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We introduce and show the existence of a Hawkes self-exciting point process with exponentially-decreasing
kernel and where parameters are time-varying. The quantity of interest is defined as the integrated parameter
T −1 ∫ T

0 θ∗
t dt , where θ∗

t is the time-varying parameter, and we consider the high-frequency asymptotics. To
estimate it naïvely, we chop the data into several blocks, compute the maximum likelihood estimator (MLE)
on each block, and take the average of the local estimates. The asymptotic bias explodes asymptotically,
thus we provide a non-naïve estimator which is constructed as the naïve one when applying a first-order
bias reduction to the local MLE. We show the associated central limit theorem. Monte Carlo simulations
show the importance of the bias correction and that the method performs well in finite sample, whereas
the empirical study discusses the implementation in practice and documents the stochastic behavior of the
parameters.

Keywords: Hawkes process; high-frequency data; integrated parameter; self-exciting process; stochastic;
time-varying parameter

1. Introduction

In high-frequency data, market events are observed more often than ever. As an example, the
correlation between the timing of those events and other financial quantities, such as asset price,
volatility and microstructure noise has become of special interest. Also, financial agents can
model the order book to predict key quantities, such as the volume of trades in the next hour.
For all those reasons, models for inter-arrival times, also called duration models, are needed.
As a pioneer work, [15] introduced the autoregressive conditional duration (ACD) model. Other
references include and are not limited to [35,37], as well as [4,17], and more recently [33] and
[32].

The cited work is partly based on the self-exciting Hawkes point process introduced in [20] and
[21]. In that model, the intensity of the point process Nt is defined as λ(t) := ν + ∫ t

0 φt−s dNs ,
where the baseline ν > 0. Self-exciting processes are very popular to model phenomena mainly
because future events can be boosted by past events. In the high-frequency finance literature, [26]
documented such time-clustering property in the order flow of several stocks. Other examples of
application can be found in [1,2,14,25,38], etc. Also, [3] offers a general overview of the Hawkes
process applications in finance.
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We restrict our attention to the case with exponential exciting function φt = ae−bt , as stud-
ied in [28]. Time-varying parameter extensions have already been considered taking the locally
stationary processes approach in [34], and restricting to the baseline time-varying case in [5,18]
and [6]. Our approach is much in line with the latter couple of work in that we consider the
high-frequency point of view. In [5] the authors allow the background parameter (as they call
it) ν to be time-varying to incorporate intraday seasonality and consider the ACD model with
time-varying background parameter. They illustrate that on data the ACD performs better when
allowing for time-varying background, and that as it was already well-documented in [15] the
background parameter is moving a lot intraday.

This calls into question what happens to the other two parameters a and b when sampling
at the ultra high frequency? Do they look constant intraday? In our empirical study, we docu-
ment that they are moving intraday just as the background parameter does although the intraday
seasonality pattern isn’t as clear. Indeed from one day to the next, the paths are very much dif-
ferent and although intraday seasonality can definitely be considered as one factor, it seems that
it can’t solely explain such behavior. Correspondingly we introduce a self-exciting process with
stochastic time-varying parameters θ∗

t := (ν∗
t , a∗

t , b∗
t ). The new object of interest is defined as

the integrated parameter

� := 1

T

∫ T

0
θ∗
t dt, (1.1)

where T > 0 is the horizon time.
To estimate the integrated parameter (1.1), we choose to do locally MLE estimations, which

was studied in a parametric context in [9], and whose numerical computation can be consulted
in [30]. Specifically, if we consider Bn := nh−1

n regular non-overlapping blocks of observation
with time length �n := T hnn

−1, the estimator of (1.1) is defined as

�̂n := 1

Bn

Bn∑
i=1

�̂i,n, (1.2)

where �̂i,n corresponds to the MLE applied to the market events on the ith block, n corresponds
to the number of events’ order between 0 and T (typically the expected number of events) and the
block size hn stands for the number of events in a block’s order (typically the expected number of
events on a block). The idea to use a Riemann sum of local estimates in high-frequency finance
problems is very common, and can be found for example, in [23] or [27]. Our own recent work
includes [7]. The more general literature on local parametric approaches, when not considering
the high-frequency data case, includes [16], but also [19], the locally stationary processes of [12],
etc.

The first contribution of this paper is to obtain conditions on the stochastic parameter θ∗
t

and the block size hn under which we can show a local central limit theorem (LCLT) in high-
frequency asymptotics, and finiteness of moments of order 2κ > 2. The technique used, namely
Quasi Likelihood Analysis (QLA) whose most general and powerful formulation can be con-
sulted in [36], is not problem-specific and can very much be applied to different models. For this
part, blocks with hn which goes to infinity very slowly will be preferred, as the block length �n
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will be smaller, and thus the parameter θ∗
t almost constant on each block. In particular, if θ∗

t is
not constant, we obtain that a necessary condition is

hn = o(
√

n). (1.3)

The second issue that this work is addressing is the asymptotic bias generated by �̂n. Even in
the simple parametric case, note that the bias of the MLE on each block �̂i,n is of order h−1

n , and
thus that the bias of �̂n is also of the same order h−1

n . The asymptotic bias, that is, the bias of the
scaled error

√
n(�̂n − �), is thus of order

√
nh−1

n . If we want to obtain no asymptotic bias, we
thus need to assume that

√
n = o(hn). (1.4)

Thus, for that part, the block size hn should be as large as possible.
In view of the necessary conditions (1.3) and (1.4), there is no hope to obtain any hn for which

the asymptotic bias of �̂n will vanish. For that reason, we derive the one-order bias-corrected
parametric MLE. Correspondingly, we define �̂

(BC)
i,n as the bias-corrected MLE when fitted to

the observations on the ith block. Moreover, the bias-corrected estimator of (1.1) is defined as

�̂(BC)
n := 1

Bn

Bn∑
i=1

�̂
(BC)
i,n . (1.5)

We provide conditions under which �̂
(BC)
n has no asymptotic bias. Finally, the global central

limit theorem (GCLT) is obtained as an immediate consequence of the finiteness of moments of
order 2κ , the LCLT and the fact that the asymptotic bias of �̂

(BC)
n is null.

The following section provides the setup, Section 3 develops the statistical underpinning for
the time-varying self-exciting process case and Section 4 introduces the general model. In Sec-
tion 5, we discuss the main results. We give some practical guidance about the implementation of
the statistical procedure in Section 6. We also carry out numerical simulations in Section 7, and
give an empirical illustration on real tick-by-tick data in Section 8. Finally, Section 9 concludes.
Proofs can be found in Supplement [8].

2. The setup

In this work, the terminology “market event” should be understood as possibly corresponding
to a time of trade, bid or ask order (limit or market), an order of cancellation, the time of a
price change, etc. We need to introduce some notation first, that will be used throughout this
work. For any stochastic process Xt , we define FX = (FX

t )t∈[0,T ], where FX
t = σ {Xs,0 ≤ s ≤ t}

designates the canonical filtration generated by Xt . We assume that Nn
t is a point process, which

counts the number of events on [0, t]. It means that dNn
t = 1 if there is a market event at time t

and dNn
t = 0 if not. Moreover, we assume that there is no jump at time 0 and thus that dNn

0 = 0.
Correspondingly, we define the intensity of market events λn∗(t). The intensity process can be

thought as the instantaneous expected number of events, i.e. λn∗(t) dt = E[dNn
t |F (θ∗,Nn)

t ], where
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F (θ∗,Nn)
t is the filtration generated by Fθ∗

t and FNn

t . For definitions, the reader can consult [13]
or [24] for more general results about the compensator of a point process.

