2018/02/02

新谷元嗣、藪友良、高尾庄吾

2章:定常時系列モデル

ここでは教科書2章(定常時系列モデル)の内容を再現する。具体的には、ARMA モデル における同定・推定の手順、構造変化の問題を扱う。

1 コレログラム

Workfile を新規作成し、ホームページの SIM2.xls から、データを読み込もう。人工的に 発生させたデータなので、Date specification は Integer date とする。データは計 100 個ある ので Start date は 1、End date は 100 とする。

-Date specific	ation
Frequency:	Integer date 🔹
Start date:	1
End date:	100
l	

系列 yl は、AR(1)過程 y=0.7y_{t-1}+ε_tから発生させたデータであるが、ここではデータ生成過程(DGP)を知らないとして分析を進める(詳しくは教科書 2 章 7 節 AR(1)過程、また表 2.2 を参照されたい)。

まず自己相関や偏自己相関を計算しよう。左下図の系列 yl をダブルクリックし、yl の Series ウィンドウを表示する。Series ウィンドウのメニューバーから「View」→

「Correlogram」を選択すると(右下図)、Correlogram Specification ウィンドウが表示される。

🚱 EViews	Series: Y1 Workfile: UNTITLED::Untitled\	_ = ×
File Edit Object View Proc	View roc Object Properties Print Name Freeze Default	Sort Edit+/- Sm
	SpreadSheet 1 Graph 02/14 - 23:30	
View Proc Object Save Freeze	Descriptive Statistics & Tests One-Way Tabulation	
Range: 1 100 100 obs Sample: 1 100 100 obs	Correlogram Long-run Variance	
	Unit Root Test Variance Ratio Test BDS Independence Test	
	Label 12 -0.509260 13 -1.331450 14 -0.084940	

Correlogram Specification ウィンドウでは、Correlogram of と Lags to include のボックスがある(下図参照)。Correlogram of では、データの変換方法を選択し(Level: 水準のま

ま、1st difference: 1 階の階差、2nd difference: 2 階の階差)、Lags to include では、何次のラ グまで考慮するかを指定する。ここで次数は36 としている。

Correlogram Specificat	ion X
 Orrelogram O Level 1st difference 2nd difference 	ОК
Lags to include 36	Cancel

OK を押すと、自己相関関数(autocorrelation function, ACF)、偏自己相関(partial autocorrelation function, PACF)およびQ統計量が表示される(下図参照)。

Series: Y1 Workfil	e: UNTITLED::Untitled	λ					
View Proc Object Pro	perties Print Name	Free	ze][Sai	mple∬Ge	nr Sheet	Graph	St
				Correl	ogram of	Y1	
Date: 03/05/14 Time Sample: 1 100	e: 10:24					修正Q糹	統計量
Included observation	s. 100		自己相関	偏目己相関	修正Q統計	のp値	
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	
		1	0.739	0.739	56.335	0.000	
	' P '	2	0.584	0.083	91.866	0.000	
	יוי	3	0.471	0.030	115.20	0.000	
	· [·	4	0.389	0.026	131.25	0.000	
	· •	5	0.344	0.060	143.98	0.000	
	י₽י	6	0.335	0.089	156.17	0.000	
		7	0.297	-0.017	165.86	0.000	
		8	0.325	0.144	177.58	0.000	
	'9'	9	0.269	-0.100	185.69	0.000	
	ו ית י	10	0.201	-0.065	190.25	0.000	
		11	0.189	0.070	194.33	0.000	
· P'		12	0.082	-0.204	195.12	0.000	
' ['		13	0.021	-0.024	195.17	0.000	
· [] ·	╵┛╵	14	0.046	0.110	195.42	0.000	
' 2'	│	15	0.103	0.141	196.70	0.000	
' "	יקי ו	16	0.097	-0.090	197.84	0.000	
· P ·	ויייי	17	0.078	-0.047	198.58	0.000	
' ['	ון יון י	18	0.024	-0.026	198.66	0.000	
	ן יףי	19	0.032	0.043	198.78	0.000	
1 1 1	1 ' ['	20	0.023	0.029	198.85	0.000	
111		21	0.023	0.041	198.91	0.000	
'] '	'= '	22	-0.009	-0.123	198.93	0.000	
' _ '	'5'	23	-0.049	-0.104	199.25	0.000	
'9'	│ ╵┖_╵	24	-0.123	-0.113	201.28	0.000	
' P'	' '	25	-0.106	0.086	202.81	0.000	

自己相関 AC、偏自己相関 PAC は、0 次においては定義により1となる。よって、この図 では、1 次から AC と PAC が計算されている。また、左図の縦に引かれた点線は、0 を中心 とした 2 標準誤差区間を表している。この区間はデータの個数を T とし、 $\pm 2T^{-1/2}$ として計 算される(この場合、T=100 なので $2T^{-1/2}=0.2$ となる)。もしホワイトノイズであれば、こ の点線を超える確率は約5%となる。ゆえに、この点線の中に納まっているかをみることで、

