
APPENDIX

7 Consistency in a simple model

The purpose of this section is to provide an outline of the LPM and the conditions of the
CLT by investigating the simpler problem of consistency in the case of a simple model.
Two toy examples, the estimation of volatility with regular not noisy observations,
and the estimation of the rate of a Poisson process, are discussed extensively. Morever,
techniques of proofs are also mentioned throughout the section. The obtained conditions
are illustrative. Proofs of the conditions along with proofs that conditions hold in the
two toy examples can be found in Section 8. Finally, some detailed mathematical
definitions can be found in what follows too.

The simple model

We focus on a simple setting in this section. First, we work with one dimensional
returns, i.e. d := 1. Also, we assume that the observations are regular, so that τi,n = i

n
T .

The parametric model is assumed to be very simple, in particular there is no past
dependence in the returns. It assumes that there exists a parameter θ∗ ∈ K such that
Ri,n are independent and identically distributed (IID) random functions of θ∗. If we
introduce Ui,n an adequate IID sequence of random variables with distribution U which
can depend on n, we can express the returns as

Ri,n := Fn
(
Ui,n, θ

∗), (62)

where Fn(x, y) is a non-random function. In (62), Ui,n can be seen as the random
innovation.

Since θ∗t can in fact be time-varying, Ri,n do not necessarily follow (62) in the time-
varying parameter model. A formal time-varying generalization of (62) will be given in
(65). In general, Ri,n are neither identically distributed nor independent. Ri,n are not
even necessarily conditionally independent given the true parameter process θ∗t , as we
can see in the following two toy examples.

Example 1. (estimating volatility) Consider when θ∗t := σ2
t (the volatility is thus as-

sumed to follow (21)), and Ri,n :=
∫ τi,n
τi−1,n

σsdWs, where Wt is a standard 1-dimensional
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Brownian motion. In this case, the parameter space is K := R+
∗ . The parametric model

assumes θ∗ := σ2 and that the distribution of the returns is Ri,n := σ∆Wτi,n , where
∆Wτi,n := Wτi,n−Wτi−1,n

is the increment of the Brownian motion between the (i−1)th
observation time and the ith observation time and σ2 is the fixed volatility. Under that
assumption, the returns are IID. Under the time-varying parameter model, Ri,n are
clearly not necessarily IID, and they are also not necessarily conditionally independent
given the whole volatility process σ2

t if there is a leverage effect.

Example 2. (estimating the rate of a Poisson process) Suppose the statistician observes
data on the number of events (such as trades) in an arbitrary asset, and thinks the
number of events happening between 0 and t, Nt, follows a homogeneous Poisson process
with rate λ. The parameter rate θ∗t := λt will be assumed to follow (21), with possibly
a null-volatility σθt = 0 if the homogeneity assumption turns out to be true. Because
the econometrician does not have access to the raw data, she can’t observe directly the
exact time of each event. Instead, she only observes the number of events happening
on a period (for instance a ten-minute block) [τi−1,n, τi,n), that is Ri,n = N−τi,n −Nτi−1,n

.
If the statistician’s assumption of homogeneity is true, the returns are IID. In case of
heterogeneity, Nt will be a inhomogeneous Poisson process, and the returns Ri,n will
most likely be neither identically distributed nor independent.

We need to introduce some notation and definitions. On a given block i = 1, · · · , Bn

the observed returns will be called R1
i,n, · · · , Rhn

i,n. Formally, it means that Rj
i,n :=

R(i−1)hn+j,n for any j = 1, · · · , hn. In analogy with Rj
i,n, we introduce the approximated

returns R̃1
i,n, · · · , R̃hn

i,n on the ith block. We also introduce the corresponding observation
times τ ji,n := τ(i−1)hn+j,n for j = 0, · · · , hn. Note that τ 0

i,n = τhni−1,n. Finally, for j =

1, · · · , hn we define the time increment between the (j− 1)th return and the jth return
of the ith block as ∆τ ji,n := τ ji,n − τ

j−1
i,n .

We provide a time-varying generalization of the parametric model (62) as well as a
formal expression for the approximated returns. To deal with the former, we assume
that in general

Ri,n := Fn
(
Ui,n, {θ∗s}τi−1,n≤s≤τi,n

)
. (63)

The time-varying parameter model in (63) is a natural extension of the parametric
model (62) because the returns Ri,n can depend on the parameter process path from
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the previous sampling time τi−1,n to the current sampling time τi,n. As Ri,n depend
on the parameter path, it seems natural to allow Ui,n to be themselves process paths.
For example, when the parameter is equal to the volatility process θ∗t := σ2

t , we will
assume that Ui,n are equal to the underlying Brownian motion Wt path (see Example 3
for more details). Also, as Ui,n are random innovation, they should be independent of
the parameter process path past, but not on the current parameter path. In the case
of volatility, it means that we allow for the leverage effect. A simple particular case of
(63) is given by

Ri,n := Fn
(
Ui,n, θ

∗
τi−1,n

)
, (64)

i.e. the returns depend on the parameter path only through its initial value. Finally,
the approximated returns R̃i,n follow a mixture of the parametric model (62) with initial
block parameter value. We are now providing a formal definition of our intuition. We
assume that

Rj
i,n := Fn

(
U j
i,n, {θ∗s}τ j−1

i,n ≤s≤τ
j
i,n

)
, (65)

R̃j
i,n := Fn

(
U j
i,n, Θ̃i,n

)
, (66)

where the random innovation U j
i,n take values on a space Un that can be functional14 and

that can depend on n, U j
i,n are IID for a fixed n but the distribution can depend on n,

and Fn(x, y) is a non-random function15. Note that (65) is a mere re-expression of (63)
using a different notation. For any block i = 1, · · · , Bn and for any observation time
j = 0, · · · , hn of the ith block, we define Iji,n16 the filtration up to time τ ji,n. The crucial

14Un is a Borel space, for example the space C1[0,∆τn] of 1-dimensional continuous paths
parametrized by time t ∈ [0, τn].

15Let Cp(R+) be the space of p-dimensional continuous paths parametrized by time t ∈ R+, which is
a Borel space. Consequently, Un × Cp(R+) is also a Borel space. We assume that Fn(x, y) is a jointly
measurable real-valued function on Un × Cp(R+). Note that the advised reader will have seen that a
priori {θ∗s}τj−1

i,n ≤s≤τ
j
i,n

is defined on Cp[0, τn] (after translation of the domain by −τ j−1i,n ) in (65) and Θ̃i,n

is a vector in (66), whereas both should be defined on the space Cp(R+) according to the definition.
We match the definitions by extending them as continuous paths on R+. Formally, if θt ∈ Cp[0, τn],
we extend it as θt := θτn for all t > τn. Similarly, if θ ∈ K, we extend it as θt := θ for all t ≥ 0.