There are commonly two ways to make the number of events go to infinity. The low-frequency
asymptotics assume that T → ∞. [9] took this approach in an ergodic framework. On the con-
trary, the high-frequency point of view (also sometimes called heavy traffic asymptotics) assumes
that T is fixed, and that the number of events explodes on [0, T ]. We adopt the latter approach and
further consider a sequence of intensities such that E[λn∗(t)] is exactly of order n, with n → ∞.
This yields a number of observations Nn

T of order n, so that we are in the classical framework of
the large-sample theory.

3. Outline of the problem: An illustrative example

We start our theoretical exposition by the introduction of a point process toy model which pro-
vides an insight on the difficulties to overcome when considering the self-exciting model case.
For the sake of simplicity, we stay at a heuristic level. The continuous parameter θ∗

t is assumed
to be 1-dimensional throughout the rest of this section. The parameter θ∗

t is also restricted to
belong to a compact set K = [θ, θ ], where θ > 0. Moreover, θ∗

t is assumed to be adapted to
some filtration Ft , and to satisfy uniformly in 0 ≤ s < t ≤ T that Es[|θ∗

t − θ∗
s |p] = OP((t − s)p),

where Es[·] denotes the conditional expectation with respect to Fs . Finally, we assume that the
process Nn

t is adapted to Ft and follows the dynamic of a doubly stochastic Poisson process (or
Cox process) whose underlying stochastic intensity is assumed to be defined as λn∗(t) = n

√
θ∗
t .

The estimation procedure �̂n follows [31]. We are interested in assessing the GCLT
√

n(�̂n −
�) →d V

1
2

T N (0,1), where the asymptotic random variance VT = T −1
∫ T

0 vt dt is independent
from N (0,1). Since the parameter θ∗

t is smooth, we obtain

� = 1

Bn

Bn∑
i=1

θ∗
(i−1)�n

+ OP(�n). (3.1)

Consequently, the GCLT will follow if we can prove that

√
n

Bn

Bn∑
i=1

(
�̂i,n − θ∗

(i−1)�n

) d→V
1
2

T N (0,1). (3.2)

We focus on how to obtain (3.2) in this simple toy model. To do that, we rewrite the left-hand
side of (3.2) as a sum of a martingale triangular array and an array of biases. Formally, (3.2) is
expressed as

√
n

Bn

Bn∑
i=1

Mi,n

︸ ︷︷ ︸
S

(M)
n

+
√

n

Bn

Bn∑
i=1

Bi,n

︸ ︷︷ ︸
S

(B)
n

d→V
1
2

T N (0,1), (3.3)
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where Mi,n = �̂i,n −θ∗
(i−1)�n

−E(i−1)�n[�̂i,n −θ∗
(i−1)�n

] and Bi,n = E(i−1)�n[�̂i,n −θ∗
(i−1)�n

].
Our strategy to show (3.3) relies thus on exploiting the martingale decomposition on the left-hand
side of (3.3) to show that the covariances between blocks are negligible. More precisely, we want

to prove that S
(M)
n →d V

1
2

T N (0,1) on the one hand, and that S
(B)
n →P 0 on the other hand. To

show the former statement, classical sufficient conditions (see for instance Theorem 2.2.14, p. 57
of [22]) will hold if1 uniformly in i ∈ {1, . . . ,Bn} we can show that

E(i−1)�n

[(√
hn

(
�̂i,n − θ∗

(i−1)�n

))2] = v(i−1)�n + oP(1), (3.4)

and for some κ > 1 that

E(i−1)�n

[∣∣√hn

(
�̂i,n − θ∗

(i−1)�n

)∣∣2κ] = OP(1). (3.5)

If we show the LCLT, that is, the convergence of
√

hn(�̂i,n − θ∗
(i−1)�n

) →d v
1
2
(i−1)�n

N (0,1)

uniformly in the block number i ∈ {1, . . . ,Bn}, we can deduce from (3.5) that (3.4) holds. This

will be our strategy to show that S
(M)
n →d V

1
2

T N (0,1). Moreover, to obtain the GCLT (3.3), we
also need to show that the array of biases vanishes asymptotically. Accordingly, we will look at
how to obtain those three conditions (boundedness of local moments of order 2κ , LCLT and no
asymptotic bias) in the toy model.

To fix ideas, we provide one way, which turns out to be helpful when estimating (1.1), to obtain
asymptotic properties of the MLE in the parametric case when the intensity of the point process
Nn

t is defined as λn∗(t) := n
√

θ∗. The log-likelihood of the parametric model can be expressed
up to a constant additive term as

ln(θ) = log(
√

θ)Nn
T − n

√
θT , (3.6)

whose maximizer θ̂n admits the explicit form

θ̂n =
(

Nn
T

nT

)2

. (3.7)

If we introduce the martingale Ñn
t = Nn

t − n
√

θ∗t , we can rewrite θ̂n as a function of Ñn
T :

θ̂n = θ∗ + 2
√

θ∗
nT

Ñn
T +

(
Ñn

T

nT

)2

. (3.8)

As a consequence of classical limit theorems on martingales (see, e.g., Theorem 2.2.14 of p. 57
in [22]), we obtain the CLT

√
n
(
θ̂n − θ∗) d→T − 1

2 

(
θ∗)− 1

2 N (0,1),

1The reader can find more details in [8]
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where the Fisher information has the form 
(θ∗) = 1
4 (θ∗)− 3

2 . We also have the stronger statement
that for any p ≥ 1:

E
[(√

n
(
θ̂n − θ∗))p] → E

[(
T − 1

2 

(
θ∗)− 1

2 ξ
)p]

, (3.9)

where ξ follows a N (0,1). Finally, we can also compute in (3.8) the finite-sample bias of the
MLE

E
[
θ̂n − θ∗] =

√
θ∗

nT
. (3.10)

We are now back to the time-varying parameter model case λn∗(t) = n
√

θ∗
t . In that case, we

adapt the definition of the martingale as Ñn
t = Nn

t − n
∫ t

0

√
θ∗
s ds. Working out from the explicit

form (3.7), the local MLE can be expressed as

�̂i,n =
(

Ñn
i�n

− Ñn
(i−1)�n

hnT

)2

+ 2

h2
nT

2

(
Ñn

i�n
− Ñn

(i−1)�n

)∫ i�n

(i−1)�n

n
√

θ∗
s ds

+ 1

h2
nT

2

(∫ i�n

(i−1)�n

n
√

θ∗
s ds

)2

. (3.11)

