
Annex of Statistical inference for the doubly stochastic self-exciting
process

10 Appendix: Proofs

10.1 The standard MLE for the parametric Hawkes process

We briefly introduce the standard maximum likelihood estimation procedure for the parametric Hawkes
process with exponential kernel φt = ae−bt in the long run (also called low-frequency) asymptotics,
that is when we consider observations of a Hawkes process NP on the time interval [0, T ] with T →∞.
We define several deterministic key quantities, such as the Fisher information matrix, as time average
limits of quantities which depend on the point process NP

t .
The regression family is defined for each θ ∈ K as

λ(t, θ) = ν +

∫ t−

0
ae−b(t−s)dNP

s . (10.1)

We assume that there exists an unknown parameter θ∗ ∈ K such that the FNP

t -intensity of NP
t is

expressed as

λP∗ (t) = λ(t, θ∗). (10.2)

The log-likelihood process is, up to a constant term,

lT (θ) =

∫ T

0
log (λ(t, θ)) dNP

t −
∫ T

0
λ(t, θ)dt. (10.3)

The MLE θ̂T is a maximizer of lT (θ). We define

ΓT (θ∗) = − 1

T
∂2
θ lT (θ∗) ∈ R3×3, (10.4)

KT (θ∗) =
1

T
∂3
θ lT (θ∗) ∈ R3×3×3, (10.5)

MT (θ∗) =

∫ T

0

∂θλ(t, θ∗)

λ(t, θ∗)
{dNP

t − λ(t, θ∗)dt}, (10.6)

and for any indices k, l,m ∈ {0, 1, 2},

CT (θ∗)k,lm =
1

T

∫ T

0
∂θ,kλ(t, θ∗)∂2

θ,lmlog (λ(t, θ∗)) dt, (10.7)

and

QT (θ∗)k,lm = −MT (θ∗)k
T

∫ T

0

∂θλ(t, θ∗)l∂θλ(t, θ∗)m
λ(t, θ∗)

dt. (10.8)

The three time-averaged quantities ΓT , KT and CT admit deterministic limiting values when T →∞
because the process NP is exponentially mixing. Indeed, a slight generalization of Lemma 6.6 in
[3] shows that the vector process (λ(t, θ∗), ∂θ(t, θ

∗), · · · , ∂3
θ (t, θ∗)) satisfies the mixing condition [M2]
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defined on p. 14 in the cited paper, which in turn implies the existence of Γ(θ∗) ∈ R3×3, and K(θ∗),
C(θ∗) ∈ R3×3×3 such that for any ε ∈ (0, 1) and any integer p ≥ 1,

E |ΓT (θ∗)− Γ(θ∗)|p = O
(
T−ε

p
2

)
, (10.9)

E |KT (θ∗)−K(θ∗)|p = O
(
T−ε

p
2

)
, (10.10)

and

E |CT (θ∗)− C(θ∗)|p = O
(
T−ε

p
2

)
, (10.11)

where |x| stands for
∑

i |xi| for any vector or a matrix x. Moreover, it is also an easy consequence of
the mixing property along with the fact that MT (θ∗) is a martingale that we have the convergence

E [QT (θ∗)−Q(θ∗)] = O
(
T−

ε
2

)
, (10.12)

for some Q(θ∗) ∈ R3×3×3. Note that Γ(θ∗) is the asymptotic Fisher information. In particular, in [3]
the authors have shown the convergence of moments of the MLE (see Theorem 4.6),

E
[
f
(√

T (θ̂T − θ∗)
)]
→ E

[
f
(

Γ(θ∗)−
1
2 ξ
)]
, (10.13)

where f can be any continuous function of polynomial growth, and ξ follows a standard normal distri-
bution. Also, it is easy to see that the convergences in (10.9)-(10.13) hold uniformly in θ∗ ∈ K under
a mild change in the proofs of [3]. The result (10.13) should be compared to Theorem 5.2. Finally,
from Γ, K, C and Q we define for any k ∈ {0, 1, 2}

b(θ∗)k =
1

2
Γ(θ∗)jkΓ(θ∗)lm(K(θ∗)jlm + 2 {C(θ∗)l,jm +Q(θ∗)l,jm}) (10.14)

with implicit summation of repeated indices. The function b appears in the expression of the expansion
of the bias of the local MLE in Section 10.4.

10.2 Construction of the doubly stochastic Hawkes process

We establish the existence of the doubly stochastic self-exciting process under very general conditions
on the parameter process. We also provide the boundedness of moments of various stochastic integrals
with respect to such point process when the parameter is assumed to take its values in a compact space.
We follow the same procedure as in [2] for the construction of a Hawkes process, that is, we show the
existence of the doubly stochastic Hawkes process by a fixed point argument. In what follows we let
B = (Ω,F ,F,P), F = (Ft)t∈[0,T ], F = FT be a stochastic basis such that the filtration F is generated
by the three-dimensional predictable process (θs)s∈[0,T ] = (νs, as, bs)s∈[0,T ] which is component-wise
non-negative, and by a Poisson process N of intensity 1 on R2 which is independent of θ. In other
words, Ft = F (θ,N)

t . In the following, properties such as predictability or adaptivity will automatically
refer to F. Before we turn to the existence of the self-exciting doubly stochastic process, we recall a
key result for martingales.

Lemma 10.1. Let F = (Ft)t∈[0,T ],F = FT be a filtration and G a σ-field that is independent of F .
Consider also the extended filtration defined by Ht = Ft∨G. Then any square integrable Ft-martingale
M is also a Ht-martingale. In particular, for any Ht-predictable process u such that

∫ T
0 usd〈M,M〉s is

integrable, E[
∫ T

0 usdMs|G] = 0.
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Proof. Let M defined as in the lemma and write for 0 ≤ s ≤ t ≤ T ,

E[Mt|Hs] = E[Mt|Fs ∨ G]

= E[Mt|Fs]
= Ms,

since G ⊥⊥Mt and G ⊥⊥Fs. It follows that
∫ t

0 usdMs is a Ht-martingale, the second part of the lemma
follows.

We now show the existence of the doubly stochastic Hawkes process associated to θ.

Proof of Theorem 5.1. We apply a fixed point argument using integrals over the two-dimensional inte-
ger measure N(dt, dx). Let us first define λ0(t) = νt and N0 the point process defined as

N0
t =

∫∫
[0,t]×R

1{0≤x≤λ0(s)}N(ds, dx). (10.15)

It is immediate to see that λ0(t) is the Ft-intensity of N0
t . We then define recursively the sequence of

Ft-adapted point processes Nn along with their stochastic intensities λn as

λn+1(t) = νt +

∫ t−

0
ase
−bs(t−s)dNn

s , (10.16a)

Nn+1
t =

∫∫
[0,t]×R

1{0≤x≤λn+1(s)}N(ds, dx). (10.16b)

Note that both λn and Nn are increasing with n and thus both converge point-wise to some limiting
values λ and N that take their values on [0,+∞]. Moreover, N counts the points of N which belong to
the positive domain under the curve t 7→ λ(t) by an immediate application of the monotone convergence
theorem. Let’s now introduce the sequence of processes ρn defined as ρnt = E

[
λn(t)− λn−1(t) | FθT

]
.

Then

ρn+1
t = E

[∫ t

0
ase
−bs(t−s) (λn(s)− λn−1(s)

)
ds

∣∣∣∣FθT]
=

∫ t

0
ase
−bs(t−s)E

[
λn(s)− λn−1(s)

∣∣FθT ] ds
=

∫ t

0
ase
−bs(t−s)ρns ds,

where we used Fubini’s theorem in the second equality. Also, the first equality is obtained by Lemma
10.1 applied to the compensated measure N(ds, dz)− ds⊗ dz and the independence between FNT and
FθT . Thus, setting Φn

t =
∫ t

0 ρ
n
s ds, we have by Fubini’s theorem

Φn+1
t =

∫ t

0

{∫ t−s

0
ase
−bsudu

}
ρns ds.

Note that
∫ t−s

0 ase
−bsudu ≤ as

bs
≤ r < 1 by condition (5.1). Therefore, Φn+1

t ≤ rΦn
t , and thus the

application of the monotone convergence theorem to the sequence
(∑n

k=0 Φk
t

)
n
yields

E

[∫ t

0
λ(s)ds

∣∣∣∣FθT] ≤ ∫ t

0
νsds+ rE

[∫ t

0
λ(s)ds

∣∣∣∣FθT] . (10.17)
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A straightforward rearrangement of the terms in (10.17) gives us that

E

[∫ t

0
λ(s)ds

∣∣∣∣FθT] ≤ (1− r)−1

∫ t

0
νsds <∞ P− a.s.

where the last inequality is a consequence of condition (5.2). In particular, we deduce that
∫ t

0 λ(s)ds
and Nt are both finite almost surely. We need to show that λ(t) satisfies (5.3). By mononicity, we
deduce by taking the limit n→ +∞ in (10.16a) that

λ(t) = νt +

∫ t−

0
ase
−bs(t−s)dNs. (10.18)

Finally, we show how to obtain (5.4). As N and FθT are independent, it still holds that conditioned
on FθT , N is a Poisson process of intensity 1. From the representation of N as an integral over N we
conclude that (5.4) holds, and this completes the proof.

We now adapt well-known results on point processes to the case of the doubly stochastic Hawkes
process, and derive some useful moments estimates for stochastic integrals with respect to N . Write
Λ the compensating measure of N , that is Λ(ds, dz) = ds⊗ dz. Given a predictable function W , write
W ∗ N t =

∫∫
[0,t]×RW (s, z)N(ds, dz), and the associated definition for W ∗ Λt. Predictable function

and integral with respect to random measures definitions can be consulted in [6], paragraph II.1. The
following lemma is a straightforward adaptation of Lemma I.2.1.5 in [5], using also Lemma 10.1 and
(5.4).