16Let (Ω,F , P ) be a probability space. Define the sorted filtration {Ik,n}k≥0 such that for any
non-negative integer k that we can decompose as k = (i − 1)hn + j where i ∈ {1, · · · , Bn} and
j ∈ {0, · · · , hn}, Ik,n := Iji,n. We assume that Ik,n is a (discrete-time) filtration on (Ω,F , P ). In
addition, we assume that {θ∗s}0≤s≤τj

i,n
and U ji,n are Iji,n-measurable.
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assumption is that U j
i,n has to be independent of the past filtration17 (and in particular

of Θ̃i,n). Note that we do not assume any independence between the random innovation
U j
i,n and the parameter process {θ∗s}τ j−1

i,n ≤s≤τ
j
i,n
. We provide directly the definitions of

Fn and U j
i,n in the two toy examples.

Example 3. (estimating volatility) In this case, Un is defined as the space C1[0,∆τn] of
continuous paths parametrized by time t ∈ [0, τn], U j

i,n := {∆W[τ j−1
i,n ,s]}τ j−1

i,n ≤s≤τ
j
i,n

are
the Brownian motion increment path processes between two consecutive observation
times. We assume that (W θ

t ,Wt) is jointly a (possibly non-standard) 2-dimensional
Brownian motion. Thus, the random innovation U j

i,n are indeed independent of the
past in view of the Markov property of Brownian motions. We also define Fn(ut, θt) :=∫ τn

0
θ

1
2
s dus. We thus obtain that the returns are defined as Rj

i,n :=
∫ τ ji,n
τ j−1
i,n

σsdWs and that

the approximated returns R̃j
i,n := στ0i,n∆W[τ j−1

i,n ,τ ji,n] are the same quantity when holding
the volatility constant on the block.

Example 4. (estimating the rate of a Poisson process) We assume that the rate of the
(possibly inhomogeneous) Poisson process is αnλt, where αn is a non time-varying and
non-random quantity such that αn∆τn := 1. In this case, we assume that Un is the
space of increasing paths on R+ starting from 0 which takes values in N and whose
jumps are equal to 1. We also assume that for any path in Un, the number of jumps
is finite on any compact of R+. U j

i,n can be defined as standard Poisson processes
{N i,j,n

t }t≥0, independent of each other. We also have Fn(ut, θt) := u∫ τn
0 αnθsdus . Thus, if

we let tji,n :=
∫ τ ji,n
τ j−1
i,n

αnλsds, the returns are the time-changed Poisson processes

Rj
i,n = N i,j,n

tji,n
, (67)

R̃j
i,n = Nαn∆τ ji,nλ

i,j,n

τ0
i,n

. (68)

Consistency

In the following of this section, we will make the block size hn go to infinity

hn →∞. (69)

17past filtration means up to time τ j−1i,n
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Furthermore, we will make the block length ∆Ti,n vanish asymptotically. Because we
assume observations are regular in this section, this can be expressed as

hnn
−1 → 0. (70)

We can rewrite the consistency of Θ̂n as

Bn∑
i=1

(
Θ̂i,n −Θi,n

)
∆Ti,n

P→ 0. (71)

where the formal definition of Θ̂i,n can be found in (75). In order to show (71), we can
decompose the increments (Θ̂i,n−Θi,n) into the part related to misspecified distribution
error, the part on estimation of approximated returns error and the evolution in the
spot parameter error

Θ̂i,n −Θi,n =
(
Θ̂i,n − ̂̃Θi,n

)
+
(̂̃Θi,n − θ∗Ti−1,n

)
(72)

+
(
θ∗Ti−1,n −Θi,n

)
,

where ̂̃Θi,n, which is defined formally in (76), is the parametric estimator used on
the underlying non-observed approximated returns. It is not a feasible estimator and
appears in (72) only to shed light on the way we can obtain the consistency of the
estimator in the proofs. We first deal with the last error term in (72), which is due to
the non-constancy of the spot parameter θ∗t . Note that

Bn∑
i=1

(
Θ̃i,n −Θi,n

)
∆Ti,n =

Bn∑
i=1

(
θ∗Ti−1,n

∆Ti,n −
∫ Ti,n

Ti−1,n

θ∗sds
)

(73)

and thus we deduce from Riemann-approximation18 that

Bn∑
i=1

(
Θ̃i,n −Θi,n

)
∆Ti,n

P→ 0. (74)

To deal with the other terms in (72), we assume that for any positive integer k, the
practitioner has at hand an estimator θ̂k,n := θ̂k,n(r1,n; · · · ; rk,n), which depends on the

18see i.e. Proposition 4.44 in p.51 of Jacod and Shiryaev (2003)
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input of returns {r1,n; · · · ; rk,n}. On each block i = 1, · · · , Bn we estimate the local
parameter as

Θ̂i,n := θ̂hn,n
(
R1
i,n; · · · ;Rhn

i,n

)
. (75)

The non-feasible estimator ̂̃Θi,n is defined as the same parametric estimator with ap-
proximated returns as input instead of observed returns

̂̃Θi,n := θ̂hn,n
(
R̃1
i,n; · · · ; R̃hn

i,n

)
. (76)

Note that (76) is infeasible because the approximated returns R̃j
i,n are non-observable

quantities.

Example 5. (estimating volatility) The estimator is the scaled usual RV, i.e. θ̂k,n(r1,n;

· · · ; rk,n) := T−1k−1n
∑k

j=1 r
2
j,n. Note that θ̂k,n can also be seen as the MLE (see the

discussion pp. 112-115 in Mykland and Zhang (2012)).

Example 6. (estimating the rate of a Poisson process) The estimator to be used is the
return mean θ̂k,n(r1,n; · · · ; rk,n) := k−1

∑k
j=1 rj,n.

In order to tackle the second term in (72), we make the assumption that the para-
metric estimator is L1-convergent, locally uniformly in the model parameter θ if we
actually observe returns coming from the parametric model. This can be expressed in
the following condition.

Condition (C). Let the innovation of a block (V1,n, · · · , Vhn,n) be IID with distribution
Un. For any M > 0,

sup
θ∈KM

E
[∣∣θ̂hn,n(Fn(V1,n, θ); · · · ;Fn(Vhn,n, θ))− θ

∣∣]→ 0.

Remark 8. (practicability) Under Condition (C), results on regular conditional distri-
butions19 give us that the error made on the estimation of the underlying non-observed
returns tends to 0, i.e.

Bn∑
i=1

(̂̃Θi,n − Θ̃i,n

)
∆Ti,n

P→ 0. (77)

19see for instance Leo Breiman (1992), see Section 8 for more details.
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This proof technique is the main idea of the paper. Regular conditional distributions
are used to deduce results on the time-varying parameter model using uniform results
in the parametric model.

Remark 9. (consistency) Note that L1-convergence is slightly stronger than the simple
consistency of the parametric estimator. Nonetheless, in most applications, we will
have both.

