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Abstract

In this paper, we introduce the system CMLL of sequent calculus and
establish its correspondence with compact closed categories. CMLL is
equivalent in provability to the system MLL of classical linear logic with
the tensor and par connectives identified. We show that the system allows
a fairly simple cut-elimination, and the proofs in the system have a natural
interpretation in compact closed categories. However, the soundness of the
cut-elimination procedure in terms of the categorical interpretation is by
no means evident. We answer to this question affirmatively and establish
the soundness by using the coherence result on compact closed categories
by Kelly and Laplaza.

1 Introduction

In this paper, we introduce the system CMLL of sequent calculus and estab-
lish its correspondence with compact closed categories. CMLL is equivalent in
provability to the system MLL of classical linear logic with the tensor ® and
par *® connectives identified.

Compact closed categories are abundant in mathematics, for example the
finite dimensional vector spaces over a field I, and they were of particular interest
to category theorists since they posed a serious obstacle to the general (abstract)
treatment of the coherence problem [4, 5].

In computer science, compact closed categories have appeared as a frame-
work for concurrency. The interaction category by Abramsky [1] is such an
example, and the connection of Milner’s action calculus with reflection [7, 8] to
compact closed categories has been investigated.

In linear logic, compact closed categories have been considered at least by
Barr [2] and Blute [3]. However, Barr’s treatment was purely semantic and
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Blute’s syntactic treatment did not fully exploit the structure of compact closed
categories.

To be precise, our system of sequent calculus is formulated on top of an
arbitrary category A, thus properly called CMLL(.A). We show that it allows
a fairly simple cut-elimination, leaving loops formed by only atomic formulas.
We then interpret the system in the free compact closed category F'A on A.

The categorical meaning of our cut-elimination procedure is by no means
evident, and one can reasonably suspect that the interpretation (morphism) of
a proof is not preserved under the cut-elimination. Therefore, our main interest
in this paper is to establish that the cut-elimination procedure indeed preserves
morphisms, i.e., its soundness with respect to the categorical interpretation.

We prove the soundness by using the coherence result on compact closed
categories by Kelly and Laplaza [6]. They showed that the free compact closed
category F'A on A is isomorphic to the category GA with the explicit descrip-
tion, the morphisms of which are very much reminiscent of cut-free proof nets
for classical linear logic. The soundness of the cut-elimination is established by
reinterpreting proofs in G.A and compute the morphisms.

2 Compact closed categories

Intuitively, compact closed categories are symmetric monoidal closed categories
in which the closure operation [4, C] is given by C' ® A*. In the *—autonomous
categories, [A,C] is given by (A ® C*)* so that a *—autonomous category is
compact closed exactly when (A ® B)* = B* ® A*.

Definition 1 In a monoidal category, a left adjoint of an object A is an object
A* with maps
da:1— A® A"  (unit)
{ ea: A*®@A—1 (counit)

such that the compositions

ATQ@AMS (A@A) @ A2 A (A ®A) 'S AT~ A
A 2A RIS A @ (AR A) 2 (A @A) @ A* 4% T A ~ A
are the identities, where the isomprphisms are the canonical ones of the monoidal

category.

Left adjoints A* for A may be defined only up to isomorphisms. We choose
one of them and call it an assigned left adjoint.

Definition 2 A compact closed category is a symmetric monoidal category in
which every object has an assigned left adjoint.

As we have already noted, a compact closed category is closed with [A, C] =
C ® A*. On the other hand, a monoidal closed category is compact if and only
if the transpose [ : A® — [A, A ® I] of the map

FAQAIAZ AR (A N®A) 2 AgT



is an isomorphism for all objects A.

For any category A, we can construct a free compact closed category F.A
with the functor ®A : A — FA in the sense that any functor from A to a
compact closed category B is uniquely factorized as the composition of ® A and
a functor for compact closed categories (a morphism in the category Comp of
small compact closed categoies).