ホワイトノイズとみなせるかを確認できる。この場合、自己相関は徐々に低下しているが、 次数が 10 まで±0.2 を超えている。また、偏自己相関に関しては、次数 1、12 だけが±0.2 を超えている。この結果から、やはり AR(1)モデルが有力と推察される。ただし、偏自己相 関は 12 次で高い値(-0.204)をとっており、分析者が真の DGP を知らなければ、12 次の MA 項 ε_{t-12}を含める必要があると考えるかもしれない。

Q 統計量 (Q-Stat) は、リュン=ボックスの修正 Q 統計量であり、グループで自己相関が すべて 0 であるかを検定する。たとえば、5 次で Q(5)=143.98 であるが、これは 5 次までの 自己相関がすべて 0 という帰無仮説を検定するための統計量である。対応する p 値は 0.000 であるため、有意水準 1%で帰無仮説は棄却される。つまり、系列相関が存在しない、とは いえない。

2. ARMA モデル

EViews における ARMA モデルの推定の手順を確認する。これは教科書の表 2.2 の結果の 再現にあたるが、推定方法が微妙に異なるため、推定結果が多少異なっていることに注意さ れたい。変数 y1 について、AR(1)モデル y_t=a₁y_{t-1}+ε_tを推定するには、

ls y1 y1(-1)

と入力すればよい。そうすると、下図のような推定結果が表示される。

Equation: UNTITLED	Workfile		LED::Untit	tled\			- = ×
View Proc Object Print	t Name F	reeze	Estimate	Forecast	Stats	Resids]
Dependent Variable: Y1 Method: Least Squares Date: 03/07/14 Time: 1 Sample (adjusted): 2 10 Included observations:	19:58 00 99 after a	djustm	nents				
Variable	Coeffi	cient	Std. Err	or t-s	Statisti	ic f	Prob.
Y1(-1)	0.790	470	0.06244	11 12	.6595	5 0	.0000
R-squared	0.553	8653	Mean dep	endent v	ar	-0.5	82649
Adjusted R-squared	0.553	653	S.D. depe	ndent va	r	1.39	94797
S.E. of regression	0.931	853	Akaike inf	o criterio	n	2.7	06766
Sum squared resid	85.09	823	Schwarz (criterion		27	32979
Log likelihood	-132.9	9849	Hannan-O	Quinn crit	er.	2.7	17371
Durbin-Watson stat	2.151	566					

係数は 0.790470 であり、1 を下回る(安定条件と整合的)。ただし、これが有意に1 を 下回るかは、単位根検定をする必要があるが、これは4章で詳しく説明する。

次に、情報量規準について考えてみよう。教科書では、

AIC = $T \ln(SSR) + 2n$, SBC= $T \ln(SSR) + n \ln(T)$

と定義された(SSR は残差2 乗和である)。しかし、EViews では、情報量基準は教科書の定義と異なり、

 $AIC^* = -2\ln(L)/T + 2n/T$, $SBC^* = -2\ln(L)/T + n\ln(T)/T$

として計算される。ただし、*L*は対数尤度(log likelihoood)である。教科書 2 章の練習問題 8 で説明した通り、どちらの定義を用いても選ばれる次数は同じである。推定結果を見る と、*L*=-132.9849、n=1 (パラメータ数)、T=99 (included observation) から

 $AIC^* = -2 \times (-132.9849)/99 + 2/99 = 2.706766,$

 $SBC^* = -2 \times (-132.9849)/99 + \ln(99)/99 = 2.732979$

となる(ラグが1つ説明変数にあるのでサンプルサイズが1減ってT=99となる)。同様 に、教科書の定義で計算すると、残差2乗和(Sum of squared resid)は85.09823であるか ら、

> AIC = $T \ln(SSR) + 2n = 99 \times \ln(85.09823) + 2 \times 1 = 441.9$, SBC = $T \ln(SSR) + n \ln(T) = 99 \times \ln(85.09823) + 1 \times \ln(99) = 444.5$

となる。

推定残差のコレログラムを作成し、モデルが適当かどうか診断しよう。モデルを推定し た後、Equation ウィンドウの「View」→「Residual Diagnostics」→「Correlogram-Qstatistics」を選択する。

こうすると、Lag Specification ウィンドウが表示される。たとえば、次数を 36 とし、 OK を押すと残差のコレログラムと修正 Q 統計量が表示される。

Equation: UNTITLE	D Workfile: SIM::Unt	itled	\			
View Proc Object P	rint Name Freeze E	tima	te Fore	cast Sta	ts Resids	1
	Correlogr	am d	of Resid	uals	-	(
Or angle of the construction of the constructi	s: 99 es adjusted for 1 dyna	amic	regres	sor		
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
· d ·		1 1	-0.097	-0.097	0.9645	0.326
1 1	1 1	2	0.004	-0.005	0.9665	0.617
1 1		3	0.006	0.006	0.9700	0.809
		4	-0.045	-0.044	1.1787	0.882
1.0	1 1 1	5	-0.046	-0.055	1.4055	0.924
1 p i	'P'	6	0.091	0.082	2.2988	0.890
· 🖬 ·	1 1 1	7	-0.086	-0.071	3.1072	0.875
· 👝	· Þ·	8	0.166	0.154	6.1387	0.632
· p ·	i p.	9	0.066	0.093	6.6287	0.676
101		10	-0.030	-0.009	6.7297	0.751
		11	0.180	0.189	10.432	0.492
101	1 1	12	-0.034	-0.002	10.566	0.566
· 🗖 ·	· 🖃 ·	13	-0.162	-0.141	13.615	0.401
	1 1 1	14	-0.061	-0.121	14.052	0.446
· 🖻 ·	· •	15	0.119	0.134	15.743	0.399
1 1		16	-0.001	0.023	15.743	0.471
1 1 1	1 111	17	0.051	-0.024	16.063	0.519
	1 141	18	-0.055	-0.046	16.435	0.562
1.1.1		19	0.023	-0.019	16.503	0.623
1 1	1 111	20	0.002	-0.012	16.504	0.685

