	0.007443	125.4192	0.0000
T-DIST. DOF	7.103263	0.913464	7.776186	0.0000
R-squared	0.009273	Mean deper	ndent var	0.004093
Adjusted R-squared	0.008666	S.D. depen	dent var	1.278381
S.E. of regression	1.272830	Akaike info	criterion	2.769707
Sum squared resid	5289.616	Schwarz cri	terion	2.784620
Log likelihood Durbin-Watson stat	-4517.702 2.065665	Hannan-Qu	inn criter.	2.775048

EGARCH モデル

EGARCH では、被説明変数は ln(h_t)となっており、係数に非負制約をかける必要がない。また、EGARCH ではショックのボラティリティへの非対称な効果を考慮することもできる。

 $\ln(h_{t}) = \alpha_{0} + \alpha_{1} | \varepsilon_{t-1} / h_{t-1}^{0.5} | + \lambda_{1}(\varepsilon_{t-1} / h_{t-1}^{0.5}) + \beta_{1} \ln(h_{t-1})$

先と同じデータで EGARCH の推定をしてみよう。ARCH の specification 画面を開いて、 Variance and distribution specification の Model を、GARCH/TGARCH を変更して、EGARCH を選択しよう。Order は、ARCH を 1、GARCH を 1、Asymmetric order を 1 と指定する。

	Options		
Depender	ation. nt followed by regressors & ARMA	terms OR explicit equation:	
r c r(-1	to -2)		ARCH-M:
			None 🔻
- Variance a	nd distribution specification is:	_	
Model:	FGARCH	Variance regressors:	
Order:	tomon •		
ARCH:	1 Asymmetric order: 1		
GARCI	H: 1	Error distribution:	
Restricti	ons: None 💌	Student's t	*
Estimation	settings:=		
Method:	ARCH - Autoregressive Conditi	onal Heteroskedasticity	-
	1 2070		
Sample:	1 0270		

OK を押すと、推計結果が Equation ウィンドウとして表示される。

C(6)*RESID(-1)/(@SQRT(GARC	CH(-1)) + C(7)	*LOG(GARC	(-1))) + H(-1))
Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	0.038472	0.013419	2.867045	0.0041
R(-1)	-0.060611	0.018572	-3.263573	0.0011
R(-2)	-0.031376	0.017108	-1.833983	0.0667
	Variance	Equation		
C(4)	-0.086624	0.011146	-7.771739	0.0000
C(5)	0.107950	0.014677	7.355187	0.0000
C(6)	-0.129289	0.011147	-11.59813	0.0000
C(7)	0.986068	0.002344	420.5995	0.0000
T-DIST. DOF	6.877750	0.857400	8.021631	0.0000
R-squared	0.008899	Mean deper	ndent var	0.004093
Adjusted R-squared	0.008292	S.D. dependent var		1.278381
S.E. of regression	1.273070	Akaike info criterion		2.770965
Sum squared resid	5291.609	Schwarz cri	terion	2.785878
Log likelihood	-4519.756	Hannan-Qu	inn criter.	2.776306
Durbin-Watson stat	2.064298			

推定結果は読み取り難いかもしれないが、枠で囲った部分に分散の式に関する推定式が 書かれている。これをもとに、推定結果をまとめると、

 $r_t = 0.038 - 0.061r_{t-1} - 0.031r_{t-2}$

(2.87) (-3.26) (-1.83)

 $\ln(h_t) = -0.087 + 0.108 |\varepsilon_{t-1}/h_{t-1}^{1/2}| - 0.129(\varepsilon_{t-1}/h_{t-1}^{1/2}) + 0.986 \ln(h_{t-1})$

(-7.77) (7.36) (-11.60) (420.60)

となり、全ての係数は有意である。また、*h*_{t-1}の値を所与とすると、*ε*_{t-1}が1単位増えると、 ln(*h*_t)は-0.021 (=0.108-0.129)単位だけ増加する。これに対し、*ε*_{t-1}が1単位減少すると、ln(*h*_t) は 0.237 (=0.108+0.129)単位も増加する。これは、悪いニュースの方が良いニュースより条 件付き分散を増大させる効果があることを意味する。