Lemma 10.2. Let W be a predictable function such that W 2 ∗ Λt < ∞ almost surely. Then for any
integer p > 1, there exists a constant Kp such that

E

[
sup
t∈[0,T ]

∣∣W ∗ (N − Λ)t
∣∣p∣∣∣∣∣FθT

]

≤ KpE

∫∫
[0,T ]×R

|W (s, z)|pdsdz +

(∫∫
[0,T ]×R

W (s, z)2dsdz

) p
2

∣∣∣∣∣∣FθT


For any (random) kernel χ : (s, t)→ χ(s, t), we say that χ is G-predictable for some filtration G if
for any t ∈ [0, T ] the process χ(., t) is. For example the kernel χ(s, t) = ase

−bs(t−s) is Fθ-predictable.
Nonetheless, we will also need to deal with other kernels in the course of the proofs. Consequently, we
introduce the following lemma, which ensures the boundedness of moments of the doubly stochastic
Hawkes process under the condition (5.13).

Lemma 10.3. Under the condition c := supt∈[0,T ]

∫ t
0 ase

−bs(t−s)ds < 1 P − a.s., the counting process
N defined through (5.3) admits moments on [0, T ] that can be bounded by values independent from T .
Moreover, for any Fθ-predictable kernel χ such that

∫ t
0 χ(s, t)ds is bounded uniformly in t ∈ [0, T ] inde-

pendently from T , and for any predictable process ψ that has uniformly bounded moments independently
from T , we have

(i) supt∈[0,T ] E
[
λ(t)p|FθT

] 1
p < Qp

(ii) supt∈[0,T ] E
[(∫ t

0 χ(s, t)dNs

)p
|FθT

] 1
p
< Qp,χ
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where the constants Qp, Qp,χ are independent from T .

Proof. We conduct the proof in three steps.
Step 1. We prove that (i) holds for p = 1. We write

E[λ(t)|FθT ] = νt +

∫ t−

0
ase
−bs(t−s)E[λ(s)|FθT ]ds

≤ ν + sup
s∈[0,t]

E[λ(s)|FθT ]

∫ t−

0
ase
−bs(t−s)ds

≤ ν + c sup
s∈[0,t]

E[λ(s)|FθT ],

where we used condition (5.13) at the last step. Taking the supremum over [0, T ] on both sides, we get

sup
t∈[0,T ]

E[λ(t)|FθT ] ≤ (1− c)−1ν. (10.19)

In particular this proves the case p = 1, since the right hand side of (10.19) is independent from T .
Step 2. We prove that (i) holds for any integer p > 1. Note that it is sufficient to consider the

case p = 2q, q > 0. We thus prove our result by induction on q. The initialisation case q = 0 has been
proved in Step 1. Note that for any ε > 0,

E[λ(t)p|FθT ] ≤ (1 + ε−1)2q−1ν + (1 + ε)2q−1E

[(∫ t−

0
ase
−bs(t−s)dNs

)p∣∣∣∣FθT] ,
where we have used the inequality (x + y)2q ≤ (1 + ε)2q−1x2q + (1 + ε−1)2q−1y2q for any x, y, ε > 0.
Now, for a fixed t ∈ [0, T ], define W (s, z) = ase

−bs(t−s)1{0≤z≤λ(s)}, and note that

E

[(∫ t−

0
ase
−bs(t−s)dNs

)p∣∣∣∣FθT] = E
[(
W ∗N t

)p∣∣FθT ]
≤ (1 + ε−1)2q−1E

[(
W ∗ (N − Λ)t

)p∣∣FθT ]
+ (1 + ε)2q−1E

[(
W ∗ Λt

)p∣∣FθT ] .
We apply now Lemma 10.2 to get

E
[(
W ∗ (N − Λ)t

)p |FθT ] ≤ KpE

∫∫
[0,T ]×R

|W (s, z)|pdsdz +

(∫∫
[0,T ]×R

W (s, z)2dsdz

) p
2

∣∣∣∣∣∣FθT


= KpE

[∫ t−

0
apse
−pbs(t−s)λ(s)ds+

(∫ t−

0
a2
se
−2bs(t−s)λ(s)ds

) p
2

∣∣∣∣∣FθT
]
.

We easily bound the first term by the induction hypothesis by some constant Ap
2 . For the second

term, an elementary application of Hölder’s inequality shows that for any k > 1 and any non-negative
functions f, g, (

∫
fg)k ≤ (

∫
fkg)(

∫
g)k−1. This along with the induction hypothesis leads to a similar

bound for the second term. On the other hand, we have

E
[(
W ∗ Λt

)p∣∣FθT ] = E

[(∫ t−

0
ase
−bs(t−s)λ(s)ds

)p∣∣∣∣FθT] .
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We apply again the same Hölder’s inequality as above with functions f(s) = λ(s) and g(s) = ase
−bs(t−s)

to get

E

[(∫ t−

0
ase
−bs(t−s)λ(s)ds

)p∣∣∣∣FθT] ≤ cp−1E

[∫ t−

0
ase
−bs(t−s)λ(s)pds

∣∣∣∣FθT]
= cp−1

∫ t−

0
ase
−bs(t−s)E

[
λ(s)p|FθT

]
ds

≤ cp sup
s∈[0,t]

E
[
λ(s)p|FθT

]
Finally, we have shown that

E[λ(t)p|FθT ] ≤ (1 + ε−1)2q−1ν + (1 + ε)2q−1(1 + ε−1)2q−1Ap + (1 + ε)2qcp sup
s∈[0,t]

E[λ(s)p|FθT ].

This yields, taking supremum over the set [0, T ] and taking ε > 0 small enough so that (1 + ε)2qcp < 1,

sup
t∈[0,T ]

E[λ(t)p|FθT ]
(
1− (1 + ε)2qcp

)
≤ (1 + ε−1)2q−1ν + (1 + ε)2q−1(1 + ε−1)2q−1Ap,

and dividing by
(
1− (1 + ε)2qcp

)
on both sides we get the result.

Step 3. It remains to show (ii) and (iii). But note that they are direct consequences of the bound-
edness of moments of λ along with Lemma 10.2.

10.3 LCLT and boundedness of moments of order 2κ

We focus on asymptotic properties of the local maximum likelihood estimator Θ̂i,n of our model on each
block i ∈ {1, · · · , Bn}. Recall that we are given the global filtration Ft = F (θ∗,N)

t that bears a sequence
of doubly stochastic Hawkes processes (Nn

t )t∈[0,T ]. We perform maximum likelihood estimation on each
time block

(
(i−1)∆nT, i∆nT

]
, i ∈ {1, · · · , Bn} on the regression family of a parametric Hawkes process

and show the local central limit theorem for every local estimator Θ̂i,n of θ∗(i−1)∆n
, uniformly in the

block index i. In addition, we show that all moments up to order 2κ > 2 of the rescaled estimators√
hn
(
Θ̂i,n − θ∗(i−1)∆n

)
are convergent uniformly in i.

Instead of deriving the limit theorems directly on each block, we show that by a well-chosen time
change it is possible to reduce our statistical problem to a long-run framework. Such procedure is
based on the following elementary lemma.

Lemma 10.4. Let (Nt)t be a point process adapted to a filtration Ft, with Ft-stochastic intensity λ(t).
For γ > 0, consider Nγ

t = Nγt, which is adapted to Fγt = Fγt. Then, Nγ
t admits λγ(t) = γλ(γt) as a

Fγt -stochastic intensity. Moreover, if Nt is a doubly stochastic Hawkes process with parameter process
(θs)s, N

γ
t has the distribution of a Hawkes process of parameter (γθγs)s, that is,

λγ(t) = γνγt +

∫ t−

0
γaγse

−γbγs(t−s)dNγ
s . (10.20)
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Proof. First note that Nγ
t = Nγt is compensated by

∫ γt
0 λ(s)ds. By a simple change of variable

u = γ−1s this integral can be written as
∫ t

0 γλ(γu)du which proves the first part of the lemma. In the
doubly stochastic Hawkes case, let us write the integral form of the time-changed intensity and apply
once again the change of variable u = γ−1s,

λγ(t) = γλ(γt)

= γνγt +

∫ γt−

0
γase

−bs(γt−s)dNs

= γνγt +

∫ t−

0
γaγue

−γbγu(t−u)dNγ
u ,

and we are done.

By virtue of Lemma 10.4, for any block index i ∈ {1, · · · , Bn}, we consider the time change
τni : t 7→ n−1t + (i − 1)∆n and the point process (Nn

s ){s∈((i−1)∆n,i∆n]} in order to get a time changed
point process N i,n defined on the time set [0, hnT ] by the formula N i,n

t = Nn
τni (t) − N

n
(i−1)∆n

. Such

process is adapted to the filtration F i,nt = Fτni (t), for t ∈ [0, hnT ]. The parameter processes are
now (θi,n,∗t ){t∈[0,hnT ]} = (θ∗τni (t)){t∈[0,hnT ]} whose canonical filtration can be expressed as Fθi,n,∗t =

σ{θi,n,∗s |0 ≤ s ≤ t}, for t ∈ [0, hnT ]. Finally note that the F i,nt -stochastic intensities are now of the
form

λi,n∗ (t) = νi,n,∗t +

∫ t−

0
ai,n,∗s e−b

i,n,∗
s (t−s)dN i,n

s +Ri,n(t), (10.21)

where Ri,n(t) is the F i,n0 -measurable residual process defined by the relation

Ri,n(t) =

∫ (i−1)∆n−

0
na∗se

−nb∗s(τni (t)−s)dNn
s . (10.22)

Ri,n(t) should be interpreted as the pre-excitation induced by the preceding blocks. Note that in view
of the exponential form of the kernel φt = ae−bt assumption, Ri,n(t) can be bounded by

Ri,n(t) ≤ e−btRi,n(0) (10.23)

Note that all the processes N i,n can be represented as integrals over a sequence of Poisson processes
N
i,n of intensity 1 on R2 as follows:

N i,n
t =

∫∫
[0,t]×R+

1{0≤z≤λi,n∗ (s)}N
i,n

(ds, dz). (10.24)

Indeed, N i,n is the time-space changed version of the initial Poisson processN defined byN i,n
(A×B) =

N (τni (A)× nB) for A and B any two Borel sets of R. In the time-changed representation, we define
the regression family of stochastic intensities