残差の ACF と PACF はほぼ0となる。図の左側をみると、点線が表示されている。こ れは0を中心とした2標準誤差区間を表している。もしホワイトノイズであれば、この点 線を超える確率は約5%となる。この場合、自己相関、偏自己相関ともに区間内に収まっ ていると確認できる。修正Q統計量は小さな値を取っており、どの次数についてもp値は 10%を上回る。以上から、残差はホワイトノイズであり、AR(1)は適切なモデルといえ る。

次に、モデル 2 として、AR(1)に 12 次の MA 項 $\beta_{12\mathcal{E}_{t-12}}$ を含めたモデルを考えよう。この ARMA モデル $y_{t}=a_{1}y_{t-1}+\varepsilon_{t}+\beta_{1}\varepsilon_{t-12}$ は、

ls y1 y1(-1) ma(12)

と入力すれば最尤法(ML)によって推定される(MA 項がある場合は OLS で はなく ML によって推定される)。推定結果は以下の通りである。 β_{12} の推定値は-0.023 と 小さく、また有意でもない。したがって、モデル1から、 ϵ_{t-12} は除かれるべきである。さ らに、ARMA モデルでは AIC* =2.746873、 SBC* =2.825513 であり、AR(1)モデルに比べて 値が大きくなっている。以上から、AR(1)モデルの方が望ましいモデルといえる。

ame Freeze	Estimate Forecast	Stats Resi	de
4			us
i Im Likelihood 12:29 99 after 6 itera computed us	d (BFGS) tions sing outer produ	ict of grad	ients
Coefficient	Std. Error	t-Statistic	c Prob.
0.793523 -0.022643 0.859270	0.063756 0.103884 0.124012	12.44627 -0.217969 6.928936	7 0.0000 9 0.8279 6 0.0000
0.553814 0.544518 0.941340 85.06769 -132.9702	Mean depen S.D. depend Akaike info c Schwarz crite Hannan-Qui	dent var ent var riterion erion nn criter.	-0.582649 1.394797 2.746873 2.825513 2.778691
	1 Im Likelihood 12:29 99 after 6 itera computed us Coefficient 0.793523 -0.022643 0.859270 0.553814 0.544518 0.941340 85.06769 -132.9702 2.155823	1 Im Likelihood (BFGS) 12:29 99 after 6 iterations computed using outer produce Coefficient Std. Error 0.793523 0.063756 -0.022643 0.103884 0.859270 0.124012 0.553814 Mean dependent 0.544518 S.D. depend 0.941340 Akaike info c 85.06769 Schwarz crite -132.9702 Hannan-Quir	1Im Likelihood (BFGS)12:2999after 6 iterationscomputed using outer product of gradCoefficientStd. Error1.7935230.06375612.44627-0.0226430.103884-0.226430.103884-0.2179690.8592700.1240126.9289380.553814Mean dependent var0.5445180.94134085.06769-132.97022.155823

教科書の表 2.2 と同じ結果を得るためには、まず「Estimate」をクリックして

「Equation Estimation」から「Options」を選んで、「Method」から「CLS」を選べば かなり近い結果となる。どちらの手法を用いても、主要な結果は同じなのであまり気にす る必要はない。

3. 構造変化

長期間の経済データを扱う場合、モデルのパラメータ自体が変化することは少なくない。ここでは教科書2章で学習した構造変化の検定について、その手順を確認しよう。

バブル崩壊前後など、構造変化があったと考えられる時点が明らかである場合、チョウ 検定を用いることができる。ここでは、YBREAK.xlsを用いて確認しよう。データは1系 列からなり、y_break と名前がついている。このデータは、次のデータ生成過程(DGP)

$$y_t = 1 + 0.5y_{t-1} + \varepsilon_t$$
 $(t \le 100)$

 $y_t = 2.5 + 0.65y_{t-1} + \varepsilon_t$ (t > 100)

から発生させたものである(*t_m*=100)。100 期までは同じシステムであるが、101 期から は定数項と係数が変化した新しいシステムとなっている。しかし、ここでは DGP を知ら ないとして分析を進めよう。

3.1 ダミー変数

まずは、構造変化がないと考えて、AR(1)モデル $y_t = a_0 + a_1y_{t-1} + \varepsilon_t$ を推定する。

ls y_break c y_break(-1)

