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a b s t r a c t

This paper showshow to carry out efficient asymptotic variance reductionwhen estimating
volatility in the presence of stochastic volatility andmicrostructure noise with the realized
kernels (RK) from Barndorff-Nielsen et al. (2008) and the quasi-maximum likelihood
estimator (QMLE) studied in Xiu (2010). To obtain such a reduction, we chop the data into
B blocks, compute the RK (or QMLE) on each block, and aggregate the block estimates.
The ratio of asymptotic variance over the bound of asymptotic efficiency converges as B
increases to the ratio in the parametric version of the problem, i.e. 1.0025 in the case of
the fastest RK Tukey-Hanning 16 and 1 for the QMLE. The impact of stochastic sampling
times and jump in the price process is examined carefully. The finite sample performance
of both estimators is investigated in simulations, while empirical work illustrates the gain
in practice.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decades, the availability of high frequency data has led to a better understanding of asset prices. The main
object of interest, the quadratic variation, can be used for example as a proxy for the spot volatility or the volatility parameter
of a time-varying model. Moreover, forecasts of future volatility can be improved with it. Without microstructure noise, the
realized variance (RV) estimator (e.g. Andersen et al., 2001, Meddahi, 2002, Barndorff-Nielsen and Shephard, 2002) is both
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consistent and efficient. The convergence rate n1/2 and the asymptotic variance (AVAR) were established in Genon-Catalot
and Jacod (1993), Jacod (1994) and Jacod and Protter (1998) (see also Zhang, 2001, Mykland and Zhang, 2006).

Undermarket frictions, the RV is no longer consistent. Zhang et al. (2005) bring forward the Two-Scale Realized Volatility
nonparametric estimator, the first consistent estimator in the presence of noise and with a relatively slow convergence
rate of n1/6. Zhang (2006) modifies it to provide the Multi-Scale Realized Volatility (MSRV) which features the optimal rate
of convergence n1/4 as documented in Gloter and Jacod (2001). Other approaches consist in and are not limited to: pre-
averaging (PAE) the observations (Jacod et al., 2009), Barndorff-Nielsen et al. (2008) advocates for the realized kernels (RK)
and (Xiu, 2010) studies the quasi-maximum likelihood estimator (QMLE) which was originally considered in Aït-Sahalia
et al. (2005) when volatility is constant. Those three approaches share the optimal rate property and only differ through
edge-effects which impact their respective AVAR.

The nonparametric AVAR bound of efficiency is equal to 8a0T
1
2
∫ T
0 σ

3
u du, where T stands for the time horizon and a20

corresponds to the noise variance. This was shown in Reiss (2011) under the deterministic volatility and Gaussian noise
setting, but it is commonly assumed that it stays true under stochastic volatility. Subsequently, in a recent breakthrough
paper, Altmeyer and Bibinger (2015) found an estimator based on the spectral approach introduced in Reiss (2011) which
reaches the bound in a very general situation. More recently, Jacod and Mykland (2015) proposed an adapted version of
the pre-averaging estimator using local estimates as in Reiss (2011) which gave rise to estimators that are within 7% of the
bound.

To be fair when comparing several estimators, we need the candidates to be equipped with the same technology.
Following closely the local technique used in Reiss (2011) and more recently in Jacod and Mykland (2015), we aim to adapt
accordingly the RK and theQMLE. Indeed, although both estimators behave remarkablywellwhen volatility is constant, i.e. in
the parametric case the ratio of AVAR over the bound of asymptotic efficiency is 1.0025 when considering the most efficient
Tukey-Hanning 16RKand1 for theQMLE, they can actually be highly inefficient in the non-parametric setting as documented
in the following of this introduction and in Section 2. Under time-varying volatility, we aim to reduce significantly their AVAR
and make them efficient. Although it would reduce the AVAR the same way, we did not implement the local version of the
MSRV. In fact, MSRV and RK are asymptotically equivalent in the sense that they share the same asymptotic variance when
considering the same kernel (see Section 2.2 in Bibinger and Mykland (2016)).

To reduce the variance, we divide the interval
[
0, T

]
into B non-overlapping regular blocks

[
0, T/B

]
,
[
T/B, 2T/B

]
, . . . ,[

(B − 1)T/B, T
]
. We then compute the RK (QMLE) on each block, and take the sum of the B estimates. We show that the

nonparametric ratio of AVAR over the bound of efficiency converges to the parametric ratio as B increases. More importantly
for practical applications, the convergence is very fast, and the gain is already important in the case B = 2 blocks.

As an example, we focus on the RK Tukey-Hanning 16 and consider the (apparently innocuous) block constant model
σt = 1 for t ∈ [0, 1

2 ) and σt = 2 for t ∈ [
1
2 , 1]. When choosing the optimal bandwidth, Barndorff-Nielsen et al. (2008)1

showed that the AVAR is equal to

AVAR(RK )
[0,T ]

= a0

(
T
∫ T

0
σ 4
u du

)3/4

g, (1.1)

where g is defined as

g =
16
3

√
ρk0,0• k1,1•

(
1√

1 +
√
1 + 3d/ρ2

+

√
1 +

√
1 + 3d/ρ2

)
,

with

ρ =

∫ T
0 σ

2
u du√

T
∫ T
0 σ

4
u du

, d =
k0,0
•

k2,2
•

(k1,1• )2
,

andwhere ki,i
•
are constant functions of the kernel.We fix T = 1 andwe compute in that case

∫ 1
0 σ

2
u du = 5/2,

∫ 1
0 σ

3
u du = 9/2

and
∫ 1
0 σ

4
u du = 17/2. Thus, the bound of efficiency is equal to 36a0, whereas AVAR(RK )

[0,1] = 37.89a0. This can be expressed
as a loss of 37.89−36

36 ≈ 5%, which is to be compared to the loss in the parametric case2 8.02−8
8 ≈ .25%. When fixing

B = 2, the volatility on each block is constant and thus yields AVAR(RK )
[0,1/2] = 2−3/2

× 8.02a0 on the first block and
AVAR(RK )

[1/2,1] = 23/2
× 8.02a0 on the second block. As both estimates are uncorrelated,3 we obtain that the global AVAR

is equal to AVAR(RK )
[0,1] =

√
2(AVAR(RK )

[0,1/2] + AVAR(RK )
[1/2,1]) = 8.02a0

∫ 1
0 σ

3
u du, i.e. .25% loss which corresponds exactly to the

parametric loss.

1 See pp. 1494–1495 for more details.
2 Details can be found on Table II (p. 1495, Barndorff-Nielsen et al., 2008).
3 If we remove end-effects.
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From (1.1), we can see that the theoretical loss can be expressed as a deterministic function of the already well-known
measure of volatility constancy ρ and another connected quantity which we denote

κ =

∫ T
0 σ

3
u du

T 1/4(
∫ T
0 σ

4
u du)3/4

.

Details can be found in Section 2, along with an expression for the QMLE loss as well. In the previous example where the
loss was about 5%, the corresponding setting can be computed as ρ = 5/2 ×

√
2/17 ≈ .86 and κ = 9/2 × (2/17)3/4 ≈ .90.

Volatility on real data is moving more than on this toy example, corresponding to lower ρ and κ . In their empirical study,
Andersen et al. (2014) daily estimate ρ−1 and find that the typical value is around 1.3, and about 1.6 when restricting to the
top 10% days in terms of intraday variation of volatility. This corresponds respectively to estimates of ρ as 1/1.3 ≈ .77 and
1/1.6 ≈ .62. When taking respectively those two realistic values, the corresponding RK and QMLE losses are expected to
be around 20% (can go up to 100%), depending on the other parameter value κ . With such highly inefficient estimators, we
believe that there is a practical need for variance reduction. This is especially the case on days when the volatility is moving
a lot.

Clearly this estimator is related to local parametric methods in high-frequency data, i.e. aggregating local parametric
estimates. For example, Mykland and Zhang (2009) investigated the ex post adjustment involving asymptotic likelihood
ratios to make when assuming constant local volatility. Reiss (2011) showed the asymptotic equivalence in Le Cam’s sense
between the non-parametric and locally constant volatility experiment. To estimate quarticity and other functionals of
volatility, Jacod and Rosenbaum (2013) estimated the volatility locally and plugged the value into the sum. Ourwork includes
(Potiron and Mykland, 2017, 2016; Clinet and Potiron, 2018).

The remainder of the paper is structured as follows. Section 2 stretches the limitations of the global approach by
expressing the loss as a function of ρ and κ . In Section 3, we provide the model, investigate the RK and the QMLE and their
corresponding limit theory. Section 4 investigates what happens to both methods when considering stochastic arrival times
and adding jump in the price process. Section 5 performs aMonte Carlo experiment to assess finite sample performance and
AVAR reduction. Section 6 provides an empirical illustration where we quantify the expected gain in practice. Theoretical
details and proofs can be found in the Appendix.

2. Limitations of the global approach

This section documents the performance of the global RK and QMLE. In particular, we show how it deteriorates as a
function of heteroskedasticity. Finally, we diagnose the reasons and provide the solution to this relative failure.

One crucial feature common to both estimators is that they behave remarkably well when volatility is constant. Indeed,
the QMLE is efficient and the RK Tukey-Hanning 16 almost efficient in that case. Even the RK Tukey-Hanning 2, with an AVAR
over the bound of efficiency ratio of less than 1.04, can be considered as ‘‘practically efficient’’. To study what happens when
volatility is time-varying, it is useful for 0 ≤ r < s ≤ T to define

ρr,s =

∫ s
r σ

2
u du√

(s − r)
∫ s
r σ

4
u du

and κr,s =

∫ s
r σ

3
u du

(s − r)1/4(
∫ s
r σ

4
u du)3/4

to be measures of heteroskedasticity. In the following, we will be using ρ and κ in place of ρ0,T and κ0,T . The quantity ρ
was already introduced in Barndorff-Nielsen et al. (2008) and plays an important role in the AVAR of both RK and the QMLE.
Xiu (2010) (Figure 1, p. 241) expresses the quotient of both AVARs as a function of ρ, but does not assess their respective
performance when compared to the (conjectured) bound of efficiency defined as

AVAR(Bound)
[0,T ]

= 8a0T
1
2

∫ T

0
σ 3
u du.

In contrast, the other quantity κ is introduced to investigate that relative performance.More precisely, κ is needed to express
the AVAR over the bound of efficiency ratio for both approaches since the AVAR does not feature the tricity, i.e. the integrated
thirdmoment of volatility, which is key in the bound of efficiency. Evidently, bothmeasuresρ and κ are verymuch connected
and we can actually show that we have that

0 < ρ3/2
r,s ≤ κr,s ≤ ρ1/2

r,s ≤ 1. (2.1)

Note that the equality ρr,s = κr,s = 1 for all r, s ∈ [0, T ] corresponds to the parametric case. In particular, Eq. (2.1) implies
that for any given ρ, the value κ is a.s. in a small boundary around ρ. This is of particular interest because as far as the authors
knowunder noisy observations the literature on quarticity estimation4 is farmore abundant than the correspondingwork on
estimating tricity,5 which implies that in practice ρ can be estimated relatively easily, whereas κ would require more effort.

4 See, e.g., Jacod et al. (2009), Andersen et al. (2014), Mancino and Sanfelici (2012), Potiron and Mykland (2016) and Clinet and Potiron (2017).
5 See the spectral approach AVAR estimator in Altmeyer and Bibinger (2015), Potiron and Mykland (2016) and Clinet and Potiron (2017).
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From Andersen et al. (2014) (Figure 7, p. 41), when taking a pre-averaging window equal to oneminute (chosen consistently
with their recommendation in Section 5.2.4 on p. 34 where the authors argue that a reasonable choice of window should
lie between 30 s and 2 min) we infer that the estimates of ρ are about 1/1.2 ≈ .83, 1/1.3 ≈ .77 and 1/1.6 ≈ .62 when
considering respectively the bottom 10% days in terms of intraday variation of volatility, all days and the top 10% days in
terms of intraday variation of volatility. Correspondingly, we will be using ρhigh = .83, ρregular = .77, ρlow = .62 to refer
respectively to high, regular and low values of ρ throughout the rest of the paper. It is not surprising to find such low values
on stocks data as it has been understood for several decades now that many stylized facts describe volatility as time-varying
(see, e.g., Ghysels et al., 1996, Engle and Patton, 2001).

When using the optimal bandwidth, AVAR(RK )
[0,T ]

is defined as

AVAR(RK )
[0,T ]

= a0

(
T
∫ T

0
σ 4
u du

)3/4

g,

where we have

g =
16
3

√
ρk0,0• k1,1•

(
1√

1 +
√
1 + 3d/ρ2

+

√
1 +

√
1 + 3d/ρ2

)

and d =
k0,0
•

k2,2
•

(k1,1• )2
,

with ki,i
•
constant functions of the kernel. Correspondingly, we give the formal definition of the RK loss as

L(RK ) =
AVAR(RK )

[0,T ]

AVAR(Bound)
[0,T ]

− 1. (2.2)

Obvious computations lead to L(RK ) = gκ−1/8−1. If we see g as a function of ρ, L(RK ) is equal to g(1)/8−1 in the parametric
case. The parametric values for several kernels can be directly inferred from Barndorff-Nielsen et al. (2008) (Table II, p. 1495)
and the loss is equal to .25% when considering the Tukey-Hanning 16, 3.625% for the Tukey-Hanning 2, 6.75% for the Parzen
and 13% for the Cubic kernel. We have that g is an increasing function of ρ, and thus the effect of ρ and κ are reverse. Next
we consider the AVAR of the QMLE expressed via

AVAR(QMLE)
[0,T ]

=
5Ta0

∫ T
0 σ

4
u du

(
∫ T
0 σ

2
u du)1/2

+ 3a0

(∫ T

0
σ 2
u du

)3/2

.

The formula can actually be found in Box V (p. 240, Xiu, 2010). The corresponding QMLE loss is defined in analogy with (2.2)
and can be expressed as

L(QMLE)
=

AVAR(QMLE)
[0,T ]

AVAR(Bound)
[0,T ]

− 1

=
5 + 3ρ2

8κρ1/2 − 1.

Fig. 1 plots the feasible loss region for three typical RK, the QMLE and the PAE with triangle kernel. It is clear that they highly
lose efficiency when ρ is decreasing. The QMLE is dominated by the RK approach when ρ is low, which was observed on
Fig. 1 (p. 241, Xiu, 2010).

The problem behind this potentially high loss can be intuitively explained as follows. For the RK, although the optimal
tuning parameter is robust to time-varying volatility, it suffers from the fact that one day6 is too long to ‘‘stay optimal’’. This
is a very similar situation to the PAE, which also features a tuning parameter. Subsequently, Jacod and Mykland (2015) used
block estimations to heavily reduce variance. As for the QMLE, which in contrast is designed in a parametric way yielding
no choice of tuning parameter, the smaller ρ and κ are, the further the misspecified model deviates from the truth. It is by
nature a different estimator, but local methods are expected to reduce the misspecification as in Reiss (2011). Thus, we aim
to reduce the non-parametric loss into the parametric loss using adapted local methods. As we can see on Fig. 1, the QMLE
will benefit the most as it is efficient in the parametric case and deteriorates more than the RK in the non-parametric case.

6 Or one week, one month, etc.
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Fig. 1. Feasible loss region for three typical RK (Tukey-Hanning 16, Tukey-Hanning 2, Cubic), the QMLE and the PAEwith triangle kernel. For each estimator,
the lower line corresponds to the lower boundary when considering the best possible scenario κ = ρ1/2 and the upper line stands for the upper boundary
in the worst case scenario κ = ρ3/2 . The feasible loss region lies between those two lines. Note that a loss of 100% corresponds to an AVAR twice as big as
the bound of efficiency.

3. Local estimation

3.1. Model for the observations

We assume that the latent log-price process and the volatility follow

dXt = btdt + σtdWt , (3.1)

dσt = b̃tdt + σ̃
(1)
t dWt + σ̃

(2)
t dW̃t + dJ̃t , (3.2)

where (Wt , W̃t ) is a 2 dimensional standard Brownian motion, the drift (bt , b̃t ) is componentwise locally bounded, the
volatility matrix(

σt 0
σ̃

(1)
t σ̃

(2)
t

)
is componentwise locally bounded, itself an Itô process and inft (min(σt , σ̃

(2)
t )) > 0 a.s. We also assume that J̃t is a pure

jump process of finite activity. This rules out jumps in Xt , an issue addressed in Section 4. In contrast the volatility process
can include jumps (see, e.g., Todorov and Tauchen, 2011 for empirical evidence). The observations are contaminated by the
microstructure noise so that we observe

Zti = Xti + ϵti ,

where ti correspond to the observation times7 which are assumed to be regularly spaced, i.e. satisfying ti − ti−1 = ∆.
Stochastic arrival times are also considered in Section 4 Furthermore,we assume that the noise is independent and identically
distributed (i.i.d), and independent of the other quantities, with null-mean, variance a20 and finite fourth moment. Next the
horizon time is defined as T > 0. Finally, we consider the high frequency asymptotics and assume that n goes to infinity,
where T = n∆. In particular, the time gap ∆ goes to 0.

7 Note that ti , ∆, etc. are implicitly assumed to depend on the index n. We sometimes refer to tni , ∆n when necessary.
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3.2. Realized kernels

3.2.1. Local RK definition
We consider first the framework B = 1 where the local RK coincides with the RK. The flat-top RK takes on the form

K = γ0 +

H∑
h=1

k
(
h − 1
H

)
(γh + γ−h) ,

where H > 0 and the deterministic kernel k(x) is defined for x ∈ [0, 1]. The realized autocovariance is defined as

γh =

n∑
j=1

(Z∆j − Z∆(j−1))(Z∆(j−h) − Z∆(j−h−1)),

where h = −H, . . . ,−1, 0, 1, . . . ,H .
In the general case B > 1, for each i = 1, . . . , Bwe choose a bandwidth Hi > 0 and define Ki the estimate on the ith block[

Ti−1, Ti
]
, where Ti = iT/B. On each block, we also assume that the number of observations n/B is an integer for simplicity of

exposition. Formally, all the considered quantities could be written with floor brackets, and all the results would still hold.
We aggregate the local estimates to obtain the adapted version of the RK defined as

K̃ =

B∑
i=1

Ki.