λ̃i,n(t, θ) = ν +

∫ t−

0
ae−b(t−s)dN i,n

s , (10.25)

which is related to λi,n (see (5.5)) by λ̃i,n(t, θ) = n−1λi,n(τni (t), θ). Also, the Quasi Log Likelihood pro-
cess defined in (5.6) on the i-th block has now the representation (up to the constant term log(n)N i,n

hnT
)

li,n(θ) =

∫ hnT

0
log(λ̃i,n(t, θ))dN i,n

t −
∫ hnT

0
λ̃i,n(t, θ)dt, (10.26)
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Note that in our case, the true underlying intensity, λi,n∗ does not belong to the regression family
(λ̃i,n(., θ))θ∈K for two reasons : the parameter process θ∗ is not constant on the i-th block, and the
regression family does not take into account the existence of a pre-excitation term in (10.21). We are
in a mispecified case, but we wish to take advantage of the continuity of the process θ∗ to show that the
asymptotic theory still holds, that is, the MLE tends to the value θi,n,∗0 = θ∗(i−1)∆n

which is the value
of the process θ∗ at the beginning of the i-th block. The procedure is thus asymptotically equivalent to
performing the MLE on the model whose stochastic intensity is in the regression family with true value
θ = θ∗(i−1)∆n

. To formalize such idea, we introduce an auxiliary model corresponding to the parametric
case generated by the true value θ∗(i−1)∆n

. More precisely, we introduce the constant parameter Hawkes

process N i,n,c generated by N i,n and the initial value θi,n,∗0 , whose stochastic intensity satisfies

λi,n,c(t) = νi,n,∗0 +

∫ t−

0
ai,n,∗0 e−b

i,n,∗
0 (t−s)dN i,n,c

s . (10.27)

Moreover, we assume that N i,n,c
t has the representation

N i,n,c
t =

∫∫
[0,t]×R+

1{0≤z≤λi,n,c(s)}N
i,n

(ds, dz). (10.28)

Note that N i,n,c
t is unobserved and just used as an intermediary to derive the asymptotic properties of

the MLE, by showing systematically that any variable N i,n, λ̃i,n, li,n, etc. is asymptotically very close
to its counterpart that is generated by the constant parameter model.

For reasons that will become apparent later, it is crucial to localize the pre-excitation Ri,n(0) and
bound it by some deterministic value Mn that depends solely on n and such that Mn = O(nq) for
some q > 1. To reduce our local estimation problem to the case of a parametric Hawkes process, we
will also need to condition with respect to the initial value of the parameter process. We will thus use
extensively the conditional expectations E[.1{Ri,n(0)≤Mn}|F

i,n
0 , θi,n,∗0 = θ0], that we denote by Eθ0,i,n,

and whose existences are justified by a classical regular distribution argument1 (see for instance Section
4.3 (pp. 77−80) in [1]). In the same spirit, for a measurable set A ∈ F , Pθ0,i,n[A] should be understood
as Eθ0,i,n[1A]. Finally we will need frequently to take supremum over the quadruplet (θ0, i, n, t). For
that reason we introduce the notation E = {(θ0, i, n, t) ∈ K × N2 × R+

∣∣ 1 ≤ i ≤ Bn and 0 ≤ t ≤ hnT}.
When n ∈ N is fixed, we define En the subset of E as En = {(θ0, i, t) ∈ K × N× R+| 1 ≤ i ≤
Bn and 0 ≤ t ≤ hnT}. In the same spirit, it is also useful when truncation arguments appear, to
consider in the previous equation the subset of En for which we have the stronger condition hαnT ≤
t ≤ hnT where α ∈ (0, 1) that we denote by Eαn. The next lemma states the uniform boundedness of
the moments of λi,n∗ and λi,n,c, along with Lp estimates for stochastic integrals over N i,n and N i,n,c.

Lemma 10.5. We have, for any integer p ≥ 1 and any Fθ
i,n,∗-predictable kernel χ such that

∫ t
0 χ(s, t)ds

is bounded uniformly in t ∈ [0, hnT ] independently from T and n,

(i) sup(θ0,i,n,t)∈E Eθ0,i,n
∣∣∣λi,n∗ (t)

∣∣∣p ≤Mp P-a.s.

(ii) sup(θ0,i,n,t)∈E Eθ0,i,n
∣∣∣∫ t0 χ(s, t)dN i,n

s

∣∣∣p < Mp,χ P-a.s.

(iii) sup(θ0,i,n,t)∈E Eθ0,i,n
∣∣λi,n,c(t)∣∣p < Mp P-a.s.

(iv) sup(θ0,i,n,t)∈E Eθ0,i,n
∣∣∣∫ t0 χ(s, t)dN i,n,c

s

∣∣∣p < Mp,χ P-a.s.

1This is a consequence to the fact that K ⊂ R3 is a Borel space.
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where Mp and Mp,χ are finite constants depending respectively solely on p and on p and χ.

Proof. This is a straightforward adaptation of the proof of Lemma 10.3, with the conditional expecta-
tion E[.1{Ri,n(0)≤Mn}|F

i,n
0 ∨Fθ

i,n,∗
hnT

, θi,n,∗0 = θ0]. The presence of 1{Ri,n(0)≤Mn} along with the exponential
decay in (10.23) show clearly that the result still holds, uniformly in the quadruplet (θ0, i, n, t). By
an immediate application of Jensen’s inequality, this is still true replacing F i,n0 ∨Fθ

i,n,∗
hnT

by the smaller
filtration F i,n0 , that is, for the operator Eθ0,i,n.

Before we turn to estimating the distance between the two models, we state a technical lemma.

Lemma 10.6. Let h : s 7→ ae−bs, and let f ,g be two non-negative functions satisfying the inequality
f ≤ g+f ∗h where (f ∗h)(t) =

∫ t
0 f(t− s)h(s)ds is the usual convolution. Then we have the majoration

for any t ≥ 0

f(t) ≤ g(t) + a
(
g ∗ e(a−b).

)
(t)

Proof. Iterating the inequality we get for any n ∈ N∗

f ≤ g + g ∗
n∑
k=1

h∗(k) + f ∗ h∗(n+1). (10.29)

We fix t ≥ 0, and note that by a straightforward computation, for any integer k ≥ 1 we have h∗(k)(t) =
tk−1

(k−1)!a
ke−bt. We deduce that

f ∗ h∗(n+1)(t) =

∫ t

0
f(t− s)s

n

n!
an+1e−bsds

≤ tn

n!
an+1

∫ t

0
f(s)ds→ 0

as n→ +∞. We also have for any integer n ≥ 1

n∑
k=1

h∗(k)(t) =
n∑
k=1

tk−1

(k − 1)!
ake−bt

≤ ae(a−b)t

and thus we get the result by taking the limit n→ +∞ in (10.29) evaluated at any point t ≥ 0.

In what follows, we quantify the local error between the doubly stochastic model and its constant
parameter approximation. We recall the value of the key exponent κ = γ(δ − 1) that has been
introduced in (5.16), and which plays an important role in the next results as it proves to be the rate
of convergence of one model to the other in power of h−1

n , where hn is proportional to the typical size
of one block after our time change. Recall that γ represents the regularity exponent in time of θ while
δ controls the size of small blocks compared to n by the relation hn = n1/δ. Note that by (5.16) we
have κ > 1. The next lemma shows that the models (N i,n,c, λi,n,c) and (N i,n, λi,n∗ ) are asymptotically
close in the Lp sense. The proof follows the same path as the proof of Lemma 10.3.

Lemma 10.7. Let α ∈ (0, 1) be a truncation exponent, and ε ∈ (0, 1). We have, for any p ≥ 1,
any deterministic kernel χ such that

∫ t
0 χ(s, t)ds is bounded uniformly in t ∈ R+, and any predictable

process (ψs)s∈R+
whose moments are bounded :

9



(i) sup(θ0,i,t)∈Eαn Eθ0,i,n
∣∣∣λi,n,c(t)− λi,n∗ (t)

∣∣∣p = OP (h−κn )

(ii) supθ0∈K,1≤i≤Bn Eθ0,i,n
∣∣∣∫ hnThαnT

ψs{dN i,n,c
s − dN i,n

s }
∣∣∣p = OP

(
hp−εκn

)
(iii) supθ0∈K,1≤i≤Bn Eθ0,i,n

∣∣∣∫ hnThαnT
χ(s, hnT ){dN i,n,c

s − dN i,n
s }

∣∣∣p = OP (h−κn )

Remark 10.8. For p = 1, if we recall that ∆n = hnn
−1T and κ = γ(δ− 1), we get a typical deviation

in h−κn = T−γ∆γ
n between the real model and its constant parameter approximation. This is not very

surprising since on one block the parameter process θ∗ has exactly a deviation of that order. For p > 1,
the situation is fairly different. One would expect a deviation of the same order of that of the parameter
process, that is of order h−κpn = T−γp∆γp

n . But as it is shown in the previous lemma, deviations between
the two models are quite weaker since the deviation remains of order h−κn = T−γ∆γ

n for any p. This loss
is due to the point process structure and the shape of its related Burkholder-Davis-Gundy type inequality
(see Lemma 10.2). This is the same phenomenon as in the following fact. For a Poisson process N
of intensity λ, we have E[|Nt − λt|p] ∼ αpt when t → 0, i.e. a rate of convergence which is linear
regardless of the moment chosen.