を入力すると、以下の推定結果が得られる。

Equation: UNTITL	ED Workf	ile: UNTI	TLED::Untit	tled\			
View Proc Object F	Print Name	Freeze	Estimate	Forecast	Stats	Resids]
Dependent Variable Method: Least Squa Date: 06/10/14 Tim Sample (adjusted): 1 Included observation	: Y_BREAk res e: 15:38 2 150 ns: 149 afte	c er adjust	ments				
Variable	Coe	fficient	Std. Err	or t-S	Statist	ic F	Prob.
C Y_BREAK(-1)	0.4 0.8	44153 82234	0.16853 0.03875	34 2.6 56 22	63539 .7639	0 0 9 0	.0093
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.7 0.7 1.1 195 -23 518 0.0	79014 77510 52286 5.1811 1.5355 3.1994 00000	Mean dep S.D. depe Akaike inf Schwarz (Hannan-(Durbin-W	endent v ndent va o criterion criterion Quinn crit atson sta	ar r n er. it	3.62 2.44 3.13 3.13 3.15 2.34	22369 42898 34704 75026 51086 49044

ここで系列 y_break のグラフを図示してみよう。下図を見ると、100 期前後から系列の 値が上昇しており、構造変化の可能性が疑われる。

構造変化が存在したのか、を調べるにはチョウ検定を行えばよい。まずは、定数項だけ に構造変化があったかを調べてみよう。ここで、t≤100の範囲で 0、t>100の範囲で1を とるダミー変数を d100 として定義する。

genr d100 = @date > @dateval("100")

「@date」は時点を返す関数で、特定の時点を指定する「@dateval」と一緒に用いること で、時点をもとにした論理式を作ることができる¹。この論理式@date > @dateval("100")は 時点が 100 を超えたら正しいので、そのとき d100=1 となる。逆に、時点が 100 以下なら 論理式が誤っているので d100=0 となる。

定数項の変化を調べたい場合、先のAR(1)にダミー変数を加えて推定し、ダミー変数の 係数が有意かをみる。コマンドとして

ls y_break c y_break(-1) d100

を入力すると、下記の推計結果が得られる。

😑 Equati	on: UNTI	LED	Workfi	le: UNTI	TLED::Untit	tled\			- 0	×
View Proc	Object	Print	Name	Freeze	Estimate	Forecast	Stats	Resids]	
Depende Method: L Date: 06/ Sample (Included	nt Variabl .east Squ 10/14 Tii adjusted) observati	le: Y_E ares me: 18 : 2 15 ons: 1	3REAK 5:41 0 49 afte	er adjust	tments					
V	ariable		Coef	ficient	Std. Err	or t-S	Statisti	ic F	Prob.	
У В	C REAK(-1)		0.92 0.56	25410 58280	0.17263 0.06378	39 5.3 38 8.9	36037 90894	10 20	.0000 .0000	
	D100		1.93	36260	0.32904	42 5.8	38453	60	.0000	_
R-square Adjusted S.E. of reg Sum squ Log likelil F-statistic Prob(F-st	d R-square gression ared resid nood ; atistic)	ed d	0.82 0.81 1.03 157 -215 335 0.00	21378 18932 39505 .7633 .6795 .6853 00000	Mean dep S.D. depe Akaike inf Schwarz o Hannan-O Durbin-W	endent va ndent va o criterion criterion Quinn crit atson sta	ar r n er. it	3.64 2.94 2.93 2.99 2.99 2.99	22369 42898 35295 95777 59868 58801	

これを見ると、d100 の t 値は高く、1%水準で有意に 0 と異なる。つまり、定数項には 構造変化があったといえる。この推定結果から、定数項は t ≤ 100 の範囲で d100=0 となる ため 0.9254 であり、t > 100 の範囲で d100=1 となるため 2.8614(=0.9254+1.936)となる。

定数だけでなく、係数の変化も調べたい場合は、係数ダミー(定数ダミーと変数の交差 項)を用いる。これを用いれば、AR係数の変化を捉えることができる。先の例で、d100 と y_breakの交差項を dy として、推計式にくわえる。交差項 dy は

genr dy= d100*y break(-1)

と入力すれば作成できる。そして、新しいモデルは

ls y_break c y_break(-1) d100 dy

として推定する。推計結果を見ると、定数ダミーd100は10%水準で有意ではないが、係数 ダミーdyは1%水準で有意な結果となっている。

もしくは、

genr d1982_1 = @date > @dateval("1981qIV")

とすればよい。

通常の時系列データでは時間によってデータが記録される。たとえば、四半期データを扱っていて、1981 年第4四 半期までは0、1982 年第1 四半期からは1というダミー変数を作りたいなら、 genr d1982_1 = @date > @dateval("1981:4")

Equation Equation	on: UNTI	TLED	Workfi	le: UNTI	FLED::Untit	tled\			_ =	×
View Proc	Object	Print	Name	Freeze	Estimate	Forecast	Stats	Resids]	
Depender Method: L Date: 03/1 Sample (a Included o	nt Variab east Squ 10/14 Ti adjusted observati	le: Y_E iares me: 1(): 2 15 ons: 1	3REAK):53 0 49 afte	er adjust	ments					
Va	ariable		Coef	ficient	Std. Err	or t-s	Statist	ic F	Prob.	
	С		1.60	01506	0.22187	70 7.2	21822	6 0	.0000	
Y_B	REAK(-1)	0.25	54493	0.09232	21 2.1	75661	6 0	.0066	
Ć	DY		-0.22	13273	0.12147	76 4.4	47225	3 0	.0000	
R-square Adjusted I S.E. of reg Sum squa Log likelih F-statistic Prob(F-sta	d R-square gression ared resi nood : atistic)	ed d	0.84 0.83 0.97 138 -206 259 0.00	43031 89783 77822 .6396 .0527 .5822 00000	Mean dep S.D. depe Akaike inf Schwarz o Hannan-O Durbin-W	endent v endent va o criterion criterion Quinn crit atson sta	ar r n er. at	3.62 2.44 2.81 2.90 2.85 1.92	22369 42898 19500 00143 52264 25927	