The objects of F'A are freely generated from the objects of A and the formal
constant I by the formal binary operator ® and the unary operator ( )*. For
morphisms, we first freely generate “arrows” from the morphisms of A, the
formal instances of the components of canonical isomorphisms a, r and ¢ of
symmetric monoidal categories, and the formal instances of the unit and counit
maps. Then, we impose the conditions for canonical maps, units and counits
by defining a certain equivalence relation on the arrows and taking the quotient
with respect to it. The functor ®.A4 is the obvious embedding. For the precise
definition, we refer the reader to Kelly [4, 5], and Kelly and Laplaza [6].

3 The system CMLL of sequent calculus

The system CMLL(A) (Compact multiplicative linear logic) is formulated on
top of a given category A. The formulas and proof of CMLL are naturally
interpreted as objects and morphisms of F' A, respectively. Furthermore, a very
simple cut-elimination procedure can be given to CMLL.

Definition 3 The formulas of CMLLL(A) are defined inductively:
1. For every object A of the category A, we have the atomic formula A;
2. The constant I is a formula;
8. If X and Y are formulas, so is X QY ;
4. If X is a formula, so is X*.

Axioms
(A) AbF;B forevery f: A— Bin A (I kI
Rules of inference
I A B, AFY I'FAAB,Y
®L) T Ag@BAars @F) TrAieDby
THAA T AFA
<L) FTFa GR) A A
r-A
I ; _—
(I weakening) ITFA



T, A,B,AF Y TFAABS
) S4sars i e R
(exchange L) T BAALY (exchange R) TFABAY
TFA $rI
(miz) —————

[, AT

TFAA Y AFT
STFILA

The subscript f in the axioms (A) is to facilitate the categorical interpre-
tation and it can be removed if preferred. Note that the inference rule (®R)
comes from the rule for ¢ in MLL.

The cut-elimination of CMLL can be carried out until we only have cuts
which are loops

(cut)

Ak, A
AFs A A* AF
FA A" A AT
FAQA®™ AQA"F
',
where the initial sequents are both axioms (A). For this, we first assign the
labels to each occurrence of atomic formulas in axioms (A) in a given proof 7
and extend it to all the occurrences of atomic formulas as subformulas in 7 in
the obvious way. By means of this, we can keep track of which atomic formulas
are identified in a cut.

Proposition 4 The applications of (mix) can be moved upward by the permu-
tations with other rules of inference.

Proof
By observation. We use (exzchange L) and (exzchange R) when necessary.

Definition 5 A proof w is normal if w contains cuts only as loops.

The proofs of the form

AFA
A A+
AQ A" F
will be called the identity links, where all the axioms have the form A; i A;

and the two corresponding occurrences of atomic formulas in A and A* come
from the same axiom.

Theorem 6 For any proof 7, there exists a normal proof @ of the same sequent.



Proof
We carry out the cut-elimination in four steps. In order to facilitate the sound-
ness proof, we will leave certain redundancy in the procedure.

Step 1 We change cuts into the combination of (miz), (xR), (® R) and the cut
with the identity link as follows:

S,AFI THAA
S, ATFILAA
S TFILA,A A :
r-AA S AFT STEFILAAQAY AQ A F
S TFILA S, TFILA

The original cuts determine the pairing between the labels of the occur-
rences of atomic formulas in the cut formulas A. We retain the pairing
information.

Step 2 We ignore the cuts with the identity link for a while, and delete all
applications of inference rules used in forming cut-formulas A and move
the applications of (mix) upward. Note that we have extra occurrences of
atomic formulas and the constant I originated from the cut formulas.

Step 3 We first remove the extra occurrences of I by simply eliminating the
corresponding axioms (I). We then remove the extra atomic formulas by
the new cuts with the identity links for them as follows:

O, A, 0,4, Ab A

O1F 0,4, A A AF

O1F 0,4, 047 AQA -
0, - 0,

where A; and A; are the occurrences of the formula A with the labels ¢
and j paired by the original cuts.