Proof. We will show by recurrence on q ∈ N that for every p of the form p = 2q, we have the majoration
for n ∈ N, t ∈ [0, hnT ] and uniformly in (θ0, i),

Eθ0,i,n
∣∣λi,n,c(t)− λi,n∗ (t)

∣∣2q ≤ Ln,q +Mn,qe
−b(1−r)t, (10.30)

where Ln,q and Mn,q depend on n and q only, Ln,q = OP(h−κn ), and Mn,q is of polynomial growth in n.
Note that then (i) will be automatically proved since by taking the supremum over the set [hαnT, hnT ]
and using the estimate Mn,qe

−b(1−r)hαnT = oP(h−κn ) we get

Eθ0,i,n|λn,c(t)− λn∗ (t)|p = OP(h−κn )

uniformly over the set Eαn.
Step 1. We show our claim in the case q = 0, that is p = 1. Write

|λi,n∗ (t)− λi,n,c(t)| ≤ |νi,n,∗t − νi,n,∗0 |+
∣∣∣∣∫ t−

0

(
ai,n,∗s e−b

i,n,∗
s (t−s) − ai,n,∗0 e−b

i,n,∗
0 (t−s)

)
dN i,n

s

∣∣∣∣
+

∣∣∣∣∫ t−

0
ai,n,∗0 e−b

i,n,∗
0 (t−s) (dN i,n,c

s − dN i,n
s

)∣∣∣∣+Ri,n(t)

≤ Ai,n(t) +Bi,n(t) + Ci,n(t) +Ri,n(t)

The (uniform) majoration Eθ0,i,nAi,n(t) = OP(h−κn ) is an immediate consequence of [C]-(i). By the
inequality

|ae−bt − a′e−b
′
t| ≤

(
|a− a′ |+ |b− b′ |

)
e−bt (10.31)

for any (ν, a, b), (ν
′
, a
′
, b
′
) ∈ K, we can write

Eθ0,i,nBi,n(t) ≤ Eθ0,i,n

∫ t−

0

(
|ai,n,∗s − a0|+ |bi,n,∗s − b0|

)
e−b(t−s)dN i,n

s

≤

√√√√Eθ0,i,n

∣∣∣∣∣ sup
s∈[0,t]

(
|ai,n,∗s − a0|+ |bi,n,∗s − b0|

)∣∣∣∣∣
2

Eθ0,i,n

∣∣∣∣∫ t−

0
e−b(t−s)dN i,n

s

∣∣∣∣2,
10



where Cauchy-Schwartz inequality was applied in the last inequality. Note that the right term is almost
surely dominated by a constant by Lemma 10.5 and thus the uniform majoration Eθ0,i,nBi,n(t) =
OP(h−κn ) follows from [C]-(i). Finally, for Ci,n(t), write

Eθ0,i,nCi,n(t) ≤ Eθ0,i,n

∫ t−

0
a0e
−b0(t−s)d

∣∣N i,n,c −N i,n
∣∣
s

(10.32)

where d
∣∣N i,n,c −N i,n

∣∣
s
is the integer measure which counts the jumps that don’t belong to both dN i,n,c

and dN i,n, i.e. the points of N i,n that lay between the curves t → λi,n∗ (t) and t → λi,n,c(t). A short
calculation shows that this counting process admits |λi,n,c(s) − λi,n∗ (s)| as stochastic intensity. We
compute now:

Eθ0,i,nCi,n(t) ≤ Eθ0,i,n

∫ t−

0
a0e
−b0(t−s)|λi,n,c(s)− λi,n∗ (s)|ds

=

∫ t−

0
a0e
−b0(t−s)Eθ0,i,n|λi,n,c(s)− λi,n∗ (s)|ds.

So far we have shown that there exists a sequence Ln such that Ln = O(h−κn ) and such that the
function f(t) = Eθ0,i,n|λi,n,c(t)− λ

i,n
∗ (t)| satisfies the inequality

f(t) ≤ Ln +Ri,n(t) + f ∗ h(t), (10.33)

where h is the kernel defined as h : t 7→ a0e
−b0t. By Lemma 10.6, this yields

f(t) ≤ Ln +Ri,n(t) +

∫ t

0
{Ln +Ri,n(s)}a0e

(a0−b0)(t−s)ds. (10.34)

Now recall that b0 − a0 > b(1− r) and that on the set {Ri,n(0) ≤ Mn}, we have Ri,n(s) ≤ Mne
−bs <

Mne
−b(1−r)s to get

f(t) ≤ (1 + (1− r)−1)Ln +Ri,n(t) +

∫ t

0
{Mne

−b(1−r)s}a0e
b(1−r)(t−s)ds

≤ (1 + (1− r)−1)Ln + (1 + at)Mne
−b(1−r)t.

If we recall that in the above expression f(t) stands for Eθ0,i,n|λi,n,c(t)−λ
i,n
∗ (t)|, such uniform estimate

clearly proves (10.30) in the case q = 1.
Step 2. We prove the result for any q ∈ N∗. Let the expression f(t) stands for Eθ0,i,n|λi,n,c(t) −

λi,n∗ (t)|p. With similar notations as for the previous step, we have for any η > 0

f(t) = Eθ0,i,n|λi,n,c(t)− λi,n∗ (t)|p ≤ Eθ0,i,n |Ai,n(t) +Bi,n(t) + Ci,n(t) +Ri,n(t)|p

≤ (1 + η−1)2q−1Eθ0,i,n |Ai,n(t) +Bi,n(t) +Ri,n(t)|p

+ (1 + η)2q−1Eθ0,i,nCi,n(t)p

It is straightforward to see that similar arguments to the previous case lead to the uniform estimate

Eθ0,i,nAi,n(t)p + Eθ0,i,nBi,n(t)p = OP
(
h−κpn

)
.

Now, define W (s, z) = a0e
−b0(t−s)|1{0≤z≤λi,n,c(s)} − 1{0≤z≤λi,n∗ (s)}| to get

Eθ0,i,n [Ci,n(t)p] = Eθ0,i,n
[(
W ∗N t

)p]
≤ (1 + η−1)2q−1Eθ0,i,n

[(
W ∗ (N − Λ)t

)p]
+ (1 + η)2q−1Eθ0,i,n

[(
W ∗ Λt

)p]
,

11



and apply Lemma 10.2 to get

Eθ0,i,n
[(
W ∗ (N − Λ)t

)p] ≤ Kp

(
Eθ0,i,n

[∫∫
[0,T ]×R

|W (s, z)|pdsdz

]

+ Eθ0,i,n

(∫∫
[0,T ]×R

W (s, z)2dsdz

) p
2


= Kp

(
Eθ0,i,n

[∫ t−

0
ap0e
−pb0(t−s)|λi,n,c(s)− λi,n∗ (s)|ds

]
+ Eθ0,i,n

[(∫ t−

0
a2

0e
−2b0(t−s)|λi,n,c(s)− λi,n∗ (s)|ds

) p
2

])
,

which is easily bounded as in (10.30) using the induction hypothesis. Note that here the presence of the
integral term in |λi,n,c(s) − λi,n∗ (s)| is the major obstacle to getting the stronger estimate OP

(
h−κpn

)
that one would expect. Finally the term

Eθ0,i,n
[(
W ∗ Λt

)p]
= Eθ0,i,n

[(∫ t−

0
a0e
−b0(t−s)|λi,n,c(s)− λi,n∗ (s)|ds

)p]
is treated exactly in the same way as for the proof of Lemma 10.3, to get the bound

Eθ0,i,n
[(
W ∗ Λt

)p] ≤ cqf ∗ h(t), (10.35)

where again h : s 7→ a0e
−b0s, and cq < 1 if η is taken small enough. We have thus shown that f satisfies

a similar convolution inequality as for the case q = 1 and we can apply Lemma 10.6 to conclude.
Step 3. It remains to show (ii) and (iii). They are just consequences of the application of Lemma

10.2 to the case Wψ(s, z) = ψs|1{0≤z≤λn,c(s)} − 1{0≤z≤λn∗ (s)}| and Wχ(s, z) = χ(s, t)|1{0≤z≤λn,c(s)} −
1{0≤z≤λn∗ (s)}| along with Hölder’s inequality.

We are now ready to show the uniform asymptotic normality of the MLE by proving that any
quantity related to the estimation is asymptotically very close to its counterpart for the constant
parameter model (N i,n,c, λi,n,c). To this end we introduce the fake candidate intensity family and the
fake log-likelihood process, as

λi,n,c(t, θ) = ν +

∫ t−

0
ae−b(t−s)dN i,n,c

s (10.36)

and

lci,n(θ) =

∫ hnT

0
log(λi,n,c(t, θ))dN i,n,c

t −
∫ hnT

0
λi,n,c(t, θ)dt, (10.37)

for any θ ∈ K. Note that λi,n,c(t, θi,n,∗0 ) = λi,n,c(t) by definition. Those quantities, which are all related
to (N i,n,c, λi,n,c), are unobserved.

As a consequence of the previous lemma we state the uniform Lp boundedness of the candidate
intensity families, along with estimates of their relative deviations.

Lemma 10.9. Let α ∈ (0, 1). We have for any integer p ≥ 1 and any j ∈ N that

12



(i) sup(θ0,i,n,t)∈E Eθ0,i,n supθ∈K

∣∣∣∂jθ λ̃i,n(t, θ)
∣∣∣p ≤ Kj P-a.s.

(ii) sup(θ0,i,n,t)∈E Eθ0,i,n supθ∈K

∣∣∣∂jθλi,n,c(t, θ)∣∣∣p ≤ Kj P-a.s.

(iii) sup(θ0,i,t)∈Eαn Eθ0,i,n supθ∈K

∣∣∣∂jθ λ̃i,n(t, θ)− ∂jθλ
i,n,c(t, θ)

∣∣∣p = OP(h−κn )

where the constants Kj depend solely on j.

Proof. Note that the derivatives of λ̃i,n(t, θ) can be all bounded uniformly in θ by linear combinations
of terms of the form ν or

∫ t−
0 (t− s)je−b(t−s)dN i,n

s , j ∈ N. The boundedness of moments of those
terms uniformly in n ∈ N and in the time interval [0, hnT ] is thus the consequence of Lemma 10.3 (ii)
with χ(s, t) = (t − s)je−b(t−s), and consequently (i) follows. (ii) is proved in the same way. Finally
we show (iii). Note that supθ∈K |∂

j
θ λ̃

i,n(t, θ) − ∂jθλ
i,n,c(t, θ)| can be bounded by linear combinations

of terms of the form
∫ t−

0 (t− s)je−b(t−s)d|N i,n −N i,n,c|s. The Lp estimate of such expression is then
easily derived by a truncation argument and Lemma 10.7 (iii).

We now follow similar notations to the ones introduced in [3], and consider the main quantities of
interest to derive the properties of the MLE. We define for any (θ, θ0) ∈ K2,

Yi,n(θ, θ0) =
1

hnT
(li,n(θ)− li,n(θ0)), (10.38)

∆i,n(θ0) =
1√
hnT

∂θli,n(θ0), (10.39)

and finally

Γi,n(θ0) = − 1

hnT
∂2
θ li,n(θ0). (10.40)

We define in the same way Yci,n, ∆c
i,n, and Γci,n. We introduce for the next lemma the set I = {(θ0, i, n) ∈

K × N2|1 ≤ i ≤ Bn}.