In view of (3.11) and under the assumption that hn = o(n
2
3 ), it is easy to obtain the LCLT with

local conditional variance vs = T −1
(θ∗
s )−1 and the boundedness of moments of order 2κ . It

remains to control the array of biases S
(B)
n . Calculation gives us

Bi,n =
√

θ∗
(i−1)�n

hnT
+ OP(�n), (3.12)

where the residual term OP(�n), which was not part of the parametric bias (3.10), is due to the
deviation of θ∗

t . In order to obtain no asymptotic bias, we assume that
√

n = o(hn). Consequently,
if we assume that hn = n1/δ with 3

2 < δ < 2, we can prove the GCLT with asymptotic variance

VT = T −2
∫ T

0 
(θ∗
t )−1 dt in this toy model. This is a simple example where no further bias

correction is needed to obtain the GCLT. However, in the time-varying self-exciting model, we
will require to bias correct the estimator. This could be done in this simple setting via

�̂
(BC)
i,n = �̂i,n −

√
�̂i,n

hnT
. (3.13)

4. The model

We introduce in this section the time-varying self-exciting process, which will also be called the
doubly stochastic Hawkes process, in analogy with the doubly stochastic Poisson process intro-
duced in [10]. We first recall the definition of the non time-varying self-exciting point process.
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In the parametric case, the point process N
P,n
t can be defined via its intensity function

λP,n∗ (t) = nν∗ +
∫ t−

0
na∗e−nb∗(t−s) dNP,n

s , (4.1)

where θ∗ = (ν∗, a∗, b∗) is the 3-dimensional parameter. The self-excitation property can be read
directly from the intensity form λ

P,n∗ in (4.1). Indeed, a market event arriving at time t will
immediately boost the intensity, with an additional factor of magnitude na∗, favoring the oc-
currence of new events in the close future. The excitation then exponentially fades away after a
time of order (nb∗)−1. We explain now our choice regarding the asymptotics. First, we assume
that the baseline intensity is proportional to n to boost the average rate of spontaneous events.
Moreover, we assume that the excitation variables are of magnitude (na∗, nb∗) in order to pre-
serve the proportionality between the typical excitation time after a market event, (nb∗)−1, and
the average inter-arrival time between two spontaneous events (nν∗)−1. To wrap it up, Nn

t is a
self-exciting process with parameters (nν∗, na∗, nb∗). Note that other choices can lead to fairly
different asymptotics such as the ones in [29] where authors suggested a model with baseline
nν∗ but a constant excitation kernel of the form a∗e−b∗t .

We consider now the time-varying case. We assume that the 3-dimensional time-varying pa-
rameter process θ∗

t is component-wise positive and is confined into the interior of a compact
space K . This implies the existence of two non-negative vectors θ and θ such that 0 < θ ≤ θ ≤ θ

for any θ ∈ K , where the inequalities should be read component-wise. Moreover, we assume that
Nn

t admits the Ft -stochastic intensity λn∗(t) defined as

λn∗(t) = nν∗
t +

∫ t−

0
na∗

s e−nb∗
s (t−s) dNn

s , t ∈ (0, T ], (4.2)

where Nn
t and θ∗

t are adapted to Ft ,2 and Nn
0 = 0 a.s. The time-varying model (4.2) is a natural

time-varying parametric model extension of (4.1). It is constructed in the same spirit as for the
doubly stochastic Poisson process, in the sense that conditionally on the path of θ∗

t , Nn
t is dis-

tributed as a standard inhomogeneous Hawkes process. The formal definition of such a property
along with the existence of the doubly stochastic Hawkes process can be found in Theorem 5.1.
Finally, note that the time-varying parameter model (4.2) is more general than the parametric
model (4.1). In particular, the intensity between two market events is not exponentially decreas-
ing, but rather a sum of decreasing exponential functions, each one with its own starting point
and decreasing rate.

5. Main results

5.1. Preliminary results

We present in this section general results for the doubly stochastic Hawkes process. We start by
stating basic conditions on a given parameter process θt that ensure the existence of the related
doubly stochastic Hawkes process.

2The formal definition of Ft can be found in Section 5.
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[E] (i)

r := sup
t∈[0,T ]

at

bt

< 1, P-a.s. (5.1)

(ii) ∫ T

0
νs ds < +∞, P-a.s. (5.2)

First, note that (5.1) is not harmful. Indeed, the corresponding condition for the existence of the
parametric model is a

b
< 1. Moreover, when estimating parameters by local MLE, we need θt to

be contained within a compact set. Thus, (5.2) will be verified automatically in that context. The
next theorem shows the existence of the doubly stochastic Hawkes process associated with the
process θt . We recall that Fθ

t designates the canonical filtration associated with θt . Moreover, the
following bigger filtration Ft is introduced for the construction of the doubly stochastic Hawkes

process. We define the filtration as Ft = F (θ,N)
t = Fθ

t ∨ FN
t , where Nt = N([0, t] × R) is a

Poisson process of intensity 1 on R
2 which is independent from θt .

Theorem 5.1 (Existence). Under [E], there exists a point process Nt adapted to Ft such that its
Ft -intensity has the representation

λ(t) = νt +
∫ t−

0
ase

−bs(t−s) dNs. (5.3)

Moreover, conditionally on the path of θt , Nt is distributed as a standard Hawkes process with
inhomogeneous deterministic parameter θt , that is

E
[
f (N)|Fθ

T

] = E
[
f

(
Nθ̃

)]
|θ̃=θ

, (5.4)

for any continuous bounded function f , and where Nθ̃
t is a doubly stochastic Hawkes process

with underlying deterministic process θ̃t .

From now on, we assume that θ∗
t satisfies Condition [E]. Under this assumption, since Nn

t

is a time-varying self-exciting process with parameters (nν∗
t , na∗

t , nb∗
t ), Nn

t is well-defined and
adapted to Ft .

We describe the statistical procedure, provide a formal definition of the local MLE �̂i,n as
well as its first order bias-corrected version �̂

(BC)
i,n . We state their asymptotic properties, includ-

ing the main result of this paper which is the GCLT for �̂
(BC)
n in Theorem 5.4. Recall that

we have chopped our observations into Bn time blocks of the form ((i − 1)�n, i�n]. For any
i ∈ {1, . . . ,Bn} and any θ ∈ K , we consider the regression family of intensities

λi,n(t, θ) = nν +
∫ t−

(i−1)�n

nae−nb(t−s) dNn
s , (5.5)
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defined for t ∈ ((i − 1)�n, i�n]. We now define the Quasi Log Likelihood3 on the ith block as

li,n(θ) =
∫ i�n

(i−1)�n

log
(
λi,n(t, θ)

)
dNn

t −
∫ i�n

(i−1)�n

λi,n(t, θ) dt. (5.6)

We take the local MLE �̂i,n as one maximizer of the Quasi Log Likelihood on the ith block
defined as

li,n(�̂i,n) = max
θ∈K

li,n(θ). (5.7)

Looking at the form of (5.5), (5.6) and (5.7), we can see that λi,n, li,n and �̂i,n are functions of
the ith block’s events.4 In particular, we don’t take account for the possible preexcitation induced
by past events in the expression of the candidate intensity (5.5), as the lower bound of the integral
is fixed to (i − 1)�n. Asymptotically, such approximation is valid because the exponential form
of the excitation kernel along with the order of the excitation parameters (na∗

t , nb∗
t ) induce a

weak-enough influence of the past events on the actual stochastic intensity λn∗(t).
In what follows, we specify the form of hn and assume the existence of an exponent δ > 1

such that

hn = n1/δ. (5.8)

We will also have to specify the smoothness of the process θ∗ using the following quantities.
First, define the regularity modulus of order p ∈ N− {0}, at time t ∈ [0, T ] and value θ ∈ K as

wp(t, θ, r) = E

[
sup

h∈[0,r∧(T −t)]

∣∣θ∗
t+h − θ∗

t

∣∣p|Ft , θ
∗
t = θ

]
, r > 0. (5.9)

We then define the global regularity modulus as

wp(r) = sup
(t,θ)∈[0,T ]×K

wp(t, θ, r), r > 0. (5.10)

We introduce the following conditions needed to obtain the LCLT and the boundedness of
moments.