Step 4 Finally, we eliminate the cuts with the identity links introduced in
the previous step as much as possible. If A; and A; in the previous
proof figure come from different axioms, we simply carry out the standard
cut-elimination procedure for the identity axioms and replace the cut of
Bty Aand A, C by the new axiom B 4. C, retaining the labels
for B and C. By this procedure, some of the matching pair of labels may
become the labels of the formulas in the same axiom. In that case, we
do not have to eliminate the cut with the identity link since we have a
loop. The process reduces the number of cut one by one so that it will
eventually stop.



We now give the interpretation of proof of CMLL(.A) in the free compact
closed category FA in A. Let T' be the list < Ay,... A, >. We write I'l for
the object ((...(41 ® A2)...) ® A,) in FA. The interpretation of a proof =
of the sequent I' - A is denoted [r] : I'T — Af. The morphisms constructed
from the identities and the components of a, r, and ¢ by the tensor product and
composition will be called central.

The interpretation is assigned inductively on the construction of proofs. For
the axioms, we have [A F; B] = f and [ I] = 1;. The inference rules (®L)
and (®R) change only the association of the tensor products by the composi-
tion with the appropiate central morphisms. (Tweakening), (exchangeL) and
(exchangeR) are handled similarly by the composition with the central mor-
phisms, using r and ¢ in addition to a.

Let 7 be obtained from 7 by (xL). Then [r] is the morphism:

(A D)= aroT 'l ar g (4,0) = (4" @ ) g AT %' T AT A

Similarly, if 7 is obtained by (*R), we have the morphism:

rferter®irtg(aea) = (e d) el M8 Ata

If 7 is obtained from 71 and 72 by (cut), the interpretation [x] is the com-
position:

=D estert "l stg,a) = (e eal M g Al = (1, A)f

If 7 is obtained by (miz), the morphism is simply the tensor product of []
and [72]:

r, %) 21t @ xt MER At @t > (A, )

4 The category GA

Kelly and Laplaza gave the complete characterization of F'A by showing that
F A is isomorphic to the category GA with the explicit description of objects
and morphisms. We use this result to prove the soundness of the cut-elimination
procedure.

We first need to define cycles in a given category A. For a category A, the
disjoint union E(A) = X acopaA(A, A) will be called the set of endomorphism.

Definition 7 The set of cycles [A] is the quotient set of E(A) modulo the equiv-
alence relation generated by go f ~ fog for f:A— B andg: B — A.

Intuitively, a cycle is obtained as follows. A chain of morphisms A; — A —

. — A, — Aj need not be distinguished from another chain A; — A;;1 —

o> A - ... — A, —» ... > A;_1 — A; composed of the same set of

morphisms. The cycle is obtained by identifying those chains which differ only
in the starting points.



The morphims of GA are similar to Kelly-MacLane graphs. However, they
may be incompatible and some loops may be created by the composition. In
order to retain the information on such loops, we eventually associate the in-
terpretation in A (the functor to A) with the graphs. For the time being, we
concentrate on the graph part of morphisms.

Definition 8 A signed set P is a set |P| together with a function from |P| to

{—+}

We write
1. P* for the signed set obtained from the signed set P by reversing the signs,
2. I for the empty signed set,
3. 1 for the signed set of one element with the sign +,

4. P ® (@ for the disjoint union of the signed sets P and Q.

Definition 9 An involution 0 is a category which is a coproduct of copies of
the category 2.

Let | P| be the set of objects in the involution . We can then give the signs to
the elements of | P| by assigning — if the element is a domain of a non-identitity
arrow and + if it is a codomain of a non-identity arrow. We thus obtain a signed
set P and the involution 6 is called an involution on P.

Definition 10 A loop L is the free category on a graph
A DAy 2 A, I g
forn > 1.

We write < L > for the cycle determined by the composite f,, o...o fi.

Involutions are used to define the morphisms of GA. Therefore, we need the
construction which corresponds to the composition of two morphisms. The co-
product of categories A and B will be denoted A+ B. Let 6 and ¢ be involutions
on P*® @ and Q" ® R, respectively. We then write 6 +g| ¢ for the pushout of
6 and ¢ with respect to the discrete category |Q|, which is obtained from 6 + ¢
by identifying two copies of |Q)].