The corresponding H = (H1, . . . ,HB) is now B-dimensional in this case. We also adapt the jittering introduced in Section 2.6
(Barndorff-Nielsen et al., 2008, p. 1487), i.e. for i = 0, . . . , B we assume that XTi is an average of m distinct observations on
the interval (Ti − ∆, Ti + ∆).

3.2.2. Asymptotic theory
We define LX for σ (X)-stable convergence. We further define

ξ 2r,s =
a20√

(s − r)
∫ s
r σ

4
u du

as the noise-to-signal ratio, and refer to ξ 2 = ξ 20,T in the following. Finally, we define kernel weight functions k(x) that are
two times continuously differentiable on [0, 1] and

k0,0
•

=

∫ 1

0
k(x)2dx, k1,1

•
=

∫ 1

0
k′(x)2dx, k2,2

•
=

∫ 1

0
k′′(x)2dx.

We recall the main asymptotic result with fastest rate of convergence about the RK which can be found in Theorem 4 (p.
1493) in Barndorff-Nielsen et al. (2008). When k′(0)2 + k′(1)2 = 0,m → ∞, and H = cn1/2, we have

n1/4
(
K −

∫ T

0
σ 2
u du

)
LX
→ MN

(
0, 4T

∫ T

0
σ 4
u du

{
ck0,0

•
+ c−12k1,1

•
ρξ 2 + c−3k2,2

•
ξ 4
}

  
AVAR(RK ,c)

[0,T ]

)
, (3.3)

where MN denotes a mixed normal distribution. A straightforward application of (3.3) on each block i = 1, . . . , B yields

n1/4

(
Ki −

∫ Ti

Ti−1

σ 2
u du

)
LX
→ MN

(
0, B1/2AVAR(RK ,ci)

[Ti−1,Ti]

)
, (3.4)

where ci is the tuning parameter used on the ith block. Next we show that the AVAR associated to K̃ is equal to the sum of
variance terms in (3.4).

Theorem 1 (CLT for Local RK). When k′(0)2 + k′(1)2 = 0, m → ∞, and H = cn1/2 , we have

n1/4
(
K̃ −

∫ T

0
σ 2
u du

)
LX
→ MN

(
0, B1/2

B∑
i=1

AVAR(RK ,ci)
[Ti−1,Ti]

)
. (3.5)

Remark 1. The requirement thatm → ∞ in (3.5) is due to end-effects. The reader should refer to the discussion in Barndorff-
Nielsen et al. (2008) (p. 1493) in the case B = 1. When m is fixed, the relative contribution8 to the AVAR is proportional to

8 The corresponding expression can be found in the second term in (A.69).



S. Clinet, Y. Potiron / Journal of Econometrics 206 (2018) 103–142 109

ξ 2/m, as it was already the case for the RK. Barndorff-Nielsen et al. (2009) documented that this magnitude can reasonably
be ignored in practice.

To determine the B tuning parameters that minimize the AVAR in (3.5), we can consider each local AVAR independently
as they depend on one distinct tuning parameter. For that purpose, we follow Section 4.3 in Barndorff-Nielsen et al. (2008)
(p. 1494–1496) and consider that

(H (1), . . . ,H (B)) = (c1ξ0,T1 , . . . , cBξTB−1,T )
√
n/B.

The optimal values are then shown to be equal to

c∗

i =

√
ρ Ti−1,Ti

k1,1•

k0,0•

(
1 +

√
1 + 3d/ρ2

Ti−1,Ti

)
.

The corresponding AVAR is equal to

AVAR
(RK ,c∗i )
[Ti−1,Ti]

= a0

(
∆B

∫ Ti

Ti−1

σ 4
u du

)3/4

g(ρTi−1,Ti ),

where g is considered here as a function of ρ and ∆B = T/B corresponds to the block length.
We provide in what follows a consistent estimator for each tuning parameter. To pre-estimate on each block the

integrated volatility and quarticity, we consider the pre-averaging estimators from Jacod et al. (2009). For each block
i = 1, . . . , B we choose an integer ki and a real parameter θi > 0 which satisfy ki

√
∆ = θi + o(∆1/4). We also consider

a continuous function f on [0, 1], piecewise C1 with a piecewise Lipschitz derivative f ′ such that f (0) = f (1) = 0,∫ 1
0 f (s)2ds > 0. We define

φ1(s) =

∫ 1

s
f ′(u)f ′(u − s)du, (3.6)

φ2(s) =

∫ 1

s
f (u)f (u − s)du, (3.7)

Φjl =

∫ 1

0
φj(s)φl(s)ds for j, l = 1, 2, (3.8)

ψ1 = φ1(0) and ψ2 = φ2(0). We further define

Z̄l,i =

ki−1∑
j=1

f (j/ki)(Z(l+j)∆ − Z(l+j−1)∆).

The pre-averaging estimators of integrated volatility and quarticity on each block take on the form

ˆ∫ Ti

Ti−1

σ 2
u du =

√
∆

θiψ2

n/B−ki+1∑
j=0

Z̄2
j,i −

ψ1∆

2θ2i ψ2

n/B∑
j=1

(Z(n(i−1)/B+j)∆ − Z(n(i−1)/B+j−1)∆)2, (3.9)

ˆ∫ Ti

Ti−1

σ 4
u du =

1
3θ2i ψ

2
2

n/B−ki+1∑
j=0

Z̄4
j+(i−1)n/B,i (3.10)

−
∆ψ1

θ4i ψ
2
2

n/B−2ki+1∑
j=0

Z̄2
j+(i−1)n/B,i

j+2ki−1∑
l=j+ki

(Zl∆ − Z(l−1+(i−1)n/B)∆)2

+
∆ψ2

1

4θ4i ψ
2
2

n/B−2∑
j=1

(Z(j+(i−1)n/B)∆ − Z(j−1+(i−1)n/B)∆)2(Z(j+2+(i−1)n/B)∆ − Z(j+1+(i−1)n/B)∆)2.

We then estimate

ρ̂Ti−1,Ti =

ˆ∫ Ti
Ti−1

σ 2
u du√

∆B
ˆ∫ Ti

Ti−1
σ 4
u du

, (3.11)

ĉ∗

i =

√
ρ̂ Ti−1,Ti

k1,1•

k0,0•

(
1 +

√
1 + 3d/̂ρ2

Ti−1,Ti

)
. (3.12)
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We provide now a consistent estimator of AVAR(RK )
B = B1/2∑B

i=1AVAR
(RK ,c∗i )
[Ti−1,Ti]

. We estimate the noise as â2 = (2n)−1∑n
j=1(

Z∆(j+1) − Z∆j
)2 and the asymptotic variance as

ÂVAR
(RK )
B = âB1/2

B∑
i=1

(
∆B

ˆ∫ Ti

Ti−1

σ 4
u du

)3/4

g (̂ρTi−1,Ti ).

The feasible CLT is given in the following theorem.

Corollary 2 (Feasible CLT for Local RK). When k′(0)2 + k′(1)2 = 0, m → ∞, and H = ĉn1/2 with ĉ = (̂c∗

1 , . . . , ĉ
∗

B ), we have
ÂVAR

(RK )
B

P
→ AVAR(RK )

B and

n1/4 K̃ −
∫ T
0 σ

2
u du√

ÂVAR
(RK )
B

L
→ N (0, 1) . (3.13)

Finally, we show that when choosing the optimal values, the AVAR associated to K̃ goes to g(1)
8 AVAR(Bound)

[0,T ]
when B → ∞.

The constant g(1)/8, when normalized to g(1)/8 − 1, corresponds to the parametric loss and depends solely on the shape
of the kernel. The rationale of such result is that when B increases we have the volatility roughly constant on each block and
thus

B∑
i=1

B1/2AVAR
(RK ,c∗i )
[Ti−1,Ti]

=

B∑
i=1

a0B1/2

(
∆B

∫ Ti

Ti−1

σ 4
u du

)3/4

g(ρTi−1,Ti ),

≈

B∑
i=1

a0B1/2
∆

3/2
B σ 3

Ti−1
g(1).

Next we obtain by a Riemann sum argument that
B∑

i=1

a0B1/2
∆

3/2
B σ 3

Ti−1
g(1) = a0T 1/2

B∑
i=1

∆Bσ
3
Ti−1

g(1),

≈ a0T 1/2
∫ T

0
σ 3
u dug(1),

which can be expressed as g(1)
8 AVAR(Bound)

[0,T ]
. The formal result is given in the following proposition.

Proposition 3 (Convergence of Local RK AVAR). When B → +∞, we have

AVAR(RK )
B

a.s.
→

g(1)
8

AVAR(Bound)
[0,T ]

. (3.14)

Remark 2. In particular, the asymptotic loss for B → +∞ is g(1)/8 − 1, which is always smaller than L(RK ) = gκ−1/8 − 1
when using the RK with B = 1. The proof of this statement can be found in the Appendix (Appendix A.9).

3.3. QMLE

In analogywith Section 3.2, we provide in this section a definition of the local estimator and equivalent asymptotic results
in the case of the QMLE.

3.3.1. Local QMLE definition
We consider first the setting B = 1 where the local QMLE is equal to the global QMLE. We recapitulate the parametric

approach, and introduce the quasi-estimator. Aït-Sahalia et al. (2005) studied the parametric case assuming that the latent
efficient log price process satisfies

dXt = σdWt . (3.15)

The observed log returns Yi = Zti − Zti−1 are following a MA(1) process in that situation. If we postulate that the noise
distribution is Gaussian, then the log likelihood function for Y = (Y1, . . . , Yn)T can be expressed as

l(σ 2, a2) = −
1
2
log det(Ω) −

n
2
log(2π ) −

1
2
Y T
Ω

−1Y , (3.16)



S. Clinet, Y. Potiron / Journal of Econometrics 206 (2018) 103–142 111

where

Ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

σ 2
∆+ 2a2 −a2 0 · · · 0

−a2 σ 2
∆+ 2a2 −a2

. . .
...

0 −a2 σ 2
∆+ 2a2

. . . 0
...

. . .
. . .

. . . −a2

0 · · · 0 −a2 σ 2
∆+ 2a2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∈ Rn×n.

We define the corresponding MLE which maximizes (3.16) as (σ̂ 2, â2) and the estimator of integrated volatility as Q = T σ̂ 2.
When the log price Xt features stochastic volatility and drift as in Section 3.1 and/or when the noise is not normally
distributed, (σ̂ 2, â2) is seen as the QMLE.

When B > 1, we define for each block i ∈ {1, . . . , B} a local QMLE estimator (σ̂ 2
i , â

2
i ) which maximizes the expression

l(σ 2, a2) applied to the observations on (Ti−1, Ti] only, along with the local integrated volatility estimator Qi = ∆Bσ̂
2
i . We

then construct the aggregate version of the QMLE as

Q̃ =

B∑
i=1

Qi.

3.3.2. Asymptotic theory
We state the main result in Xiu (2010) (Box V, p. 240). If we assume that

∫ T
0 σ

2
u du ∈ [Σ,Σ] with 0 < Σ < Σ, we have⎛⎜⎝n1/4

(
Q −

∫ T

0
σ 2
u du

)
n1/2 (̂a2 − a20

)
⎞⎟⎠ LX

→ MN

((
0
0

)
,

(
AVAR(QMLE)

[0,T ]
0

0 2a40 + cum4[ϵ]

))
, (3.17)

where we recall that

AVAR(QMLE)
[0,T ]

=
5Ta0

∫ T
0 σ

4
u du(∫ T

0 σ
2
u du

)1/2 + 3a0

(∫ T

0
σ 2
u du

)3/2

.

Also, cum4[ϵ] refers to the fourth cumulant of ϵ0. An obvious application of (3.17) for each block i = 1, . . . , B gives us that

n1/4

(
Qi −

∫ Ti

Ti−1

σ 2
u du

)
LX
→ MN

(
0, B1/2AVAR(QMLE)

[Ti−1,Ti]

)
.

We show in the following theorem that the AVAR associated to Q̃ can be decomposed as a sum of local AVARs scaled by B1/2.

Theorem 4 (CLT for Local QMLE). We have⎛⎜⎜⎜⎜⎝
n1/4

(
Q̃ −

∫ T

0
σ 2
u du

)
n1/2

(
B−1

B∑
i=1

â2i − a20

)
⎞⎟⎟⎟⎟⎠ LX

→ MN

⎛⎜⎝(00
)
,

⎛⎜⎝B1/2
B∑

i=1

AVAR(QMLE)
[Ti−1,Ti]

0

0 2a40 + cum4[ϵ]

⎞⎟⎠
⎞⎟⎠ .

We define AVAR(QMLE)
B = B1/2∑B

i=1AVAR
(QMLE)
[Ti−1,Ti]

which is estimated via

ÂVAR
(QMLE)
B = B1/2

B∑
i=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
5∆B̂a

ˆ∫ Ti
Ti−1

σ 4
u du(

ˆ∫ Ti
Ti−1

σ 2
u du

)1/2 + 3̂a

( ˆ∫ Ti

Ti−1

σ 2
u du

)3/2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
The feasible theorem follows.

Corollary 5 (Feasible CLT for Local QMLE). We have ÂVAR
(QMLE)
B

P
→ AVAR(QMLE)

B and

n1/4 Q̃ −
∫ T
0 σ

2
u du√

ÂVAR
(QMLE)
B

L
→ N (0, 1) . (3.18)



112 S. Clinet, Y. Potiron / Journal of Econometrics 206 (2018) 103–142

We show now that the AVAR associated to Q̃ goes to AVAR(Bound)
[0,T ]

when B increases.

Proposition 6 (Convergence of Local QMLE AVAR). When B → +∞, we have

AVAR(QMLE)
B

a.s.
→ AVAR(Bound)

[0,T ]
. (3.19)

4. Is the local method robust to stochastic sampling times and jump in the price process?

We discuss in this section what happens to both approaches when considering stochastic arrival times and adding jump
to the price process. Related work in the global case include (Da and Xiu, 2017) for the QMLE and (Varneskov, 2016) for the
RK.We further inspect the AVAR behaviorwhen B → +∞ in this situation. The results aremitigated. Reduction (conjectured
to be efficient) is obtained in the case of stochastic arrival times on the one hand, but there are additional terms in the AVAR
as B → +∞ when adding jumps on the other hand.

4.1. Central limit theory when B is fixed

We assume that the latent log-price process is now an Itô semimartingale defined by

dXt = btdt + σtdWt + dJt ,

where bt and σt satisfy the same conditions as in Section 3.1, and Jt is a pure jump process of finite activity.
For the observation times, we adopt the random discretization scheme of Jacod and Protter (2011) (see Section 14.1) and

we assume that there exists an Itô semimartingale αt > 0 which satisfies Assumption 4.4.2 (p. 115) in Jacod and Protter
(2011) and is locally bounded away from 0, and i.i.d Ui > 0 that are both independent of the other quantities, αt y Ui, such
that

t0 = 0, (4.1)

ti = ti−1 + ∆αti−1Ui, (4.2)

where we recall that ∆ = T/n. Finally, we assume that EUi = 1, and that for any q > 0, mq := EUq
i → mq,∞ < ∞ as

n → +∞. Note that, defining πt := supi≥1ti − ti−1, the number of observations before t as Nn(t) = sup{i ∈ N − {0}|ti ≤ t},
we have πt

P
→ 0 as n → +∞ and

Nn(t)
n

→
u.c.p 1

T

∫ t

0
α−1
s ds, (4.3)

where the convergence u.c.p means uniformly in probability on [0, t] for any t ∈ [0, T ].9 We further define Nn = Nn(T ).
As pointed out in Jacod and Protter (2011, p. 431), any deterministic grid satisfies the above conditions. Actually, this

model can be considered asmore general than the time deformation proposed by Barndorff-Nielsen et al. (2008) (Section 5.3,
pp. 1505–1507) in the sense that more complex arrival times, such as a Poisson process independent of the other quantities
fall under the model. On the contrary, assuming the existence of the quadratic variation of time (see, e.g., Assumption A on
p. 1939 in Mykland and Zhang (2006)) is too general as our proofs require the existence of the quadratic covariation of time
lags for all lags.10

Since the price process features possible jumps, the two estimators are no longer consistent to the integrated volatility,
but they converge to the quadratic variation

T σ̄ 2
0 :=

∫ T

0
σ 2
s ds +

∑
0<s≤T

∆J2s ,

where ∆Js = Js − Js− corresponds to the size of the jump if there is a jump at time s and 0 otherwise. Correspondingly we
define on each block i = 1, . . . , B the new local target as

∆Bσ̄
2
i :=

∫ Ti

Ti−1

σ 2
s ds +

∑
Ti−1<s≤Ti

∆J2s .

The AVARs obtained in the robust theorems feature ∆Bσ̄ 2
i in place of integrated volatility, and the following quantity as an

alternative for quarticity:

Q(i) = ∆
−1
B

∫ Ti

Ti−1

α−1
s ds

{∫ Ti

Ti−1

σ 4
s αsds +

∑
Ti−1<s≤Ti

∆J2s (σ
2
s αs + σ 2

s−αs−)
}
.

9 We can prove (4.3) using Lemma 14.1.5 in Jacod and Protter (2011). The uniformity is a consequence of the fact that Nn and
∫ .
0

1
αs
ds are increasing

processes and Property (2.2.16) in Jacod and Protter (2011).
10 To see a condition on the first lag, one can look at Assumption B.vii on p. 37 in Li et al. (2016). This does not include other lags.
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Correspondingly, we define substitutes for the measure of heteroskedasticity and the noise-to-ratio measure as

ρ̃Ti−1,Ti =
∆Bσ̄

2
i√

∆BQ(i)
and ξ̃ 2Ti−1,Ti =

a20√
∆BQ(i)

.