そして View→Residual Diagnostics→ARCH LM Test とし、Number of lags で 1 を選択し よう(左下画面参照)。そして OK をクリックすると右下の画面が表示される。これをみ ると、 s_{t-1}^2 の係数は有意ではあるが、-0.054と非常に小さい。

eteroskedasticity Tests	×	Equation: UNTITLED	Workfile: UN	ITITLED::Untitl	ed¥ 📃	
Specification		Heteroskedasticity Tes	t: ARCH	annate roreca.	in stats incard	
Test type: Dependent variable: RESID^2 Breusch-Pagan-Godfrey Harvey Dependent variable: RESID^2 Glejser The ARCH Test regresses the squared residuals on lagged squared residuals and a constant.		F-statistic Obs*R-squared Test Equation: Dependent Variable: V Method: Least Square Date: 11/02/17 Time: Sample (adjusted): 4.3	9.426602 9.405222 VGT_RESID^2 s 15:21 3270	Prob. F(1,3) Prob. Chi-S	265) quare(1)	0.002
	Number of lags: 1	Included observations Variable	3267 after ac	ljustments Std. Error	t-Statistic	Prob
		C WGT_RESID^2(-1)	1.047323 -0.053657	0.037473 0.017476	27.94901 -3.070277	0.000
		R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Peroh(E-statistic)	0.002879 0.002573 1.897714 11758.30 -6727.675 9.426602 0.002156	Mean deper S.D. depen Akaike info Schwarz cri Hannan-Qu Durbin-Wat	ndent var dent var criterion terion inn criter. son stat	0.99397 1.90010 4.11978 4.1235 4.12112 1.99680

最後に、標準化残差が正規分布に従っているかを確認してみよう。View→Residual Diagnostics→Histogram Normality Test と選択すると以下の画面が表示される。

この図をみると、左に少し歪んだ分布をしているようにみえる。平均(Mean)と中央値 (Median)は-0.038、-0.0026 であり、ほぼ 0 となっている。最大値(Maximum)と最小値 (Minimum)をみると、それぞれ 3.557、-6.99 であり、負の値の方が絶対値で大きくなって いる。歪度(Skewness)は-0.476、尖度(Kurtosis)は 4.584 となっている。正規分布では、歪 度は 0、尖度は 3 となるため、これらの値は正規分布とは少し異なるようにみえる。ここで 正規分布かどうかを検定する統計量として、Jarque-Bera 統計量がある。この統計量は 465.04 であり、その p 値は 0.00 となっており、有意水準 1%で正規分布の仮定が棄却され ます。

3. 多変量 GARCH

前節までは1変量のモデルを学習してきた。しかし、近年では、グローバル化を背景と し、国際的なボラティリティ・ショックの波及に注目が集まっている。このような分析で は、変数間の相互関係を考慮することが重要となる。

CCC モデル

ここで、データ EXRATES(DAILY).xls を用いて、CCC モデルを推定してみよう(教科 書3章10節参照)。為替レートを S_{it} とし、その変化率を $y_{it}=ln(S_{it}/S_{it-1})$ とする。ここで、ユ ーロは y_{lt} 、ポンドは y_{2t} 、スイス・フランは y_{3t} としよう。つまり、

> genr y1=log(euro/euro(-1)) genr y2=log(bp/bp(-1)) genr y3=log(sf/sf(-1))

と入力する。

多変量モデルでは、単変量の方法とは異なり、システム全体を指定する必要がある。ま ず workfile ウィンドウで、コントロールキーを押しながらクリックすることで、 y_1, y_2, y_3 を同時に選択する。この状態で右クリックすると、メニューが表示されるので、「Open」 →「as System」を選択する(下図)。

そうすると、Make System ウィンドウが表示される(下図)。ここでシステム(連立方 程式モデル)を指定する。ここでは何も変更しないで推定を行う。つまり、変化率の説明 変数として、定数項のみをとるモデルを想定する。

Make System	x
Dependent variables	Coefficient name
Regressors and AR() terms Common coefficients	Option Dependent variable transformation
Equation specific coefficients	NONE
Common	
Equation specific	OK Cancel