The operation can be represented graphically. For example,



p2- qu’f_ q2- >< r2-
<q3- -
q4- _ qa+

©
w
+
o]
w
+
—
@

where |P| = {p1,p2,p3}, |Q| = {q1,92,43,q4,q5} and |R| = {r1, 72,73} with the
signs as indicated, the two boxes with dotted lines represent the involutions 6
and ¢, respectively, and 0 + | ¢ is obtained by identifying the two occurrences
of ¢; in the left and right boxes.

The category 6 +|q| ¢ is not an involution on a signed set. However, the
subcategory of 6 +|g| ¢ determined by the object set |P| + |Q] is again an
involution on the signed set P* ® (). Such a subcategory is denoted ¢f. For the
above example, the involution ¢@ is represented as follows:

L pl+ ri+
p2-> r2- o
1 p3+ r3- o

In forming 6 +g| ¢, we may in fact create loops which do not appear in ¢0.
The information on loops, however, needs to be retained. We write ¢ * 6 for the
coproduct ¥ L; where L;’s are loops created in forming 6 + | ¢ with objects in
|@Q|. In the previous example, ¢ x 6 is the loop:

~
\/

We are now in the position to be able to define the category G.A. The objects
of GA are those of F A. To each object X of GA, however, we assign a signed set
P(X) and a function ax : |[P(X)| — ObA. First, P(X) is assigned inductively
as follows:



1. P(A) =1 for the objects A of A;
=1
3. P(X®Y)=P(X)® P(Y);

4. P(X*) = (P(X))*.

(
(

)

2.

Secondly, the function ax is also given inductively:
1. aa(e) = A for the objects A of A where e is the unique element of 1;
2. ar =0;
3. axgy = (ax,ay), i.e. the function defined by cases;
4. ax~ = ax.

For morphisms, we need to take into account cycless which form a monoid.
We denote by MV the free commutative monoid on V for any set V.

Definition 11 A morphism X — Y in GA is defined to be a triple (0,p, \)
where

1. 0 is an involution on (P(X))* ® P(Y);
2. p is a functor from 0 to A, the object part of which is given by ax gy ;
3. X\ is a member of the monoid M[A] of the cycles.

The composition of the two morphisms (0, p, A) and (¢, ¢, ) is defined to be
(90,8, \ + p+ X[t] < L; >) where s and t are the restrictions of the functor
(p,q) : 0 +|p(yy ¢ — Ato ¢ and ¢ 0, respectively, and [t] is the function from
[¢ + 0] to [A] uniquely determined by ¢. The identity map 1x is given by the
obvious involution on (P(X))* ® P(X) with the functor mapping every arrow
to the identity in .4 and the empty category as .

We note that the two morphisms f: X — Y and g : X’ — Y’ with different
domains and codomains may be the same as the triple (6, p, \) provided that
PX)*® P(Y) = P(X")* ® P(Y). To be precise, the morphisms need to be
considered always with the domains and codomains. Henceforth, the triple
(0, p, A) considered in isolation will be called the body of the morphism.

The category GA becomes a compact closed category with the functor ®
defined by the formal product X ® Y on objects and (0,p,A\) ® (¢,q,p) =
(@ + ¢,(p,q),\ + p) on morphisms, and with the operation ( )* on objects
defined by the formal X*. The components of the natural isomorphisms a,
r, ¢ are given by the involutions induced by them with the functors mapping
every morphism to the identity and the empty cycle. The units are counits
are similarly given with the involution induced by the correspondence of X and
X*in X @ X* (or X*® X). We note that the images of the morphisms of
such involutions are always identities in A so that the composition with those
morphisms has virtually no effect in the images. For example, the body of the
unit dagp : I — (A® B) ® (A® B)* is depicted as follows:



i i A B

i bl+ i —_— L L
R |

: ' A B
I

Theorem 12 (Kelly and Laplaza [6]) The free compact closed category F.A
on A is isomorphic to the compact closed category GA.