Moreover, we also introduce

R(i) :=

∫ T
0 α

−1
s ds∫ Ti

Ti−1
α−1
s ds

, (4.4)

which corresponds to the asymptotic ratio of the total number of observations over the number of observations on the block
i as we have Nn(T )/(Nn(Ti) − Nn(Ti−1))

P
→ R(i). Finally, we define GT := σ

{
Un
i , αs, Xs|(i, n) ∈ N2, 0 ≤ s ≤ T

}
and refer to LG

for stable convergence with respect to GT . We provide the CLT for the two approaches in what follows.

Theorem 7 (Robust CLT for Local RK). When k′(0)2 + k′(1)2 = 0, m → ∞, c = (c1, . . . , cB), and H = cN1/2
n , we have

N1/4
n

(
K̃ − T σ̄ 2

0

)
LG
→ MN

(
0, AVAR(RK ,rob,c)

)
, (4.5)

where

AVAR(RK ,rob,c)
=

B∑
i=1

R1/2
(i) AVAR(RK ,rob,ci)

[Ti−1,Ti]
,

AVAR(RK ,rob,ci)
[Ti−1,Ti]

= 4∆BQ(i)
{
cik0,0•

+ c−1
i 2k1,1

•
ρ̃ Ti−1,Ti ξ̃

2
Ti−1,Ti + c−3

i k2,2
•
ξ̃ 4Ti−1,Ti

}
.

The new optimal bandwidth is given by

c̃∗

i =

√
ρ̃ Ti−1,Ti

k1,1•

k0,0•

(
1 +

√
1 + 3d/̃ρ2

Ti−1,Ti

)
,

with local and global optimal variances respectively defined as

AVAR
(RK ,rob,̃c∗i )
[Ti−1,Ti]

= a0
(
∆BQ(i)

)3/4g (̃ρTi−1,Ti ),

AVAR(RK ,rob)
B =

B∑
i=1

R1/2
(i) AVAR

(RK ,rob,̃c∗i )
[Ti−1,Ti]

.

As for the QMLE, the log likelihood function when B = 1 keeps the same form (3.16) but we replace n by Nn in the
definition of Ω now defined as

Ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

σ 2
∆̃+ 2a2 −a2 0 · · · 0

−a2 σ 2
∆̃+ 2a2 −a2

. . .
...

0 −a2 σ 2
∆̃+ 2a2

. . . 0
...

. . .
. . .

. . . −a2

0 · · · 0 −a2 σ 2
∆̃+ 2a2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∈ RNn×Nn ,

where ∆̃ = T/Nn. Each local QMLE estimator (σ̂ 2
i , â

2
i ) is now defined as a maximizer of

l(i)(σ 2, a2) = −
1
2
log det(Ω(i)) −

Nn,(i)

2
log(2π ) −

1
2
Y T
(i)Ω

−1
(i) Y(i), (4.6)

where Y(i) is the vector of price returns on the ith block, Nn,(i) := Nn(Ti) − Nn(Ti−1), and

Ω(i) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

σ 2
∆̃(i) + 2a2 −a2 0 · · · 0

−a2 σ 2
∆̃(i) + 2a2 −a2

. . .
...

0 −a2 σ 2
∆̃(i) + 2a2

. . . 0
...

. . .
. . .

. . . −a2

0 · · · 0 −a2 σ 2
∆̃(i) + 2a2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∈ RNn,(i)×Nn,(i) ,

with ∆̃(i) := ∆B/Nn,(i). If we assume that T σ̄ 2
0 ∈ [Σ,Σ] we obtain the following theorem.
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Theorem 8 (Robust CLT for Local QMLE). We have⎛⎜⎜⎝
N1/4

n

(
Q̃ − T σ̄ 2

0

)
N1/2

n

(
B−1

B∑
i=1

â2i − a20

)
⎞⎟⎟⎠ LG

→ MN
((

0
0

)
,

(
AVAR(QMLE,rob)

B 0
0 AVAR(QMLE,ϵ)

B

))
,

where

AVAR(QMLE,rob)
B =

B∑
i=1

R1/2
(i) AVAR(QMLE,rob)

[Ti−1,Ti]

AVAR(QMLE,rob)
[Ti−1,Ti]

=
5a0∆

1/2
B Q(i)

σ̄i
+ 3a0σ̄ 3

i ∆
3/2
B ,

AVAR(QMLE,ϵ)
B =

1
B2

B∑
i=1

R(i)
{
2a40 + cum4[ϵ]

}
.

4.2. The good case: robustness to stochastic arrival times

Here we assume a no-jump setting, i.e. Jt = 0. The following two propositions provide the AVAR asymptotic behavior
when B → ∞ for the twomethods. The limit is very similar to that in the regular observation case, and thus the localmethod
is robust to stochastic observation times. Note that the conjectured bound of efficiency is affected by the setting and takes
the form

8a0

(∫ T

0
α−1
s ds

)1/2 ∫ T

0
α1/2
s σ 3

u du.

Proposition 9 (Asymptotic Behavior of Local RK AVAR when Sampling Times are Stochastic). When B → +∞, we have

AVAR(RK ,rob)
B

a.s.
→ 8g(1)a0

(∫ T

0
α−1
s ds

)1/2 ∫ T

0
α1/2
s σ 3

s ds.

Proposition 10 (Asymptotic Behavior of Local QMLE AVAR when Sampling Times are Stochastic). When B → +∞, we have

AVAR(QMLE,rob)
B

a.s.
→ 8a0

(∫ T

0
α−1
s ds

)1/2 ∫ T

0
α1/2
s σ 3

s ds.

4.3. The bad case: adding jumps to the price process

In this section, the price process can feature jumps. Actually in such setting the AVAR of the RK tends to a big value as B
increases, and that of QMLE explodes. This sheds light on a weak point of the local method in this case.

Proposition 11 (Asymptotic Behavior of Local RK AVAR when J ̸= 0). As B → +∞,

AVAR(RK ,rob) a.s.
→ 8g(1)a0

(∫ T

0
α−1
s ds

)1/2 ∫ T

0
α1/2
s σ 3

s ds

+
16
3

a0

(
1

√
2

+
√
2
)√

k0,0• k1,1•

(∫ T

0
α−1
s ds

)1/2 ∑
0<s≤T

∆J2s
(
σ 2
s αs + σ 2

s−αs−
)1/2

.

Proposition 12 (Asymptotic Behavior of Local QMLE AVAR when J ̸= 0). As B → +∞,

AVAR(QMLE,rob)
B

a.s.
∼ 3a0B1/2T−1/2

(∫ T

0
α−1
s ds

)1/2 ∑
0<s≤T

α1/2
s |∆Js|3

a.s.
→ +∞.
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5. Numerical study

5.1. Goal of the study

In this section, we discuss theoretical AVAR reduction and we examine the performance of the local RK K̃B and the local
QMLE Q̃B in a finite sample context for several values of B. We carry out Monte Carlo simulations for three different volatility
models having realistic values of ρ. We then check whether asymptotic approximations of several statistics correctly kick
in to illustrate to what extent the theory is affected when the sample data is finite of size n. First, we assess the central limit
theories for the two infeasible statistics

Z K̃B
n =

n1/4
(
K̃B −

∫ T
0 σ

2
u du

)
√
AVAR(RK )

B

, Z Q̃B
n =

n1/4
(
Q̃B −

∫ T
0 σ

2
u du

)
√
AVAR(QMLE)

B

,

and the two feasible statistics

Z̃ K̃B
n =

n1/4
(
K̃B −

∫ T
0 σ

2
u du

)
√
ÂVAR

(RK )
B

, Z̃ Q̃B
n =

n1/4
(
Q̃B −

∫ T
0 σ

2
u du

)
√
ÂVAR

(QMLE)
B

,

for B = 1, 2, 4, 6, 8. In particular, we investigate how increasing B affects the standard normal approximation of these two
studentizations for several levels of sampling. Second, we compare the relative performance of the local RK and the local
QMLE. To do so, we report the empirical loss defined as

L̆(RK )B = EM

[
n1/2(K̃B −

∫ T
0 σ

2
s ds)

2

AVAR(Bound)
[0,T ]

]
− 1 , L̆(QMLE)

B = EM

[
n1/2(Q̃B −

∫ T
0 σ

2
s ds)

2

AVAR(Bound)
[0,T ]

]
− 1

where EM [X] denotes the sample mean of X based on the M Monte Carlo simulations and we recall that AVAR(Bound)
[0,T ]

=

8a0T
1
2
∫ T
0 σ

3
u du is the bound of efficiency for the asymptotic variance. We also define the theoretical loss as

L(Σ)B =
AVAR(Σ)

B

AVAR(Bound)
[0,T ]

− 1.

and report the sample mean of the theoretical loss L̃(Σ)B = EM
[
L(Σ)B

]
for Σ ∈ {RK ,QMLE}. Note that L̃(Σ)B is close to the mean

loss E
[
L(Σ)B

]
if M is large enough. The empirical loss L̆(Σ), which gives us a simple criterion to compare the estimators, can be

decomposed as

L̆(Σ)B = L̃(Σ)B
theoretical loss due to the finiteness of B

+ (L̆(Σ)B − L̃(Σ)B )  
loss due to the finite sample n

.

5.2. Simulation design

We implement the above procedures for M = 10,000 Monte Carlo simulations of intraday returns on the time interval
[0, T ], T = 1/252 year (that is T = 1 working day). One working day is in turn subdivided in 23,400 s corresponding to
6.5 h of trading activity. For each model, the corresponding trajectories are generated from a classical Euler scheme based
on n = 46,800 intervals, that is one observation every 0.5 s. We simulate 1000 more observations prior and post main
trading period in order to compute properly different γh that are necessary for the RK. Indeed, using their truncated versions
γ̃h =

∑n−H
j=H+1(Z∆j − Z∆(j−1))(Z∆(j−h) − Z∆(j−h−1)) tend to generate a non-negligible bias as pointed out in Xiu (2010) (see

Table 2 on p. 243), so that we prefer to overcome this issue with a few minutes of out-of-sample data. Finally, we also use
observations based on sparsely sampled versions of the original trajectories, for a number of intervals taking on the values
23,400, 11,700, and 5850, the latter corresponding to having one observation every 4 s, which still corresponds to a fairly
heavily traded stock. We do not report the results for lower frequencies, but the theory still kicks in for sparser samplings
too.

We consider three stochastic volatility models to simulate the intraday returns, along with three levels of mean noise-
to-signal ratios ξ 2 = 0.01, ξ 2 = 0.001 and ξ 2 = 0.0002. The three values are empirically corroborated in Hansen and Lunde
(2006), where the authors report empirical values of ξ 2 for several stocks ranging from 0.00004 to 0.006 (see Table 3 on p.
147).We introduce now the volatilitymodels, which have been designed to reflect different average values of ρ ranging from
0.89 (corresponding to a high value) for Model 1, 0.77 (corresponding to a regular value) for Model 2 to 0.64 (corresponding
to a low value) for Model 3 as reported on Table 1. The three models can all be represented as a Heston stochastic volatility
model (SV) with U-shape intraday volatility pattern and a possible jump whose occurrence time is picked up uniformly
randomly on a subinterval [T (0), T (1)

] of [0, T ]. Except for the jump component, this general model is directly inspired from
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Table 1
Sample mean and standard error of ρ and κ for the three models.

Model ρmean ρstdv. κmean κstdv.

Model 1 0.89 0.01 0.92 0.01
Model 2 0.77 0.15 0.83 0.12
Model 3 0.64 0.14 0.74 0.1

Model 4 in Andersen et al. (2012), and Xiu (2010) (see Section 6.1 on p. 242). We assume that the log price process Xt and
the volatility process σt follow the dynamics

dXt = µdt + σt−dWt ,

σt = σt,SVσt,U ,

with

dσ 2
t,SV = α(σ̄ 2

− σ 2
t,SV )dt + δσt,SVdW̄t ,

σt,U = C + Ae−at/T
+ De−b(1−t/T )

− βστ−,U1{t≥τ }.

Here Wt and W̄t are two standard Brownian motions with d⟨W , W̄ ⟩t = φdt . Note that σt,U jumps at time τ , that we define
as a uniform random variable on [T (0), T (1)

]. β controls the size of the jump. The choice of making σt,U jumps, instead of
the global volatility σt , is merely a way to ensure that σt remains positive. Finally, the drift parameter µ and the stochastic
volatility part remain constant for each model. The corresponding parameters are chosen consistently with the ones from
Section 6.1 (p. 242) in Xiu (2010), that is µ = 0.03, α = 5, σ̄ 2

= 0.1, δ = 0.4, φ = −0.75. Finally, σ 2
0,SV is sampled from a

Gamma distribution of parameters (2ασ̄ 2/δ2, δ2/2α), which corresponds to the stationary distribution of the CIR process.

Model 1: SV + steep U (HIGH ρ)
The first model does not incorporate the jump in volatility, i.e. we set β = 0. The parameters of the U-shape part are set to

generate a steep slope, which in turn lowers somewhat the value of ρ compared to Model 4 in Andersen et al. (2012) where
we find that the corresponding mean ρ value is too high to be consistent with ρhigh (which we recall is the empirical high
value reported in Section 2). With C = 0.83, A = 1.26, D = 0.42, a = 10, b = 10, this model presents a sample mean value
of ρmean = 0.89, which is slightly bigger than ρhigh = 0.83. We are conservative in this first model to show what happens to
the local method in a very unlikely bad situation for AVAR reduction, i.e. a very high ρmean.

Model 2: SV + normal U + 1 Jump (REGULAR ρ)
In this model, the U-shape intraday volatility parameters are set to values that are consistent with those chosen in Model

4 in Andersen et al. (2012), that is C = 0.75, A = 0.25, D = 0.89, and a = b = 10. The jump size parameter is set to β = 0.5,
that is a jump of 50% in size at the random time τ . We set T (0)

= 0, T (1)
= T and thus let τ take values on the whole time

interval. Such friction in the volatility process leads to lower values of ρ and κ compared to Model 1, with a sample mean
equal to ρmean = 0.77. This is thus a very realistic model in terms of measure of heteroskedasticity as ρmean = ρregular . It
is also possible to obtain ρmean = ρregular in an alternative continuous volatility model with normal U by taking a 2-factor
stochastic volatility model (SV2F) as in Barndorff-Nielsen et al. (2008) (Section 6.2, p. 1511), with parameters tuned such
that the trajectories are rough enough. The results from Section 5.4 would be similar. As a byproduct, Model 2 shows that a
jump in the volatility can lower significantly the measures of heteroskedasticity ρ and κ .

Model 3: SV + steep U + 1 Jump (LOW ρ)
This last model is a combination of the first two models. U-shape volatility parameters are set to give the same slope as

for Model 1, and the jump size parameter is set to β = 0.5 as in Model 2. However, to keep the positivity of σt we restrain
the values of the jump time and set T (0)

= 0.05T , T (1)
= 0.7T . This third scenario is designed to reach volatility paths

presenting an heteroskedasticity with a low value of ρ and we report the sample mean ρmean = 0.64, which is almost equal
to ρlow = 0.62. We are in the situation where the global estimators should deviate the most from the bound of efficiency.

We now turn to the estimation procedure. First, to estimate K on [0, T ], we work with the Tukey-Hanning 2 kernel as
for the numerical study in Barndorff-Nielsen et al. (2008) (Section 6, pp. 1510–1513) since it requires reasonable bandwidth
sizes H , which makes the estimator computable in an acceptable amount of time. Moreover, we do not need too many
out-of-period data to compute γh. We implement the feasible adaptive estimator. We arbitrary set the tuning parameters θi
equal to 30 s and the triangular kernel f (x) = x∧(1−x). In practice, we find that the realized kernel is not very sensitive to the
dispersion of Ĥ in terms of RMSE, so that it is not absolutely necessary to get very accurate pre-estimators. Such robustness
proved to be crucial in our procedure as it is well known that estimators for the quarticity can be unstable in finite sample
when the amount of data is not large. On each block [Ti−1, Ti], we do the same procedure and obtain the corresponding
K̃B by aggregation. Finally, we compute the QMLE by a numerical maximization of the quasi-likelihood function given in
Section 3.3.1. This gives us Q and the local estimates Q̃B.



S. Clinet, Y. Potiron / Journal of Econometrics 206 (2018) 103–142 117

Fig. 2. For B = 1, . . . , 8 we plot L(QMLE)
B (upper left panel), L(RK )B for Tukey-Hanning 2 kernel (upper right panel), the corresponding AVAR ratio defined as

AVAR(RK )
B /AVAR(QMLE)

B (lower left panel) and the ratio of pre-averaging AVAR using B blocks over AVAR(QMLE)
B (lower right panel) as a function of ρ.

5.3. Discussion on theoretical AVAR reduction

In this section, we propose to look at the theoretical AVAR reduction as a function of ρ, and investigate the practical
question of how fast the convergence in (3.14) and (3.19) is. The model considered for volatility is a deterministic U shape
+ 1 Jump, which corresponds to Model 2 without the stochastic volatility part. Here we generate different values of ρ as a
function of the jump time, which we restrict to be in

[
0.013T , T

]
so that each ρ can be associated to a distinct jump time

on that interval. We choose this particular model because the sample mean of ρ is .77 which corresponds to a regular value,
and the panel of generated ρ values is sufficiently large compared to the other two models.

The values of L(RK )B and L(QMLE)
B are plotted as a function of ρ in the upper panels of Fig. 2 for a realistic continuous U-

shape with one jump volatility model where the sample mean .77 corresponds to a regular value of ρ.11 As we can see, the
convergence in (3.14) is very fast. When ρ = .77, the QMLE loss is almost divided by 4 when considering 2 blocks instead of
1, with L(QMLE)

1 ≈ 16% and L(QMLE)
2 ≈ 5%. In the same setting the RK loss goes from L(RK )1 ≈ 16% to L(RK )2 ≈ 8%. If we consider the

lower value ρ = .62, the QMLE losses for the first four values of B are equal to L(QMLE)
1 ≈ 35%, L(QMLE)

2 ≈ 19%, L(QMLE)
3 ≈ 11%

and L(QMLE)
4 ≈ 6%. The corresponding RK values are L(RK )1 ≈ 28%, L(RK )2 ≈ 17%, L(RK )3 ≈ 11% and L(RK )4 ≈ 8%. This suggests that

the convergence to the loss bounds (which we recall to be equal to L(RK )∞ = 3.625% when considering the RK Tukey-Hanning
2 and L(QMLE)

∞ = 0% for the QMLE) is very fast for both approaches. Actually for any reasonable ρ taken to be between 0.5
and 1, choosing B = 8 is big enough for the loss to stay within L(RK )∞ + 4% (or L(QMLE)

∞ + 4%), and it is usually far below this
threshold with regular and high values of ρ.