Lemma 10.10. Let ε ∈ (0, 1), and L ∈ (0, 2κ). For any p ∈ N∗, for any ε ∈ (0, 1), we have the
estimates

sup
θ0∈K,1≤i≤Bn

Eθ0,i,n
∣∣∆i,n(θ0)−∆c

i,n(θ0)
∣∣L →P 0, (10.41)

sup
θ0∈K,1≤i≤Bn

Eθ0,i,n

[
sup
θ∈K
|Yi,n(θ, θ0)− Yci,n(θ, θ0)|p

]
= OP

(
h−εκn

)
, (10.42)

sup
θ0∈K,1≤i≤Bn

Eθ0,i,n
∣∣Γi,n(θ0)− Γci,n(θ0)

∣∣p = OP
(
h−εκn

)
, (10.43)

sup
(θ0,i,n)∈I

Eθ0,i,n

∣∣∣∣h−1
n sup

θ∈K
|∂3
θ li,n(θ)|

∣∣∣∣p < K P-a.s. (10.44)
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Proof. Let us show (10.41). We can express the equation in (10.39) and its counterpart for the constant
model as

∆i,n(θ0) =
1√
hnT

{∫ hnT

0

∂θλ̃
i,n(s, θ0)

λ̃i,n(s, θ0)
dN i,n

s −
∫ hnT

0
∂θλ̃

i,n(s, θ0)ds

}
(10.45)

and

∆c
i,n(θ0) =

1√
hnT

{∫ hnT

0

∂θλ
i,n,c(s, θ0)

λi,n,c(s, θ0)
dN i,n,c

s −
∫ hnT

0
∂θλ

i,n,c(s, θ0)ds

}
. (10.46)

By Lemma 10.5 (i) and (iii), and Lemma 10.9 (i) and (ii) and the presence of the factor 1√
hnT

, it is
possible to replace the lower bounds of those integrals by hαnT for some α ∈ (0, 1

2). Thus the difference√
hnT (∆i,n(θ0)−∆c

i,n(θ0)) is equivalent to the sum of the three terms

∫ hnT

hαnT

∂θλ̃
i,n(s, θ0)

λ̃i,n(s, θ0)
(dN i,n

s − dN i,n,c
s ) +

∫ hnT

hαnT

{
∂θλ̃

i,n(s, θ0)

λ̃i,n(s, θ0)
− ∂θλ

i,n,c(s, θ0)

λi,n,c(s, θ0)

}
dN i,n,c

s

+

∫ hnT

hαnT
{∂θλ̃i,n(s, θ0)− ∂θλi,n,c(s, θ0)}ds.

We therefore apply Lemmas 10.7 (ii) and 10.9 (i) to the first term, Lemmas 10.5 (iii) and 10.9 (iii)
to the second term, and finally Lemma 10.9 (iii) to the last term to obtain the overall estimate

sup
θ0∈K,1≤i≤Bn

Eθ0,i,n
∣∣∆i,n(θ0)−∆c

i,n(θ0)
∣∣L = OP

(
h
L
2
−εκ

n

)
, (10.47)

for any ε ∈ (0, 1). This tends to 0 if we can find an ε such that L
2 − εκ < 0, and this can be done

by taking ε sufficiently close to 1 since L < 2κ. Equations (10.42), (10.43) and (10.44) are proved
similarly.

Lemma 10.11. For any integer p ≥ 1, there exists a constant M such that

sup
(θ0,i,n)∈I

Eθ0,i,n |∆c
n(θ0)|p < M P-a.s. (10.48)

Furthermore, there exists a mapping (θ, θ0)→ Y(θ, θ0) such that for any ε ∈ (0, 1),

sup
θ0∈K,1≤i≤Bn

Eθ0,i,n

[
sup
θ∈K
|Yci,n(θ, θ0)− Y(θ, θ0)|

]
= O

(
h
−ε p

2
n

)
P-a.s. (10.49)

Finally, for any θ0 ∈ K, and for any ε ∈ (0, 1),

sup
θ0∈K,1≤i≤∆−1

n

Eθ0,i,n
∣∣Γci,n(θ0)− Γ(θ0)

∣∣p = O
(
h
−ε p

2
n

)
P-a.s. (10.50)

where Γ(θ0) is the asymptotic Fisher information matrix of the parametric Hawkes process regression
model with parameter θ0 as introduced in (10.9).

14



Proof. Note that when θi,n,∗0 = θ0, the constant model N i,n,c is simply a parametric Hawkes process
with parameter θ0, and is independent of the filtration F i,n0 . Thus, by a regular distribution argument
the operator Eθ0,i,n acts as the simple operator E for N i,n,c distributed as a Hawkes with true value θ0.
It is straightforward to see that under a mild change in the proofs of Lemma 3.15 and Theorem 4.6 in
[3] those estimates hold uniformly in θ0 ∈ K and in the block index.

Theorem 10.12. Let L ∈ (0, 2κ). We have

sup
θ0∈K,1≤i≤Bn

{
Eθ0,i,n

[
f
(√

hn(Θ̂i,n − θ0)
)]
− E

[
f
(
T−

1
2 Γ(θ0)−

1
2 ξ
)]}

→P 0, (10.51)

for any continuous function f with |f(x)| = O(|x|L) when |x| → ∞ , and such that ξ follows a standard
normal distribution.

Proof. By (10.42) and (10.49), we can define some number ε ∈ (0, 1) such that

sup
θ0∈K,1≤i≤Bn

h
ε( p

2
∧κ)

n Eθ0,i,n

[
sup
θ∈K
|Yi,n(θ, θ0)− Y(θ, θ0)|p

]
→P 0, (10.52)

and as Θ̂i,n is also a maximizer of θ → Yi,n(θ, θ0), (10.52) implies the uniform consistency in the block
index i and the initial value of Θ̂i,n to θi,n,∗0 , i.e.

sup
θ0∈K,1≤i≤Bn

Pθ0,i,n
[
Θ̂i,n − θ0

]
→P 0, (10.53)

since Y satisfies the non-degeneracy condition [A4] in [3]. From (10.43) and (10.50) we deduce

sup
θ0∈K,1≤i≤Bn

h
ε( p

2
∧κ)

n Eθ0,i,n |Γi,n(θ0)− Γ(θ0)|p →P 0. (10.54)

By (10.41), ∆i,n(θ0) and ∆c
i,n(θ0) have the same asymptotic distribution, which is of the form

Γ(θ0)
1
2 ξ, where ξ follows a standard normal distribution. Following the proof of Theorem 3.11 in [3],

we deduce that
√
hn(Θ̂i,n − θ0) converges uniformly in distribution to T−

1
2 Γ(θ0)−

1
2 ξ when θi,n,∗0 = θ0,

i.e.

sup
θ0∈K,1≤i≤Bn

{
Eθ0,i,n

[
f
(√

hn(Θ̂i,n − θ0)
)]
− E

[
f
(
T−

1
2 Γ(θ0)−

1
2 ξ
)]}

→P 0, (10.55)

for any bounded continuous function f .
Finally, we extend (10.55) to the case of a function of polynomial growth of order smaller than L.

First note that by (10.41) and (10.48) we have for any L′ ∈ (L, 2κ)

sup
θ0∈K,1≤i≤Bn

Eθ0,i,n |∆i,n(θ0)|L
′

= OP(1). (10.56)

We now adopt the notations of [8] and define β1 = ε
2 , β2 = 1

2 − β1, ρ = 2, 0 < ρ2 < 1 − 2β2,
0 < α < ρ2

2 , and 0 < ρ1 < min{1, α
1−α ,

2β1

1−α} all sufficiently small so that M1 = L(1 − ρ1)−1 < L
′ ,

M4 = β1L( 2β1

1−α − ρ1)−1 < 2γ(δ−1)
2 = κ, M2 = (1

2 − β2)L(1 − 2β2 − ρ2)−1 < κ and finally M3 =

L
(

α
1−α − ρ1

)−1
< ∞. Then, by (10.52), (10.54), (10.56) and finally (10.44), conditions [A1

′′
], [A4

′
],
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[A6], [B1] and [B2] in [8] are satisfied. It is straightforward that we can apply a conditional version
(with respect to the operator Eθ0,i,n) of Theorem 3 and Proposition 1 from [8] to get that for any p ≤ L,

sup
θ0∈K,1≤i≤∆−1

n

Eθ0,i,n
∣∣∣√hn (Θ̂i,n − θ0

)∣∣∣p = OP(1). (10.57)

Such stochastic boundedness of conditional moments along with the convergence in distribution is
clearly sufficient to imply the theorem.

So far we have focused on the case where Ri,n(0) is bounded by the sequence Mn. Nonetheless, the
time-varying parameter Hawkes process has a residual which is a priori not bounded at the beginning of
a block. In Theorem 5.2, we relax this assumption. In addition, we use regular conditional distribution
techniques (see for instance Section 4.3 (pp. 77−80) in [1]) to obtain (10.51) when not conditioning by
any particular starting value of θ∗t . We provide the formal proof in what follows. Recall that E(i−1)∆n

stands for E[.|F i,n0 ].

Proof of Theorem 5.2. We can decompose E(i−1)∆n

[
f
(√
hn(Θ̂i,n − θ∗(i−1)∆n

)
)]

as

E(i−1)∆n

[
f
(√

hn

(
Θ̂i,n − θ∗(i−1)∆n

))
1{Ri,n(0)≤Mn}

]
(10.58)

+ E(i−1)∆n

[
f
(√

hn

(
Θ̂i,n − θ∗(i−1)∆n

))
1{Ri,n(0)>Mn}

]
. (10.59)

Let ξ as in Theorem 5.2. On the one hand by a regular conditional distribution argument, if we define
G(θ0) = Eθ0,i,n

[
f
(√
hn(Θ̂i,n−θ0

)]
−E
[
f
(
T−

1
2 Γ(θ0)−

1
2 ξ
)]
, we can express uniformly in i ∈ {1, · · · , Bn}

the quantity

E(i−1)∆n

[
f
(√

hn

(
Θ̂i,n − θ∗(i−1)∆n

))
1{Ri,n(0)≤Mn} − f

(
T−

1
2 Γ
(
θ∗(i−1)∆n

)− 1
2
ξ

)]
(10.60)

as G
(
θ∗(i−1)∆n

)
by definition of Eθ0,i,n and because ξ⊥⊥F . We note that∣∣∣G(θ∗(i−1)∆n

)∣∣∣ ≤ sup
θ0∈K

∣∣∣Eθ0,i,n [f (√hn (Θ̂i,n − θ0

))]
− E

[
f
(
T−

1
2 Γ(θ0)−

1
2 ξ
)]∣∣∣ , (10.61)

take the sup over i in (10.61), and in view of Theorem 10.12, we have shown that (10.60) is uniformly
of order oP(1).

