## Supplementary material to: S. Clinet and Y. Potiron, "Disentangling sources of high frequency market microstructure noise"

We give the assumptions related to Proposition 1 and a detailed proof of the consistency of the BIC.
First, defining

$$
\chi(\theta):=\mathbb{E}\left[\left(\Delta \phi\left(Q_{t_{1}}, \theta\right)-\Delta \phi\left(Q_{t_{1}}, \theta_{0}\right)\right)^{2}\right],
$$

we assume
[A] For any $m \in \mathcal{M}, \chi$ admits a unique minimum $\tilde{\theta}^{(m)}$ on the interior of $m$.

Note that [A] is automatically satisfied for linear models such as (2.1) as soon as the variancecovariance matrix of the vector of returns of information $\Delta Q_{t_{1}}$ is positive definite.

We also define

$$
W_{i}(\theta):=\phi\left(Q_{i}, \theta\right)-\phi\left(Q_{i}, \theta_{0}\right),
$$

and for any $i, j, k, l \in \mathbb{N}$, and for any multi-indices $\boldsymbol{q}=\left(q_{1}, q_{2}\right), \boldsymbol{r}=\left(r_{1}, r_{2}, r_{3}, r_{4}\right)$, where the subcomponents of $\boldsymbol{q}$ and $\boldsymbol{r}$ are $d$ dimensional multi-indices, the following quantities conditioned on the price process

$$
\begin{aligned}
\mathbb{E}\left[W_{i}(\theta) \mid X\right] & =0 \text { a.s, } \\
\rho_{j}^{\boldsymbol{q}}(\theta) & :=\mathbb{E}\left[\left.\frac{\partial^{q_{1}} W_{i}(\theta)}{\partial \theta^{q_{1}}} \frac{\partial^{q_{2}} W_{i+j}(\theta)}{\partial \theta^{q_{2}}} \right\rvert\, X\right]=\mathbb{E}\left[\frac{\partial^{q_{1}} W_{i}(\theta)}{\partial \theta^{q_{1}}} \frac{\partial^{q_{2}} W_{i+j}(\theta)}{\partial \theta^{q_{2}}}\right] \text { a.s, } \\
\kappa_{j, k, l}^{r}(\theta) & :=\operatorname{cum}\left[\frac{\partial^{r_{1}} W_{i}(\theta)}{\partial \theta^{r_{1}}}, \frac{\partial^{r_{2}} W_{i+j}(\theta)}{\partial \theta^{r_{2}}}, \frac{\partial^{r_{3}} W_{i+k}(\theta)}{\partial \theta^{r_{3}}}, \left.\frac{\partial^{r_{4}} W_{i+l}(\theta)}{\partial \theta^{r_{4}}} \right\rvert\, X\right] \\
& =\operatorname{cum}\left[\frac{\partial^{r_{1}} W_{i}(\theta)}{\partial \theta^{r_{1}}}, \frac{\partial^{r_{2}} W_{i+j}(\theta)}{\partial \theta^{r_{2}}}, \frac{\partial^{r_{3}} W_{i+k}(\theta)}{\partial \theta^{r_{3}}}, \frac{\partial^{r_{4}} W_{i+l}(\theta)}{\partial \theta^{r_{4}}}\right] \mathrm{a} . \mathrm{s},
\end{aligned}
$$

where $\rho_{j}^{\boldsymbol{q}}(\theta)$ and $\kappa_{j, k, l}^{r}(\theta)$ are assumed independent of $n$. The following assumption is directly taken from [Clinet and Potiron, 2019]:
[B] The impact function $\phi$ is supposed to be of class $C^{m}$ in $\theta$ with $m>\bar{d} / 2+2$. Moreover, for any $i=0, \cdots, m$ and $0 \leq|\boldsymbol{q}|,|\boldsymbol{r}| \leq m$, we have

$$
\begin{gathered}
\sup _{\theta \in \Theta} \sum_{j=0}^{+\infty}\left|\rho_{j}^{q}(\theta)\right|<\infty \text { a.s, } \\
\sup _{\theta \in \Theta} \sum_{j, k, l=0}^{+\infty}\left|\kappa_{j, k, l}^{r}(\theta)\right|<\infty \text { a.s, } \\
\mathbb{E}\left[\left.\sup _{\theta \in \Theta}\left|\frac{\partial^{j} \Delta \phi\left(Q_{t_{i}}, \theta\right)}{\partial \theta^{j}}\right|^{p} \right\rvert\, X\right]<\infty \text { a.s, for any } p \geq 1,0 \leq j \leq 2, \\
\frac{\partial \rho_{0}(\theta)}{\partial \theta}=0 \Leftrightarrow \theta=\theta_{0} .
\end{gathered}
$$

We are now ready to prove Proposition 1.