OK をクリックすると、System ウィンドウが表示される(下図)。メニューバーから Estimate を選択する。

S System: UNTITLED Workfile: UNTITLED::Untitled
View Proc Object Print Name Freeze Insert xt Estimate Sp.c Stats Resids
@STACKINST
@INST
Y1 = O(1)
Y2 = O(2)
Y3 = C(3)

すると、System Estimation ウィンドウが表示される。ここで Estimate method のメニ ューから、ARCH-Autoregressive Conditional Heteroskedasticity を選択する。

Es	timation method rdinary Least Squares 👻
Es	timation settings
	Add lagged regressors to instruments for linear equations with AR terms
C] Identity weighting matrix in estimation (2SLS coefs & GMM robust std.errors)

すると、ウィンドウが切り替わり、ARCH モデルの指定画面となる(下図)。ここで、ARCH model specification の Model type から Constant Conditional Correlation を選択する。

System Estimation Estimation Method Options	
Estimation method ARCH - Conditional Heteroskedasticity ARCH model specification Model type: Constant Conditional Correlation AUCT-eeressive order ARCH 1 CARCH 1	ARCH coefficient restrictions Coefficient: Restriction: ARCH(1) GARCH(1) Error distribution Multivariate Normal
Variance regressors:	Sample 1 3475 OK ***//7//

OK を押すと、System ウィンドウに推定結果が表示される。推定結果が表示されるが少し長いので、最初と最後の部分だけを説明しよう。上の部分は

	Coefficient	Std. Error	z-Statistic	Prob.
C(1)	0.000119	8.04E-05	1.483059	0.1381
C(2)	5.07E-05	7.89E-05	0.641940	0.5209
C(3)	0.000125	8.89E-05	1.407600	0.1592

となる。ここで、 $y_{it} = \mu_i + \epsilon_{it} \sigma \mu_i \sigma$ 推定された値がそれぞれ C(1),C(2),C(3)にあたる。つまり、

$$y_{1t} = 0.000119 + \varepsilon_{1t}, y_{2t} = 5.07E^{-5} + \varepsilon_{2t}, y_{3t} = 0.000125 + \varepsilon_{3t}$$

となる。

また、下の部分をみていくと、

	Transformed Variance Coefficients						
	Coefficient	Std. Error	z-Statistic	Prob.			
M(1)	1.55E-07	4.22E-08	3.673735	0.0002			
A1(1)	0.045141	0.003157	14.29953	0.0000			
B1(1)	0.952472	0.002883	330.4048	0.0000			
M(2)	2.57E-07	5.72E-08	4.495612	0.0000			
A1(2)	0.039188	0.003889	10.07582	0.0000			
B1(2)	0.952907	0.004903	194.3606	0.0000			
M(3)	2.49E-07	5.45E-08	4.571262	0.0000			
A1(3)	0.057243	0.002772	20.64710	0.0000			
B1(3)	0.940787	0.002899	324.5416	0.0000			
R(1,2)	0.681738	0.007939	85.86891	0.0000			
R(1,3)	0.859919	0.003375	254,7938	0.0000			
R(2,3)	0.595584	0.009400	63.35913	0.0000			

Covariance specification: Constant Conditional Correlation $GARCH(i) = M(i) + A1(i)*RESID(i)(-1)^2 + B1(i)*GARCH(i)(-1)$ COV(i,j) = R(i,j)*@SQRT(GARCH(i)*GARCH(j))

がある。ここで、最後の3つの結果(R(1,2)、R(1,3)、R(2,3))が相関係数になっている。つまり、これは $\rho_{12}=0.68$ 、 $\rho_{13}=0.86$ 、 $\rho_{23}=0.59$ を意味する。また、他の係数はGARCHの推定結果であり、以下の対応関係がある²。

$$\begin{split} h_{11t} &= M(1) + A1(1)\varepsilon_{lt-1}^2 + B1(1) h_{11t-1} \\ h_{22t} &= M(2) + A1(2)\varepsilon_{2t-1}^2 + B1(2) h_{22t-1} \\ h_{33t} &= M(3) + A1(3)\varepsilon_{3t-1}^2 + B1(3) h_{33t-1} \end{split}$$