ここでAR係数に注目すると、t ≤ 100の範囲ではdyは0となるため、AR係数は0.254である が、t > 100の範囲ではdyの係数は0.543となるため、AR係数は0.797(=0.254+0.543)となる。 以上から、構造変化が存在しており、単純なAR(1)モデルは誤っているといえる。

3.2 チョウ検定

ここでも AR(1)モデル $y_t = a_0 + a_1y_{t-1} + \varepsilon_t$ のパラメータ (a_0, a_1) に構造変化があったかをチョウ検定を用いて調べる。3.1 節では、ダミー変数と係数ダミーを用いて検定したが、ここでは EViews のコマンドを使っておこなう。チョウ検定を行う場合は、AR(1)モデルを推定した後、Equation ウィンドウの「View」→「Stability Diagnostics」→「Chow Breakpoint Test」を選択する(左下図)。そうすると、Chow Test ウィンドウがでてくる(右下図)。右上のボックスに、構造変化と疑われる時点として、101 を入力して OK を押す(EViews では、 t_m =100 ではなく、 t_m +1=101 を入力すること)。右下のボックスには、構造変化が生じたと思われる変数を入力する。ここでは、定数だけでなく係数の変化した可能性があるとして、cy_break(-1)とした(これは定数ダミーと係数ダミーを含めるということである)。

Equation: UNTITLED Workfile: U	NTITLED::Untitled\ _	Chow Tests
View Proc Object Print Name Free	ze Estimate Forecast Stats Resids	
Representations	1	Enter one or more breakpoint dates
Estimation Output		
Actual, Fitted, Residual		
ARMA Structure	istments	
Gradients and Derivatives	Std. Error t-Statistic Prob.	
Covariance Matrix	0.159524 0.525200 0.0002	
Coefficient Diagnostics	0.038756 22.76399 0.0000	Regressors to vary across breakpoints
Residual Diagnostics	Mean dependent var 3.622369	c y break(-1)
Stability Diagnostics	Chow Breakpoint Test	
Label -231.330	Quandt-Andrews Breakpoint Test Multiple Breakpoint Test	
Prob(F-statistic) 0.00000	Chow Forecast Test	
	Ramsey RESET Test	
	Recursive Estimates (OLS only)	
	Leverage Plots	OK Cancel
	Influence Statistics	

OK をクリックすると下画面が表示される。ここで帰無仮説(Null hypothesis)は「構 造変化がない(No breaks at specified breakpoints)」である。F 値(F-statistic)は 29.57 と高く、帰無仮説は有意水準 1%で棄却される。Prob. F(2,145)は F 統計量の p 値であり、 これが 1%を下回っていることが確認できる。このことから、100 から 101 期にかけて構 造変化があったといえる。

View Proc Object Print Name Freeze Estimate Forecast Stats Resids Chow Breakpoint Test: 101 Null Hypothesis: No breaks at specified breakpoints Varying regressors: All equation variables Equation Sample: 2 150 F-statistic 29.56771 Prob. F(2,145) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000	Equation:	UNTIT	LED	Workfi	e: UNTI	TLED::Unti	tled∖			- = x
Chow Breakpoint Test: 101 Null Hypothesis: No breaks at specified breakpoints Varying regressors: All equation variables Equation Sample: 2 150 F-statistic 29.56771 Prob. F(2,145) 0.0000 Log Intelinood ratio 50.95543 Prob. Chi-Square(2) 0.0000 World Wind Windows Chi-Square(2) 0.0000	View Proc Ot	bject	Print	Name	Freeze	Estimate	Forecast	Stats	Resids	
F-statistic 29.56771 Prob. F(2,145) 0.0000 Log likelihood ratio 50.96543 Prob. Chi-Square(2) 0.0000 Wold Otatistic 50.42540 Prob. Chi-Square(2) 0.0000	Chow Break Null Hypothe Varying regre Equation Sar	point T sis: N essors mple: (iest: 1 o brea :: All e 2 150	01 aks at s quation	specifie n variab	d breakpoi les	ints			
Log likelihood ratio 50.96543 Prob. Chi-Square(2) 0.0000										
Wald Statistic 59.13542 Prob. Chi-Square(2) 0.0000	F-statistic			29.56	6771	Prob. F((2,145)		0.	.0000

構造変化が未知の場合の構造変化の検定

分析の際には、構造変化時点があらかじめ分かっていないことも多い。その場合、構造 変化の候補日のすべての時点でチョウ検定を行い、それぞれのF統計量を算出したうえ で、その最大値を求める。これは *SupF*検定と呼ばれる。Eviews では、考案者の名前を とって Quandt-Andrews Test と表記される。