Moreover, we can see on the left lower panel in Fig. 2 that when ρ is relatively high, the QMLE outperforms the RK
approach when considering B = 1, and the gap gets bigger as we increase B. In contrast when ρ < .77, the QMLE is

11 Useful details on this model can be found in Section 5.
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Table 2
Finite sample properties of Z K̃B

n (Model 2).a

No. Obs. Mean Stdv. RMSE 0.5% 2.5% 5% 95% 97.5% 99.5%

B = 1 block
5,850 −0.042 1.102 1.103 0.29 1.75 3.77 96.62 98.62 99.85

11,700 −0.032 1.067 1.068 0.39 1.96 3.98 96.01 98.20 99.80
23,400 −0.030 1.044 1.044 0.41 2.13 4.16 95.63 97.84 99.70
46,800 −0.027 1.041 1.041 0.46 2.25 4.35 95.58 98.18 99.74

B = 2 blocks
5,850 −0.065 1.105 1.106 0.24 1.55 3.53 96.49 98.43 99.82

11,700 −0.048 1.069 1.070 0.32 1.85 3.65 95.89 98.20 99.71
23,400 −0.042 1.048 1.049 0.37 2.01 3.91 95.52 97.88 99.65
46,800 −0.037 1.044 1.045 0.43 2.11 4.10 95.54 98.06 99.71

B = 4 blocks
5,850 −0.105 1.110 1.115 0.21 1.38 3.02 96.25 98.37 99.81

11,700 −0.082 1.074 1.077 0.28 1.54 3.33 95.74 98.15 99.66
23,400 −0.069 1.051 1.053 0.36 1.77 3.66 95.22 97.73 99.65
46,800 −0.059 1.043 1.044 0.37 1.89 3.89 95.31 97.96 99.64

B = 6 blocks
5,850 −0.144 1.115 1.124 0.19 1.23 2.72 95.81 98.33 99.75

11,700 −0.114 1.077 1.083 0.23 1.40 3.09 95.37 97.88 99.67
23,400 −0.099 1.054 1.059 0.31 1.65 3.49 94.95 97.57 99.60
46,800 −0.086 1.043 1.047 0.38 1.65 3.56 94.95 97.76 99.57

B = 8 blocks
5,850 −0.193 1.119 1.136 0.15 1.03 2.31 95.40 98.14 99.75

11,700 −0.154 1.080 1.091 0.21 1.26 2.83 95.27 97.88 99.66
23,400 −0.128 1.054 1.062 0.28 1.52 3.27 94.91 97.56 99.59
46,800 −0.109 1.042 1.047 0.32 1.64 3.51 94.72 97.56 99.55

a This table shows summary statistics and empirical quantiles benchmarked to the N(0, 1) distribution for the infeasible Z-statistics related to the global
and local RK (Tukey-Hanning 2). The simulation design is Model 2 withM = 10,000 Monte-Carlo simulations.

outperformed when considering only one block, but eventually makes it back when incrementing the value of B. The actual
value required to fill up the gap is getting bigger as ρ decreases. This suggests that both approaches are complementary to
each other. Finally, the lower left panel in Fig. 2 documents that both approaches dominate the PAE regardless of the number
of blocks.

5.4. Results

We first report the finite sample properties of the four statistics in Tables 2–5 forModel 2 under the noise level ξ 2 = 0.001.
We can see that the results are promising at any level of sampling, as the RMSEof the Z-statistic does not suffermuch from the
increasing in the number of blocks, especially for theQMLE forwhich the RMSE of Z Q̃B

n stays closely in linewith ZQ
n . The results

also indicate that the asymptotic theory eventually kicks in for all the estimators as the standard deviation of the statistics
decreases to 1 when the sampling frequency increases. Nevertheless, we can see a slight over dispersion compared to what
was reported in Xiu (2010) and Barndorff-Nielsen et al. (2008). For the QMLE, this is due to the strong difference with the
noise-to-signal ratio that was used in Xiu (2010) where ξ 2 ≈ 0.06. Concerning the RK, the difference in the studentization
is due to the fact that the authors in Barndorff-Nielsen et al. (2008) do not employ AVAR(RK )

[0,T ]
for the studentization, but a

non-asymptotic variance as documented in Section 4.4 (pp. 1496–1498) of their work. The feasible statistics are slightly
biased, and this is due to the estimation of the AVAR procedure.

We then report the theoretical loss values L̃(Σ)B and the empirical loss L̆ΣB for two levels of sampling n = 23,400 and
n = 46,800, and three levels of noise-to-signal ratios ξ 2 = 0.01, ξ 2 = 0.001 and ξ 2 = 0.0002 in Table 6. First, we can note
that the theoretical loss behaves in a very similar way as in Section 5.3 for the three models. In particular, this implies that
neither the SV part nor the steep U component seems to have a bad impact for the local method. Also, one can see that when
choosing B = 8 the theoretical loss is at most 3.2% more than the parametric loss (which we recall to be equal to 3.625% for
the RK Tukey-Hanning 2 and 0% in the case of the QMLE), which are in line with the threshold found in Section 5.3.

Second, the loss due to the finite sample behaves in a very proper way when B increases. For any setting and both
estimators, it is roughly constant as a function of B, although suffering more when ρ is higher and n smaller. This is perfectly
in linewith the findings in Tables 2 and 3. In particular forModel 2 andModel 3, the finite sample effect is almost notmoving
as B increases. For Model 1, this is basically the same picture for the QMLE, but the empirical loss seems to stagnate between
B = 4 and B = 8 when using the RK. This is not surprising as the RK suffers more from the finite sample effect than the
QMLE as seen in Tables 2 and 3.
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Table 3
Finite sample properties of Z Q̃B

n (Model 2).a

No. Obs. Mean Stdv. RMSE 0.5% 2.5% 5% 95% 97.5% 99.5%

B = 1 block
5,850 −0.024 1.084 1.084 0.36 2.09 4.12 96.48 98.57 99.84

11,700 −0.015 1.058 1.058 0.43 2.26 4.51 96.32 98.34 99.75
23,400 −0.012 1.039 1.039 0.51 2.19 4.48 95.87 97.97 99.70
46,800 −0.013 1.034 1.034 0.59 2.38 4.67 95.74 98.06 99.73

B = 2 blocks
5,850 −0.023 1.086 1.086 0.34 1.90 4.03 96.48 98.46 99.85

11,700 −0.011 1.06 1.06 0.42 2.08 4.28 96.24 98.31 99.72
23,400 −0.007 1.042 1.042 0.54 2.12 4.31 95.71 98.01 99.66
46,800 −0.009 1.036 1.036 0.56 2.22 4.51 95.71 98.08 99.63

B = 4 blocks
5,850 −0.016 1.089 1.089 0.34 1.98 3.86 96.42 98.57 99.82

11,700 −0.007 1.063 1.063 0.42 2.09 4.19 96.24 98.34 99.72
23,400 −0.002 1.042 1.042 0.51 2.16 4.52 95.64 98.02 99.65
46,800 −0.005 1.035 1.035 0.56 2.20 4.74 95.60 98.08 99.69

B = 6 blocks
5,850 −0.012 1.089 1.089 0.36 2.01 3.93 96.46 98.56 99.82

11,700 −0.002 1.062 1.062 0.43 2.01 4.26 96.33 98.33 99.74
23,400 −0.0 1.041 1.041 0.51 2.10 4.63 95.60 98.06 99.71
46,800 −0.004 1.033 1.033 0.57 2.21 4.72 95.64 98.07 99.69

B = 8 blocks
5,850 −0.014 1.093 1.093 0.36 1.82 3.83 96.42 98.63 99.82

11,700 −0.005 1.066 1.066 0.40 1.94 4.15 96.33 98.37 99.74
23,400 −0.001 1.043 1.043 0.47 2.05 4.53 95.64 98.15 99.67
46,800 −0.003 1.033 1.033 0.57 2.29 4.67 95.60 98.10 99.66

a This table shows summary statistics and empirical quantiles benchmarked to the N(0, 1) distribution for the infeasible Z-statistics related to the global
and local QMLE. The simulation design is Model 2 withM = 10,000 Monte-Carlo simulations.

Table 4
Finite sample properties of Z̃ K̃B

n (Model 2).a

No. Obs. Mean Stdv. RMSE 0.5% 2.5% 5% 95% 97.5% 99.5%

B = 1 block
5,850 −0.117 1.176 1.182 0.02 0.66 1.67 95.42 97.67 99.66

11,700 −0.080 1.128 1.131 0.01 0.58 2.01 95.00 97.08 99.38
23,400 −0.083 1.098 1.101 0.02 0.52 2.26 94.89 97.22 99.04
46,800 −0.069 1.087 1.089 0.02 0.73 3.44 94.49 97.27 99.15

B = 2 blocks
5,850 −0.130 1.148 1.155 0.02 0.58 1.76 95.40 97.27 99.40

11,700 −0.099 1.111 1.115 0.01 0.66 2.17 94.53 96.23 99.08
23,400 −0.086 1.083 1.086 0.05 0.71 2.28 95.03 97.17 99.24
46,800 −0.072 1.071 1.073 0.06 1.17 4.10 94.74 97.63 99.41

B = 4 blocks
5,850 −0.173 1.136 1.149 0.03 0.64 1.71 94.56 97.28 98.98

11,700 −0.139 1.107 1.115 0.01 0.64 1.78 93.28 96.21 99.13
23,400 −0.107 1.083 1.089 0.08 0.88 2.37 94.97 96.83 99.03
46,800 −0.092 1.079 1.083 0.03 1.07 3.93 94.99 97.64 99.34

B = 6 blocks
5,850 −0.225 1.145 1.167 0.02 0.60 1.25 93.88 96.93 98.80

11,700 −0.177 1.103 1.117 0.01 0.53 1.52 93.21 95.86 99.04
23,400 −0.145 1.077 1.087 0.04 0.72 1.91 94.12 96.61 99.06
46,800 −0.122 1.07 1.077 0.04 1.01 3.55 94.82 97.07 99.35

B = 8 blocks
5,850 −0.270 1.152 1.183 0.01 0.45 1.080 94.41 96.88 98.66

11,700 −0.219 1.106 1.128 0.02 0.50 1.65 92.63 95.76 98.96
23,400 −0.176 1.089 1.103 0.07 0.55 1.96 93.63 97.34 98.97
46,800 −0.146 1.078 1.088 0.03 0.72 3.27 94.02 96.98 99.38

a This table shows summary statistics and empirical quantiles benchmarked to the N(0, 1) distribution for the feasible Z-statistics related to the global and
local RK (Tukey-Hanning 2). The simulation design is Model 2 withM = 10,000 Monte-Carlo simulations.

Third, note that the decomposition

L̆ΣB + 1 ≈

(
L̃ΣB + 1

)
  

Due to the theoretical loss

× VarM
[
ZΣn
]  

Due to the finite sample

, (5.1)
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Table 5
Finite sample properties of Z̃ Q̃B

n (Model 2).a

No. Obs. Mean Stdv. RMSE 0.5% 2.5% 5% 95% 97.5% 99.5%

B = 1 block
5,850 −0.114 1.200 1.205 0.01 0.50 1.29 95.50 97.99 99.59

11,700 −0.090 1.148 1.152 0.01 0.35 1.68 95.36 97.18 99.12
23,400 −0.075 1.109 1.112 0.01 0.62 2.00 95.13 96.91 98.18
46,800 −0.062 1.093 1.095 0.01 0.61 2.98 94.38 96.67 99.08

B = 2 blocks
5,850 −0.099 1.170 1.174 0.02 0.56 1.49 95.70 97.66 99.38

11,700 −0.080 1.130 1.133 0.01 0.49 1.76 94.89 96.81 99.05
23,400 −0.057 1.094 1.095 0.03 0.91 2.38 95.25 97.32 98.61
46,800 −0.049 1.079 1.081 0.02 0.99 3.61 94.93 97.24 99.40

B = 4 blocks
5,850 −0.089 1.150 1.154 0.04 0.82 1.62 95.56 97.50 99.18

11,700 −0.077 1.112 1.114 0.05 0.56 1.92 94.80 96.73 99.17
23,400 −0.049 1.083 1.084 0.06 1.11 2.91 95.15 97.36 98.77
46,800 −0.046 1.083 1.084 0.02 1.16 3.38 95.23 97.32 99.53

B = 6 blocks
5,850 −0.090 1.146 1.149 0.07 0.91 1.65 95.89 97.47 99.00

11,700 −0.076 1.105 1.107 0.05 0.58 2.36 94.70 96.98 99.21
23,400 −0.050 1.077 1.078 0.06 1.07 3.10 95.10 97.62 98.78
46,800 −0.046 1.076 1.077 0.03 1.19 3.69 95.35 97.39 99.44

B = 8 blocks
5,850 −0.090 1.145 1.148 0.08 0.78 1.96 95.71 97.39 99.27

11,700 −0.073 1.099 1.101 0.06 0.68 2.46 94.83 96.81 99.11
23,400 −0.045 1.076 1.077 0.08 1.17 2.51 95.22 97.50 98.96
46,800 −0.046 1.080 1.081 0.03 1.46 3.86 95.39 97.26 99.46

a This table shows summary statistics and empirical quantiles benchmarked to the N(0, 1) distribution for the feasible Z-statistics related to the global and
local QMLE. The simulation design is Model 2 withM = 10,000 Monte-Carlo simulations.

where VarM [X] denotes the sample variance of X based on theM Monte Carlo simulations, is numerically well-verified and
gives an intuitive interpretation of the main sources of deviation from the bound in practice. For instance, consider Q̃2 on
Model 2, with n = 23,400, ξ 2 = 0.001. In that case, the previous decomposition (5.1) gives 0.218 + 1 = 1.218 for the left
hand side, and (0.124 + 1) × 1.0482

≈ 1.220 for the right hand side which is very close to the other value indeed.
Finally, this simulation study indicates that the local version of RK and the QMLE perform very well in practice, with the

QMLE slightly more robust to the values of n and B as free of tuning parameters.

6. Empirical illustration

We conclude this study by the application of our method on transaction log prices of Intel Corporation (INTC) shares
recorded on the NASDAQ stock market over the year 2015. We exclude January 1, the day after Thanksgiving and December
24 which are less active, thus this leaves us with 250 trading days of data. Moreover, we only keep transactions that were
carried out between 9:30 am and 4 pm. Finally, we consider the data in tick time, for an average of 6139 daily trades. The
most active days include more than 15,000 trades.

We first estimate the theoretical gain in AVAR. As for the numerical study, we do not cap ρ̂Ti−1,Ti by 1. Across the days,
values of B and blocks corresponding to an overall of 5250 estimates, the value 1.1 was crossed only a few times. We report
in Table 7 key statistics for AVAR reduction. We get a global estimate of ρ around 0.74, which is very close to ρregular . Across
the year the estimates of ρ ranged from around 0.3 to 1, and actually crossed 1 for two days where it reached 1.03 and 1.04.
When B increases, we find as expected that ρ̂B, the mean estimated value of ρ across days and blocks, also increases to reach
a value of 0.86 for 8 blocks. Accordingly, the mean estimated ratios of AVAR decreases from 1 to 0.9 for the QMLE, and from
1 to 0.92 for the RK. Moreover, we find that those ratios are consistently smaller than 1 for the 250 days and different values
of B bigger than 1, so that the local method never deteriorates the AVAR of the estimator. Note that the same ratios for Model
2 in our simulation study range from 1 to 102.4/121.5 = 0.84 for the QMLE and from 1 to 105.6/118.2 = 0.89 for the RK.
The slight disparity between the empirical study and Model 2 can be explained in several ways. For example, it is likely that
we still under-evaluate the difference between ρ and ρTi−1,Ti , or that the theoretical model is a little too optimistic about
how fast ρTi−1,Ti gets close to 1 on local blocks. To sum up, the results are approximately in line with what was expected, and
present a substantial gain in terms of AVAR for both the QMLE and the RK.