[C] (i) There exists an exponent γ ∈ (0,1], such that for r → 0, we have

wp(r) = OP

(
rγp

)
. (5.11)

(ii) δ and γ satisfy the relation

δ > 1 + 1

γ
. (5.12)

3The model is by definition misspecified and thus li,n is not the log likelihood function of the model.
4Note that this doesn’t mean that �̂i,n are uncorrelated.
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(iii) The excitation parameters a∗
t and b∗

t satisfy

c := sup
(t,n)∈[0,T ]×N

∫ t

0
na∗

s e−nb∗
s (t−s) ds < 1 P-a.s. (5.13)

Note that the conditional expectation E[·|Fs , θ
∗
s = θ ] refers to the operator E[·|Fs] condi-

tioned on θ∗
s = θ . By definition, for a F -measurable random variable X, if we write GX(θ) =

E[X|Fs , θ
∗
s = θ ], the relationship between both expectations can be expressed as E[X|Fs] =

GX(θ∗
s ). The justification of the existence of E[·|Fs , θ

∗
s = θ ] can be found in [8]. Condition

[C](i) quantifies the regularity of the process θ∗
t through the regularity exponent γ . A natural

example of a process satisfying [C](i) is the drift function, that is, of the form

θ∗
t = θ∗

0 +
∫ t

0
u∗

s ds, (5.14)

where u∗ is a stochastic process that takes its values in a compact subset of R3. Another example
is a smoothed version of the Brownian motion that can be obtained as follows. Take some τ > 0,
a positive vector θ(M) ∈ R

3, a positive diagonal matrix σ = diag(σ ν, σ a, σ b) and consider the
process

θ∗
t = θ(M) + σ

τ

∫ t

t−τ

Ws ds, (5.15)

where (Wt)t∈[−τ,T ] is a 3-dimensional standard Brownian motion. One can confine θ∗
t in a com-

pact space by stopping the process W when it reaches some critical value. This second example
is useful to model the stochastic component of the parameter as a nuisance process, and we use
(5.15) in our simulation study. Note that the smaller τ , the less auto-correlated θ∗

t will be, and
that we would be back to a Brownian motion in the limit τ → 0. For both examples (5.14) and
(5.15) we have γ = 1, but note that the correlation structure of θ∗

t may be very complex though
(to do so, we can take any process u∗

t which has a complex correlation structure).
Condition [C](ii) controls the lower bound of hn and is necessary to derive the LCLT and the

local boundedness of moments. In particular, as γ ≤ 1, [C](ii) implies that hn = o(
√

n). This was
stated in (1.3). Finally, [C](iii) is an additional condition that ensures the existence of moments
of Nn. We can see that [C](iii) is automatically satisfied if a ≤ a∗ ≤ a, b ≤ b∗ ≤ b and a < b.

We specify now the value of the exponent

κ = γ (δ − 1) > 1, (5.16)

where the inequality is a direct consequence of [C](ii). For θ ∈ K , the positive symmetric matrix

(θ) is defined as the asymptotic Fisher information of a parametric Hawkes process generated
by θ and can be found in (10.9) from [8]. The next theorem encompasses the LCLT and the
local convergence of moments of order smaller than 2κ of the rescaled local MLE

√
hn(�̂i,n −

θ∗
(i−1)�n

).
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Theorem 5.2 (LCLT and boundedness of moments). Let L ∈ [0,2κ). Under [C], we have
uniformly in i ∈ {1, . . . ,Bn} that

E(i−1)�n

[
f

(√
hn

(
�̂i,n − θ∗

(i−1)�n

))] = E(i−1)�n

[
f

(
T − 1

2 

(
θ∗
(i−1)�n

)− 1
2 ξ

)] + oP(1) (5.17)

for any continuous function f with |f (x)| = O(|x|L) when |x| → ∞, and such that ξ follows a
standard normal distribution and is independent of F .

We now introduce the first-order bias-corrected local MLE for any i ∈ {1, . . . ,Bn} as

�̂
(BC)
i,n = �̂i,n − b(�̂i,n)

hnT
, (5.18)

where b is defined on equation (10.14) in [8], and should be compared to its very similar form
for the classical i.i.d. case, see, for example, [11]. We finally recall the definition of the global
bias-corrected estimator that was introduced in (1.5), i.e.

�̂(BC)
n = 1

Bn

Bn∑
i=1

�̂
(BC)
i,n . (5.19)

In the next theorem, the expression x ∧ y stands for min{x, y}.
Theorem 5.3 (Bias correction). Let ε ∈ (0,1). The bias of the estimator �̂i,n admits the expan-
sion

E(i−1)�n

[
�̂i,n − θ∗

(i−1)�n

] = b(θ∗
(i−1)�n

)

hnT
+ OP

(
h

−ε(κ∧ 3
2 )

n

)
, (5.20)

uniformly in i ∈ {1, . . . ,Bn}. Moreover, the estimator �̂
(BC)
i,n has the uniform bias expansion

E(i−1)�n

[
�̂

(BC)
i,n − θ∗

(i−1)�n

] = OP

(
h

−ε(κ∧ 3
2 )

n

)
. (5.21)

Now our aim is to combine Theorem 5.2 and Theorem 5.3 to state the asymptotic properties
of the global estimator. In the following there are two parts. The main one gives the GCLT when
the parameter is assumed to be sufficiently smooth. The second part investigates what happens
when the parameter is rough.

5.2. Global central limit theorem when parameters are smooth

In this section, we state an additional condition on δ and γ so that �̂
(BC)
n is asymptotically

unbiased.

[BC] δ and γ satisfy the relation
γ

γ − 1
2

< δ < 3. (5.22)
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Intuitively, the left-hand side inequality in [BC] ensures that the size of each block is not too big
so that the bias induced by the parameter process θ∗

t itself is negligible. On the contrary, the right-
hand side inequality is a sufficient condition to keep under control the finite-sample bias of the
local MLE by avoiding too small blocks. More precisely, Condition [BC] implies in particular
that the exponent γ ∈ ( 3

4 ,1]. Note that such condition excludes the class of Itô-processes as a
parameter process. Moreover, on ( 3

4 ,1] we have γ

γ− 1
2

≥ 1 + 1
γ

with equality for γ = 1, and thus

[BC] is a stronger condition than [C](ii). For instance, in the Lipschitz case γ = 1, [BC] (and
thus [C](ii)) are satisfied for 2 < δ < 3. This means by definition of δ that hn must be taken so

that n
1
3 = o(hn) and hn = o(n

1
2 ).