We can now summarize the consistency result in this very simple case where obser-
vations occur at equidistant time intervals and returns are IID under the parametric
model. Under Condition (C) and assuming that

Bn∑
i=1

(Θ̂i,n − ̂̃Θi,n)∆Ti,n
P→ 0, (78)

we have the consistency of (3), i.e.

Θ̂n
P→ Θ. (79)

We obtain the consistency in the couple of toy examples20.

Remark 10. (LPE equal to the parametric estimator) The reader will have noticed that
in the couple of examples, the LPE is equal to the parametric estimator. This is because
in those very basic examples, the parametric estimator is linear, i.e. for any positive
integer k and l = 1, · · · , k − 1

θ̂k,n(r1,n; · · · ; rk,n) =
l

k
θ̂l,n(r1,n; · · · ; rl,n) +

k − l
k

θ̂k−l,n(rl+1,n; · · · ; rk,n)

In more general examples, this equation will break, and we will obtain two distinct
estimators.

20see Section 8 for proofs
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8 Proofs

8.1 Preliminaries

In view of our assumptions on θ∗t , we can follow standard localisation arguments (see,
e.g., pp. 160−161 of Mykland and Zhang (2012)) and assume without loss of generality
that K is a compact space. In case θ∗t is an Itô semimartingale satisfying Condition
(P1), we can also assume without loss of generality that there exists 0 ≤ σ+ such that
for any eigen value λt of σθt , we have 0 ≤ λt ≤ σ+ and that there exists 0 ≤ a+ such
that | aθt |≤ a+.

Finally, we fix some notation. In the following of this paper, we will be using C for
any constant C > 0, where the value can change from one line to the next.

We start with the proofs related to the consistency in the simple model introduced
in Section 7. This provides an overview of the proof techniques, although the techniques
will be more intricate when proving Theorem 2 (Central limit theorem), which includes
non-regular observations.

8.2 Proof of Condition (C) ⇒(77)

It is sufficient to show that Condition (C) implies that

sup
i≥0

E
[∣∣ ̂̃Θi,n − θ∗Ti−1,n

∣∣] = op(1). (80)

By (66) and (76), we can build gn such that we can write∣∣ ̂̃Θi,n − θ∗Ti−1,n

∣∣ = gn(U1
i,n, · · · , Uhn

i,n , θ
∗
Ti−1,n),

where gn is a jointly measurable real-valued function such that

E
∣∣gn(U1

i,n, · · · , Uhn
i,n , θ

∗
Ti−1,n

∣∣ <∞.
We have that

E
[
gn(U1

i,n, · · · , Uhn
i,n , θ

∗
Ti−1,n)

]
= E

[
E
[
gn(U1

i,n, · · · , Uhn
i,n , θ

∗
Ti−1,n)

∣∣θ∗Ti−1,n

]]
= E

[∫
gn(u, θ∗Ti−1,n)µω(du)

]
where µω(du) is a regular conditional distribution for (U1

i,n, · · · , Uhn
i,n) given Θ̃i,n (see,

e.g., Breiman (1992)). From Condition (C), we obtain (80).
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8.3 Proof of the consistency in Example 1

Let’s show Condition (C) first. For any M > 0, the quantity∣∣∣θ̂hn,n(Fn(V1,n, θ); · · · ;Fn(Vhn,n, θ)
)
− θ
∣∣∣

can be shown to go to 0 in probability as a straightforward consequence of Theorem
I.4.47 of p.52 in Jacod and Shiryaev (2003).

To show the condition (78), it is sufficient to show that the following quantity

nh−1
n ETi−1,n

[∣∣∣(θ∗Ti−1,n
∆W[Ti−1,n;Ti,n]

)2 −
( ∫ Ti,n

Ti−1,n

θ∗sdWs

)2
∣∣∣] (81)

goes to 0 uniformly in i. To prove this, we can use the formula (a2 − b2) = (a+ b)(a−
b), together with conditional Burkholder-Davis-Gundy inequality (BDG, see inequality
(2.1.32) of p. 39 in Jacod and Protter (2011)).

8.4 Proof of Consistency in Example 2

Condition (C) can be shown easily. Similarly, the condition (78) is a direct consequence
of the definition in (67), (68) together with (70).

8.5 Proof of Theorem 2 (Central limit theorem with non regular
observation times)

We prove directly the central limit theorem in this general case. As a by-product,
this implies the case with regular observations, i.e. Theorem 1. We can decompose
n

1
2

∑Bn
i=1

(
Θ̂i,n −Θi,n

)
∆Ti,n as

I + II + III + IV, (82)
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with

I = n
1
2

Bn∑
i=1

(
Θ̂i,n∆Ti,n − ˆ̃ΘP

i,n∆T̃P
i,n

)
,

II = n
1
2

Bn∑
i=1

( ˆ̃ΘP
i,n − θ∗Ti−1,n

)
∆T̃P

i,n,

III = n
1
2

Bn∑
i=1

θ∗Ti−1,n

(
∆T̃P

i,n −∆Ti,n

)
,

IV = n
1
2

Bn∑
i=1

(
θ∗Ti−1,n

−Θi,n

)
∆Ti,n.

It is clear that I P→ 0 by (41) and III P→ 0 by (42) along with Lemma 2.2.10 (p. 55)
in Jacod and Protter (2011) and the fact that θ∗t takes values in a compact set. We
prove in what follows that IV P→ 0 and that II → Z̃, where Z̃ follows the definition of
Theorem 2.

We show IV
P→ 0

We consider first the case where θ∗t satisfies Condition (P2). We introduce

ei,n := n
1
2

(
θ∗Ti−1,n

−Θi,n

)
∆Ti,n. (83)

It is sufficient to show that
∑Bn

i=1 | ei,n |
P→ 0, and by virtue of Lemma 2.2.10 (p. 55) in

Jacod and Protter (2011) that
∑Bn

i=1 ETi−1,n

[
| ei,n |

] P→ 0. We compute

Bn∑
i=1

ETi−1,n

[
| ei,n |

]
= n

1
2

Bn∑
i=1

ETi−1,n

[∣∣ ∫ Ti,n

Ti−1,n

(θ∗u − θ∗Ti−1,n
)du
∣∣]

≤ Cn
1
2

Bn∑
i=1

(
ETi−1,n

[
(∆Ti,n)2

]) 1
2︸ ︷︷ ︸

Op(hnn−1)(
ETi−1,n

[
sup

Ti−1,n≤s≤Ti,n

∣∣θ∗s − θ∗Ti−1,n

∣∣2]) 1
2

︸ ︷︷ ︸
op(n− 1

2 )

= op(1),
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where we used onditional Cauchy-Schwarz to obtain the inequality, Condition (T) along
with Condition (P2) to obtain the last equality. We deduce that IV P→ 0 in this case
too.