The last column in Table 7 shows the empirical correlation between the correction terms Q̃B − Q and K̃B − K for several
values of B. The positive correlation indicates that the localmethod tends to correct the global estimates in the samedirection
for both the QMLE and the RK. Moreover, increasing the number of blocks B amplifies the phenomenon. Table 8 shows the
empirical mean and standard deviation of the 10 estimators. Note that themain source of randomness being the target value
itself, it is not surprising to find the mean and standard values very close to each other. We have reported in the last column
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Table 6
Losses.a

Model Q Q̃2 Q̃4 Q̃6 Q̃8 K K̃2 K̃4 K̃6 K̃8

n = 23,400, ξ 2 = 0.01

Model 1 Emp. 8.4% 6.7% 5.3% 3.1% 4.1% 14.3% 12.4% 13.9% 14.6% 18.0%
Theo. 6.9% 5.4% 2.6% 1.4% 0.9% 9.9% 8.4% 6.0% 5.0% 4.5%

Model 2 Emp. 29.3% 18.4% 12.8% 10.7% 8.6% 30.2% 23.4% 20.3% 17.3% 22.5%
Theo. 21.5% 12.4% 5.8% 3.5% 2.4% 18.2% 12.1% 8.0% 6.4% 5.6%

Model 3 Emp. 40.0% 21.0% 9.4% 6.4% 5.1% 29.3% 20.3% 14.0% 12.0% 13.3%
Theo. 38.7% 20.9% 9.0% 5.0% 3.2% 26.8% 17.0% 10.3% 7.6% 6.3%

n = 46,800, ξ 2 = 0.01

Model 1 Emp. 8.1% 5.8% 3.5% 3.0% 2.5% 11.6% 9.4% 9.9% 9.2% 12.5%
Theo. 6.9% 5.4% 2.6% 1.4% 0.9% 9.9% 8.4% 6.0% 5.0% 4.5%

Model 2 Emp. 25.5% 15.5% 8.7% 5.9% 5.7% 22.5% 17.2% 15.3% 15.8% 15.5%
Theo. 21.5% 12.4% 5.8% 3.5% 2.4% 18.2% 12.1% 8.0% 6.4% 5.6%

Model 3 Emp. 38.1% 20.0% 8.3% 2.3% 1.7% 29.6% 18.3% 11.7% 10.3% 11.2%
Theo. 38.7% 20.9% 9.0% 5.0% 3.2% 26.8% 17.0% 10.3% 7.6% 6.3%

n = 23,400, ξ 2 = 0.001

Model 1 Emp. 17.2% 15.8% 12.9% 11.7% 11.2% 21.7% 20.9% 19.4% 19.7% 20.1%
Theo. 6.9% 5.4% 2.6% 1.4% 0.9% 9.9% 8.4% 6.0% 5.0% 4.5%

Model 2 Emp. 30.7% 21.8% 14.8% 12.1% 11.2% 28.7% 23.3% 19.7% 19.2% 19.0%
Theo. 21.5% 12.4% 5.8% 3.5% 2.4% 18.2% 12.1% 8.0% 6.4% 5.6%

Model 3 Emp. 51.1% 33.0% 20.6% 16.2% 14.7% 43.4% 32.8% 26.1% 23.8% 23.5%
Theo. 38.7% 20.9% 9.0% 5.0% 3.2% 26.8% 17.0% 10.3% 7.6% 6.3%

n = 46,800, ξ 2 = 0.001

Model 1 Emp. 15.3% 13.9% 10.9% 9.6% 9.1% 20.0% 19.0% 16.7% 16.3% 16.4%
Theo. 6.9% 5.4% 2.6% 1.4% 0.9% 9.9% 8.4% 6.0% 5.0% 4.5%

Model 2 Emp. 29.7% 20.6% 13.3% 10.4% 9.2% 28.2% 22.4% 17.8% 16.5% 15.8%
Theo. 21.5% 12.4% 5.8% 3.5% 2.4% 18.2% 12.1% 8.0% 6.4% 5.6%

Model 3 Emp. 47.6% 29.2% 16.9% 12.6% 11.0% 38.3% 26.8% 20.6% 17.6% 17.2%
Theo. 38.7% 20.9% 9.0% 5.0% 3.2% 26.8% 17.0% 10.3% 7.6% 6.3%

n = 23,400, ξ 2 = 0.0002

Model 1 Emp. 25.2% 23.8% 20.6% 19.4% 18.6% 32.8% 31.7% 30.3% 30.0% 30.5%
Theo. 6.9% 5.4% 2.6% 1.4% 0.9% 9.9% 8.4% 6.0% 5.0% 4.5%

Model 2 Emp. 45.5% 35.6% 28.2% 25.7% 24.5% 46.2% 40.5% 37.0% 36.4% 36.8%
Theo. 21.8% 12.6% 5.9% 3.6% 2.5% 18.4% 12.2% 8.0% 6.4% 5.6%

Model 3 Emp. 64.3% 45.3% 32.5% 28.4% 26.2% 56.0% 46.4% 40.8% 39.5% 39.4%
Theo. 38.1% 20.5% 8.8% 4.9% 3.1% 26.6% 16.9% 10.2% 7.5% 6.2%

n = 46,800, ξ 2 = 0.0002

Model 1 Emp. 19.7% 18.1% 14.8% 13.6% 12.7% 24.9% 23.6% 21.4% 21.0% 20.7%
Theo. 6.9% 5.4% 2.6% 1.4% 0.9% 9.9% 8.5% 6.0% 5.0% 4.5%

Model 2 Emp. 38.9% 29.0% 22.2% 19.8% 18.1% 37.7% 31.8% 28.5% 27.6% 27.0%
Theo. 21.8% 12.6% 5.9% 3.6% 2.5% 18.4% 12.2% 8.0% 6.4% 5.6%

Model 3 Emp. 57.3% 38.3% 26.3% 22.1% 19.6% 47.3% 37.1% 31.4% 29.5% 28.1%
Theo. 38.1% 20.5% 8.8% 4.9% 3.1% 26.6% 16.9% 10.2% 7.5% 6.2%

a Empirical losses L̆(Σ)B and theoretical losses L̃(Σ)B for the three models and the 10 estimators. Two levels of sampling n = 23,400, n = 46,800 and three
noise-to-signal ratios ξ 2 = 0.01, ξ 2 = 0.001 and ξ 2 = 0.0002 are considered.

Table 7
Estimates of ρ, AVAR ratio estimates and empirical correlation of corrections.a

B ρ̂B AVAR(QMLE)
B /AVAR(QMLE)

1 AVAR(RK )
B /AVAR(RK )

1 Ĉorr(Q̃B − Q , K̃B − K )

1 0.74 1 1 –
2 0.8 0.96 0.97 0.689
4 0.84 0.92 0.94 0.769
6 0.85 0.91 0.93 0.868
8 0.86 0.9 0.92 0.879

a For B = 1, 2, 4, 6, 8, ρ̂B refers to the empirical mean value of estimates of ρ on blocks [Ti−1, Ti] across days and values of i for INTC in 2015. The AVAR
ratios are estimated by plugging estimates of the integrated volatility, the integrated quarticity and ρ on blocks of different sizes. The last column shows
the empirical correlation between the corrections induced by the local method.
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Table 8
Summary statistics for the global and local estimators.a

Estimator Mean Stdv. Ĉorr(.,Q )

Q 1.771 1.789 1
Q̃2 1.770 1.781 ≈1
Q̃4 1.766 1.769 ≈1
Q̃6 1.761 1.762 0.9999
Q̃8 1.757 1.753 0.9999
K 1.818 1.795 0.9994
K̃2 1.818 1.780 0.9992
K̃4 1.813 1.770 0.9991
K̃6 1.808 1.756 0.9989
K̃8 1.804 1.751 0.9988

a Sample means, standard deviations, and correlations with the global QMLE
for the 10 estimators implemented for INTC data in 2015. The estimators are
scaled by a factor 104 .

Fig. 3. 95% Confidence intervals for the four estimators Q and Q̃8 (green, left), K and K̃8 (blue, right) on INTC data in May 2015. The CIs are computed using
the estimates of AVAR(QMLE)

B , and AVAR(RK )
B for B = 1, 8 obtained as explained in Section 6. The estimators are scaled by a factor 104 . (For interpretation of

the references to color in this figure legend, the reader is referred to the web version of this article.)

the correlation between each estimator and the global QMLE. We find results very close to 1 for all estimators. One should
note that the global RK is less correlated to the QMLE than all the local QMLE Q̃B. This indicates that the order of magnitude
of the correction induced by the local method is smaller than the difference between the two global estimators.

Finally, Fig. 3 shows daily 95% theoretical confidence intervals for Q , Q̃8, K and K̃8 in May 2015. We can see that the
confidence intervals for the local estimators are often shorter than their counterpart. Moreover, over the year the global and
the local estimates confidence intervals always overlap, corroborating the fact that the local estimates are in line with their
global versions.

7. Conclusion

In this paper, we have looked at the efficiency of local methods to estimate integrated volatility. We have shown that for
the RK and the QMLE, if we chop the data into B blocks we can reduce the AVAR when B is fixed and retrieve the parametric
loss when B goes to infinity. We have also seen that the theoretical gain is mostly preserved when looking at finite sample
results. Finally, we have documented that the gain is substantial in practice.

Given how simple to implement the methodology is, we expect that it will be very helpful for practitioners. Our hope
is that this simple and natural technique will be used on the QMLE and the RK, but also considered for a wider class of
estimators. It is clear that the theory would work for the PAE and the MSRV, but econometricians should also try it on their
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own favorite estimator. Actually, the technique can be applied to other problems, such as the high-frequency covariance
estimation, the estimation of functions of volatility, the leverage effect, the volatility of volatility, etc.

Appendix. proofs

A.1. Simplification of the problem

Since we want to prove stable convergence, in view of the componentwise local boundedness of the matrix(
σt 0
σ̃

(1)
t σ̃

(2)
t

)
,

and because inft (min(σt , σ̃
(2)
t )) > 0, we can without loss of generality assume that for all t ∈ [0, T ] there exists some

nonrandom constants σ and σ such that

0 < σ < σt , σ̃
(1)
t , σ̃

(2)
t < σ, (A.1)

by using a standard localization argument (e.g., Section 2.4.5 of Mykland and Zhang, 2012). One can further suppress bt
as in Section 2.2 (pp. 1407–1409) of Mykland and Zhang (2009), and act as if Xt is a martingale. Also, we follow a similar
procedure to localize the random variables Un

i as, e.g, in the proof of Lemma 14.1.5 p. 435, Equation (14.1.13), in Jacod and
Protter (2011). Consequently, we will assume in the following of the proof:

(H) We have b = b̃ = 0. Moreover σ , σ−1, σ̃ (1), (σ̃ (1))−1, σ̃ (2), (σ̃ (2))−1, α, α−1 are bounded. Given an a priori number
γ > 0, we also have sup0≤i≤NnU

n
i ≤ nγ .

In particular, (H) implies, taking γ small enough, that πn
T < 1, for n ∈ N large enough.

We define U := σ
{
Un
i |i, n ∈ N

}
∨ σ {αs|0 ≤ s ≤ T } the σ -field that generates the observation times and which is

independent of X . We will often have to use the conditional expectation E[.|U], that we hereafter denote for convenience
EU. We also define the discrete filtration Gn

i := FX
tni

∨ U, and recall the continuous version Gt := FX
t ∨ U where FX

t is the
canonical filtration associated to X . Note that by independence from α, X admits the same Itô semimartingale dynamics in
the extension G.

Note also that, by virtue of Lemma 14.1.5 in Jacod and Protter (2011), recalling πn
t := supi≥1tni − tni−1, and Nn(t) = sup{i ∈

N − {0}|tni ≤ t} we have

η > 0 H⇒ n1−ηπn
t

P
→ 0. (A.2)

Throughout the proofs, we write Nn for Nn(T ). We also define Ln = N1/2+δ
n , for some δ > 0 to be adjusted, and we let L be a

positive constant that may vary from one line to the other. Finally we often refer to the continuous part of Xt defined as

X̃t := X0 +

∫ t

0
bsds +

∫ t

0
σsdWs. (A.3)

A.2. Proof of (2.1)

We first show the left hand side inequality, that can be reformulated as κ2/3
r,s ≥ ρr,s. Note that by an immediate application

of Hölder’s inequality we have∫ s

r
σ 2
u du ≤ (s − r)1/3

(∫ s

r
σ 3
u du

)2/3

.

Thus,

ρr,s =

∫ s
r σ

2
u du

(s − r)1/2
(∫ s

r σ
4
u du

)1/2
≤

(∫ s
r σ

3
u du

)2/3
(s − r)1/6

(∫ s
r σ

4
u du

)1/2 = κ2/3
r,s .

For the right hand side inequality, we first consider the domination∫ s

r
σ 3
u du ≤

(∫ s

r
σ 2
u du

)1/2(∫ s

r
σ 4
u du

)1/2

,
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which is obtained by Cauchy–Schwarz inequality. Then we inject this expression in κr,s and we get

κr,s =

∫ s
r σ

3
u du

(s − r)1/4
(∫ s

r σ
4
u du

)3/4
≤

(∫ s
r σ

2
u du

)1/2
(s − r)1/4

(∫ s
r σ

4
u du

)1/4 = ρ1/2
r,s .

A.3. Estimates for the efficient price X

Hereafter, we adopt the following notation convention. For a process V (including the noise process ϵ by a slight ‘‘abuse
of notation’’), and t ∈ [0, T ] we write ∆Vt = Vt − Vt−, ∆V n

i := Vtni
− Vtni−1

and ∆V n
:= (∆V n

1 , . . . ,∆V
n
Nn
). Finally, for

interpolation purpose we sometimes write the continuous version ∆V n
i,t := Vtni ∧t − Vtni−1∧t , along with the time increment

∆tni,t := tni ∧ t − tni−1 ∧ t . We introduce the two following quantities:

ζ ni,t := (∆X̃n
i,t )

2
− σ 2

tni−1
∆tni,t , and ζ̄

n
i,t := E

[
ζ ni,t |G

n
i−1

]
. (A.4)

We have the following estimates.

Lemma A.1. We have, for some constant L > 0 independent of i,

E
[

sup
t∈[tni−1,t

n
i ]

|∆X̃n
i,t |

p
⏐⏐⏐Gn

i−1

]
≤ Ln−p/2(Un

i )
p/2, (A.5)

⏐⏐ζ̄ ni,t ⏐⏐ ≤ Ln−3/2(Un
i )

3/2, (A.6)

E
[(
ζ nt,i
)p⏐⏐⏐ Gn

i−1

]
≤ Ln−p(Un

i )
p, (A.7)

E
[⏐⏐⏐ ∫ tni ∧t

tni−1∧t
σ 2
s ds − σ 2

tni−1
∆tni,t

⏐⏐⏐p⏐⏐⏐Gn
i−1

]
≤ Ln−3p/2(Un

i )
3p/2. (A.8)

Proof. For (A.5), this is a consequence of the fact that by the conditional Burkholder–Davis–Gundy inequality, we have

E

[
sup

t∈[tni−1,t
n
i ]

⏐⏐⏐⏐⏐
∫ tni ∧t

tni−1∧t
σsdWs

⏐⏐⏐⏐⏐
p⏐⏐⏐⏐⏐ Gn

i−1

]
≤ E

⎡⎣ sup
t∈[tni−1,t

n
i ]

⏐⏐⏐⏐⏐
∫ tni ∧t

tni−1∧t
σ 2
s ds

⏐⏐⏐⏐⏐
p/2
⏐⏐⏐⏐⏐⏐ Gn

i−1

⎤⎦
≤ L

(
tni − tni−1

)p/2
.

Since α is bounded by assumption (H), and since tni − tni−1 < 1, we get (A.5). The other estimates are straightforwardly
obtained using the same line of reasoning and Itô formula. □

A.4. Proof of Theorems 4 and 8

We adopt the general setting introduced in Section 4 and Appendix A.1.We start by showing the consistency of the QMLE
alongwith other estimates in the case B = 1.We then adapt and combine those results in the case B ≥ 1 to derive the central
limit theorem stated in Theorem 8. As a byproduct, Theorem 4 will also be proven.

When B = 1, we recall that for any ξ = (σ 2, a2) ∈ Ξ := [Σ,Σ] × [a2, a2], a2 > 0, we have, up to a constant term

ln(ξ ) = −
1
2
log det(Ω) −

1
2
Y T
Ω

−1Y , (A.9)

with Ω−1
=
[
ωi,j
]
1≤i≤Nn,1≤j≤Nn

. The exact definition of the coefficients ωi,j can be found in e.g. (28), p. 245 of Xiu (2010),

replacing n by Nn. We define the approximate log-likelihood random field as

l̄n(ξ ) = −
1
2
log det(Ω) −

1
2
Tr
(
Ω

−1 {
Σ
c
0 + Σ

d
0

})
, (A.10)
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with

Σ
c
0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫ tn1

0
σ 2
s ds + 2a2 −a2 0 · · · 0

−a2
∫ tn2

tn1

σ 2
s ds + 2a2 −a2

. . .
...

0 −a2
∫ tn3

tn2

σ 2
s ds + 2a2

. . . 0

...
. . .

. . .
. . . −a2

0 · · · 0 −a2
∫ tnNn

tnNn−1

σ 2
s ds + 2a2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

Σ
d
0 = diag

⎛⎜⎝ ∑
0<s≤tn1

∆J2s ,
∑

tn1<s≤tn2

∆J2s , . . . ,
∑

tnNn−1<s≤tnNn

∆J2s

⎞⎟⎠ .
We further define the diagonal scaling matrix

Φn = diag(N1/2
n ,Nn),

and consider for ξ ∈ Ξ the scaled score functions

Ψn(ξ ) = −Φ
−1
n
∂ ln(ξ )
∂ξ

and Ψ̄n = −Φ
−1
n
∂ l̄n(ξ )
∂ξ

.

We start by showing the consistency of the QMLE. Before stating the result, we give a few definitions. For a matrix
A =

[
ai,j
]
1≤i≤Nn,1≤j≤Nn

∈ RNn×Nn , we associate the matrix Ȧ = [ȧi,j]0≤i≤Nn,1≤j≤Nn ∈ R(Nn+1)×Nn and Ä = [äi,j]0≤iNn,0≤j≤Nn ∈

R(Nn+1)×(Nn+1) whose components respectively satisfy

ȧi,j = ai+1,j − ai,j,

and

äi,j = ȧi,j+1 − ȧi,j = ai+1,j+1 − ai,j+1 + ai,j − ai+1,j,

with the convention ai,j = 0 when i = 0 or j = 0. This will be useful to disentangle some quadratic expressions using the
following result.

Lemma A.2. Let y, z ∈ RNn+1, with y = (y0, . . . , yNn )
T , z = (z0, . . . , zNn )

T . We define ∆y = (∆y1, . . . ,∆yNn ) :=(
y1 − y0, . . . , yNn − yNn−1

)T
∈ RNn , and ∆z the same way. Then we have the by-part summation identities

∆yTA∆z = −yT Ȧ∆z = yT Äz.

We now show a preliminary lemma to get the consistency of the QMLE.

Lemma A.3 (Asymptotic Score). For any ξ ∈ Ξ, let

Ψ∞(ξ ) =

⎛⎜⎜⎜⎝
−

1

8aσ 3
√
T

(∫ T

0
σ 2
s ds +

∑
0<s≤T

∆J2s − σ 2T

)
−

√
T

8a3σ

(
a2 − a20

)
1
2a4

(
a2 − a20

)
⎞⎟⎟⎟⎠ .