同じデータを用いて SupF 検定を行ってみよう。AR(1)モデルを推定した後、Equation ウィンドウの「View」→「Stability Diagnostics」→「Quandt-Andrews Breakpoint Test」を選択する。

Equation: UNTITLED Workfile: Y_E	BREAK::Untitled\ _
View Proc Object Print Name Freez	e Estimate Forecast Stats Resids
Representations	
Estimation Output	
Actual, Fitted, Residual	
ARMA Structure	istments
Gradients and Derivatives	
Covariance Matrix	Std. Error t-Statistic Prob.
Coefficient Diagnostics	0.804211 4.715162 0.0000
Residual Diagnostics	0.038931 22.64385 0.0000
Stability Diagnostics	Chow Breakpoint Test
Label	Quandt-Andrews Breakpoint Test
Sum squared resid 195.0568	Windisple Preakpoint Test
Log likelihood -230.4259 E-statistic 512.7439	Chow Forecast Test
Prob(F-statistic) 0.000000	Ramsey RESET Test
Inverted AR Roots 88	Recursive Estimates (OLS only)
	Leverage Plots
	Influence Statistics

そうすると、下図の Quandt-Andrews Test ウィンドウが表示させる。Trimming percentage では、最初と最後の何%のデータを構造変化の候補日から除くかを設定できる。たとえば、デフォルトでは 15%となっており、これは最初の 15%、最後の 15%のデータが候補日から除かれることを意味する。ここでは、Trimming で刈り込みの割合を 15%とし、OK を押す。

Quandt-Andrews Test Breakpoint variables Enter the variables you wish to vary across breakpoints: C y_break(-1)	Series names If you wish to save the individual test statistics in a series, enter a name for the series in the boxes below: LR F-stat name:
Trimming Choose an observation trimming percentage: 15	Wald F-stat name:

帰無仮説は「構造変化が存在しない(No break points within 15% trimmed data)」 である。F 統計量(Maximum LR F-statistic)をみるとその値は 29.57 となっている (SupF=29.56)。また、p 値は 1%を下回っているため、有意水準 1%で構造変化がないと いう帰無仮説が棄却される。ここで、(Obs.101)となっているが、これは t_m +1 = 101 とい うことである。つまり、100 から 101 期にかけて構造変化が起きたことを示唆している。 また、Test sample が 25 128 となっているが、これは構造変化の候補日が 25 から 128 であることを意味している²。

😑 Equati	on: UNTIT	LED	Workfi	le: UNTI	TLED::Unt	itled∖		
ViewProc	Object	Print	Name	Freeze	Estimate	Forecast	Stats	Resid
Quandt-Andrews unknown breakpoint test Null Hypothesis: No breakpoints within 15% trimmed data Varying regressors: All equation variables Equation Sample: 2 150 Test Sample: 25 128 Number of breaks compared: 104								
Statistic					V	alue	Pro	b.
Maximum	1 LR F-sta	atistic	(Obs. 1	01)	29.5	6771	0.00	00
Maximum	n Wald F-s	statist	C (Obs	. 101)	59.1	3542	0.00	00
Exp LR F-statistic 11.50834 0.0000 Exp Wald F-statistic 25.59089 0.0000						00 00		
Ave LR F Ave Wald	-statistic F-statisti	с			12.7 25.5	5369 0737	0.00	01

Note: probabilities calculated using Hansen's (1997) method

構造変化が複数の場合

これまで構造変化の数が1つとしたが、構造変化が複数回ある可能性を疑っているな ら、バイ=ペロン(Bai-Perron)検定を行えばよい。バイ=ペロン検定では、帰無仮説は「構 造変化はℓ個」、対立仮説は「構造変化はℓ+1個」としている。この検定量は、常に正の 値をとり、臨界値を上回ったとき、帰無仮説が棄却される。そして、この検定を、ℓ=0か

² 0.15T=0.15×149=22.35 となっている(説明変数にラグがあるので、データは 2 から 150 まで)。つまり、データ は 24.35 から(データは 2 からスタートなので 24.35=2+22.35)、127.65(=150-22.35)までである。このため構造変 化の候補日は 25 から 128 までとしている。

ら始めて、帰無仮説が採択されるまでℓの数を増やしながら検定が行われる。たとえば、 帰無仮説ℓ=0(構造変化なし)として帰無仮説が棄却されたら、今度は、帰無仮説ℓ=1(小僧 変化は1回だけ)として検定をする。もしこれが採択されたら、構造変化は1回と判断さ れる。

これまでと同じデータを用いてバイ=ペロン検定を行ってみよう。Equation ウィンドウの「View」→「Stability Diagnostics」→「Multiple Breakpoint Test」を選択する。

Equation: UNTITLED Workfile: UN	TITLED::Untitled\ _ 🗆 🗙
View Pro Object Print Name Freez	e Estimate Forecast Stats Resids
Representations	1
Estimation Output	
Actual, Fitted, Residual	
ARMA Structure	istments
Gradients and Derivatives	Std. Error t-Statistic Prob.
Covariance Matrix Coefficient Diagnostics	0.168534 2.635390 0.0093 0.038756 22.76399 0.0000
Residual Diagnostics	Mean dependent var 3 622369
Stability Diagnostics	Chow Breakpoint Test
Label	Quandt-Andrews Breakpoint Test
-201.000	Multiple Breakpoint Test
F-statistic 518.1994 Prob(E-statistic) 0.00000	Chow Forecast Test
	Ramsey RESET Test
	Recursive Estimates (OLS only)
	Leverage Plots
	Influence Statistics