We now consider the case where θ∗t satisfies Condition (P1) and (26) holds. We start
by decomposing ei,n into its bias and its martingale part. We have

ei,n = n
1
2

∫ Ti,n

Ti−1,n

∫ s

Ti−1,n

aθududs︸ ︷︷ ︸
e
(b)
i,n

+n
1
2

∫ Ti,n

Ti−1,n

∫ s

Ti−1,n

σθudWuds︸ ︷︷ ︸
e
(m)
i,n

.

We will show in what follows that
∑Bn

i=1 e
(b)
i,n = oP(1) and

∑Bn
i=1 e

(m)
i,n = oP(1). We

start with the first assertion. As for the previous case, it is sufficient to show that∑Bn
i=1 ETi−1,n

[
| e(b)

i,n |
] P→ 0. As aθt is bounded, we can bound the expression via

Bn∑
i=1

ETi−1,n

[
| e(b)

i,n |
]
≤ Cn

1
2

Bn∑
i=1

ETi−1,n

[
(∆Ti,n)2

]
.

Then, using Condition (T) along with (26), we conclude that this is oP(1).

We show now that
∑Bn

i=1 e
(m)
i,n = oP(1). As it is a martingale, it is sufficient to show

that
∑Bn

i=1 ETi−1,n

[
| e(m)

i,n |2
] P→ 0. We compute

Bn∑
i=1

ETi−1,n

[
| e(m)

i,n |2
]

= n
Bn∑
i=1

ETi−1,n

[∣∣∣ ∫ Ti,n

Ti−1,n

∫ s

Ti−1,n

σθudWuds
∣∣∣2]

≤ Cn
Bn∑
i=1

(
ETi−1,n

[
(∆Ti,n)3

]) 2
3

(
ETi−1,n

[
sup

Ti−1,n≤s≤Ti,n

∣∣∣ ∫ s

Ti−1,n

σθudWu

∣∣∣6]) 1
3
,

≤ Cn
Bn∑
i=1

ETi−1,n

[
(∆Ti,n)3

]
= op(1),

where we used conditional Hölder’s inequality with p = 3/2 and q = 3 in the first
inequality, BDG with p = 3 in the second inequality, Condition (T) along with (26) in
the last equality.
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We show II → Z̃

We aim to use Theorem 2-2 (p. 242) in Jacod (1997). Conditions are further specified
in Theorem 3-2 (p. 244) in the case when observations are regular. Following the proof
of Theorem 3-2, we can actually show that such conditions hold in the more general
case when observations are not regular, choosing the filtration JTi,n . It is crucial to
note that we are not working with the filtration Jτi,n .

Consequently, our goal is to show the conditions (3.10)-(3.14) from Theorem 3-2 (p.
244) in Jacod (1997). Note that (3.12) and (3.14) are respectively implied by (39) and
(40). The bias condition (3.10) is satisfied as an application of (36) along with regular
conditional distribution.

In this step, we prove that (3.11) is satisfied. We introduce Ai,n := n
1
2

( ˆ̃ΘP
i,n −

θ∗Ti−1,n

)
∆T̃P

i,n and

Ci,n := ETi−1,n

[
Ai,nA

T
i,n

]
− ETi−1,n

[
Ai,n

]
ETi−1,n

[
ATi,n

]
.

The condition (3.11) can be expressed as

Bn∑
i=1

Ci,n
P→ T

∫ T

0

Vθ∗sds. (84)

By regular conditional distribution, (36) and (37), we have that

Bn∑
i=1

Ci,n = T
Bn∑
i=1

ETi−1,n

[
Vθ∗Ti−1,n

∆T̃P
i,n

]
+ op(1).

In view of (42), the conditional Cauchy-Schwarz inequality and the boundedness of Vθ,
we get

Bn∑
i=1

ETi−1,n

[
Vθ∗Ti−1,n

∆T̃P
i,n

]
=

Bn∑
i=1

ETi−1,n

[
Vθ∗Ti−1,n

∆Ti,n

]
+ op(1).

Using Lemma 2.2.11 of Jacod and Protter (2011) together with conditional Cauchy-
Schwarz inequality, (35) and the boundedness of Vθ, we obtain

T

Bn∑
i=1

ETi−1,n

[
Vθ∗Ti−1,n

∆Ti,n

]
= T

Bn∑
i=1

Vθ∗Ti−1,n
∆Ti,n + op(1).
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We can apply now Proposition I.4.44 (p. 51) in Jacod and Shiryaev (2003) and we get

T

Bn∑
i=1

Vθ∗Ti−1,n
∆Ti,n

P→ T

∫ T

0

Vθ∗sds.

In this final step, we prove that the Lindeberg condition (3.13) is satisfied. We will
show in this step that for all ε > 0,

Bn∑
i=1

ETi−1,n

[
| Ai,n |2 1{|Ai,n|>ε}

] P→ 0. (85)

Actually, (85) can be shown using regular conditional distribution along with (38).

8.6 Proof of Theorem 3 (QMLE)

We want to show that the conditions of Theorem 1 are satisfied. We start with the case
α > 1

2
. The key result is Theorem 6 in Xiu (2010, p. 241). We choose P = (0, 0).

We show first Condition (E). We can see easily from the key result that if we choose
Vθ∗t = 6σ2

t , then (37) is satisfied.

We can verify the Lindeberg condition (38) using conditional Cauchy-Schwarz in-
equality and the fact that the fourth moment of

h
1
2
n

( ˆ̃ΘP,θ
i,n − θ

)
is bounded.

As for the bias condition (36), we can see that as the noise shrinks faster than the
order of the returns to 0, then the bias tends to the sum of the diagonal elements of
W1 defined in (23) in Xiu (2010, p. 241) minus unity. This equals 0 and thus (36) is
satisfied.

The condition (29) is satisfied combining the fact that the noise is independent from
Xt, the aforementioned theorem with the rationale in Section 8.3.

We now show that (27) and (28) are satisfied. Actually, we can show trivially that
(27) holds for the reference continuous martingaleMt = 0. We recall that we are "only"
showing stable convergence with respect to FXt , and we show now the condition related
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to stable convergence (28). Actually, we can assume that Nt = Xt, this will imply that
the result holds for any N ∈Mb(M

⊥). From Theorem 6 in Xiu (2010), we have that

ˆ̃ΘP
i,n =

ihn−1∑
k=(i−1)hn

ihn−1∑
l=k+1

ωk,l,n(Zτk+1,n,n − Zτk,n,n)(Zτl+1,n,n − Zτl,n,n).

We can develop (Zτk+1,n,n − Zτk,n,n)(Zτl+1,n,n − Zτl,n,n) = I + II + III + IV , where
I = (Xτk+1,n

− Xτk,n)(Xτl+1,n
− Xτl,n), II = (Xτk+1,n

− Xτk,n)(εl+1,n − εl,n), III =

(εk+1,n − εk,n)(Xτl+1,n
− Xτl,n) and IV = (εk+1,n − εk,n)(εl+1,n − εl,n). Because the

noise is independent from Xt, it is clear that ETi−1,n

[
II ∗ (XTi,n − XTi−1,n

)
]

= 0,
ETi−1,n

[
III ∗ (XTi,n −XTi−1,n

)
]

= 0 and ETi−1,n

[
IV ∗ (XTi,n −XTi−1,n

)
]

= 0. As for I,
we can express

I ∗ (XTi,n −XTi−1,n
) = I ∗

ihn−1∑
k=(i−1)hn

(Xτk+1,n
−Xτk,n)

and from this expression straightforward computation leads to

ETi−1,n

[( ˆ̃ΘP
i,n − Θ̃i,n

)(
XTi,n −XTi−1,n

)]
= 0.