We have

sup
ξ∈Ξ

|Ψn(ξ ) − Ψ∞(ξ )|
P

→ 0. (A.11)

Proof. We start by treating the case where the jump part J = 0. We have the decomposition

Ψn = Ψ̄n + Rn, (A.12)
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with

Rn(ξ ) =

⎛⎜⎜⎝
1

2
√
Nn

{
Y T ∂Ω

−1

∂σ 2 Y − tr
(
∂Ω−1

∂σ 2

{
Σ
c
0 + Σ

d
0

})}
1

2Nn

{
Y T ∂Ω

−1

∂a2
Y − tr

(
∂Ω−1

∂a2
{
Σ
c
0 + Σ

d
0

})}
⎞⎟⎟⎠ .

By a straightforward adaptation of the proof of Lemma 1–2 and Theorem 4 in Xiu (2010), we have immediately that
Rn = oP(1) uniformly in the parameters since the step size of the observation grid πn

T
P

→ 0 by (A.2). Thus it is sufficient
to show that we have

sup
ξ∈Ξ

⏐⏐Ψ̄n(ξ ) − Ψ∞(ξ )
⏐⏐ P
→ 0.

Equality (A.11) is then a direct consequence of equations (38) and (40) pp. 247–248 in Xiu (2010) that are obtained following
exactly the same proof as pp. 247–248 for an irregular grid such that πn

T
P

→ 0.
When there are jumps, there is an additional term in (A.12) which is equal to

An(ξ ) =

⎛⎜⎜⎝
1

2
√
Nn

{(
∆Jn
)T ∂Ω−1

∂σ 2 ∆J
n
+ 2

(
∆Jn
)T ∂Ω−1

∂σ 2

{
∆X̃n

+ ∆ϵn
}}

1
2Nn

{(
∆Jn
)T ∂Ω−1

∂a2
∆Jn + 2

(
∆Jn
)T ∂Ω−1

∂a2

{
∆X̃n

+ ∆ϵn
}}

⎞⎟⎟⎠ , (A.13)

so that it is sufficient to show that we have

sup
ξ∈Ξ

⏐⏐⏐⏐⏐⏐⏐An(ξ ) +

⎛⎜⎝ 1

8aσ 3
√
T

∑
0<s≤T

∆J2s

0

⎞⎟⎠
⏐⏐⏐⏐⏐⏐⏐

P
→ 0. (A.14)

We first compute the limit of the term 1
2
√
Nn
(∆Jn)T ∂Ω

−1

∂σ2 ∆Jn. Recalling that ωi,j is the (i, j)th index of Ω−1, we provide the
following decomposition:

1

2
√
Nn

(
∆Jn
)T ∂Ω−1

∂σ 2 ∆J
n

=
1

2
√
Nn

Nn∑
i=1

∂ωi,i

∂σ 2

(
∆Jni
)2

+
1

√
Nn

∑
1≤j<i≤Nn

∂ωi,j

∂σ 2 ∆J
n
i ∆J

n
j . (A.15)

Now, we define τ1, . . . , τN J the jump times of J , where N J is the random number of jumps of J on [0, T ]. Since N J is finite,
there exists a random number K J such that for n ≥ K J we have

1
√
Nn

Nn∑
i=1

∂ωi,i

∂σ 2

(
∆Jni
)2

=
1

2
√
Nn

N J∑
k=1

∂ωNn(τk),Nn(τk)

∂σ 2 ∆J2τk . (A.16)

By direct calculation from the expression of the coefficients ofΩ−1 in (28) p. 245 in Xiu (2010), we easily deduce that for each
kwe have 1

2
√
Nn

∂ωNn(τk),Nn(τk)

∂σ2
P

→ −
1

8aσ3
√
T
uniformly in ξ ∈ Ξ. Since the sum is finite, this yields the uniform convergence

sup
ξ∈Ξ

⏐⏐⏐⏐⏐ 1

2
√
Nn

(
∆Jn
)T ∂Ω−1

∂σ 2 ∆J
n
+

1

8aσ 3
√
T

∑
0<s≤T

∆J2s

⏐⏐⏐⏐⏐ P
→ 0. (A.17)

By a similar argument, we also have for k ̸= l that ∂ω
Nn(τk),Nn(τl)

∂σ2
P

→ 0 exponentially so that we have 1
√
Nn

∑
1≤j<i≤Nn

∂ωi,j

∂σ2 ∆Jni ∆J
n
j

P
→ 0 uniformly. As for 1

√
Nn
(∆Jn)T ∂Ω

−1

∂σ2

{
∆X̃n

+ ∆ϵn
}
, on the one hand the same computation yields that the leading term of

1
√
Nn
(∆Jn)T ∂Ω

−1

∂σ2 ∆X̃n is

N J∑
k=1

1
√
Nn

∂ωNn(τk),Nn(τk)

∂σ 2  
OP(1)

∆Jτk ∆X̃tnik
oP(1)

,
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where tnik ≤ τk ≤ tnik+1, so that as the sum is finite the expression is negligible. On the other hand, we also have by Lemma A.2
that the leading term of the noise part is

−

N J∑
k=1

1
√
Nn

∂ω̇Nn(τk),Nn(τk)

∂σ 2  
OP(N

−1/2
n )

∆Jτk ϵtnik
OP(1)

since ∂ω̇i,j

∂σ2 = OP(1) by direct calculation. Finally, similar reasoning shows that the second component of An is negligible
because of the scaling in N−1

n instead of N−1/2
n , and we are done. □

Now we turn to the consistency of the QMLE.

Theorem A.4 (Consistency). If ξ̂n = (σ̂ 2
n , â

2
n) is the QMLE, we have

ξ̂n
P

→ ξ0 :=
(
σ 2

0, a
2
0

)
, (A.18)

where we recall that Tσ 2
0 =

∫ T
0 σ

2
s ds +

∑
0<s≤T∆J

2
s .

Proof. To get (A.18), it is sufficient to have

sup
ξ∈Ξ

|Ψn(ξ ) − Ψ∞(ξ )|
P

→ 0, (A.19)

which has been proven in Lemma A.3, and for any ϵ > 0

inf
ξ∈Ξ:∥ξ−ξ0∥≥ϵ

∥Ψ∞(ξ )∥2 > 0 = ∥Ψ∞(ξ0)∥2 P-a.s, (A.20)

by a classical statistical argument (see e.g. Van der Vaart, 2000, Theorem 5.9). Given the form ofΨ∞, the equalityΨ∞(ξ0) = 0
is immediate. Note also that the left hand side inequality of (A.20)will be automatically satisfied if we show that ∥Ψ∞(ξ )∥2 >

0 as soon as ξ ̸= ξ0 by a continuity argument since Ξ is compact. Let us then take ξ ∈ Ξ − {ξ0} such that Ψ∞(ξ ) = 0, and
assume first that a2 ̸= a20. In that case, we have

0 = ∥Ψ∞(ξ )∥2
≥

1
4a8

(
a2 − a20

)2
,

which leads to a contradiction. Similarly, the first component of Ψ∞ leads to the domination

0 = ∥Ψ∞(σ 2, a20)∥
2

≥
T

64a20σ 6

(
σ 2

0 − σ 2)2,
so that we can conclude σ 2

= σ 2
0. □

We now turn to the convergence of the Fisher information related to our likelihood field. Let Hn and H̄n be the scaled
Hessian matrices of the likelihood fields, defined for any ξ ∈ Ξ as

Hn(ξ ) = −Φ
−1/2
n

∂2ln(ξ )
∂ξ 2

Φ
−1/2
n

and Hn(ξ ) = −Φ
−1/2
n

∂2 l̄n(ξ )
∂ξ 2

Φ
−1/2
n . (A.21)

Lemma A.5 (Asymptotic Fisher Information). Let Γ(ξ0) be the matrix

Γ(ξ0) =

⎛⎜⎜⎜⎝
√
T

8a0σ 3
0

0

0
1
2a40

⎞⎟⎟⎟⎠ . (A.22)

We have, for any ball Vn centered on ξ0, shrinking to {ξ0},

sup
ξn∈Vn

∥Hn(ξn) − Γ(ξ0)∥
P

→ 0. (A.23)

Proof. First note that a small adaptation of Lemma 1–2 with second order derivatives of Ω−1 from Xiu (2010) yields
supξ∈Ξ

{
Hn(ξ ) − Hn(ξ )

} P
→ 0 since πn

T
P

→ 0. Now, Xiu (2010), bottom of p. 247 and after equation 41 on p. 248, can be
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easily adapted to our case replacing
∫ T
0 σ

2
s ds by Tσ 2

0 as in the previous lemma, so that we have

sup
ξ∈Ξ

{
Hn(ξ ) − H∞(ξ )

} P
→ 0, (A.24)

with

H∞(ξ ) :=

⎛⎜⎜⎝
√
T

8aσ 3 +
(a2 − a20)

√
T

16a3σ 3 +
3T (σ 2

0 − σ 2)

16aσ 5
√
T

0

0
a20
a6

−
1
2a4

⎞⎟⎟⎠ . (A.25)

It is immediate to check that

H∞(ξ0) =

⎛⎜⎜⎜⎝
√
T

8a0σ 3
0

0

0
1
2a40

⎞⎟⎟⎟⎠ . □ (A.26)

We now adopt similar notations to Xiu (2010) in the proof of Lemma 3 (p. 248) and define the processes involved in the
derivation of the central limit theorem. For (β) ∈ {(σ 2), (a2)}, and t ∈ [0, T ], we define

M (β)
1 (t) :=

Nn(t)∑
i=1

∂ωi,i

∂β

⎧⎨⎩(∆Xn
i,t

)2
−

∫ tni ∧t

tni−1∧t
σ 2
s ds −

∑
tni−1∧t<s≤tni ∧t

∆J2s

⎫⎬⎭ , (A.27)

M (β)
2 (t) :=

Nn(t)∑
i=1

⎧⎨⎩∑
1≤j<i

∂ωi,j

∂β
∆Xn

j,t

⎫⎬⎭∆Xn
i,t , (A.28)

M (β)
3 (t) := −2

Nn(t)∑
i=0

⎧⎨⎩
Nn(t)∑
j=1

∂ω̇i,j

∂β
∆Xn

j,t

⎫⎬⎭ ϵtni , (A.29)

M (β)
4 (t) :=

Nn(t)∑
i=0

∂ω̈i,i

∂β

{
ϵ2tni

− a20
}

+ 2
Nn(t)∑
i=0

⎧⎨⎩∑
0≤j<i

∂ω̈i,j

∂β
ϵtnj

⎫⎬⎭ ϵtni , (A.30)

where in all the definitions (A.27)–(A.30), the terms involving the parameters such as Ω−1, Ω̇−1, Ω̈−1, · · · are evaluated at
point ξ := (σ 2, a20), for some σ 2

∈ [Σ2,Σ
2
]. We also define the two-dimensional vectors Mi(t) :=

(
M (σ2)

i (t),M (a2)
i (t)

)
for

i ∈ {1, . . . , 4}. Note that we have the key decomposition

2Φ1/2
n

{
Ψn(ξ ) − Ψ̄n(ξ )

}
= Φ

−1/2
n {M1(T ) + 2M2(T ) + M3(T ) + M4(T )} .

In the next few lemmaswe investigate the limit of each one of those terms. In the presence of jumps and randomobservation
times, we will see that they are not mere extensions of Lemma 3 in Xiu (2010) and that additional variance terms appear in
the limits. We start byM1(T ).

Lemma A.6. We have

Φ
−1/2
n M1(T )

P
→ 0.

Proof. We have to show N−1/4
n M (σ2)

1 (T )
P

→ 0 and N−1/2
n M (a2)

1 (T )
P

→ 0. We start with the case where J = 0. We are going to
show that for any (β) ∈ {(σ 2), (a2)} we actually have N−1/4

n M (β)
1 (T )

P
→ 0. To do so, note that we can write

M (β)
1 (T ) =

Nn∑
i=1

χn
i ,

where

χn
i =

∂ωi,i

∂β

{(
∆Xn

i

)2
−

∫ tni

tni−1

σ 2
s ds

}
.
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Now, since ∂ωi,i

∂β
∈ U ⊂ Gn

i−1, χ
n
i ∈ Gn

i . Moreover, E
[
χn
i |Gn

i−1

]
= 0, thus by Lemma 2.2.11 in Jacod and Protter (2011), it is

sufficient to show that N−1/2
n

∑Nn
i=1E

[
(χn

i )
2
|Gn

i−1

] P
→ 0. By Burkholder–Davis–Gundy inequality, we have

N−1/2
n

Nn∑
i=1

E
[
(χn

i )
2
|Gn

i−1

]
≤ 4N−1/2

n

Nn∑
i=1

(
∂ωi,i

∂β

)2 ∫ tni

tni−1

E
[(
∆Xn

i,s

)2
σ 2
s

⏐⏐⏐ Gn
i−1

]
ds

≤ KN1/2
n n−1+γ

Nn∑
i=1

(tni − tni−1)

≤ KN1/2
n n−1+γ

→
P0,

where we have used the fact that ∂ωi,i

∂β
= OP(N

1/2
n ) uniformly in i. In the presence of jumps, it remains to show that the

additional terms

N−1/4
n

Nn∑
i=1

∂ωi,i

∂β

⎧⎨⎩(∆Jni )2 −

∑
tni−1<s≤tni

∆J2s

⎫⎬⎭
and

2N−1/4
n

Nn∑
i=1

∂ωi,i

∂β
∆Jni ∆X̃

n
i

are negligible. From the finite activity property, note that the first one is identically 0 for n sufficiently large. Again, for n
sufficiently large, defining N J the finite number of jumps of J on [0, T ], we can write the second term as

2N−1/4
n

N J∑
k=1

∂ωNn(τk),Nn(τk)

∂β  
OP(N

1/2
n )

∆Jτk ∆X̃n
ik

OP(n−1/2+1/2γ )

P
→ 0.

where ik is such that tnik ≤ τk ≤ tnik+1, and where we have used (H). This concludes the proof. □

Lemma A.7. We have GT -stably in law that

N−1/4
n M (σ2)

2 (T ) → MN

(
0,

5
64T 3/2σ 7a0

∫ T

0
α−1
s ds

{∫ T

0
σ 4
s αsds +

∑
0≤s≤T

∆J2s (σ
2
s αs + σ 2

s−αs−)

})

and

N−1/2
n M (a2)

2 (T )
P

→ 0.

Proof. As usual, we start by the case with no jumps, that is J = 0. We show the result for M (σ2)
2 . The proof is conducted in

three steps.

Step 1. We consider βn
i,k,t := σtnk

∆W n
i,t , and we define M̃ (σ2)

2 as

M̃ (σ2)
2 (t) :=

Nn∑
i=1

⎧⎨⎩ ∑
(i−Ln)∧1≤j<i

∂ωi,j

∂σ 2 β
n
j,i−Ln−1,t

⎫⎬⎭βn
i,i−Ln−1,t , (A.31)

that is when the increments are replaced by variables of the form σtni−Ln−1
∆W n

j,t , where σtni−Ln−1
is the value of the volatility

process at the beginning of the truncated sum. We show that we have N−1/4
n

{
M (σ2)

2 (T ) − M̃ (σ2)
2 (T )

}
P

→ 0. We decompose

N−1/4
n

{
M (σ2)

2 − M̃ (σ2)
2

}
= R(1)

n + R(2)
n + R(3)

n , (A.32)
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with

R(1)
n = N−1/4

n

Nn∑
i=1

∑
1≤j<i−Ln

∂ωi,j

∂σ 2 ∆X
n
j,t∆X

n
i,t , (A.33)

R(2)
n = N−1/4

n

Nn∑
i=1

∑
(i−Ln)∧1≤j<i

∂ωi,j

∂σ 2 ∆X
n
j,t (∆X

n
i,t − βn

i,i−Ln−1,t ), (A.34)

R(3)
n = N−1/4

n

Nn∑
i=1

∑
(i−Ln)∧1≤j<i

∂ωi,j

∂σ 2 (∆Xn
j,t − βn

j,i−Ln−1,t )β
n
i,i−Ln−1,t . (A.35)

Now, proving that R(1)
n is negligible is immediate because when |i − j| ≥ Ln, we have the domination ∂ωi,j

∂σ2 ≤ L
√
Nne−Nδn for

some L > 0 so that by an easy application of Cauchy–Schwarz inequality and estimates fromLemmaA.1we getEU

⏐⏐⏐R(1)
n

⏐⏐⏐ P
→ 0.

Nowwe show the negligibility of R(2)
n . Assume first that σ has no jumps, i.e J̃ = 0. R(2)

n being a sum of martingale increments,
it is sufficient to show that

N−1/2
n

Nn∑
i=1

EU[(An
i )

2(
∆Xn

i,t − βn
i,i−Ln−1,t

)2
]

P
→ 0,

where An
i =

∑i−1
j=(i−Ln)∧1

∂ωi,j

∂σ2 ∆Xn
j,t . Introducing vi,k,t := σt − σtni−k−1

, δi,k,t :=
∫ tni ∧t
tni−1∧t v

2
i,k,sds, we thus need to show that

N−1/2
n

Nn∑
i=1

EU[(An
i )

2δi,Ln,t ]
P

→ 0.