We finally state the main result of this work which investigates the limit error of the bias-
corrected estimator �̂

(BC)
n .

Theorem 5.4 (GCLT). Assume that [C] and [BC] hold. Then,Fθ∗
T -stably in law as n → ∞,

√
n
(
�̂(BC)

n − �
) →

(
T −2

∫ T

0



(
θ∗
s

)−1
ds

) 1
2

N (0,1), (5.23)

where N (0,1) is independent from the σ -field F θ∗
T .

Remark 5.5 (Convergence rate). The convergence rate in Theorem 5.4 is the same as in the
parametric case. We also conjecture that the asymptotic variance is the non-parametric efficient
bound.

Remark 5.6 (Robustness to jumps in the parameter process). We assume that we add a jump
component to the parameter process

θ∗
t = θ

(C)
t + θ

(J )
t , (5.24)

where θ
(J )
t denotes a 3-dimensional finite activity jump process and dθ

(J,k)
t is either zero (no

jump) or a real number indicating the size of the jump at time t for k = 1,2,3. We further
assume that there is no initial jump, that is, J0 = 0. Moreover, we assume that Jt is a general
Poisson process independent from the other quantities. Under similar assumptions, the results of
this work can be adapted.

Remark 5.7 (Mutually exciting process). The proofs can be adapted to a multidimensional
Hawkes process. Investigating the corresponding conditions is beyond the scope of this paper.

5.3. What happens in the rough parameter case?

In this section, we are interested in the asymptotic properties of our estimators when the regular-
ity condition γ ∈ ( 3

4 ,1] fails. We first give a theoretical argument to show that the bound 3/4 can
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be lowered to 1/2, although the some of the corresponding bias theoretical formula terms would
be too involved to be of any practical interest. Nonetheless the bias can be computed with Monte
Carlo methods (see Section 7.1 in our numerical study for more details). We then provide the
expected convergence rate of the consistency for both the naive and the first order bias-corrected
estimators.

When γ /∈ ( 3
4 ,1], Theorem 5.4 fails in general. This is due to the bias expansion obtained in

Theorem 5.3, (5.21), whose order in h
−κ∧ 3

2
n can be dominated by n− 1

2 only if γ > 3/4. Never-
theless, we can expect that correcting for the bias to a higher order improves the rate of conver-
gence in (5.21). Thus we would obtain a corresponding central limit theorem even for γ ≤ 3/4.
A closer investigation to the proofs shows that if one conducts the bias correction up to order
q ∈ N − {0}, conditions [C](ii) and [BC] are respectively replaced by δ > 1 + (q + 1)/(2γ )

and γ /(γ − 1/2) < δ < 2 + q , so that the GCLT becomes valid under the weaker condition
γ ∈ ( 1

2 + 1
2(1+q)

,1]. For q → +∞, the asymptotic admissible interval becomes thus ( 1
2 ,1], so it

is theoretically possible to construct an asymptotically normal estimator for any γ > 1/2.
When γ ∈ (0, 1

2 ], we can’t use the same martingale approach. In general, the bias induced
by the parameter process in the expansion (5.21) cannot be corrected without some information
on the distribution of θ∗

t . We can’t show that the bias is of the right order, because this would
imply a choice of δ such that γ < δ(γ − 1/2) which is not possible if γ reaches the critical value
γ = 1/2. Investigating if other approaches yield a better estimate of the bias under additional
specification on the structure of θ∗

t is beyond the scope of this work.
We now turn to the convergence rate of our estimators when the central limit theorem fails.

We can prove that both estimators �̂n and �̂
(BC)
n are consistent. Indeed, it turns out that the first

order bias corrected version is nα-consistent5 for any α ∈ (0,
γ

1+ 2
3 γ

), whereas the naive estimator

is only nα-consistent for any α ∈ (0,
γ

1+γ
). More specifically, we have the following result. The

proposition can be showed following a similar reasoning as in the proof of Theorem 5.4.

Proposition 5.8 (Consistency). For any α ∈ (0,
γ

1+γ
), the choice δ ∈ (1 + 1

γ
, 1

α
) gives

nα(�̂n − �)
P→0.

Moreover, if γ ∈ (0,3/4], for any α ∈ (0,
γ

1+ 2
3 γ

), the choice δ ∈ ((1 + 1
γ
) ∨ γ

γ−α
, 3

2α
) gives

nα
(
�̂(BC)

n − �
) P→0.

In particular, we can see that �̂n is already almost
√

n-consistent when γ = 1 without any bias
correction. In a similar way, the case γ = 3/4 also yields an almost

√
n-consistent bias corrected

estimator �̂
(BC)
n as was expected. Again, knowing if the bounds for α given in Proposition 5.8

are optimal is beyond the scope of this paper.

5An estimator �̄n is said to be an-consistent if an(�̄n − �) = OP(1).
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6. Statistical implementation

In this section, we give some practical guidance to the above theory including a studentized
version of the GCLT. Actually, on real data, the quantity of interest is n� whereas n is (usually)
unknown. This doesn’t prevent us from obtaining a studentized version of the GCLT. A feasible
procedure consists in estimating directly n� in place of estimating �. When properly divided by
n, this yields the same estimate as the non feasible procedure, that is, we have n�̂ = n̂�, where
�̂ is the naive or the bias-corrected estimator. Indeed note that a maximizer �̂i,n of li,n(θ) is
equal to n−1�̃i,n, where �̃i,n is a maximizer of li,n(n

−1θ), which corresponds to the ordinary
quasi-likelihood (i.e., with disregard for the actual value of n).

Now we provide an estimator (up to a scaling factor) of the asymptotic variance VT =
T −2

∫ T

0 
(θ∗
s )−1 ds, which also requires no information on the value of n. For any i ∈

{1, . . . ,Bn}, we estimate the contribution of the ith block by the formula

Ĉi,n := −[
∂2
ξ li,n

(
n−1ξ

)
|ξ=n�̂i,n

]−1
. (6.1)

The term ∂2
ξ li,n(n

−1ξ) doesn’t depend on n (when hn is chosen) and corresponds precisely to the
Hessian matrix at point ξ of the likelihood function of a Hawkes model when one disregards the
value of n. In particular, this implies that Ĉi,n can be computed. The asymptotic variance is then
estimated, up to a scaling factor, as the weighted sum

Ĉn = 1

B2
n

Bn∑
i=1

Ĉi,n. (6.2)

The next proposition states the consistency of n−1Ĉn towards VT along with a corresponding
studentized version of Theorem 5.4, which is a corollary to the stable convergence in the GCLT.

Proposition 6.1. We have

n−1Ĉn →P VT .