Proof of Proposition 1. All we have to do is to show that for any $m \neq m_{0}, \operatorname{BIC}(m)-\operatorname{BIC}\left(m_{0}\right) \rightarrow^{\mathbb{P}}+\infty$. Step 1. We prove our claim when $m_{0}$ is a submodel of $m$, and so $d>d_{0}$ where $d$ is the number of parameters of $m$. By Theorem 3.1 from [Clinet and Potiron, 2019], and up to some reordering of the subcomponents of $\theta$, the estimator $\widehat{v}^{(m)}$ is consistent and asymptotically normal, toward the limit $v_{0}=\left(\bar{\sigma}_{0}^{2}, \theta_{0}^{1}, \cdots, \theta_{0}^{d_{0}}, 0, \cdots, 0\right)$ where $\bar{\sigma}_{0}^{2}=\int_{0}^{T} \sigma_{s}^{2} d s+\sum_{0<s \leq T} \Delta J_{s}^{2}$. We slightly reformulate the problem as follows: introducing $\widehat{w}^{(m)}=\left(\left(\widehat{\sigma}^{2}\right)^{(m)}, N^{1 / 2}\left(\widehat{\theta}^{(m)}-\theta_{0}\right)\right)$, and $w_{0}=\left(\bar{\sigma}_{0}^{2}, 0, \cdots, 0\right)$, we have by a Taylor expansion, for some $\bar{w} \in\left[\widehat{w}^{(m)}, w_{0}\right]$

$$
\begin{aligned}
2\left(l_{\text {exp }}^{(m)}\left(\widehat{v}^{(m)}\right)-l_{\text {exp }}^{(m)}\left(v_{0}\right)\right) & =2\left(\mathcal{L}_{\text {exp }}^{(m)}\left(\widehat{w}^{(m)}\right)-\mathcal{L}_{\text {exp }}^{(m)}\left(w_{0}\right)\right) \\
& =-N\left(\widehat{w}^{(m)}-w_{0}\right)^{T} H_{\text {exp }}^{(m)}(\bar{w})\left(\widehat{w}^{(m)}-w_{0}\right) \rightarrow^{d} \chi^{2}(d)
\end{aligned}
$$

by application of Theorem 3.1 and Lemma C. 15 from [Clinet and Potiron, 2019], and with $\mathcal{L}_{\text {exp }}^{(d)}$ being the restriction of $\mathcal{L}_{\text {exp }}$ on $m$, where $\mathcal{L}_{\text {exp }}$ is defined in (C.88), p. 323 of [Clinet and Potiron, 2019], and $H_{e x p}^{(m)}=-N \partial^{2} \mathcal{L}_{e x p}^{(m)} / \partial w^{2}$. In the previous equation, $\rightarrow^{d} \chi^{2}(d)$ stands for the convergence in law toward a chi-squared distribution with $d$ degrees of freedom. We have a similar result for $m_{0}$, and thus $\mathcal{L}_{e x p}^{(m)}\left(\widehat{v}^{(m)}\right)-\mathcal{L}_{e x p}^{\left(m_{0}\right)}\left(\widehat{v}^{\left(m_{0}\right)}\right)=O_{\mathbb{P}}(1)$. This, in turn, implies that $\operatorname{BIC}(m)-\operatorname{BIC}\left(m_{0}\right) \sim\left(d-d_{0}\right) \log (N) \rightarrow^{\mathbb{P}}$ $+\infty$.
Step 2. We prove our claim when $m_{0}$ is not a submodel of $m$. We recall that, by definition of the likelihood process, we have

$$
\widehat{\theta}^{(m)} \in \operatorname{argmin}_{\theta \in m} \Delta \widetilde{Z}(\theta)^{T} \Delta \widetilde{Z}(\theta),
$$

and

$$
\left(\widehat{\sigma}^{2}\right)^{(m)}=T^{-1} \Delta \widetilde{Z}\left(\widehat{\theta}^{(m)}\right)^{T} \Delta \widetilde{Z}\left(\widehat{\theta}^{(m)}\right),
$$

with $\widetilde{Z}_{t_{i}}(\theta)=Z_{t_{i}}-\phi\left(Q_{t_{i}}, \theta\right)$. By direct calculation similar to that of Section C. 4 from [Clinet and Potiron, 2019], we have the uniform convergence for $\theta \in m$

$$
N^{-1} \Delta \widetilde{Z}(\theta)^{T} \Delta \widetilde{Z}(\theta) \rightarrow^{\mathbb{P}} \chi(\theta)=\mathbb{E}\left[\left(\Delta \phi\left(Q_{t_{1}}, \theta\right)-\Delta \phi\left(Q_{t_{1}}, \theta_{0}\right)\right)^{2}\right] .
$$