On the other hand, (10.59) is bounded by hLnQ1{Ri,n(0)>Mn} for some Q > 0, where we have used
that Θ̂i,n takes its values in a compact space. By a straightforward computation it is easy to see that
P [Ri,n(0) > Mn] ≤ P [λn∗ ((i− 1)∆n) > Mn], which in turn can be dominated easily with Markov’s
inequality by M−1

n E [λn∗ ((i− 1)∆n)] = O(nM−1
n ). We recall that Mn is of the form nq where q can be

taken arbitrarily big, and we have thus shown that (10.59) vanishes asymptotically.

10.4 Bias reduction of the local MLE

We go one step further and study the properties of the asymptotic conditional bias of the local MLE, i.e.
the quantity E(i−1)∆n

[
Θ̂i,n − θ∗(i−1)∆n

]
. We then derive the expression of a bias-corrected estimator

Θ̂
(BC)
i,n whose expectation tends faster to θ∗(i−1)∆n

.
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We start by estimating the order of the bias of the local MLE. As the reader can see, the following
computations are very involved. Therefore, in this section only, we adopt the following notation
conventions. First, we drop the index reference i. Consequently, all the variables Nn,λn∗ ,ln, Eθ0,n, etc.
should be read N i,n,λi,n∗ ,li,n, Eθ0,i,n, etc. All the results are implicitly stated uniformly in the block
index. Second, for a random variable Z that admits a first order moment for the operator Eθ0,n, we
denote by Z its centered version, i.e. the random variable Z−Eθ0,n[Z]. We adopt Einstein’s summation
convention, i.e. any indice that is repeated in an expression is implicitly summed. For example the
expression aijbj should be read

∑
j aijbj . Finally, as in Section 5, for a matrix M , we use superscripts

to designate elements of its inverse, i.e. M ij stands for the element in position (i, j) of M−1 when it
is well-defined, M ij = 0 otherwise.

By a Taylor expansion of the score function around the maximizer of the likelihood function, it is
immediate to see that there exists ξn ∈ [Θ̂n, θ0] such that

0 = ∂θln(Θ̂n) = ∂θln(θ0) + ∂2
θ ln(θ0)(Θ̂n − θ0) +

1

2
∂3
θ ln(ξn)(Θ̂n − θ0)⊗2, (10.62)

where ∂3
θ ln(ξn)(Θ̂n−θ0)⊗2 is a compact expression for the vector whose i-th component is ∂3

θ,ijkln(ξn)(Θ̂n−
θ0)j(Θ̂n − θ0)k. Let ε ∈ (0, 1). By application of Lemmas 10.7 and 10.9, it still holds that

∂θl
c
n(θ0) + ∂2

θ l
c
n(θ0)(Θ̂n − θ0) +

1

2
∂3
θ l
c
n(ξn)(Θ̂n − θ0)⊗2 = OP

(
h1−εκ
n

)
, (10.63)

where the residual term OP
(
h1−εκ
n

)
admits clearly moments of any order with respect to Eθ0,n. We

now apply the operator Eθ0,n, divide by hnT and obtain

Eθ0,n[Γ
c
n(θ0)(Θ̂n − θ0)] + Eθ0,n[Γcn(θ0)]Eθ0,n[Θ̂n − θ0]− Eθ0,n

[
∂3
θ l
c
n(ξn)

2hnT
(Θ̂n − θ0)⊗2

]
= OP(h−εκn ),

where the expectation of the first term has vanished because of the martingale form of ∆c
n(θ0) in

(10.46). The term Eθ0,n[Γcn(θ0)]Eθ0,n[Θ̂n − θ0] is of interest since it contains the quantity we want to
evaluate. The first and the third terms have thus to be evaluated to derive an expansion of the bias. We
start by the first term, i.e. the covariance between our estimator and Γcn(θ0). To compute the limiting
value of such covariance, we consider the martingale M c

n(t, θ0) =
∫ t

0
∂θλ

n,c(s,θ0)
λn,c(s,θ0) {dN

n,c
s − λn,c(s, θ0)ds},

and we define the empirical covariance processes Ccn(θ0) and Qcn(θ0) whose components are, for any
triplet (i, j, k) ∈ R3 × R3 × R3,

Ccn(θ0)i,jk =
1

hnT

∫ hnT

0
∂θ,iλ

n,c(s, θ0)∂2
θ,jklogλ

n,c(s, θ0)ds,

and

Qcn(θ0)i,jk = −M
c
n(T, θ0)i
hnT

∫ hnT

0

∂θλ
n,c(s, θ0)j∂θλ

n,c(s, θ0)k
λn,c(s, θ0)

ds,

We define in a similar way Cn(θ0) and Qn(θ0). The next lemma clarifies the role of Ccn(θ0)+Qcn(θ0)
and is a straightforward calculation.

Lemma 10.13. We have

Eθ0,n [Ccn(θ0)i,jk +Qcn(θ0)i,jk] = −
√
hnTEθ0,n [∆c

n(θ0)iΓ
c
n(θ0)jk] . (10.64)
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Proof. Note that for two L2 bounded processes (us)s, (vs)s, we have〈∫ .

0
us{dNn,c

s − λn,c(s, θ0)ds},
∫ .

0
vs{dNn,c

s − λn,c(s, θ0)ds}
〉
t

=

∫ t

0
usvsλ

n,c(s, θ0)ds

Taking expectation, this yields

Eθ0,n

[∫ t

0
us{dNn,c

s − λn,c(s, θ0)ds}
∫ t

0
vs{dNn,c

s − λn,c(s, θ0)ds}
]

= Eθ0,n

[∫ t

0
usvsλ

n,c(s, θ0)ds

]
Formula (10.64) is then obtained directly from the expression of Γcn(θ0) and ∆c

n(θ0).

Now, by the same argument as for the proof of (10.11), we have for any integer p ≥ 1 and any
ε ∈ (0, 1),

sup
θ0∈K

h
ε p

2
n Eθ0,n |Ccn(θ0)− C(θ0)|p →P 0, (10.65)

and

sup
θ0∈K

h
ε p

2
n |Eθ0,n [Qcn(θ0)−Q(θ0)]|p →P 0 (10.66)

where C and Q were defined respectively in (10.11) and (10.12). Before we turn to the limiting
expression of the term

Eθ0,n[Γ
c
n(θ0)(Θ̂n − θ0)]i

in our expansion of the bias in terms of C(θ0) +Q(θ0), we need to control the convergence of Γcn(θ0)−1

toward Γ(θ0)−1. We define c0 = minθ0∈K min{c ∈ R+|∀x ∈ R3 − {0}, xTΓ(θ0)x ≥ c|x|22 > 0}, the
smallest eigenvalue of all the matrices Γ(θ0). We consider the sequence of events Bn(θ0) = {∀x ∈
R3 − {0}, xTΓcn(θ0)x ≥ c0

2 |x|
2
2}, and their complements Bn(θ0)c.

Lemma 10.14. We have, for any integer p ≥ 1 and any ε ∈ (0, 1) that

(i) supθ0∈K Pθ0,n [Bn(θ0)c] = OP

(
h
−ε p

2
n

)
.

(ii) supθ0∈K h
ε p

2
n Eθ0,n

[∣∣Γcn(θ0)−1 − Γ(θ0)−1
∣∣1Bn

]
→P 0.

Proof. We start by showing (i). We recall that in our notation convention, the symbol |x| stands for∑
i |xi| for any vector or matrix. Clearly, we have that

Pθ0,n [Bn(θ0)c] ≤ Pθ0,n

{
∀x ∈ R3 − {0}, |x

T (Γcn(θ0)− Γ(θ0))x|
|x|22

>
c0

2

}
, (10.67)

and by equivalence of the norms |M | and supx∈R3−{0}
|xTMx|
|x|22

on the space of symmetric matrices of
R3, (10.67) implies the existence of some constant η > 0 such that

Pθ0,n [Bn(θ0)c] ≤ Pθ0,n [|Γcn(θ0)− Γ(θ0)| > ηc0]

≤ (ηc0)−pEθ0,n|Γcn(θ0)− Γ(θ0)|p,

where Markov’s inequality was used at the last step. (i) thus follows from (10.54). Moreover, (ii) is
easily obtained using the elementary result |A−1−B−1| = |B−1(B −A)A−1| ≤ |A−1|∞|B−1|∞|B −A|
applied to Γcn(θ0) and Γ(θ0) on the set Bn(θ0).
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Lemma 10.15. Let ε ∈ (0, 1) and i ∈ {0, 1, 2}. The following expansion holds.