5 The soundness of the cut-elimination

Two involutions are identified if they differ only in the names of objects and
arrows. For proving the soundness of our cut-elimination, we simply reinterpret
[7] in GA and observe that most of the logical operations of CMLL amount to
simple renaming and thus preserve the bodies of morphisms.

Proposition 13 For any central morphism x, the composition fox or x o f
does not change the body of the morphism f in GA.

Proof

Let (0, p, A) be the body of f : X — Y. The operation ¢ with the involution
¢ for x only replaces one copy of the element of |[P(X)| by another copy of the
same element which has the same image in A. The image of the composition
gohin ¢+ px) 0 for g in 6 and h in ¢ is the same as the image of g under p
since the image of h is the identity. Furthermore, no loop is created. Similarly
for x o f. [ |

Proposition 14 The operations (L), (QR), (xL), (xR), (I weakening), (exchange L)
and (exchange R) do not change the boby of morphisms.

Proof

The operations except (xL) and (xR) are the compositions with central mor-
phisms. In (L), we create new nodes (objects) a’ + (=), a” — (+) for X* and
connect a’ + (—) with the nodes a + (=) for X through a” — (+) and a; — (4),
asz + (—) in the involution for ex, where a, o', a”’, a1 and as are copies of the
same element of |P(X)|. This is depicted in the following diagram.

10



In taking the subcategory, we remove the nodes a, a1, as and a’ which amounts
to replace the copy a+ by another copy a’+. Furthermore, the image of the
composition h o g o f is the same as the original image of f since the images of
g and h are the identity. No loop is created in the process. The composition
with central morphisms has already been taken care of. Similarly for (xR). W

Proposition 15 The permutation of (mix) with other rules does not change
the body of morphisms.

Proof

In (miz), the bodies of two morphisms are pasted side by side without affecting
their internal structures. The effects of the inference rules other than (cut)
amount to simple renaming which can be carried out after the pasting. For
(cut), this is immediate by the functoriality of the tensor product.

Lemma 16 The transformation used in Step 1 of our cut-elimination does not
change the interpretation of proofs.

Proof

Let X be the cut formula and a, a’ two copies of | P(X )| to be identified. Suppose
that @ and a’ have the signs + and —, respectively, with f : b— — a+ and
g : a’— — c+. In the cut, we identify a and o', form the composition g o f
and remove the intermediate node a(a’) to connect b and ¢ directly by g o f.
In our transformation, we add two new copies a; and as of the same element
as a and o/, with the arrow h : a; — az, and identify a¢ and a’ with a; and as,
respectively. After removing the intermediate nodes, we have the arrow goho f
directly connecting b and c¢. However, the image of g o h o f is identical to the
original image of g o f since the image of h is the identity. [ |

Theorem 17 Suppose that & is obtained from w by our cut-elimination. Then
[#] = [x], i-e. our cut-elimination procedure is sound with respect to the cate-
gorical interpretation.

Proof

We have just seen that Step 1 does not change the interpretation. In Step 2, we
ignore the cut with identity link and only consider the subproof. As we have
already seen, the body of the interpretation of the subproof does not change
under Step 2. In Step 3, we simply recover the identifications ignored in Step
2, by creating cuts with the identity links for atomic formulas. Thus, the body

11



of the interpretation of the proof at Step 3 is the same as the body of the
interpretation of the original proof. Step 4 amounts to removing intermediate
nodes and does not change the body at all. [ |

6 Concluding remarks

The coherence problem of compact closed categories with biproduct has been
studied by Soloviev [9]. We also considered the extensions of CMLL with finite
and infinitary additives (product and coproduct). The introduction of infinitary
additives was motivated by the fact that the exponential ! A can be defined by
the infinitary additive formula 18 A&(A ® A)&. .. in compact closed categories,
as observed by Barr [2] and used by Abramsky [1]. However, it turned out
that there is a counterexample to the cut elimination even with only finite addi-
tives and the system becomes inconsistent with infinitary additives in the sense
that any sequent is derivable in the system. This seems to pose an interesting
question of the importance of provability in linear logic.
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