Moreover, we have the convergence in distribution

Ĉ
−1/2
n

(
n�̂(BC)

n − n�
) →N (0,1). (6.3)

Note that Ĉn is the asymptotic variance of the dispersion between the estimated value of the
scaled integrated parameter n�̂

(BC)
n and the target n� itself. In particular, feasible asymptotic

confidence intervals can be constructed from the data.
As the value of n is unknown, which value to choose for hn? One idea is to normalize the value

of θ∗
t so that the expected number of events between 0 and T is roughly one when parameters are

equal to θ∗
t (by analogy with other models in high frequency data where n corresponds exactly

to the size of the sample data, as when estimating volatility from log-price returns observed
regularly at times iT /n). This amounts to taking n ≈ NT in practice. Although not perfect this
provides guidance to the choice of hn, which is assumed to be n1/3 = o(hn) and hn = o(n1/2)
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for a regular process (γ = 1). In our numerical study, we have NT ≈ 27 300 which amounts to
taking n = 27 300. This gives us n1/3 ≈ 30 and n1/2 ≈ 165, and correspondingly we look at
different hn = 136.5,273,546 which are of the same order. In our empirical study, we consider
hn = √

n,2
√

n,4
√

n,8
√

n,16
√

n.

7. Numerical simulations

7.1. Goal of the study

In this section, we report the numerical results which assess the central limit theory of

Z(BC)
n = Ĉ

−1/2
n

(
n�̂(BC)

n − n�
) →N (0,1)

in a finite sample context for several time-varying parameter models. In addition, we report the
behavior of the studentized naive estimator

Zn = Ĉ
−1/2
n (n�̂n − n�).

Finally, we compare the performance of �̂
(BC)
n and �̂n with two concurrent methods which are

1. The MLE on [0, T ] when considering that the parameters are not time-varying on [0, T ].
2. The time-varying baseline intensity MLE from [5] (CH) that assumes that ν∗

t = f (t, θ) with
f being a polynomial of order 3. More specifically in this setting the MLE estimates (θ, a, b)

where a and b are assumed to be constant over time.

The local log-likelihood functions and local variance estimators are computed implementing the
formula obtained in [30]. To compute �̂

(BC)
n , we can either implement the function defined in

(5.18) or carry out Monte-Carlo simulations to compute bi,n(θ) for any θ prior to the numerical
study. We choose the latter option as this allows to get also rid of bias terms which appears in the
Taylor expansion in a higher order than 1. Indeed, although those terms vanish asymptotically,
they can pop up in a finite sample context. To be more specific, we first compute the sample
mean for a grid of parameter values θ and a grid of block length � with 100 000 Monte Carlo
paths of the parametric model, that we denote b(θ,�). Then on each block, we estimate the bias
by b(�̂i,n,�i,n).

7.2. Model design

We consider that T = 21 600 seconds, which corresponds to the period of activity for one work-
ing day from 10 am to 4 pm. The market events are chosen to correspond to trades. The Nn

t

process is generated using a time-varying version of the algorithm described in [30] (Section 4,
pp. 148–149). The integrated parameter is set to n� ≈ (0.8,11,30), which are comparable values
to our empirical results. This yields on average Nn

T ≈ 27 300 trades a day.
We consider three deterministic and one stochastic models for the time-varying parameter. The

first two settings are toy models. Model I is a linear trend with θ∗
t = θ(M) + A(−1 + 2 t

T
), where
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the non-random target value θ(M) = (0.8,11,30) and the amplitude is set to A = (0.5,4,10).
This means that θ∗

t takes values in [0.3,1.3] × [7,15] × [20,40], which is comparable to the
daily variation in our empirical results. In Model II θ∗

t oscillates around θ(M) = (0.8,11,30) and
has the form θ∗

t = θ(M) + A cos( t
T

2π), in particular implying that the range of taken values is
the same as in Model I.

Model III is taken directly from the literature. We keep a∗
t and b∗

t constant whereas ν∗
t fol-

lows a usual intraday pattern, so that CH is well specified for this model. As pointed out in
[15] (see discussions in Sections 5–6 and Figure 2), the expected duration before the next trade
tends to follow a U-shape intraday pattern. This diurnal effect motivated [5] (see Section 5, pp.
1011–1017) to model a Hawkes process where ν∗

t is time-varying with a quadratic form. The
model is written as ν∗

t = eβ1 + {eβ2 + eβ3}2(t/T − eβ2/(eβ2 + eβ3))2. We fit the model to the
empirical intraday mean and find β1 ≈ −0.84, β2 ≈ −0.26 and β3 ≈ −0.39, which implies that
T −1

∫ T

0 ν∗
t dt ≈ 0.61. The other two parameters (a∗

t , b∗
t ) = (11,30) are assumed to be constant.

Model IV is an extension of Model III based on more realistic considerations where a∗
t and b∗

t

also feature intraday seasonality. In addition, we allow for additive stochastic component in the
three parameters. We assume that

ν∗
t = eβν

1 + {
eβν

2 + eβν
3
}2(

t/T − eβν
2 /

(
eβν

2 + eβν
3
))2 + σνW̃ ν

t ,

a∗
t = eβa

1 + {
eβa

2 + eβa
3
}2(

t/T − eβa
2 /

(
eβa

2 + eβa
3
))2 + σaW̃ a

t ,

b∗
t = eβb

1 + {
eβb

2 + eβb
3
}2(

t/T − eβb
2 /

(
eβb

2 + eβb
3
))2 + σbW̃ b

t ,

where (βν
1 , βν

2 , βν
3 ) ≈ (−0.84,−0.26,−0.39), (βa

1 , βa
2 , βa

3 ) ≈ (2.35,−0.05,0.40), and (βb
1 , βb

2 ,

βb
3 ) ≈ (3.66, −0.33,0.67) were obtained when fitted to the respective parameter intraday mean.

We also set (σ ν, σ a, σ b) = (0.8/(6T 1/2),11/(6T 1/2),30/(6T 1/2)) and W̃t = (W̃ ν
t , W̃ a

t , W̃ b
t ) =∫ t

t−1 Ws ds with Wt = (Wν
t ,Wa

t ,Wb
t ) a standard 3-dimensional Brownian motion. This means

that the standard deviation of the noise factor is roughly equal to 1/6 the value of the parameter
at time T . Also, we cap the possible value taken by ν∗

t so that the intensity parameter stays
bigger than 0.2. It is clear that in all those models the parameter is smooth enough to satisfy the
assumptions of the GCLT.

Finally, we look at several values for hn = 136.5,273,546, which correspond respectively to
block lengths of size T hn/n = 108, 216 and 432 seconds. We have NT ≈ 27 300 which means
that we should take n = 27 300 as explained in Section 6. According to the theory, we would
expect to need that hn is of the same order as n1/3 and n1/2, which are approximately equal to
30 and 165, thus our choices for hn seem coherent with the theory.

7.3. Results

Table 1 shows the Monte Carlo results for the feasible statistic of the naive estimator. For all the
models, the value of the bias is striking as it is of the same magnitude as the standard deviation.
This indicates that the bias do play a crucial role in finite sample too.