Eθ0,n[Γ
c
n(θ0)(Θ̂n − θ0)]i = −

Γ(θ0)jk {C(θ0)k,ij +Q(θ0)k,ij}
hnT

+OP

(
h
−ε(κ∧ 3

2)
n

)
. (10.68)

Proof. Note first that in view of Lemma 10.14 (i) along with Hölder’s inequality, we have that

Eθ0,n[Γ
c
n(θ0)(Θ̂n − θ0)] = Eθ0,n[Γ

c
n(θ0)(Θ̂n − θ0)1Bn(θ0)] + oP

(
h
− 3

2
n

)
. Thus we can assume without

loss of generality the presence of the indicator of the event Bn(θ0) in the expectation of the left-hand
side of (10.15). Take ε ∈ (0, 1) and ε̃ ∈ (ε, 1). As a consequence of (10.63), we have the representation,

Θ̂n − θ0 =
1√
hnT

Γcn(θ0)−1∆c
n(θ0) + Γcn(θ0)−1∂

3
θ l
c
n(ξn)(Θ̂n − θ0)⊗2

2hnT
+OP

(
h−ε̃κn

)
, (10.69)

on the set Bn(θ0), where the residual term OP
(
h−ε̃κn

)
admits moments of any order with respect to the

operator Eθ0,n. We inject (10.69) in the expectation and get

Eθ0,n[Γ
c
n(θ0)(Θ̂n − θ0)] =

1√
hnT

Eθ0,n[Γ
c
n(θ0)Γcn(θ0)−1∆c

n(θ0)1Bn(θ0)]

+ Eθ0,n

[
Γ
c
n(θ0)Γcn(θ0)−1∂

3
θ l
c
n(ξn)(Θ̂n − θ0)⊗2

2hnT
1Bn(θ0)

]
+ OP(h−εκn ),

where the residual term OP(h−εκn ) is obtained by Hölder’s inequality using the fact that ε < ε̃. By
Lemma 10.14 (ii), the first term admits the expansion

1√
hnT

Eθ0,n[Γ
c
n(θ0)Γ(θ0)−1∆c

n(θ0)] +OP

(
h
− 3ε

2
n

)
, (10.70)

where we used Hölder’s inequality to control 1√
hnT

Eθ0,n
[
Γ
c
n(θ0)(Γcn(θ0)−1 − Γ(θ0)−1)∆c

n(θ0)
]
and we

neglected the effect of the indicator function by Lemma 10.14 (i). For any i ∈ {0, 1, 2}, we develop the
matrix product in (10.70), use Lemma 10.13 along with (10.65), and this leads to the estimate

1√
hnT

Eθ0,n[Γ
c
n(θ0)Γ(θ0)−1∆c

n(θ0)]i =
Γ(θ0)jk {C(θ0)k,ij +Q(θ0)k,ij}

hnT
+OP

(
h
− 3ε

2
n

)
. (10.71)

It remains to control the term Eθ0,n

[
Γ
c
n(θ0)Γcn(θ0)−1 ∂

3
θ l
c
n(ξn)(Θ̂n−θ0)⊗2

2hnT
1Bn(θ0)

]
. Take L ∈ (2, 2κ). By

boundedness of moments of h
ε
2
nΓ

c
n(θ0)ijΓ

c
n(θ0)jk

∂3
θ,klml

c
n(θ)

2hnT
1Bn(θ0), for any (i, j, k, l,m) and uniformly in

θ0 ∈ K, we have

Eθ0,n

[
Γ
c
n(θ0)ijΓ

c
n(θ0)jk

∂3
θ,klml

c
n(ξn)(Θ̂n − θ0)l(Θ̂n − θ0)m

2hnT
1Bn(θ0)

]

≤ Kh−
ε
2

n Eθ0,n

[∣∣∣(Θ̂n − θ0)l(Θ̂n − θ0)m

∣∣∣L2 ] 2
L

= OP

(
h
− 3ε

2
n

)
,

where Hölder’s inequality was applied for the first inequality, and Theorem 10.12 was used with the
function f : x→ (xlxm)

L
2 , which is of polynomial growth of order L, to get the final estimate.
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Finally, we derive the expansion of 1
2hnT

Eθ0,n[∂3
θ l
c
n(ξn)(Θ̂n − θ0)⊗2]. First note that for any integer

p ≥ 1 and any ε ∈ (0, 1),

sup
θ0∈K

h
ε p

2
n Eθ0,n

∣∣∣∣ 1

hnT
∂3
θ l
c
n(θ0)−K(θ0)

∣∣∣∣p →P 0, (10.72)

where K(θ0) was introduced in (10.10). The next lemma is proved the same way as for Lemma 10.15.

Lemma 10.16. Let ε ∈ (0, 1) and i ∈ {0, 1, 2}. We have the expansion

1

2hnT
Eθ0,n[∂3

θ l
c
n(ξn)(Θ̂n − θ0)⊗2]i =

Γ(θ0)jkK(θ0)ijk
2hnT

+OP

(
h
−ε(κ∧ 3

2)
n

)
. (10.73)

Proof. Consider three indices i, j, k ∈ {0, 1, 2} and ε ∈ (0, 1). We have the decomposition

1

2hnT
Eθ0,n[∂3

θ,ijkl
c
n(ξn)(Θ̂n − θ0)j(Θ̂n − θ0)k] =

1

2hnT
Eθ0,n[∂3

θ,ijkl
c
n(ξn)]Eθ0,n[(Θ̂n − θ0)j(Θ̂n − θ0)k]

+
1

2hnT
Eθ0,n[∂3

θ,ijkl
c
n(ξn)(Θ̂n − θ0)j(Θ̂n − θ0)k].

We now remark that the first term admits the expansion

Γ(θ0)jkK(θ0)ijk
2hnT

+OP

(
h
−ε(κ∧ 3

2)
n

)
, (10.74)

by replacing Eθ0,n[(Θ̂n − θ0)j(Θ̂n − θ0)k] and 1
2hnT

Eθ0,n[∂3
θ,ijkl

c
n(ξn)] by their estimates

Eθ0,n[(Θ̂n − θ0)j(Θ̂n − θ0)k] =
Γ(θ0)jk

hnT
+OP

(
h
−ε(κ∧ 3

2)
n

)
, (10.75)

and

1

2hnT
Eθ0,n

[
∂3
θ,ijkl

c
n(ξn)

]
= K(θ0)ijk +OP

(
h
− ε

2
n

)
. (10.76)

(10.75) is obtained by injecting the expansion of Θ̂n − θ0 in (10.69) up to the first order only, and
(10.76) is a consequence of (10.72) and the uniform boundedness of moments of ∂4

θ l
c
n(θ0)
hnT

in θ0 ∈ K
by Lemma 10.9 (ii). Note that the expansion (10.75) is not a direct consequence of Theorem 10.12
applied to x → xjxk since this would lead to the weaker estimate Γ(θ0)jk

hnT
+ oP(h−1

n ) instead. Finally,

the second term is of order OP

(
h
− 3ε

2
n

)
by Hölder’s inequality along with Theorem 10.12, and thus we

are done.

Before we turn to the final theorem, we recall for any j ∈ {0, 1, 2} the expression

b(θ0)j =
1

2
Γ(θ0)ijΓ(θ0)kl(K(θ0)ikl + 2 {C(θ0)k,il +Q(θ0)k,il}), (10.77)

which was defined in (10.14). We are now ready to state the general theorem on bias correction of the
local MLE, which we formulate with the block index i.
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Theorem 10.17. Let ε ∈ (0, 1). The bias of the estimator Θ̂i,n has the expansion

Eθ0,i,n
[
Θ̂i,n − θ0

]
=
b(θ0)

hnT
+OP

(
h
−ε(κ∧ 3

2)
n

)
, (10.78)

uniformly in i ∈ {1, · · · , Bn} and in θ0 ∈ K. Moreover, the bias-corrected estimator Θ̂
(BC)
i,n defined in

(5.18) has the (uniform) bias expansion

Eθ0,i,n
[
Θ̂BC
i,n − θ0

]
= OP

(
h
−ε(κ∧ 3

2)
n

)
. (10.79)

Proof. We drop the index i in this proof. Take ε ∈ (0, 1) and some j ∈ {0, 1, 2}. By Lemma 10.15 and
Lemma 10.16, we have

Eθ0,n [Γcn(θ0)]jk Eθ0,n
[
Θ̂n − θ0

]
k

=
Γ(θ0)kl (K(θ0)jkl + 2 {C(θ0)l,jk +Q(θ0)l,jk})

2hnT
+OP

(
h
−ε(κ∧ 3

2)
n

)
,

which is a set of simultaneous linear equations. After inversion of this system of equations and appli-
cation of Lemma 10.14, the expression of the bias becomes for j ∈ {0, 1, 2},

Eθ0,n
[
Θ̂n − θ0

]
j

=
Γ(θ0)ijΓ(θ0)kl (K(θ0)ikl + 2 {C(θ0)k,il +Q(θ0)k,il})

2hnT
+OP

(
h
−ε(κ∧ 3

2)
n

)
,

which is exactly (10.78). Finally, a calculation similar to the proofs of Lemmas 10.15 and 10.16 shows
that

Eθ0,nb
(

Θ̂n

)
= Eθ0,nb (θ0) +OP

(
h
− ε

2
n

)
(10.80)

so that we have (10.79) and this concludes the proof.

We conclude by showing the version of the preceding theorem in terms of E(i−1)∆n
.

Proof of Theorem 5.3. This follows exactly the same argument as for the proof of Theorem 5.2.

10.5 Proof of the GCLT

In this section we present the proof of Theorem 5.4 using a similar martingale approach as in [7]. Using
a different decomposition than (34) on p. 22 of the cited work, we obtain following the same line of
reasoning as in the proof of (37) on p. 47-48 that a sufficient condition to show that the GCLT holds
is

[C∗]. We have uniformly in i ∈ {1, · · · , Bn} that there exists ε > 0 such that

Var(i−1)∆n

[√
hn

(
Θ̂

(BC)
i,n − θ∗(i−1)∆n

)]
= T−1Γ

(
θ∗(i−1)∆n

)−1
+ oP(1), (10.81)

E(i−1)∆n

[∣∣∣√hn (Θ̂
(BC)
i,n − θ∗(i−1)∆n

)∣∣∣2+ε
]

= OP(1), (10.82)

E(i−1)∆n

[
Θ̂

(BC)
i,n − θ∗(i−1)∆n

]
= oP

(
n−1/2

)
, (10.83)

where for any t ∈ [0, T ] and any random variable X, Vart[X] = Et
[
(X − Et[X])2

]
.
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The above-mentioned approach is based on techniques introduced in [7], but it is much different
and deeper. Indeed, [7] provides conditions which in this specific case are hard to verify due to the
past correlation of the model. We choose to go through a different path. More specifically, the cited
author uses a different decomposition than (3.3). We thus obtain different conditions which are hard
to verify, and this is the main goal of the proofs.