Itô’s formula applied to v2i,k,t when J̃ = 0 yields

v2i,k,t =

∫ t

tni−k−1

2vi,k,sσ̃ (1)
s dWs  

u(1)i,k,t

+

∫ t

tni−k−1

2vi,k,sσ̃ (2)
s dW̃s  

u(2)i,k,t

+

∫ t

tni−k−1

{(
σ̃ (1)
s

)2
+
(
σ̃ (2)
s

)2}
ds  

u(3)i,k,t

,

so that defining δ(l)i,k,t :=
∫ tni ∧t
tni−1∧t u

(l)
i,k,sds for l ∈ {1, 2, 3}, we now show

N−1/2
n

Nn∑
i=1

EU[(An
i )

2δ
(l)
i,Ln,t ]

P
→ 0. (A.36)

For l = 3, we have |δ
(3)
i,Ln,t | ≤ L∆tni,t (t

n
i − tni−Ln−1) ≤ Ln−2+2γ Ln by (H), and thus (A.36) boils down to showing that

N−1/2
n n−2+2γ Ln

Nn∑
i=1

EU[(An
i )

2
]

P
→ 0. (A.37)

Using EU[∆Xn
k∆X

n
j ] = 0 for j ̸= k, we deduce

N−1/2
n n−2+2γ Ln

Nn∑
i=1

EU[(An
i )

2
] = N−1/2

n n−2+2γ Ln
Nn∑
i=1

i−1∑
j=(i−Ln)∧1

(
∂ωi,j

∂σ 2

)2

EU

[(
∆Xn

j

)2]

≤ LN−1/2
n n−3+3γ Ln

Nn∑
i=1

i−1∑
j=(i−Ln)∧1

(
∂ωi,j

∂σ 2

)2

≤ LN2
nn

−3+3γ Ln → 0,

where we have used that by direct calculation we have
∑Nn

i=1
∑

(i−Ln)∧1≤j<i

(
∂ωi,j

∂σ2

)2
= OP

(
N5/2

n

)
, and that Ln = N1/2+δ

n . For
l = 1, we split (A.36) into two terms

N−1/2
n

Nn∑
i=1

EU[(An
i )

2δ
(l)
i,Ln,t ] = P (1)

n + P (2)
n , (A.38)
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where

P (1)
n = N−1/2

n EU

Nn∑
i=1

∑
(i−Ln)∧1≤j<i

(
∂ωi,j

∂σ 2

)2(
∆Xn

j

)2
δ
(1)
i,Ln,t ,

P (2)
n = N−1/2

n EU

Nn∑
i=1

∑
(i−Ln)∧1≤j̸=k<i

∂ωi,j

∂σ 2

∂ωi,k

∂σ 2 ∆X
n
j ∆X

n
k δ

(1)
i,Ln,t .

We have by Cauchy–Schwarz inequality

P (1)
n ≤ N−1/2

n

Nn∑
i=1

∑
(i−Ln)∧1≤j<i

(
∂ωi,j

∂σ 2

)2(
EU

[(
∆Xn

j

)4]
EU[(δ(1)i,Ln,t )

2
]

)1/2
,

≤ LN−1/2
n n−3+3γ Ln

Nn∑
i=1

∑
(i−Ln)∧1≤j<i

(
∂ωi,j

∂σ 2

)2

≤ LN2
nn

−3+3γ Ln
P

→ 0,

as EU

[(
∆Xn

j

)4]
≤ Ln−2+2γ by (A.5), and

EU

[(
δ
(1)
i,Ln,t

)2]
≤ L∆tni,t (t

n
i − tni−Ln−1)EU

[
sup

s∈[tni−Ln−1,t
n
i ]

v2i,Ln,s

]
≤ Ln−4+4γ L2n,

by the same estimate as for (A.5) for the Itô semimartingale vi,Ln,s. For P
(2)
n

P
→ 0, we first note that for k < j we have

⏐⏐⏐EU

[
∆Xn

k∆X
n
j δ

(1)
i,Ln,t

]⏐⏐⏐ ≤ EU

[
|∆Xn

k |

⏐⏐⏐⏐⏐
∫ tni ∧t

tni−1∧t
E
[
∆Xn

j u
(1)
i,Ln,s

⏐⏐⏐ Gn
j−1

]
ds

⏐⏐⏐⏐⏐
]

≤ LEU

[
|∆Xn

k |

∫ tni ∧t

tni−1∧t

⏐⏐⏐⏐⏐E
[∫ tnj

tnj−1

vi,Ln,uσ̃
(1)
u σudu

⏐⏐⏐⏐⏐ Gn
j−1

]
ds

⏐⏐⏐⏐⏐
]

≤ Ln−3+3γ L1/2n ,

where the last step is obtained using (H) as for the previous estimates. Overall, we get

P (2)
n ≤ LN−1/2

n n−3+3γ L1/2n

Nn∑
i=1

∑
(i−Ln)∧1≤j̸=k<i

∂ωi,j

∂σ 2

∂ωi,k

∂σ 2

≤ LN−1/2
n n−3+3γ L3/2n

Nn∑
i=1

∑
(i−Ln)∧1≤j<i

(
∂ωi,j

∂σ 2

)2

≤ LN2
nn

−3+3γ L3/2n
P

→ 0.

Finally, when l = 2, we write the same decomposition as (A.38), and we note that the exact same calculation as in the
case l = 1 for P (1)

n remains valid. Moreover, following closely the calculation above, we get P (2)
n = 0 by orthogonality of

the Brownian motions W and W̃ . When σ has jumps of finite activity, we easily show as for previous calculations that an
additional negligible term appears in R(2)

n , and thus combining all those results we have R(2)
n

P
→ 0. Finally, R(3)

n
P

→ 0 is proven
following the same line of reasoning as for R(2)

n .

Step 2.We are going to apply Theorem 2-1 p. 238 from Jacod (1997) to the continuous martingale N−1/4
n M̃ (σ2)

2 . Condition
(2.8) is automatically satisfied with Bt = 0. We now show the variance condition (2.9). This boils down to showing that
there exists an increasing limit process Ct such that for any t ∈ [0, T ]⟨

M̃ (σ2)
2 , M̃ (σ2)

2

⟩
t

P
→ Ct , (A.39)
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and CT =
5

64T3/2σ7a0

∫ T
0 α

−1
s ds

∫ T
0 σ

4
s αsds. We introduce

L(1)n := N−1/2
n

Nn∑
i=1

∑
(i−Ln)∧1≤j<i

(
∂ωi,j

∂σ 2

)2

σ 4
tni−Ln−1

(
∆W n

j,t

)2
∆tni,t ,

L(2)n := N−1/2
n

Nn∑
i=1

∑
(i−Ln)∧1≤j̸=k<i

∂ωi,j

∂σ 2

∂ωi,k

∂σ 2 σ
4
tni−Ln−1

∆W n
j,t∆W

n
k,t∆t

n
i,t .

we have
⟨
M̃ (σ2)

2 , M̃ (σ2)
2

⟩
t
= L(1)n + L(2)n , so that our strategy to show (A.39) will be to prove that

L(1)n
P

→ Ct (A.40)

L(2)n
P

→ 0. (A.41)

For L(2)n , we have directly that EU

[(
L(2)n

)2]
is equal to

N−1
n

∑
|i1−i2|≤Ln
1≤i1,i2≤Nn

∑
(i1∨i2)−Ln≤j,k<(i1∧i2)

j̸=k

∂ωi1,j

∂σ 2

∂ωi2,j

∂σ 2

∂ωi1,k

∂σ 2

∂ωi2,k

∂σ 2 EU

[
σ 4
tni1−Ln−1

σ 4
tni2−Ln−1

]
∆tnj,t∆t

n
k,t∆t

n
i1,t∆t

n
i2,t ,

where we have used that for l < min(j1, j2, k1, k2), we have E[∆W n
t,j1
∆W n

t,j2
∆W n

t,k1
∆W n

t,k2
|Gn

l ] = ∆tnj,t∆t
n
k,t when j1 = j2 = j

and k1 = k2 = k, and the expectation is null otherwise. Now, using the boundedness of σ and the fact that ∆tnj,t ≤ Ln−1+γ

by assumption (H), we obtain

EU

[(
L(2)n

)2]
≤ LN−1

n n−4+4γ
∑

|i1−i2|≤Ln
1≤i1,i2≤Nn

∑
(i1∨i2)−Ln≤j,k<(i1∧i2)

j̸=k

∂ωi1,j

∂σ 2

∂ωi2,j

∂σ 2

∂ωi1,k

∂σ 2

∂ωi2,k

∂σ 2 ,

which by direct calculation on the coefficients yields

EU

[(
L(2)n

)2]
≤ LN−1

n n−4+4γN4
n Ln

≤ N7/2+δ
n n−4+4γ

→ 0,

for γ and δ small enough. Now we turn to (A.40). We define Ct :=
5

64
√
Tσ7a0

∫ T
0 α

−1
s ds

∫ t
0 σ

4
s αsds, and we further decompose

L(1)n − Ct into

L(1)n − Ct =

6∑
i=1

B(i)
n , (A.42)

with

B(1)
n = N−1/2

n

Nn∑
i=1

∑
(i−Ln)∧1≤j<i

(
∂ωi,j

∂σ 2

)2

σ 4
tni−Ln−1

((
∆W n

j,t

)2
− ∆tnj,t

) (
tni ∧ t − tni−1 ∧ t

)
,

B(2)
n = N−1/2

n ∆n

Nn∑
i=1

∑
(i−Ln)∧1≤j<i

(
∂ωi,j

∂σ 2

)2

σ 4
tni−Ln−1

(
αtnj−1

− αtni−Ln−1

)
Un
j

(
tni ∧ t − tni−1 ∧ t

)
,

B(3)
n = N−1/2

n ∆n

Nn∑
i=1

∑
(i−Ln)∧1≤j<i

(
∂ωi,j

∂σ 2

)2

σ 4
tni−Ln−1

αtni−Ln−1

(
Un
j − 1

) (
tni ∧ t − tni−1 ∧ t

)
,

B(4)
n =

Nn∑
i=1

⎧⎨⎩N−1/2
n ∆n

∑
(i−Ln)∧1≤j<i

(
∂ωi,j

∂σ 2

)2

−
5

64T 3/2σ 7a0

∫ T

0
α−1
s ds

⎫⎬⎭ σ 4
tni−Ln−1

αtni−Ln−1

(
tni ∧ t − tni−1 ∧ t

)
,

B(5)
n =

5
64T 3/2σ 7a0

∫ T

0
α−1
s ds

Nn∑
i=1

{
σ 4
tni−Ln−1

αtni−Ln−1
− σ 4

tni
αtni

} (
tni ∧ t − tni−1 ∧ t

)
,

B(6)
n =

5
64T 3/2σ 7a0

∫ T

0
α−1
s ds

{
Nn∑
i=1

σ 4
tni
αtni

(
tni ∧ t − tni−1 ∧ t

)
−

∫ t

0
σ 4
s αsds

}
.
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Using that EU

[((
∆W n

j,t

)2
− ∆tnj,t

)((
∆W n

k,t

)2
− ∆tnk,t

)]
= 0 if j ̸= k, and 2

(
∆tnj,t

)2 otherwise, we obtain the estimate

EU

[(
B(1)
n

)2]
≤ LN3

n Lnn
−4+4γ P

→ 0.

Moreover, by the same deviation inequality as (A.5) for α (recall that α is an Itô semimartingale) we have E|αtnj−1
−αtni−Ln−1

| ≤

Ln−1/2L1/2n so that we obtain easily E|B(2)
n | ≤ LN2

nn
−5/2+2γ L1/2n → 0. Similar computation to that of B(1)

n shows that
E
[(
B(3)
n
)2]

→ 0 since E[Un
j −1] = 0 and E[(Un

j −1)(Un
i −1)] = 0when i ̸= j. B(4)

n
P

→ 0 is a direct consequence of the fact that

by a direct calculation we have uniformly in i that N−3/2
n ∆n

∑
(i−Ln)∧1≤j<i

(
∂ωi,j

∂σ2

)2 P
→

5
64T3/2σ7a0

and that Nn∆n
P

→
∫ T
0 α

−1
s ds

by (4.3), recalling that ∆n = T/n. B(5)
n

P
→ 0 is, again a simple consequence of the deviation inequality (A.5) for the Itô

semimartingale σ 4α, and finally B(6)
n

P
→ 0 is just the convergence of the Riemann sum toward the integral limit, and we are

done. We show condition (2.10), i.e. that

N−1/4
n ⟨M̃ (σ2)

2 ,W ⟩t
P

→ 0. (A.43)

Note that

N−1/4
n ⟨M̃ (σ2)

2 ,W ⟩t = N−1/4
n

Nn∑
i=1

∑
(i−Ln)∧1≤j<i

∂ωi,j

∂σ 2 σ
2
tni−Ln−1

∆W n
j,t∆t

n
i,t , (A.44)

so that by a straightforward calculation on the Brownian motion increments we have

EU

[(
⟨M̃ (σ2)

2 ,W ⟩t

)2]
≤ LN2

n Lnn
−3+3γ P

→ 0. (A.45)

Moreover, condition (2.11) is satisfied because M̃ (σ2)
2 is continuous. Finally we show condition (2.12). But note that for any

bounded martingale N orthogonal toW we have directly

⟨M̃ (σ2)
2 ,N⟩t = 0 (A.46)

by (A.31), so that all the conditions required for the theorem hold.

Step 3. In the presence of jumps, for n large enough, an additional term appears inM (σ2)
2 (T ). First, since J is of finite activity

and by the Grigelionis decomposition for Itô-semimartingales (see e.g. Theorem 2.1.2 in Jacod and Protter (2011)), we can
assume without loss of generality that the jump times of J are a subset of the support of a Poisson random measure µ on
R+ × E for E some arbitrary Polish space, adapted to Ft , and with finite intensity measure ν. Let thus τ1, · · · , τp, · · · be an
exhausting sequence for the jumps ofµ. Since J is of finite activity, for n sufficiently large we cannot have more than a single
jump on intervals of the form [tni−Ln , t

n
i ] because supLn<i≤Nn t

n
i − tni−Ln→

a.s0 by assumption (H). Therefore, if n is large enough,
after a simple rearrangement of the terms that contain jumps, and by the previous calculation in the continuous case, we
can writeM (σ2)

2 (t) under the form

M (σ2)
2 (t) = M̃ (σ2)

2 (t) + A+

n (t) + A−

n (t) + o P(1), (A.47)

with

A+

n (t) =

∑
p≥1

∆Jτp

ip+Ln∑
j=ip+1

∂ωip,j

∂σ 2 ∆X̃
n
j,t and A−

n (t) =

∑
p≥1

∆Jτp

ip−1∑
j=ip−Ln

∂ωip,j

∂σ 2 ∆X̃
n
j,t , (A.48)

where ip is such that tnip−1 < τp ≤ tnip . We define

M+

n (t, p) =

ip+Ln∑
j=ip+1

∂ωip,j

∂σ 2 ∆X̃
n
j,t and M−

n (t, p) =

ip−1∑
j=ip−Ln

∂ωip,j

∂σ 2 ∆X̃
n
j,t , (A.49)

along with the following infinite dimensional vector (G, (R+
∞
(p), R−

∞
(p))p≥0) such that G, R+

∞
(p) and R−

∞
(p) are i.i.d standard

normal random variables. We can assume that Ω and GT are rich enough to include such random variables information
without loss of generality, since we can always construct a very good filtered extension as explained in pp. 36–37 of Jacod
and Protter (2011). Now define

V∞ :=
5

64T 3/2σ 7a0

∫ T

0
α−1
s ds, (A.50)

M+

∞
(p) := στpα

1/2
τp

V 1/2
∞

R+

∞
(p) andM−

∞
(p) := στp−α

1/2
τp−V

1/2
∞

R−

∞
(p),
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and

G̃ := C1/2
T G,

where CT was defined in (A.39). We are going to show that GT -stably in law, we have the convergence

N−1/4
n (M̃ (σ2)

2 (T ), (M+

n (T , p),M−

n (T , p))p≥1) → (G̃, (M+

∞
(p),M−

∞
(p))p≥1). (A.51)

As the subset of finite dimensional cylinders is a convergence determining class for the product topology ofRN, it is sufficient
to show that the above convergence holds for all finite families of the form (M̃ (σ2)

2 (T ),M+
n (T , p1),M−

n (T , p1), . . . ,M+
n (T , pk),

M−
n (T , pk)), k ≥ 1. Now, let us consider the filtration G̃t which is the smallest filtration containing Gt and the jump times of

µ, (τp)p≥1. By independence of µ and the Wiener process W , X̃ is also a continuous Itô process with respect to the filtration
G̃t , so that (M̃ (σ2)

2 (t),M+
n (t, p1),M−

n (t, p1), . . . ,M+
n (t, pk),M−

n (t, pk))t∈[0,T ] is a multi-dimensional continuous G̃t-martingale.
Now, for n large enough and by the finite activity property, we have for any 1 ≤ i ̸= j ≤ k,

⟨M+

n (., pi),M+

n (., pj)⟩t = ⟨M−

n (., pi),M−

n (., pj)⟩t = 0 a.s,

and

⟨M+

n (., pi),M−

n (., pi)⟩t = 0 a.s.

Moreover

N−1/2
n ⟨M+

n (., pi),M+

n (., pi)⟩t = N−1/2
n

ip+Ln∑
j=ip+1

(
∂ωip,j

∂σ 2

)2 ∫ tnj ∧t

tnj−1∧t
σ 2
s ds,

since the random index ip is G̃0-measurable. By a similar (but easier) calculation than for L(1)n above, we have

N−1/2
n ⟨M+

n (., pi),M+

n (., pi)⟩T
P

→
5

64T 3/2σ 7a0
σ 2
τpi
ατpi

∫ T

0
α−1
s ds,

and also

N−1/2
n ⟨M−

n (., pi),M−

n (., pi)⟩T
P

→
5

64T 3/2σ 7a0
σ 2
τpi−

ατpi−

∫ T

0
α−1
s ds.

Finally we show the negligibility of N−1/2
n ⟨M̃ (σ2)

2 ,M+
n (., pi)⟩t and N−1/2

n ⟨M̃ (σ2)
2 ,M−

n (., pi)⟩t . We have

N−1/2
n ⟨M̃ (σ2)

2 ,M+

n (., pi)⟩t = N−1/2
n

ip+Ln∑
j=ip+1

∂ωip,j

∂σ 2

j−1∑
k=(j−Ln)∧1

∂ωj,k

∂σ 2 ∆X̃
n
k,tσ

2
j−Ln−1∆t

n
j,t , (A.52)

so that by Assumption (H) we have N−1
n EU

[
⟨M̃ (σ2)

2 ,M+
n (., pi)⟩2t

]
bounded by

LN−1
n n−2+2γ

ip+Ln∑
j1,j2=ip+1

∂ωip,j1

∂σ 2

∂ωip,j2

∂σ 2

j1∧j2−1∑
k=(j1∨j2)−Ln∧1

∂ωj1,k

∂σ 2

∂ωj2,k

∂σ 2 EU

[(
∆X̃n

k,t

)2]

≤ LN−1
n n−3+3γ

ip+Ln∑
j1,j2=ip+1

∂ωip,j1

∂σ 2

∂ωip,j2

∂σ 2

j1∧j2−1∑
k=(j1∨j2)−Ln∧1

∂ωj1,k

∂σ 2

∂ωj2,k

∂σ 2

≤ LN2
n Lnn

−3+3γ P
→ 0,

and thus the bracket is negligible. By a similar calculation we get that the bracket involving M−
n (pi, .) is also negligible.