As a direct consequence, we obtain that $\widehat{\theta}^{(m)} \rightarrow^{\mathbb{P}} \tilde{\theta}^{(m)}$ where we recall that $\tilde{\theta}^{(m)}$ is the unique minimum of $\chi$ on the interior of $m$ by Assumption [A]. Similarly, we easily obtain that

$$
\left(\widehat{\sigma}^{2}\right)^{(m)}=\Delta_{N}^{-1} \chi\left(\tilde{\theta}^{(m)}\right)+o_{\mathbb{P}}\left(\Delta_{N}^{-1}\right),
$$

where $\Delta_{N}=T / N$, and where $\chi\left(\tilde{\theta}^{(m)}\right)>0$ by the identifiability assumption (2.14) from [Clinet and Potiron, 2019] along with the fact that $\tilde{\theta}^{(m)} \neq \theta_{0}$. Moreover, we have

$$
\frac{\partial^{2} l_{e x p}^{(m)}\left(\widehat{v}^{(m)}\right)}{\partial v^{2}}=\left(\begin{array}{cc}
\frac{-T}{2\left(\widehat{\sigma}^{4}\right)^{(m)} \Delta_{N}} & 0 \\
0 & \frac{-1}{2\left(\hat{\sigma}^{2}\right)^{(m)} \Delta_{N}} \frac{\partial^{2}\left(\Delta \tilde{Z}\left(\widehat{\theta}^{(m)}\right)^{T} \Delta \tilde{Z}\left(\widehat{\theta}^{(m)}\right)\right)}{\partial \theta^{2}}
\end{array}\right),
$$

and therefore by a Taylor expansion at $\widehat{v}^{(m)}$, we get for some $\bar{v} \in\left[v_{0}, \widehat{v}^{(m)}\right]$

$$
\begin{aligned}
2\left(l_{e x p}^{(m)}\left(\widehat{v}^{(m)}\right)-l_{e x p}^{(m)}\left(v_{0}\right)\right) & =\left(\widehat{v}^{(d)}-v_{0}\right)^{T} \frac{\partial^{2} l_{\text {exp }}^{(m)}(\bar{v})}{\partial v^{2}}\left(\widehat{v}^{(m)}-v_{0}\right) \\
& =\frac{-T\left(\left(\widehat{\sigma}^{2}\right)^{(m)}-\bar{\sigma}_{0}^{2}\right)^{2}}{2\left(\widehat{\sigma}^{4}\right)^{(m)} \Delta_{N}}-\frac{\left(\widehat{\theta}^{(m)}-\theta_{0}\right)^{T}}{2\left(\widehat{\sigma}^{2}\right)^{(m)} \Delta_{N}} \frac{\partial^{2}\left(\Delta \widetilde{Z}\left(\widehat{\theta}^{(m)}\right)^{T} \Delta \widetilde{Z}\left(\widehat{\theta}^{(m)}\right)\right)}{\partial \theta^{2}}\left(\widehat{\theta}^{(m)}-\theta_{0}\right) \\
& \left.=-\frac{T \Delta_{N}^{-1}}{2}-T \Delta_{N}^{-1} \frac{\left(\widehat{\theta}^{(m)}-\theta_{0}\right)^{T}}{2 \chi(\tilde{\theta}(m)}\right) \frac{\partial^{2} \chi\left(\tilde{\theta}^{(m)}\right)}{\partial \theta^{2}}\left(\widehat{\theta}^{(m)}-\theta_{0}\right)+o_{\mathbb{P}}\left(\Delta_{N}^{-1}\right) .
\end{aligned}
$$

Now, since $\tilde{\theta}^{(m)}$ is the unique minimum of $\chi$ on the interior of $m$, we deduce that $\frac{\partial^{2} \chi(\tilde{\theta}(m)}{\partial \theta^{2}}$ is a positive matrix and thus $-T \Delta_{N}^{-1} \frac{\left(\widehat{\theta}^{(m)}-\theta_{0}\right)^{T}}{2 \chi\left(\tilde{\theta}^{(m)}\right)} \frac{\partial^{2} \chi\left(\tilde{\theta}^{(m)}\right)}{\partial \theta^{2}}\left(\widehat{\theta}^{(m)}-\theta_{0}\right) \leq 0$. Therefore, we have $2\left(l_{\text {exp }}^{(m)}\left(\widehat{v}^{(m)}\right)-\right.$ $\left.l_{e x p}^{(m)}\left(v_{0}\right)\right) \leq-\frac{T}{2} \Delta_{N}^{-1}+o_{\mathbb{P}}\left(\Delta_{N}^{-1}\right)$. Thus,

$$
\operatorname{BIC}(m)-\operatorname{BIC}\left(m_{0}\right) \geq \frac{N}{2}+\underbrace{\left(d-d_{0}\right) \log (N)}_{o_{\mathbb{P}}(N)}+o_{\mathbb{P}}(N),
$$

which proves our claim.

## References

[Clinet and Potiron, 2019] Clinet, S. and Potiron, Y. (2019). Testing if the market microstructure noise is fully explained by the informational content of some variables from the limit order book. Journal of Econometrics.