Proof of Theorem 5.4 under [C∗]. We split the proof into two parts.
Step 1. The first part of the proof consists in showing that

Θ =
1

Bn

Bn∑
i=1

θ∗(i−1)∆n
+ oP

(
n−1/2

)
. (10.84)

Note that (10.84) is to be compared to (3.1) for the toy model. Moreover, (10.84) was also shown in
(35) on pp. 46-47 in [7], but the parameter process was restricted to follow a continuous Itô-process.
To show (10.84), it is sufficient to show that

√
n

Bn

Bn∑
i=1

∣∣∣θ∗(i−1)∆n
−∆−1

n

∫ i∆n

(i−1)∆n

θ∗sds
∣∣∣ = oP(1). (10.85)

We can bound (10.85) by

√
n

Bn

Bn∑
i=1

∆−1
n

∫ i∆n

(i−1)∆n

∣∣∣θ∗(i−1)∆n
− θ∗s

∣∣∣︸ ︷︷ ︸
OP(∆γ

n)

ds = oP(1), (10.86)

where we used [C]-(i) to obtain the order in (10.86). Thus, we deduce that the left-hand side in (10.86)
is of order OP(hγnn

1
2
−γ). In view of the left inequality in [BC] and the fact that γ > 1

2 , this vanishes
asymptotically. Thus, we have proved (10.84).

Step 2. We keep here the techniques and notations introduced in Section 3, and replace Θ̂i,n by
the local estimator Θ̂

(BC)
i,n in the definitions of Mi,n and Bi,n. To show the GCLT, we will show that

S
(B)
n →P 0 and we will prove the existence of some VT such that Fθ∗T -stably in law, S(M)

n → V
1
2
T N (0, 1).

Note that the former is a straightforward consequence of (10.83). To show the latter S(M)
n → V

1
2
T N (0, 1),

we will use Theorem 3.2 of p. 244 in [4]. First, we show the conditional Lindeberg condition (3.13),
i.e. in our case that for any η > 0 we have

n

B2
n

Bn∑
i=1

E(i−1)∆n

[
M2
i,n1

{√
n

Bn
Mi,n>η

}]→P 0. (10.87)

Let η > 0. First, note that n
Bn

= hn. Using Hölder’s inequality, we obtain that

hnE(i−1)∆n

[
M2
i,n1

{√
n

Bn
Mi,n>η

}] ≤ (E(i−1)∆n

[(√
hnMi,n

)2+ε
]) 2

2+ε

︸ ︷︷ ︸
ai,n

(
E(i−1)∆n

[
1{√n

Bn
Mi,n>η

}]) ε
2+ε

︸ ︷︷ ︸
bi,n

.

On the one hand we have that ai,n is uniformly bounded in view of (10.82) from [C∗]. On the other
hand, using also (10.82) along with [C]-(ii), we have that bi,n goes uniformly to 0. We have thus proved
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(10.87). We now prove the conditional variance condition (3.11), i.e. that

n

B2
n

Bn∑
i=1

E(i−1)∆n

[
M2
i,n

]
→P VT := T−2

∫ T

0
Γ(θ∗s)

−1ds. (10.88)

We have that
n

B2
n

Bn∑
i=1

E(i−1)∆n

[
M2
i,n

]
=

1

T

Bn∑
i=1

hnE(i−1)∆n

[
M2
i,n

]
∆n.

We use Proposition I.4.44 on p.51 in [6] along with (10.81) from [C∗] to show (10.88). Now, conditions
(3.10) and (3.12) are automatically satisfied because Mi,n is a martingale increment and since we
consider the reference continuous martingale M = 0. Finally we show condition (3.14) to get the
stable convergence. We thus consider a bounded Fθ

∗-martingale Z, and we show that

√
n

Bn

Bn∑
i=1

E(i−1)∆n

[
Mi,n∆Zi,n

]
→P 0, (10.89)

where ∆Zi,n := Zi∆n − Z(i−1)∆n
. Using the Taylor expansion (10.63) and the boundedness of Z, by a

similar calculation as in Lemma 10.15, we have

√
n

Bn

Bn∑
i=1

E(i−1)∆n

[
Mi,n∆Zi,n

]
=

hn√
n

Bn∑
i=1

Γ
(
θ∗(i−1)∆n

)−1
E(i−1)∆n

[
∂θl

c
i,n

(
θ∗(i−1)∆n

)
∆Zi,n

]
+ oP(1).

Note now that lci,n
(
θ∗(i−1)∆n

)
can be written as an integral over the canonical Poisson martingale :

lci,n

(
θ∗(i−1)∆n

)
=

∫ hnT

0

∫
R+

∂θλ
i,n,c(s, θ∗(i−1)∆n

)

λi,n,c(s, θ∗(i−1)∆n
)

1{0≤z≤λi,n,c(s,θ∗
(i−1)∆n

)}

{
N
i,n

(ds, dz)− Λ
i,n

(ds, dz)
}
,

with Λ
i,n

(ds, dz) = ds⊗dz. We deduce from the above representation that E(i−1)∆n

[
∂θl

c
i,n

(
θ∗(i−1)∆n

)
∆Zi,n

]
=

0, since both σ-fields Fθ∗T and FNT are independent, so that Z and N i,n − Λ
i,n are orthogonal. Thus

(10.89) holds. Thus, by Theorem 3.2 of [4], we have the Fθ∗T -stable convergence in law of S(M)
n to-

ward an Fθ∗T -conditional Gaussian limit with random variance VT . In particular, we have that VT and
N (0, 1) in Theorem 5.4 are independent from each other.

We prove now that we can obtain (10.81), (10.82) and (10.83) in Condition [C∗]. First note that
for any L ∈ (0, 2κ), a calculation gives

E(i−1)∆n

∣∣∣√hn (Θ̂
(BC)
i,n − Θ̂i,n

)∣∣∣L = h
−L

2
n T−LE(i−1)∆n

∣∣∣b(Θ̂i,n

)∣∣∣L = OP

(
h
−L

2
n

)
uniformly in i ∈ {1, ..., Bn}. Thus, combining the previous estimate with Theorem 5.2, we have shown
that Theorem 5.2 remains true if Θ̂i,n is replaced by Θ̂

(BC)
i,n . We will use this fact in the following. If

we decompose the conditional variance in (10.81) as

E(i−1)∆n

[(√
hn

(
Θ̂

(BC)
i,n − θ∗(i−1)∆n

))2
]
− E(i−1)∆n

[√
hn

(
Θ̂

(BC)
i,n − θ∗(i−1)∆n

)]2
,
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then (10.81) follows from Theorem 5.2. Moreover, (10.82) is a direct consequence of Theorem 5.2.
Finally, in view of (5.21) in Theorem 5.3, (10.83) holds if there exists ε ∈ (0, 1) such that

√
n =

oP

(
h
ε(κ∧ 3

2
)

n

)
. From the relation

√
n = h

δ
2
n , this can be reexpressed as δ

2 < κ ∧ 3
2 . If we replace κ by

its expression, we get the two conditions δ
2 < γ(δ− 1) and δ

2 <
3
2 , that is

γ

γ− 1
2

< δ < 3. This is exactly

condition [BC].

10.6 Proof of Proposition 5.8

Proof. Let γ ∈ (0, 1] and α ∈ (0, γ
1+γ ) and finally δ ∈ (1 + 1

γ ,
1
α). We follow the proof of Theorem 5.4.

(10.81) and (10.82) are true since δ > 1 + 1
γ . Moreover, by assumption on δ and α, (10.83) is replaced

by E(i−1)∆n

[
Θ̂

(BC)
i,n − θ∗(i−1)∆n

]
= OP

(
n−γ(1−δ−1)∧δ−1

)
= oP (n−α). writing the decomposition

nα

Bn

Bn∑
i=1

(
Θ̂i,n − θ∗(i−1)∆n

)
= nα−

1
2

{
S(B)
n + S(M)

n

}
, (10.90)

we have nα−
1
2S

(M)
n →P 0 since the central limit theorem for S(M)

n is still valid and α < 1
2 . Finally

nα−
1
2S

(B)
n = oP (1). This concludes the proof for Θ̂n. The proof for the bias corrected case follows the

same path using E(i−1)∆n

[
Θ̂

(BC)
i,n − θ∗(i−1)∆n

]
= OP

(
n−γ(1−δ−1)∧ 3

2
δ−1
)
in lieu of the previous estimate.

10.7 Proof of Proposition 6.1

Note that for any θ ∈ K, we have

∂2
ξ li,n

(
n−1ξ

)
|ξ=nθ = n−2∂2

θ li,n(θ), (10.91)

and thus

n−1Ĉn =
1

Bn

Bn∑
i=1

∂2
θ li,n

(
Θ̂i,n

)−1
hn

=
1

TBn

Bn∑
i=1

Γi,n

(
Θ̂i,n

)−1
,

so that it is sufficient to prove uniformly in i ∈ {1, ..., Bn} the estimates

Γi,n

(
Θ̂i,n

)−1
= Γ

(
θ∗(i−1)∆n

)−1
+ oP(1) (10.92)

and

Γ
(
θ∗(i−1)∆n

)−1
= ∆−1

n

∫ i∆n

(i−1)∆n

Γ (θ∗t )
−1 dt+ oP(1). (10.93)

To show (10.92), we consider the decomposition

Γi,n

(
Θ̂i,n

)−1
− Γ

(
θ∗(i−1)∆n

)−1
= Γi,n

(
Θ̂i,n

)−1
− Γi,n

(
θ∗(i−1)∆n

)−1

︸ ︷︷ ︸
ai,n

+ Γi,n

(
θ∗(i−1)∆n

)−1
− Γ

(
θ∗(i−1)∆n

)−1

︸ ︷︷ ︸
bi,n

.
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We have that

|ai,n| ≤ sup
θ∈K

1

hn

∣∣∣∂θ (∂2
θ li,n(θ)

)−1
∣∣∣ ∣∣∣Θ̂i,n − θ∗(i−1)∆n

∣∣∣ . (10.94)

By some algebraic calculus it is straightforward to show that the term supθ∈K
1
hn

∣∣∣∂θ (∂2
θ li,n(θ)

)−1
∣∣∣ is

Lp bounded by virtue of Lemma 10.9 (i) and Lemma 10.14 (i). By uniform consistency of Θ̂i,n, this
yields ai,n = oP(1). Moreover, we have that bi,n = oP(1) as a direct consequence of Lemma 10.14 (ii).
Thus (10.92) holds. Finally the approximation (10.93) is a straightforward consequence of Lemma 10.9
(i) and Lemma 10.14 (i) along with assumption [C]-(i).
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