Table 2 shows the result for the bias-corrected estimator. In addition, Figure 1 provides the
associated QQ-plot. In this case, the sample mean is very close to 0 indicating that our proposed



Doubly stochastic self-exciting process 3485

Table 1. Finite sample properties of Zn for several models†

Param. Mean Stdv. RMSE 0.5% 2.5% 5% 95% 97.5% 99.5%

Model I
ν∗ 0.69 1.02 1.23 0.00 0.40 1.00 82.60 89.70 97.00
a∗ 0.77 1.10 1.34 0.40 1.00 1.50 78.00 86.50 95.90
b∗ 1.37 1.24 1.85 0.20 0.60 1.00 58.20 67.60 83.90

Model II
ν∗ 0.71 1.02 1.24 0.00 0.60 1.10 81.20 89.40 97.60
a∗ 0.71 1.14 1.34 0.30 1.40 2.10 79.50 86.70 94.30
b∗ 1.33 1.27 1.83 0.10 0.40 1.10 60.00 69.60 85.40

Model III
ν∗ 0.80 1.05 1.32 0.10 0.30 0.90 78.40 86.30 95.30
a∗ 0.78 1.14 1.38 0.00 1.20 1.70 78.10 85.70 94.10
b∗ 1.43 1.24 1.89 0.00 0.20 0.40 55.70 66.10 80.60

Model IV
ν∗ 0.83 0.99 1.29 0.00 0.20 0.50 79.70 87.10 96.30
a∗ 1.05 1.04 1.48 0.00 0.60 0.90 71.60 80.90 93.00
b∗ 1.62 1.10 1.96 0.00 0.10 0.20 52.20 63.20 79.70

†This table shows summary statistics and empirical quantiles benchmarked to the N(0,1) distribution for the feasible Z-
statistics related to the naive estimator with hn = 273 (which corresponds to a 216 second block length). The simulation
design is Model I–IV with M = 1000 Monte-Carlo simulations.

reduction method is working well. The standard deviation obtained for the intensity parameter is
close to 1, but it is bigger for the other parameters a∗ and b∗. Correspondingly, the asymptotics
are slightly underestimating the mass of the distribution in the tails. The reason for this is prob-
ably that it is difficult to accurately estimate the variance of the parametric model on the small
blocks.

Table 3 shows the performance of the estimators with concurrent approaches. It is clear that
regardless of the model at hand the bias-corrected local approach performs better than the MLE
and the CH. In Model III, CH performs a MLE with no misspecification. Although CH performs
much better than in the other models, it still doesn’t outperform the local approach, which in-
dicates that the local approach can performs better even on standard parametric models. Both
estimators are badly biased in case of misspecification for them. More surprisingly, although
Model III follows a model included in [5] and thus CH performs a MLE with no misspecification
in that specific case, the estimates are still biased (although very good for a∗ and with a smaller
standard deviation).

Finally, we can see that the naive estimator is more biased when hn is smaller, which is in line
with what we expected. The bias-correction is performed better with bigger hn, although too big
of a hn will tend to bias-correct less efficiently (due to the fact that parameters are moving too
much on a bigger block). This can be seen in Table 3 as the bias-corrected estimator seems to
perform slightly better with 4 minute block than 7 minute block.
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Table 2. Finite sample properties of Z
(BC)
n for several models†

Param. Mean Stdv. RMSE 0.5% 2.5% 5% 95% 97.5% 99.5%

Model I
ν∗ −0.01 1.02 1.02 0.40 2.80 5.70 94.70 97.20 99.30
a∗ 0.00 1.12 1.12 1.10 4.00 7.60 93.50 96.70 99.10
b∗ −0.02 1.30 1.30 2.60 6.60 10.70 90.10 93.40 98.60

Model II
ν∗ 0.02 1.02 1.02 0.90 2.70 5.20 95.70 98.10 99.40
a∗ −0.07 1.16 1.16 2.00 5.00 9.00 92.10 95.70 99.00
b∗ −0.08 1.32 1.33 4.20 7.60 11.50 90.50 94.30 98.20

Model III
ν∗ 0.00 1.05 1.05 0.10 2.90 6.20 94.30 96.90 99.50
a∗ −0.02 1.15 1.15 1.90 4.80 8.80 91.00 95.90 99.00
b∗ −0.06 1.29 1.30 4.00 7.30 11.00 90.80 94.50 98.30

Model IV
ν∗ 0.07 0.99 1.00 0.30 2.30 4.60 94.20 97.60 99.70
a∗ −0.04 1.05 1.05 1.20 3.50 5.40 94.90 97.30 99.30
b∗ −0.07 1.15 1.15 1.40 5.70 9.10 92.00 95.80 99.30

†This table shows summary statistics and empirical quantiles benchmarked to the N(0,1) distribution for the feasible
Z-statistics related to the bias-corrected estimator with hn = 273 (which corresponds to a 216 second block length). The
simulation design is Model I–IV with M = 1000 Monte-Carlo simulations.

Figure 1. QQ-plots benchmarked to the N(0,1) distribution for the feasible Z-statistics related to the
bias-corrected estimator with hn = 273 (which corresponds to a 216 second block length). The left column
corresponds to ν∗

t , the column in the middle for a∗
t and the right column for b∗

t . The simulation design is
Model I–IV with M = 1000 Monte-Carlo simulations.
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Table 3. Performance of 8 estimators for several models

ν∗ a∗ b∗

Est. Mean Stdv. Mean Stdv. Mean Stdv.

Model I
naive 2 m 0.009 0.007 0.286 0.196 1.239 0.630
BC 2 m 0.000 0.007 −0.012 0.201 −0.124 0.658
naive 4 m 0.005 0.007 0.134 0.189 0.546 0.495
BC 4 m 0.000 0.007 0.002 0.192 0.005 0.503
naive 7 m 0.002 0.007 0.068 0.188 0.271 0.477
BC 7 m 0.000 0.007 0.004 0.189 0.010 0.481
MLE −0.011 0.006 0.489 0.198 0.485 0.494
CH 0.018 0.010 0.424 0.438 1.378 0.942

Model II
naive 2 m 0.009 0.007 0.287 0.213 1.346 0.734
BC 2 m 0.000 0.007 −0.018 0.218 −0.078 0.744
naive 4 m 0.005 0.007 0.126 0.198 0.538 0.516
BC 4 m 0.000 0.007 −0.009 0.201 −0.019 0.525
naive 7 m 0.002 0.007 0.057 0.196 0.245 0.490
BC 7 m 0.000 0.007 −0.009 0.197 −0.022 0.494
MLE −0.017 0.006 0.708 0.214 0.666 0.516
CH −0.063 0.012 0.294 0.443 −0.265 1.097

Model III
naive 2 m 0.009 0.006 0.348 0.235 1.474 0.734
BC 2 m 0.000 0.006 −0.009 0.241 −0.108 0.742
naive 4 m 0.005 0.005 0.158 0.227 0.645 0.568
BC 4 m 0.000 0.005 −0.003 0.241 −0.015 0.578
naive 7 m 0.002 0.006 0.074 0.225 0.316 0.543
BC 7 m 0.000 0.006 −0.004 0.227 −0.020 0.548
MLE −0.004 0.006 −0.081 0.220 −0.572 0.519
CH −0.009 0.005 −0.002 0.213 −0.082 0.454

Model IV
naive 2 m 0.009 0.006 0.624 0.332 3.533 2.579
BC 2 m 0.000 0.006 −0.011 0.311 −0.199 2.333
naive 4 m 0.005 0.006 0.276 0.274 1.389 1.022
BC 4 m 0.000 0.006 −0.006 0.270 −0.008 0.967
naive 7 m 0.003 0.006 0.133 0.265 0.655 0.889
BC 7 m 0.000 0.006 0.000 0.265 0.013 0.876
MLE −0.004 0.006 0.005 0.286 0.924 0.959
CH −0.012 0.009 −0.857 0.699 −3.802 2.430

This table shows the statistic �̂ − � where �̂ is equal to the naive estimator and the bias-corrected estimator with
hn = 136.5,273,546 (this corresponds respectively to a 108 second block (roughly 2 minutes), 216 s (roughly 4 m)
and 432 s (roughly 7 m)), the MLE and the CH. The simulation design is Model I–IV with M = 1000 Monte-Carlo
simulations.
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Figure 2. Local estimated ν∗ parameter on 30 minute long blocks in June 2015. The two dashed lines cor-
respond to the 95% confidence intervals. The thick line stands for the seasonality intraday effect, estimated
as a temporal local mean across all the trading days in 2015.