We consider now the case α = 1/2, i.e. when both the noise variance and the returns
are of the same rate. In that case, we need to use the bias-corrected estimator Θ̂

(BC)
n

so that we can verify the conditions of Theorem 1. The key result here is Proposition
1 (p. 369) along with its proof (p. 391-393) in Aït-Sahalia et al. (2005).

The bias condition (36) is satisfied on the account that we have reduced the bias
of the estimator. Actually, the de-bias of the estimator doesn’t affect the rest of the
proof. Moreover, the increment condition (37) and the Lindeberg condition (38) are
satisfied using similar techniques of proof. Finally, the conditions (27), (28) and (29)
are satisfied using the same line of reasoning as in the previous case.

8.7 Proof of Theorem 4 (powers of volatility)

We aim to show that we can verify the conditions of Theorem 1. The idea is to use a
Taylor expansion as in the delta method. Then the conditions will be satisfied partly
following the proof of Theorem 3. More specifically, we will do the proof for (23) and
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(24) of Condition (E), but will not explicit the proof of (25), (27), (28), (29) which can
be proven using the same ideas. We use the following notation:

ˆ̃ΘP,θ
i,n := g(ˆ̃σ2,P,σ

i,n )−Bi,n, (86)

where Bi,n can correspond to either one of the two bias-correction expressions found in
(49) and (50). We have that

ˆ̃ΘP,θ
i,n − θ := g(ˆ̃σ2,P,σ

i,n )−Bi,n − g(σ2), (87)

for some σ2. Using a Taylor expansion, we obtain that:

g(ˆ̃σ2,P,σ
i,n )− g(σ2) = (ˆ̃σ2,P,σ

i,n − σ2)g′(σ2) +
1

2
(ˆ̃σ2,P,σ

i,n − σ2)2g′′(σ2)

+
1

6
(ˆ̃σ2,P,σ

i,n − σ2)3g(3)(η), (88)

where η is between σ2 and ˆ̃σ2,P,σ
i,n . Combining (87) and (88) and several assumptions

(including the conditions on g), we obtain:

Var
[
h

1
2
n

( ˆ̃ΘP,θ
i,n − θ

)]
= (g′(σ2))2 Var

[
h

1
2
n (ˆ̃σ2,P,σ

i,n − σ2)
]

+ o(1). (89)

From here, one can conclude (24) using the proof of Theorem 3.

As for the bias condition (23), combining (87) and (88) and several assumptions we
deduce that:

E
[( ˆ̃ΘP,θ

i,n − θ
)]

= E
[
(ˆ̃σ2,P,σ

i,n − σ2)g′(σ2) +
1

2
(ˆ̃σ2,P,σ

i,n − σ2)2g′′(σ2)−Bi,n

]
+ o(n−

1
2 ). (90)

We can show that

E
[
(ˆ̃σ2,P,σ

i,n − σ2)g′(σ2)
]

= o(n−
1
2 ) (91)

as in the proof of Theorem 3. We can also show that

E
[1
2

(ˆ̃σ2,P,σ
i,n − σ2)2g′′(σ2)−Bi,n

]
= o(n−

1
2 ) (92)

following the same line of reasoning as that of the case v = 4 in the proof of Lemma
4.4 in Jacod and Rosenbaum (2013, p. 1480). In view of (90), (91) and (92), we can
show the bias condition (23).
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8.8 Proof of Theorem 5 (E-(LPE of QMLE))

The strategy of the proof consists in showing that the estimation error in ν does not
affect asymptotically the behavior of the QMLE so that we can apply directly Theorem
3. To do that, the key results will be Theorem 3(i) (p. 37) in Li et al. (2016) and
Theorem 6 (p. 241) in Xiu (2010).

We recall that X̂τi,n = Zτi,n,n − g(Ii,n, ν̂) and we define the n-dimensional vector
Ŷn = (X̂τ1,n − X̂0, · · · , X̂T − X̂τn−1,n). We also define Yn = ((Xτ1,n − X0) + (ε̃1,n −
ε̃0,n), · · · , (XT −Xτn−1,n)+(ε̃n,n− ε̃n−1,n)) and δn = (g(I1,n, ν̂)−g(I0,n, ν̂))− (g(I1,n, ν)−
g(I0,n, ν)), · · · , g(In,n, ν̂)− g(In−1,n, ν̂))− (g(In,n, ν)− g(In−1,n, ν))). It is clear that

Ŷn = Yn + δn. (93)

Finally, we recall that Θ̂n is the LPE of QMLE on Ŷn and we define Θ̃n as the LPE of
QMLE on Yn.

Consider the case α < 1/2 (the case α = 1/2 is done following the same line of
reasoning). The goal is to show that stably in distribution

n1/2
(

Θ̂n −Θ
)
→
(

6T−1

∫ T

0

σ4
sds
) 1

2N (0, 1). (94)

We decompose the left hand-side term in (94) as

n1/2(Θ̂n −Θ) = n1/2(Θ̃n −Θ)︸ ︷︷ ︸
An

+n1/2(Θ̂n − Θ̃n)︸ ︷︷ ︸
Bn

.

On the account of Theorem 3, we have that An → (6T−1
∫ T

0
σ4
sds)

1
2N (0, 1). Thus, if we

can show that Bn
P→ 0, then this implies (94).

We show now that Bn
P→ 0. We defineMn the set of real n× n matrices. In view

of Theorem 6 (p. 241) in Xiu (2010), there exists a function

M : K →Mn ×Mn

θ 7→ (M (1)(θ),M (2)(θ))

such that Θ̂i,n = Ŷ ′nM(Θ̂i,n)Ŷn and Θ̃i,n = Y ′nM(Θ̃i,n)Yn, where we define for any θ ∈ K
and any n dimensional vector Y :

Y ′M(θ)Y = (Y ′M (1)(θ)Y, Y ′M (2)(θ)Y ).
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We have that

Bn = n1/2(Θ̂n − Θ̃i,n),

= n1/2(Ŷ ′nM(Θ̂i,n)Ŷn − Y ′nM(Θ̃i,n)Yn),

= n1/2((Yn + δn)′M(Θ̂i,n)(Yn + δn)− Y ′nM(Θ̃i,n)Yn),

= n1/2(Y ′n(M(Θ̂i,n)−M(Θ̃i,n))Yn

+ (δ′nM(Θ̂i,n)Yn + Y ′nM(Θ̂i,n)δn + δ′nM(Θ̂i,n)δn)),

= n1/2Y ′n(M(Θ̂i,n)−M(Θ̃i,n))Yn + op(1),

= op(1).

where we used (93) in the third equality, Assumption A along with Theorem 3(i) in Li
et al. (2016) in the fifth equality, and Theorem 6 in Xiu (2010) along with Assumption
A, Theorem 3(i) in Li et al. (2016) in the sixth equality.