そうすると、下図の Multiple Breakpoint Tests ウィンドウが表示される。

est specification	Options
lethod: Sequential L+1 breaks vs. L	Maximum breaks: 5
(Bai-Perron tests of L+1 vs. L	Trimming percentage: 15
sequentially determined breaks)	Significance level: 0.05
reakpoint variables	Allow error distributions to
Regressors to vary across breakpoints:	differ across breaks
C Y_BREAK(-1)	
	OK Cancel

Maximum breaks では、最大で何個の構造変化までを許容するかを設定できる。デフォルトは5となっている。Significance level は検定(帰無仮説は「構造変化はℓ個」、対立仮説は「構造変化はℓ+1個」)としたときの有意水準であり、デフォルトは5%となっている。有意水準を低く設定すると、構造変化がない、もしくは構造変化が少ないという結果が得られやすくなる。Trimming percentage では、各システムにおいて最低でも何%分のデータが含まれなければならないかを指定できる。ここでは、Trimming で刈り込みの割合を15%とし、OK を押す。

すべてデフォルトの値で OK を押すと、下図のような推定結果が表れる。

Equation: UNTITLE	D Workfile: UNTI	TLED::Untit	led\			- 0	×
View Proc Object Pr	int Name Freeze	Estimate	Forecast	Stats	Resids]	
Multiple breakpoint tests Bai-Perron tests of L+1 vs. L sequentially determined breaks Date: 03/10/14 Time: 14:56 Sample: 1 150 Included observations: 149 Breakpoint variables: C Y1 Break test options: Trimming 0.15, Max. breaks 5, Sig. level 0.05							
Sequential F-statistic	determined brea	ke:		1	_		
Break Test	F-statistic	Scaled F-statisti	C c Va	ritical alue**			
0 vs. 1 * 1 vs. 2	29.56771 2.041927	59.1354 4.08385	12 54	11.47 12.95			
* Significant at the 0.05 level. ** Bai-Perron (Econometric Journal, 2003) critical values.							
Break dates:	Sequential	Repartitio	n				
1	101	101					
					_		

まず、0 vs. 1 とは、帰無仮説は「構造変化なし」とし、対立仮説は「構造変化は 1 つ」 とした検定である。これをみると、検定統計量は 59.14 であり、これは臨界値(critical value)11.47 を上回る。つまり、「構造変化なし」という帰無仮説が棄却される。次に、1 vs 2 とは、帰無仮説は「構造変化は 1 つ」とし、対立仮説は「構造変化は 2 つ」とした検 定である。検定統計量は 4.08 であり、これは臨界値である 12.95 を下回る。つまり、帰無 仮説は採択される。以上から、構造変化は 1 つと分かる。また、構造変化日 Break dates は 101 となり、これは 100 期から 101 期にかけて構造が変わったことを意味する。

3.3 逐次推定

逐次推定することで、係数の安定性を確認できる。先のデータを用いて行ってみよう。 まずコマンドを

ls y_break c y_break(-1)

と入力し推計結果の Equation ウィンドウを表示する。Equation ウィンドウの「View」 →「Stability Diagnostics」→「Recursive Estimates(OLS only)」を選択する³。

³ 逐次推定は OLS のみでしか行えないことに注意しよう。

Recursive Estimation ウィンドウが表示されるので、Output で「Recursive Coefficients」を選択する。次に Coefficient display list で、表示する係数を指定する (EViews では、最初の説明変数の係数を c(1)と表し、2 番目の説明変数の係数を c(2)と表 す)。この場合、説明変数は定数項を含めて 2 つだけなので、

c(1) c(2)

とする。ここで、c(1)は定数項、c(2)は AR 係数に該当する。

OK を押すと、推計期間を1期ずつ延長していったときの、係数の推計値とその信頼区間が Equation ウィンドウに結果として表示される。

3.4 CUSUM 検定

先と同様に、Equation ウィンドウの「View」→「Stability Diagnostics」→ 「Recursive Estimates(OLS only)」を選択し、Recursive Estimation ウィンドウを表示 する。Output で「CUSUM Test」を選択して、OK を押すと以下のように結果が表示さ れる

3.5 金利スプレッドの実証分析

最後に、教科書の2章10節、11節例4で分析した金利スプレッドの推定結果を再 現してみよう。ここではコマンドを簡単に説明する。QUARTELY.xlsには、1960Q1 から2012Q4までのデータが含まれている。ここで、r5(5年物金利)とtbill(米国短期 証券の金利)を用いてスプレッドsを定義する。

genr s=r5-tbill

表 2.4 の結果を再現してみよう。まず、AR(7)なら

ls s c s(-1 to -7)