8. Empirical study

In this section, we implement local MLE on intraday transaction (corresponding to trade) times
of Apple (APPL) shares carried out on the NASDAQ in 2015. Our aim is twofold. First, using
relatively large (30 minute) local blocks, we document about seasonality and intraday variability
in the parameters. Second, we implement the naive and the bias-corrected estimator. We exclude
January 1, the day after Thanksgiving and December 24 which are less active. This leaves us with
251 trading days of data. To prevent from opening and closing effect, we consider transactions
that were carried out between 9:30 am and 3:30 pm, which corresponds to 5 full hours of trading.
The number of daily trades is on average 15 000 with more than 50 000 trades for the most active
days and slightly more than 3000 for the least active days.

In Figures 2–4, we document the intraday variation of the three parameters. To do that, we
divide the 5 hours of trading into 10 blocks of 30 minutes. On each block, we fit the MLE and
obtain the corresponding estimates. We also estimate the standard deviation, which allows us
to build 95% confidence intervals. Given how volatile the estimates are with respect to their
own confidence interval, it is clear that neither the parametric model nor the seasonal compo-
nent model can be satisfactory to fit such data. This time-varying tendency of parameter intraday
values was consistently observed across most of the trading days in 2015. The behavior is hetero-
geneous in the three parameters. The seasonal model seems to do a decent job for the intensity
parameter6 although the shape of the parameter is very particular for each different day. The sea-
sonal tendency is less clear for the other two parameters. a∗ tends to oscillate not too far around
the seasonal path with a behavior which is day specific, whereas b∗ can really go far off from
one side or the other with no specific pattern. For all those reasons we believe that including in
the model both a seasonal and a stochastic effect is more realistic.

6Probably even better if we add a “day effect” in the model.
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Figure 3. Local estimated a∗ parameter on 30 minute long blocks in June 2015. The two dashed lines cor-
respond to the 95% confidence intervals. The thick line stands for the seasonality intraday effect, estimated
as a temporal local mean across all the trading days in 2015.

Figure 4. Local estimated b∗ parameter on 30 minute long blocks in June 2015. The two dashed lines cor-
respond to the 95% confidence intervals. The thick line stands for the seasonality intraday effect, estimated
as a temporal local mean across all the trading days in 2015.

In Table 4, we report statistics of the implemented estimators. As our method is non para-
metric, the assumption of any particular parametric model for the time-varying parameter is not
required. Overall we find that the daily estimates are on average roughly equal to (0.56,11,40),
with a standard deviation around (0.24,2,8). The results are in line with the numerical study.
We implemented five levels of hn = √

n,2
√

n,4
√

n,8
√

n, 16
√

n that we denote respectively the
corresponding bias-corrected estimators BC 1–5. We can see that BC 2–4 are highly correlated,
whereas BC 1 and BC 5 are slightly less correlated. This is probably due to the fact that hn can
be too small on non active days in the case of BC 1 and too big when considering BC 5. This
shows that the local method seems robust to a wide range of possible tuning parameter hn. Fur-
thermore, the mean of the MLE and the CH are very different from the one of BC. This is most
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Table 4. Summary statistics for 12 estimators†

ν∗ a∗ b∗

Est. Mean Stdv. Corr.(,BC 3) Mean Stdv. Corr.(,BC 3) Mean Stdv. Corr.(,BC 3)

naive 1 0.57 0.24 ≈1 12.48 2.18 0.94 49.80 10.33 0.78
BC 1 0.56 0.24 ≈1 11.16 2.17 ≈1 40.24 9.54 0.98
naive 2 0.57 0.24 ≈1 11.78 2.00 0.98 44.74 8.20 0.89
BC 2 0.56 0.24 ≈1 11.12 2.00 ≈1 39.92 7.79 0.99
naive 3 0.56 0.24 ≈1 11.42 1.96 0.99 42.14 7.58 0.92
BC 3 0.56 0.24 1 11.10 1.96 1 40.16 7.48 1
naive 4 0.56 0.24 ≈1 11.22 1.96 ≈1 40.66 7.40 0.96
BC 4 0.56 0.24 ≈1 11.07 1.96 ≈1 39.72 7.36 0.94
naive 5 0.56 0.24 ≈1 11.07 1.97 0.99 39.60 7.50 0.94
BC 5 0.56 0.24 ≈1 11.01 1.97 0.98 39.14 7.50 0.92
MLE 0.55 0.23 ≈1 10.78 2.11 0.95 36.77 8.55 0.91
CH 0.55 0.22 0.99 11.69 1.44 0.63 40.50 4.85 0.63

†Sample mean, standard deviation and correlation with BC 3 for the naive estimators (naive 1–5) and the bias-corrected
estimators (BC 1–5) with respectively hn = √

n,2
√

n,4
√

n,8
√

n,16
√

n, the MLE and the CH implemented for APPL
in 2015.

likely explained by the strong bias obtained in our numerical study. Among those two estimators
it is not surprising to find that the MLE is more in line with the local estimates than the CH as
the MLE is a “local estimate” in the degenerate case hn = n.

9. Conclusion

We have introduced a time-varying parameter extension of the Hawkes process with exponential
exciting function. We have also provided an estimator, along with its central limit theorem, of
the integrated parameter. We have seen on numerical simulations that this is of particular interest
to the practitioner because some concurrent methods (e.g., MLE applied to all the observations)
are biased. Finally, our empirical study points out the possible presence of variability in the
parameter in addition to seasonal effects.

There are some questions left to explore such as what would happen to the local MLE in
the case of a kernel with a fatter tail, such as a polynomial decreasing kernel. As far as the
authors know, no convergence of moments of the rescaled MLE has been investigated even in the
parametric case. Also, optimality of the tuning parameter hn could be investigated, and we could
potentially allow for time-varying tuning parameter.

Finally, we point out that the method can be extended to estimate more general key quantities
than the integrated parameter, such as functional of the parameter T −1

∫ T

0 fs(θ
∗
s ) ds. In partic-

ular, the GCLT for weighted versions T −1
∫ T

0 θ∗
s ws ds where ws is a weight process chosen by

the practitioner may be derived by a similar reasoning.
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