8.9 Proof of Theorem 6 (powers of volatility)

The proof follows the proof of Theorem 5 along with the proof of Theorem 4.

8.10 Proof of Theorem 7 (Time-varying friction parameter model
with uncertainty zones)

In order to prove the theorem, we will show that the conditions of Theorem 2 are
satisfied. For this purpose we set P = (1, 1).

First, Condition (T) follows exactly from Corollary 4.4 (p. 14) in Robert and Rosen-
baum (2012).

We aim to show now Condition (E*). We start with the bias condition (36). To
avoid more involved notation, we keep the notation introduced in Section 4.4 to prove
this part. We recall the definition of the estimator of η as

η̂t,n :=
m∑
k=1

λt,k,nut,k,n,
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with

λt,k,n :=
N

(a)
t,k,n +N

(c)
t,k,n∑m

j=1

(
N

(a)
t,j,n +N

(c)
α,t,j

) , (95)

ut,k,n := max

{
0,min

{
1,

1

2

(
k

(
N

(c)
t,k,n

N
(a)
t,k,n

− 1

)
+ 1

)}}
. (96)

One can see easily from (96) that ut,k,n are consistent estimators of η with bias which
satisfies the condition (36). Moreover, as η̂t,n is a linear combination of ut,k,n, it also
satisfies (36). It remains to show that the estimator of volatility which we recall to be
defined as

R̂V t,n =

Nn(t)∑
i=1

(X̂τi,n − X̂τi−1,n
)2, where (97)

X̂τi,n = Zτi,n,n − αn(1/2− η̂t,n)sign(Ri,n), (98)

also satisfies the bias condition. In fact, combining (97) and (98) along with the key
relation between Zτi,n,n and Xτi,n which can be found in (2.3) on p. 5 in Robert and
Rosenbaum (2012), we can deduce that the bias of (97) is a function of the bias of η̂t,n
which satisfies the condition (36).

We prove now the condition (37). We set an arbitrary M > 0. In view of the form
of the sampling times (55), we have uniformly in θ ∈ KM and in i = 1, · · · , Bn that

Var
[
h

1
2
n

(
θ̂hn,n(R1,P,θ

i,n ; · · · ;Rhn,P,θ
i,n )− θ

)
∆TP,θ

i,n

]
= Var

[
h

1
2
n

(
θ̂hn,n(R1,P,θ

i,n ; · · · ;Rhn,P,θ
i,n )− θ

)](
E
[
∆TP,θ

i,n

]
)2

+ op(h
2
nn
−2),

= Var
[
h

1
2
n

(
θ̂hn,n(R1,P,θ

i,n ; · · · ;Rhn,P,θ
i,n )− θ

)]
E
[
∆TP,θ

i,n

]
∆TP,θ

i,n

+ op(h
2
nn
−2),

= S
(1)
θ,nS

(2)
θ,n∆TP,θ

i,n Thnn
−1 + op(h

2
nn
−2),

with
S

(1)
θ,n := Var

[
h

1
2
n

(
θ̂hn,n(R1,P,θ

i,n ; · · · ;Rhn,P,θ
i,n )− θ

)]
and S

(2)
θ,n := E

[
∆TP,θ

i,n

]
T−1h−1

n n. By Lemma 4.19 in p. 26 of Robert and Rosenbaum
(2012) in the special case where the volatility is constant, we obtain the existence and
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the value of S(1)
θ such that S(1)

θ,n → S
(1)
θ . Also, by Corollary 4.4 in p. 14 of Robert and

Rosenbaum (2012), there exists S(2)
θ such that S(2)

θ,n → S
(2)
θ . If we define Vθ = S

(1)
θ S

(2)
θ ,

(37) is satisfied.

The Lindeberg condition (38) can be obtained using conditional Cauchy-Schwarz
inequality, together with the fact that the fourth moment of

h
1
2
n

(
θ̂hn,n(R1,P,θ

i,n ; · · · ;Rhn,P,θ
i,n )− θ

)
is bounded, and Condition (T).

We prove now the conditions (39) and (40). Here again we choose the reference
martingale Mt = 0, and thus we obtain trivially (39). To show (40), if we decompose( ˆ̃ΘP

i,n − θ∗τi,n
)
following the definition of the estimator, ∆T̃P

i,n as

hn∑
j=1

(τ̃P(i−1)hn+j,n − τ̃P(i−1)hn+j−1,n),

and

NTi,n −NTi−1,n
=

hn∑
j=1

(NP
(i−1)hn+j,n −NP

(i−1)hn+j−1,n),

and develop the product of those three expressions, we can easily get rid of the cross
terms, and the other terms can be shown going to 0 following the same line of reasoning
as the proof of Lemma 4.11 (pp. 20-21) and Lemma 4.14 (pp. 22-23) in Robert and
Rosenbaum (2012).

We turn now to (41) and (42). We start by showing the latter condition. We can
decompose ∆T̃P

i,n −∆Ti,n into(
∆T̃P

i,n −∆T̆P
i,n

)
+
(
∆T̆P

i,n −∆Ti,n

)
, (99)

where ∆T̆P
i,n follows the same definition as T̃P

i,n (i.e. we hold volatility constant on the
block) except that the starting point of the past is not set to P but kept to the random
past PTi−1,n,n. We deal with the first term in (99). We can see that under the parametric
model the past Pτi,n follows a discrete Markov chain on the space {1, · · · ,m}×{−1, 1}.
Following the same line of reasoning as in the proof of Lemma 14 in Potiron and
Mykland (2017), we can easily show that

n
1
2

Bn∑
i=1

ETi−1,n

[∣∣∆T̃P
i,n −∆T̆P

i,n

∣∣] P→ 0
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We turn now to the second term in (99). Using the same idea as in the proof of Lemma
11 in Potiron and Mykland (2017), we deduce

n
1
2

Bn∑
i=1

ETi−1,n

[∣∣∆T̆P
i,n −∆Ti,n

∣∣] P→ 0.

We have thus shown that (42) holds. The same line of reasoning can lead us to (41).

8.11 Proof of Theorem 8 (Time-varying MA(1))

The key result for this proof is the connection between the MA(1) process and the
observations in the model described in Section 4.1 in the case α = 1/2. Such connection
can be seen in view of the proof of Proposition I (pp. 391-393) in Aït-Sahalia et al.
(2005). More specifically, we can use Taylor expansions to re-express this estimator as
the estimator in Section 4.1 and then use Theorem 3 (ii) to conclude. Similar Taylor
expansions were already obtained in the proof of Theorem 4, and we will not further
explain the details in this specific case.