と入力する。そして OK をクリックすると、以下の結果が得られる。これは表 2.4 の AR(7)の推定とほぼ同じ結果である⁴。

Equation: UNTITLE	D Workfile: UNT	ITLED::Untit	led\			_ =	
View Proc Object P	rint Name Freeze	Estimate	Forecast	Stats	Resids		
Dependent Variable: Method: Least Squar Date: 11/21/16 Time Sample: 1961Q4 201 Included observation	S es e: 14:44 I2Q4 s: 205						
Variable	Coefficient	Std. Erro	or t-S	Statisti	C F	rob.	_
C S(-1) S(-2) S(-3) S(-4) S(-5) S(-6) S(-6) S(-7)	0.216587 1.112226 -0.450114 0.395756 -0.295259 0.217236 -0.296492 0.136017	0.06419 0.07056 0.10396 0.10916 0.10916 0.10916 0.10751 0.10379 0.07064	8 3.3 6 15 2 -4.3 8 3.6 9 -2.7 1 2.0 2 -2.8 5 1.9	373724 .76146 329589 377747 704597 020585 356610 325353	4 0. 5 0. 7 0. 7 0. 5 0. 5 0. 3 0.	0000 0000 0003 0074 0447 0047	=))))34775=
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.771295 0.763169 0.471838 43.85827 -132.8226 94.91033 0.000000	Mean dep S.D. depe Akaike info Schwarzo Hannan-O Durbin-Wa	endent va ndent va o criterion riterion uinn crit atson sta	ar r n er. at	1.20 0.96 1.37 1.50 1.42 2.00	9805 9556 3879 3558 6331 1342	5 3 9 3 1 2

⁴ EViewsの推定結果と表 2.4 を比べると、定数項 aoの値が大きく違う。これは本質的には重要ではない。同じ結果に したいなら、コマンドを

ls s c ar(1 to 7)

とすればよい。ただし、ar(1 to 7)は被説明変数の1 次から7 次までのラグが入っていることを意味する。推定結果の違いは、モデルの定式化の違いから生じている。ls s c s(-1 to -7)では、モデルは $s_t=\mu+a_1s_{t-1}+...+a_7s_{t-7}+\epsilon_t$, ls s c ar(1 to 7)では、モデルは $s_t=(1-a_1-...-a_7)\mu^*+(1-a_1L-...-a_7L^7)$ ut となる。そして、 ϵ_t = (1- $a_1L-...-a_7L^7$) ut であるから、これは $s_t=(1-a_1-...-a_7)\mu^*+a_1s_{t-1}+...+a_7s_{t-7}+\epsilon_t$ となる。つまり、後者の定数項 μ *に(1- $a_1-...-a_7$)を掛けると前者の定数項になる。

同様にして、ARMA(2,1)なら

ls s c s(-1 to -2) ma(1)

となる。

lew Proc Object Print	Name Freeze E	stimate Forecas	t Stats Resids	•
Dependent Variable: \$	5			
Method: ARMA Maxim	um Likelihood	(BFGS)		
Date: 02/02/18 Time:	10:49			
Sample: 1960Q3 2012	Q4			
Convergence achieve	after 8 iterati	one		
Coefficient covariance	computed usi	na outer prodi	uct of gradie	nts
e e e mener e e e e e e e e e e e e e e e e e e	compared do	ng eater prea	lot of gradie	
Variable	Coefficient	Std. Error	t-Statistic	Prob.
с	0.314984	0.089310	3.526866	0.0005
S(-1)	0.436554	0.134111	3.255178	0.0013
S(-2)	0.301945	0.125511	2.405727	0.0170
MA(1)	0.683672	0.112441	6.080269	0.0000
SIGMASQ	0.218615	0.014753	14.81795	0.0000
R-squared	0.760887	Mean depen	dent var	1.214143
Adjusted R-squared	0.756222	S.D. depend	lent var	0.958462
S.E. of regression	0.473230	Akaike info criterion		1.368052
Sum squared resid	45.90910	Schwarz criterion		1.447745
Log likelihood	-138.6455	Hannan-Qui	nn criter.	1.400269
Log montood				
F-statistic	163.0842	Durbin-Wats	on stat	2.013215

また、p=2、q=1,7のケースでは、

となる。

Equation: UNTITLED	Workfile: U	NTITLED::Untitl	ed¥ 🖂	
/iew Proc Object Print I	Name Freeze	Estimate Forecas	t Stats Reside	5
Dependent Variable: S Method: ARMA Maxim Date: 02/02/18 Time: Sample: 1960Q3 2012 Included observations Convergence achieved Coefficient covariance	S um Likelihood 10:50 2Q4 : 210 d after 10 itera computed us	d (BFGS) ations sing outer prod	uct of gradie	ents
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.307304	0.088346	3.478404	0.000
S(-1)	0.371759	0.106309	3.496957	0.000
S(-2)	0.373863	0.097852	3.820703	0.000
MA(1)	0.761720	0.075142	10.13707	0.000
MA(7)	-0.138976	0.037773	-3.679267	0.000
SIGMASQ	0.208927	0.013869	15.06430	0.000
R-squared	0.771483	Mean deper	ndent var	1.21414
Adjusted R-squared	0.765882	S.D. dependent var		0.95846
S.E. of regression	0.463759	Akaike info criterion		1.33474
Sum squared resid	43.87474	Schwarz crit	1.43037	
Log likelihood	-134.1478	Hannan-Qu	inn criter.	1.37340
F-statistic Prob(F-statistic)	137.7427	Durbin-Wat	son stat	2.00277