つまり、推計結果は

$$\begin{split} h_{11t} &= 1.55 E^{-7} + 0.045 \varepsilon_{lt-1}^2 + 0.952 \ h_{11t-1} \\ h_{22t} &= 2.57 E^{-7} + 0.039 \varepsilon_{2t-1}^2 + 0.953 \ h_{22t-1} \\ h_{33t} &= 2.49 E^{-7} + 0.057 \varepsilon_{3t-1}^2 + 0.941 \ h_{33t-1} \end{split}$$

対角 Vech モデル

一度、System Window を閉じてから、workfile ウィンドウで、 *y*₁, *y*₂, *y*₃を選択し、 Open System を選択する。ここで、ARCH model specification の Model type から Diagonal Vech を選ぼう。また、restriction を indefinite matrix としよう。

Estimation method	ARCH coefficient restrictions		
ARCH - Conditional Heteroskedasticity -	Coefficient: Sestriction:		
ARCH model specification	ARCH(1) GARCH(1)		
Diagonal VECH			
Auto-regressive order	From distribution		
ARCH 1 TARCH 0	Error distribution Multivariate Normal		
GARCH: 1			
Variance regressors:	Sample		
	1 3475		

² これらの式は推計後に System ウィンドウのメニューバーから「View」→「Representations」を選択するとわかりや すくまとまる。

そして OK をクリックすると、推定結果が表示される。平均式の結果は上部に、GARCH の結果は下部に表示される。GARCH の推定結果は、以下となる。

Transformed Variance Coefficients					
	Coefficient	Std. Error	z-Statistic	Prob.	
M(1,1)	4.23E-07	5.55E-08	7.624039	0.0000	
M(1,2)	2.90E-07	3.98E-08	7.275378	0.0000	
M(1,3)	4.43E-07	5.80E-08	7.648626	0.0000	
M(2,2)	3.15E-07	5.32E-08	5.928512	0.0000	
M(2,3)	2.76E-07	3.97E-08	6.957169	0.0000	
M(3,3)	5.49E-07	7.16E-08	7.663706	0.0000	
A1(1,1)	0.044846	0.002371	18.91484	0.0000	
A1(1,2)	0.034921	0.002189	15.95116	0.0000	
A1(1,3)	0.045173	0.002073	21.79374	0.0000	
A1(2,2)	0.037695	0.002912	12.94286	0.0000	
A1(2,3)	0.034285	0.002190	15.65507	0.0000	
A1(3,3)	0.047925	0.002287	20.95887	0.0000	
B1(1,1)	0.947322	0.002562	369.8190	0.0000	
B1(1,2)	0.954314	0.002802	340.5434	0.0000	
B1(1,3)	0.946471	0.002277	415.7336	0.0000	
B1(2,2)	0.953503	0.003751	254.1723	0.0000	
B1(2,3)	0.955689	0.002621	364.6834	0.0000	
B1(3,3)	0.943232	0.002560	368.4106	0.0000	

つまり、推計結果は

$$\begin{split} h_{11t} &= 4.23 E^{-7} + 0.045 \varepsilon_{lt-1}{}^2 + 0.947 \ h_{11t-1} \\ h_{12t} &= 2.90 E^{-7} + 0.035 \varepsilon_{lt-1} \varepsilon_{2t-1} + 0.954 \ h_{12t-1} \\ h_{13t} &= 4.43 E^{-7} + 0.045 \varepsilon_{lt-1} \varepsilon_{3t-1} + 0.947 \ h_{13t-1} \\ h_{22t} &= 3.15 E^{-7} + 0.038 \varepsilon_{2t-1}{}^2 + 0.954 \ h_{22t-1} \\ h_{23t} &= 2.76 E^{-7} + 0.034 \varepsilon_{2t-1} \varepsilon_{3t-1} + 0.956 \ h_{23t-1} \\ h_{33t} &= 5.49 E^{-7} + 0.048 \varepsilon_{3t-1}{}^2 + 0.943 \ h_{33t-1} \end{split}$$