8.12 Estimation of the friction parameter bias and standard
deviation in the model with uncertainty zones

In this section, we provide the formal definitions, along with some theoretical derivation,
of the friction parameter bias and standard deviation used in our empirical illustration.
The notation of Section 4.4 and Section 10 are in force.

We estimate the standard deviation as

ŝn := ŝn(η̂T,n),

where a formal expression or an estimator of the variance of V (η) := ŝn(η) is provided
in what follows, depending on the setting. We also derive an expression or estimator of
the bias of η̂T,n, that we call B(η). They are both obtained assuming that the friction
parameter is fixed to η. In our numerical study we find that this bias is very close to
0 so that it is relatively safe to assume that it equals 0 for the purpose of statistical
inference.
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We consider first the case where the absolute jump size is constant equal to the tick
size, i.e. Li,n := 1, and Nn(t) is non-random. In view of (57), we have

η̂t,n := min
(

1,
N

(c)
t,1,n

2N
(a)
t,1,n

)
.

We also have by definition that the number of alternations is N (a)
t,1,n = Nn(t) − N (c)

t,1,n.
Then

N
(c)
t,1,n ∼ Bin(Nn(t),

2η

2η + 1
), (100)

where Bin(n, p) is a binomial distribution with n observations and probability p. Let
B ∼ Bin(Nn(t), 2η

2η+1
). We can define the bias as

B(η) := E
[
min

(
1,

B

2(Nn −B)

)]
− η

and the variance as
V (η) := Var

[
min

(
1,

B

2(Nn −B)

)]
.

In this case we have thus shown that B and V can be computed easily numerically.

We assume now that Nn(t) can be random. We can work conditional on Nn(t). As
the sampling times are endogenous, (100) is not true in that case. Nonetheless, we
can still approximate N (c)

t,1,n by Bin(Nn(t), 2η
2η+1

) if the number of observations is large
enough.

We now turn out to the general case, i.e. when Li,n can be different from 1. For
k = 1, · · · ,m we define p̃k := 2η+k−1

2η+k
and we let Bk be an independent sequence of

distribution Bin(N
(c)
t,k,n +N

(a)
t,k,n, p̃k), and

Ck := max
(

0,min
(

1,
1

2

(
k
( Bk

N
(a)
t,k,n +N

(c)
t,k,n −Bk

− 1
)

+ 1
)))

.

The distribution of η̂t,n can be approximated by the distribution of
m∑
i=1

λt,k,nCk,

and we can estimate the bias as B̂(η) :=
∑m

i=1 λt,i,nE
[
Ck
]
and the variance as V̂ (η) :=∑m

i=1 λ
2
α,t,i Var

[
Ck
]
.
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9 Additional numerical study: the time-varying MA(1)
case

9.1 Goal of the study

To investigate the finite sample performance of the LPE, we consider the time-varying
MA(1) with null-mean introduced in Section 4.5, where the related local estimator is
the MLE. The goal of the study is twofold. First, we want to investigate how the LPE
performs compared to some naive concurrent approaches. Second, we want to discuss
about the choice of the tuning parameter hn in practice.

We consider the following simple concurrent approaches:

MLE : the global MLE when considering that the parameters are not time-varying
on [0, T ].

Fitting Recent Observations (FRO): This approach consists in fitting the MLE on
a recent sub-block with less observations (e.g. on [TF , T ] where TF > 0) so that
the parameter is roughly constant on that block.

To compute the bias-corrected estimator Θ̂
(BC)
n = Θ̂i,n − b(Θ̂i,n, hn), we can either

compute and implement the function b(θ, h) or carry out Monte-Carlo simulations to
compute b(θ, h) for any (θ, h) prior to the numerical study. We choose the latter option
as this allows to get also rid of bias terms which appears in the Taylor expansion in
a higher order than O(h−2). Indeed, although those terms vanish asymptotically, they
can pop up in a finite sample context. To be more specific, we first compute the sample
mean for a grid of parameter values and block length (θ, h) with, say, 100,000 Monte
Carlo paths21 of the parametric model. Then on each block, we estimate the bias by
b(Θ̂i,n, hn).

We discuss here what we expect theoretically from the bias-correction. In view of
the decomposition (9), we can disentangle the bias of Θ̂i,n on first approximation as
the sum of two terms, namely the bias of the parametric estimator and the bias due
to the fact that the parameter is time-varying. The former can be corrected by the

21Actually, the number of Monte Carlo paths can be significantly lower when h increases
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econometrician, and we define the bias-corrected local estimate Θ̂
(BC)
i,n accordingly. On

the contrary, as the the parameter path is unknown, we cannot correct for the latter.
This is one reason why we have to work with (up to constant terms) a hn < n

1
2 . The

theory shows that the normalized latter bias will vanish asymptotically under that
condition. Conversely, the econometrician who chooses to work locally with hn > n

1
2

will most likely obtain a significant latter bias which she cannot identify, and correcting
for the former bias might not improve the estimation in that case.

9.2 Model design

We recall that the time-varying parameter is θ∗t = (βt, κt). We set T = 1, which
stands for one day (or one week, one month). We fix the number of observations
n = 10, 000. We consider one toy model where the parameters move around a target
parameter deterministically. We assume that the noisy parameter follows a cos function
θ∗t = ν+A cos(2πtδ

T
), where ν = (β, κ) is the parameter, A = (A(β), A(κ)) corresponds to

the amplitude, and δ = (δ(β), δ(κ)) stands for the number of oscillations on [0, T ]. With
this model, we set Θ = (β, κ). We fix the parameter ν = (0.5, 1) and the amplitude
A = (0.2, 0.4). We also choose one setting with a small number of oscillations δ = (4, 4)

and one with a bigger number of oscillations δ = (10, 10). We simulate M = 1, 000

Monte-carlo repetitions.

In view of Theorem 8 and Condition (P2), the tuning parameter hn should (up to
constant terms) satisfy n1/4 < hn < n1/2. In our case, we have that n1/4 = 10 and
n1/2 = 100. Accordingly we set hn = 25, 100, 500, 1000, 2000, 5000. For the FRO
approach, we set22 TF = 0.95, which means that we consider the last 500 observations
to fit the MLE.

9.3 Results

The results are reported in Table 2 when δ = (4, 4) and Table 3 when δ = (10, 10). First,
note that the results are similar for both values. Second, as expected from the theory,
the LPE performs at its best with the choice hn = n

1
2 = 100, and the bias-corrected

version is much better. Moreover, it outperforms the two concurrent approaches.
22This choice is arbitrary, but different values would yield to similar results.
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The case hn = 25 allows us to check what can happen when we have blocks with
very few observations. The bias-corrected estimator performs well to estimate κ, but
somehow the bias-correction to estimate β does not provide better estimates. This is
most likely due to the fact that we have not enough observations on each block.

The estimation made with hn = 500 is very decent in the case with small number
of oscillations. The bias-corrected estimator is actually not as good. This corroborates
the theory that when hn >> 100 the main source of bias is due to the parameter which
is time-varying rather than the parametric estimator bias itself. If we have a bigger
number of oscillations, the estimates are not as accurate. When using bigger hn, we see
the same pattern, and the accuracy of the estimation decreases as hn increases.

The global MLE performs relatively well to estimate β, but have a strong bias in
κ. This indicates that even in a simple deterministic model which oscillates around the
target value, the MLE cannot be trusted. Finally, the FRO is far off and the standard
deviation is bigger.

Remark 11. (block size) The conditions of our paper provides the asymptotic order
to use for the tuning parameter hn. Thus, it gives a rule of thumb to use on finite
sample, but it is left to the practitioner to ultimately choose hn. If the parametric
estimator is badly biased, the practitioner should increase the value of hn. Also, if the
parameter seems roughly constant, hn can be chosen to be bigger. In our simulation
study, this rule of thumb could be trusted. In our empirical illustration, we can see
that the estimated volatility is robust to the value of hn if we choose hn ≈ N

1/2
n . As

n can be chosen such that n = Nn, this indicates that the rule of thumb seems to be
robust to the actual choice of hn in our empirical study too.

10 Empirical illustration in the model with uncer-
tainty zones

In this section, we implement the LPE in the model with uncertainty zones introduced
in Section 4.4. We recall that the parameter of interest is defined as ξ∗t = (σ2

t , ηt). We
are looking at Orange (ORA.PA) stock price traded actively on the CAC 40 on one
random day, Monday March 4th, 2013. To prevent from opening and closing effect, we
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β β κ κ

estimator block size sample bias s.d. sample bias s.d.
MLE -0.0052 0.0085 0.1041 0.0148
FRO 0.2913 0.0355 0.1666 0.0355
LPE 25 -0.0168 0.0131 -0.0985 0.0096
BC LPE 25 -0.0172 0.0132 -0.0062 0.0097
LPE 100 0.0035 0.0083 -0.0256 0.0096
BC LPE 100 -0.0010 0.0082 -0.0065 0.0096
LPE 500 -0.0021 0.0094 0.0073 0.0101
BC LPE 500 -0.0049 0.0095 0.0098 0.0104
LPE 1000 -0.0030 0.0099 0.0425 0.0125
BC LPE 1000 -0.0056 0.0100 0.0438 0.0126
LPE 2000 -0.0032 0.0102 0.1029 0.0143
BC LPE 2000 -0.0055 0.0101 0.1035 0.0143
LPE 5000 -0.0052 0.0087 0.1037 0.0148
BC LPE 5000 -0.0060 0.0087 0.1044 0.0147

Table 2: In this table, we report the sample bias and the standard deviation for the
different estimators in the case of a small number of oscillations δ = (4, 4). The param-
eter (β, κ) = (0.5, 1). The number of Monte-carlo simulations is 1,000. Note that BC
stands for "bias-corrected".
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β β κ κ

estimator block size sample bias s.d. sample bias s.d.
MLE -0.0069 0.0105 0.1094 0.0222
FRO 0.0065 0.0391 0.0882 0.0678
LPE 25 -0.0148 0.0183 -0.0876 0.0144
BC LPE 25 -0.0155 0.0184 0.0046 0.0143
LPE 100 0.0017 0.0092 -0.0164 0.0183
BC LPE 100 0.0012 0.0092 0.0039 0.0183
LPE 500 -0.0053 0.0094 0.1046 0.0219
BC LPE 500 -0.0085 0.0094 0.1086 0.0221
LPE 1000 -0.0071 0.0102 0.1078 0.0216
BC LPE 1000 -0.0115 0.0102 0.1098 0.0217
LPE 2000 -0.0071 0.0106 0.1087 0.0220
BC LPE 2000 -0.0108 0.0106 0.1096 0.0221
LPE 5000 -0.0071 0.0106 0.1087 0.0220
BC LPE 5000 -0.0093 0.0106 0.1090 0.0219

Table 3: In this table, we report the sample bias and the standard deviation for the
different estimators in the case of a bigger number of oscillations δ = (10, 10). The
parameter (β, κ) = (0.5, 1). The number of Monte-carlo simulations is 1,000. Note that
BC stands for "bias-corrected".
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assume that restrict to data obtained from 9am to 4pm. The number of transactions
inducing to a price change during this time period is equal to Nn = 3306, the tick size
αn = 0.001 euro, and the price is equal to 8 euros on average.

We report the global estimate η̂T,n = 0.155, and the standard deviation23 ŝn = 0.008.
Moreover, Figure 2 documents the friction parameter estimates over time for several
values of block size. Based on those estimates and the local standard deviation estimate
ŝi,n, we compute the associated chi-square statistic24

χ2
n :=

Bn−1∑
i=1

( η̂i,n − η̂T,n
ŝi,n

)2

.

Under the null hypothesis which states that ηt is constant, χ2
n follows approximately

a chi-square distribution with Bn − 1 degrees of freedom. We report χ2
n for different

values of hn in Table 4. The obtained values indicate that we have strong evidence
against the null hypothesis, revealing that the friction parameter is time-varying.25

We report in Figure 3 the estimated volatility for different values of hn. Because
N

1/2
n ≈ 57.5 we set hn = 43, · · · , 63. We also report the estimates with RV and the

global model with uncertainty zones. The estimates of the latter seems to slightly
underestimate the integrated volatility. In addition, the former, which is positively
biased under the presence of microstructure noise, is far off, most likely overestimating
the integrated volatility. Finally, the estimates are very similar for different values of
hn, which seems to indicate that the method is robust to small block size variation.

23related definitions and derivation of ŝn and ŝi,n can be found in Section 8.12
24Note that since the number of observations of the last block is arbitrary, the last block estimate is

not used to compute the chi-square statistic.
25This analysis has been carried out on other days and other stocks. We consistently conclude that

the friction parameter is time-varying.
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Figure 2: Estimated friction parameter over time for different values of hn. The red line
corresponds to the global estimate. The blue lines are one (local) standard deviation
away from the global estimator. The purple lines are two (local) standard deviations
away.
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hn Bn Chi Sq. Stat Dg. Fr. p-value
50 67 719 66 ≈ 0

100 34 268 33 ≈ 0

150 23 155 22 ≈ 0

200 17 116 16 ≈ 0

250 14 109 13 ≈ 0

300 12 68.5 11 ≈ 0

350 10 90.6 9 ≈ 0

400 9 91.5 8 ≈ 0

450 8 42.6 7 ≈ 0

Table 4: Summary chi-square statistics χ2
n based on the block size hn.

Figure 3: Estimated volatility with the LPE for different values of hn. The red line
corresponds to the RV estimator. The blue line stands for the global model with
uncertainty zones volatility estimator.

67