Moreover, the convergence of ⟨M̃ (σ2)
2 , M̃ (σ2)

2 ⟩t was shown in (A.39). Finally, as above we easily check the bracket of each
martingale with eitherW or a bounded martingale orthogonal toW is negligible so that by another application of Theorem
2-1 in Jacod (1997) we have (A.51). From the representation

N−1/4
n M (σ2)

2 (T ) = N−1/4
n

⎧⎨⎩M̃ (σ2)
2 (T ) +

∑
p≥1

∆Jτp (M
+

n (T , p) + M+

n (T , p))

⎫⎬⎭+ o P(1), (A.53)

along with the fact that {p|∆Jτp ̸= 0} is finite, we deduce by the stable convergence (A.51) that G̃ (and a fortiori G) stably in
law

N−1/4
n M (σ2)

2 (T ) → G̃ +

∑
p≥1

∆Jτp (M
+

∞
(p) + M−

∞
(p)), (A.54)

which is equal to the claimed distribution.
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Finally, to show the convergence N−1/2
n M (a2)

2 (T )
P

→ 0, note that ∂ω
i,j

∂σ2 and ∂ωi,j

∂a2
are equivalent up to a constant term so that

all the above computations apply, and thus the scaling in N−1/2
n instead of N−1/4

n yields the negligibility of this term. □

Before turning to the limiting distribution of the other terms, we recall that for a σ -field H, a random vector Z and a
sequence of random vectors Zn in Rb , we say that Zn converges in law toward Z conditioned on H if we have for any u ∈ Rb

E
[
eiu

T Zn
⏐⏐⏐H] P

→ E
[
eiu

T Z
⏐⏐⏐H] . (A.55)

Moreover, we recall in the following proposition a key result to combine stable convergence and conditional convergence.
The proof of the result can be consulted in Barndorff-Nielsen et al. (2008) (proof of Proposition 5 on p. 1524).

Proposition A.8. Let H be a given sub-σ -field, and let (Yn) and (Zn) be sequences of random vectors, such that each Yn is H-
measurable and the sequence convergesH-stably toward a limiting distribution Y , and (Zn) converges in law conditioned onH to
some Z. Then (Yn, Zn) → (Y , Z) H-stably in distribution.

Lemma A.9. We have conditioned on GT the convergence in distribution

N−1/4
n M (σ2)

3 (T ) → MN

(
0,

√
Tσ 2

0

8σ 5a0

)
, (A.56)

and

N−1/2
n M (a2)

3 (T )
P

→ 0, (A.57)

where we recall the definition σ 2
0 = T−1

{∫ T
0 σ

2
s ds +

∑
0≤s≤T∆J

2
s

}
.

Proof. We start withM (σ2)
3 (T ). We apply a conditional version of Theorem 5.12 from Kallenberg (2006)(p. 92). Accordingly,

we note thatM (σ2)
3 (T ) can be written as

N−1/4
n M (σ2)

3 (T ) =

Nn∑
i=0

χ̃n
i , (A.58)

where χ̃n
i = −2N−1/4

n

{∑Nn
j=1

∂ω̇i,j

∂σ2 ∆Xn
j

}
ϵtni

, are rowwise conditionally independent and centered given GT . To get the
theorem, it is thus sufficient to show that

Nn∑
i=1

E
[(
χ̃n
i

)2⏐⏐⏐ GT

]
P

→
1

8
√
Tσ 5a0

{∫ T

0
σ 2
s ds +

∑
0≤s≤T

∆J2s

}
, (A.59)

and the Lindeberg condition, for any ϵ > 0,
Nn∑
i=0

E
[(
χ̃n
i

)2
1{|χ̃n

i |≥ϵ}

⏐⏐⏐ GT

]
P

→ 0. (A.60)

For (A.59), we can write
∑Nn

i=0E
[(
χ̃n
i

)2⏐⏐⏐ GT

]
= T (1)

n + T (2)
n with

T (1)
n = 4a20N

−1/2
n

Nn∑
i=0

Nn∑
j=1

(
∂ω̇i,j

∂σ 2

)2(
∆Xn

j

)2
, (A.61)

and

T (2)
n = 4a20N

−1/2
n

Nn∑
i=0

Nn∑
j̸=k=1

∂ω̇i,j

∂σ 2

∂ω̇i,k

∂σ 2 ∆X
n
j ∆X

n
k , (A.62)

and using same techniques as for the proof of Lemma A.7 we easily get by direct calculation on the coefficients ∂ω̇i,j

∂σ2 that we

have T (1)
n

P
→

1
8
√
Tσ5a0

{∫ T
0 σ

2
s ds +

∑
0≤s≤T∆J

2
s

}
, and T (2)

n
P

→ 0. As for the Lindeberg condition, it is sufficient to notice that by

independence of the Brownian increments and similar computation we have
∑Nn

i=0E
[(
χ̃n
i

)4⏐⏐GT
] P

→ 0. Finally, for M (a2)
3 (T ),

all the previous calculation holds but now the scaling in N−1/2
n implies that N−1/2

n M (a2)
3 (T )

P
→ 0. □
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Lemma A.10. We have conditioned on GT the convergence in distribution

Φ
−1/2
n M4(T ) → N

⎛⎜⎜⎝0,

⎛⎜⎜⎝
√
T

16a0σ 3 0

0
2
a40

+
cum4[ϵ]

a80

⎞⎟⎟⎠
⎞⎟⎟⎠ . (A.63)

Proof. This is an immediate adaptation of (45) and (47) pp. 248–249 in Xiu (2010) conditioned on GT in lieu of σ (X), since
ϵ is independent of GT . □

We consider now the general case B ≥ 1, and accordingly we define for i ∈ {1, . . . , B} the local QMLE ξ̂n,(i) = (σ̂ 2
n,(i), â

2
n,(i)),

and Ψn,(i), Ψ̄n,(i) the score functions on the block i where all quantities are taken in the time interval (Ti−1, Ti]. We also
introduce the notation

ξ̂n := (σ̂ 2
n,(1), â

2
n,(1), . . . , σ̂

2
n,(B), â

2
n,(B)),

Ψn := (Ψn,(1), . . . ,Ψn,(B)), and Ψ̄n := (Ψ̄n,(1), . . . , Ψ̄n,(B)). The next lemma states the limit distribution of the vector
Ψn − Ψ̄n. Finally we introduce the scaling factors Nn,(i) := Nn (Ti) − Nn (Ti−1) along with the global scaling matrix
Φn = diag(N1/2

n,(1),Nn,(1), . . . ,N
1/2
n,(B),Nn,(B)) ∈ R2B×2B.

Lemma A.11. We have for any σ2
:= (σ 2

(1), . . . , σ
2
(B)) ∈ [σ 2, σ 2

]
B, taking ξ := (σ 2

(1), a
2
0, . . . , σ

2
(B), a

2
0), stably in GT , the

convergence in distribution

Φ1/2
n

{
Ψn(ξ) − Ψ̄n(ξ)

}
→ MN

⎛⎜⎜⎜⎜⎝0,

⎛⎜⎜⎜⎜⎝
V(1) 0 · · · 0

0 V(2) 0
...

... 0
. . .

...

0 · · · · · · V(B)

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ ,

where for i ∈ {1, . . . , B}, V(i) is the two dimensional matrix defined by

V(i) :=

⎛⎜⎜⎜⎝
1
4a0

(
5Q(i)

16σ 7
(i)∆

1/2
B

+
σ̄ 2
i
√
∆B

8σ 5
(i)

+

√
∆B

16σ 3
(i)

)
0

0
1
2a40

+
cum4[ϵ]

4a80

⎞⎟⎟⎟⎠ ,
with

∆Bσ̄
2
i :=

∫ Ti

Ti−1

σ 2
s ds +

∑
Ti−1<s≤Ti

∆J2s ,

and we recall that

Q(i) = ∆
−1
B

∫ Ti

Ti−1

α−1
s ds

{∫ Ti

Ti−1

σ 4
s αsds +

∑
Ti−1<s≤Ti

∆J2s (σ
2
s αs + σ 2

s−αs−)
}
.

Proof. First, for i ∈ {1, . . . , B}, we define the processes M1,(i), . . . ,M4,(i) following the definitions (A.27)–(A.30) adapted
to the time interval (Ti−1, Ti] of length ∆B. Accordingly, for k ∈ {1, . . . , 4}, we denote by Mk the vector process
(M (σ2)

k,(1),M
(a2)
k,(1), . . . ,M

(σ2)
k,(B),M

(a2)
k,(B)), and we note that we have the decomposition

2Φ1/2
n

{
Ψn(ξ ) − Ψ̄n(ξ )

}
= Φ−1/2

n {M1(T ) + 2M2(T ) + M3(T ) + M4(T )} .

For i ∈ {1, . . . , B}, we consider the two terms M3,(i)(T ) and M4,(i)(T ). By independence of ϵ with the other processes we
deduce that the conditional covariance term between those two processes is null. We use this fact along with the marginal
convergences obtained in Lemmas A.9 and A.10 to obtain the convergence in law conditioned on GT

Φ
−1/2
n,(i)

{
M3,(i)(T ) + M4,(i)(T )

}
→ MN

⎛⎜⎜⎜⎝0,

⎛⎜⎜⎜⎝
1
a0

(
σ̄ 2
i
√
∆B

8σ 5
(i)

+

√
∆B

16σ 3
(i)

)
0

0
2
a40

+
cum4[ϵ]

a80

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ ,
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where Φn,(i) := diag(N1/2
n,(i),Nn,(i)). Now, by Slutsky’s lemma, Lemmas A.6 and A.7 we also have the GT -stable convergence in

distribution

Φ
−1/2
n,(i)

{
M1,(i)(T ) + 2M2,(i)(T )

}
→ MN

⎛⎜⎝0,

⎛⎜⎝ 5Q(i)

16a0σ 7
(i)∆

3/2
B

0

0 0

⎞⎟⎠
⎞⎟⎠ .

Finally, by application of Property A.8 with sub-σ -field GT sinceM1,(i)(T ) + 2M2,(i)(T ) is GT -measurable, we deduce the joint
GT -stable convergence of

Φ
−1/2
n,(i)

(
M1,(i)(T ) + 2M2,(i)(T ),M3,(i)(T ) + M4,(i)(T )

)
,

hence the convergence ofΦ−1/2
n,(i)

(
M1,(i)(T ) + 2M2,(i)(T ) + M3,(i)(T ) + M4,(i)(T )

)
toward amixed normal distribution of random

variance 4V(i). Finally, as blocks are non overlapping, we deduce that for any k, l ∈ {1, . . . , 4}, for any i ̸= j ∈ {1, . . . , B} the
martingalesMk,(i) and Ml,(j) are orthogonal so that we have automatically the joint convergence of Φ1/2

n
{
Ψn(ξ ) − Ψ̄n(ξ )

}
to

a mixed normal with block diagonal random variance matrix whose submatrices are V(1), . . . , V(B), and we are done. □

Finally, we derive a central limit theorem for ξ̂n to the limit ξ0 := (σ̄ 2
1 , a

2
0, . . . , σ̄

2
B , a

2
0), and as a byproduct Theorem 8 (and

Theorem 4).

Theorem A.12. We have GT -stably in law that

Φ1/2
n

{̂
ξn − ξ0

}
→ MN

⎛⎜⎜⎜⎜⎝0,

⎛⎜⎜⎜⎜⎝
V ′

(1) 0 · · · 0

0 V ′

(2) 0
...

... 0
. . .

...

0 · · · · · · V ′

(B)

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ ,

where for i ∈ {1, . . . , B}, V ′

(i) is the two dimensional matrix defined by

V ′

(i) :=

⎛⎜⎝a0

(
5Q(i)

σ̄i∆
3/2
B

+
3σ̄ 3

i
√
∆B

)
0

0 2a40 + cum4[ϵ]

⎞⎟⎠ .
In particular, Theorem 8 (and Theorem 4) hold.

Proof. First, note that we can easily extend Lemma A.11 to get a central limit theorem at the point ξ0 = (σ̄ 2
1 , a

2
0, . . . , σ̄

2
B , a

2
0)

forΦ1/2
n
{
Ψn(ξ0) − Ψ̄n(ξ0)

}
by a generalization of Slutsky’s Lemma for stably convergent sequences (see e.g. Theorem3.18 (b)

in Häusler and Luschgy (2015)), where now the submatrices V(i) in the asymptotic variance of themixed normal distribution
have the form

V(i) =

⎛⎜⎜⎜⎝
1

64a0

(
5Q(i)

σ̄ 7
i ∆

1/2
B

+
3
√
∆B

σ̄ 3
i

)
0

0
1
2a40

+
cum4[ϵ]

4a80

⎞⎟⎟⎟⎠ .
To derive the CLT for the 2B-dimensional estimator ξ̂n, we follow the standard procedure and expand the score function
around ξ0. Thus, starting from the first order conditions on the score functions, we have

0 = Ψn
(̂
ξn
)

= Ψn(ξ0) + Φ−1/2
n Hn(ζn)Φ1/2

n

(̂
ξn − ξ0

)
, (A.64)

for some ζn ∈
[
ξ0, ξ̂n

]
, and where Hn is the block diagonal matrix with submatrices Hn,(1), . . . ,Hn,(B), and for i ∈ {1, . . . , B},

Hn,(i) is the scaled Hessian matrix of the log-likelihood field on block i, defined as in (A.21) adapted to the time interval
(Ti−1, Ti]. In the same way, we define Γ(ξ0) as the block diagonal matrix whose subcomponents are Γ(i)(ξ0,(i)) where

Γ(i)(ξ0,(i)) :=

⎛⎜⎜⎝
√
∆B

8a0σ̄ 3
i

0

0
1
2a40

⎞⎟⎟⎠ ,
and ξ0,(i) := (σ̄ 2

i , a
2
0). We can rewrite (A.64) as

Γ(ξ0)
−1Hn(ζn)Φ1/2

n

(̂
ξn − ξ0

)
= −Γ(ξ0)

−1Φ1/2
n

{
Ψn
(
ξ0
)
− Ψ̄n

(
ξ0
)}

+ Φ1/2
n Ψ̄n(ξ0). (A.65)
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Note that, again, by a direct adaptation of (38) and (40) in Xiu (2010) (pp. 247–248) to the case of an irregular grid with
πn
T

P
→ 0 and on the interval (Ti−1, Ti]we automatically get that eachΦ1/2

n,(i)Ψ̄n,(i)(ξ0,(i)) = oP(1) so thatΦ1/2
n Ψ̄n(ξ0) is negligible.

Now, ξ̂n is consistent by application of Theorem A.4 to each ξ̂n,(i) on block i. Therefore, ζn
P

→ ξ0, and by virtue of Lemma A.5
applied to each submatrix Hn,(i), we conclude on the one hand that Γ(ξ0)−1Hn(ζn)

P
→ I where I ∈ R2B×2B is the identity

matrix, and on the other hand by Slutsky’s Lemma and the stable CLT forΦ1/2
n
{
Ψn
(
ξ0
)
− Ψ̄n

(
ξ0
)}

that the left-hand side of
(A.65) tends GT -stably in law to a mixed normal distribution of block diagonal random variance matrix with submatrices of
the form

⎛⎝64a20σ̄
6
i

∆B
0

0 4a80

⎞⎠ ×

⎛⎜⎜⎜⎝
1

64a0

(
5Q(i)

σ̄ 7
i ∆

1/2
B

+
3
√
∆B

σ̄ 3
i

)
0

0
1
2a40

+
cum4[ϵ]

4a80

⎞⎟⎟⎟⎠

=

⎛⎜⎝a0

(
5Q(i)

σ̄i∆
3/2
B

+
3σ̄ 3

i
√
∆B

)
0

0 2a40 + cum4[ϵ]

⎞⎟⎠
= V ′

(i),

and thus we have shown the CLT for ξ̂n. Now to get Theorem 8, it is sufficient to notice that⎛⎜⎜⎝
N1/4

n

(
Q̃ − T σ̄ 2

0

)
N1/2

n

(
B−1

B∑
i=1

â2n,(i) − a20

)
⎞⎟⎟⎠ = ΦnAΦ−1/2

n Φ1/2
n

(̂
ξn − ξ0

)
, (A.66)

where A ∈ R2×2B has the form

A =

(
∆B 0 · · · ∆B 0
0 B−1

· · · 0 B−1

)
,

and from herewe easily conclude that the left-hand side of (A.66) admits a CLTwith the claimed asymptotic variance. Finally
Theorem 4 is a particular case of Theorem 8. □

A.5. Proof of Theorem 1

Some details of the proof are omitted as the techniques used are very close to the QMLE case. We need to introduce some
notation. We consider the block constant processes defined as

c̃t = ci where Ti−1 ≤ t < Ti,
ρt = ρTi−1,Ti where Ti−1 ≤ t < Ti.

ξ 2t = ξ 2Ti−1,Ti where Ti−1 ≤ t < Ti.

Condition (3.5) in Theorem 1 can be re-expressed as

n1/4
(
K̃ −

∫ T

0
σ 2
u du

)
LX
→ MN

(
0, 4B1/2

∆B

∫ T

0
σ 4
u (c̃uk

0,0
•

+ c̃−1
u 2k1,1

•
ρuξ

2
u + c̃−3

u k2,2
•
ξ 4u )du

)
.

We also define the kernels for general processes At and Ct as

K (A, C) = γ0(A, C) +

H∑
h=1

k
(
h − 1
H

)
(γh(A, C) + γ−h(A, C)) ,

where the realized autocovariance is defined as

γh(A, C) =

n∑
j=1

(A∆j − A∆(j−1))(C∆(j−h) − C∆(j−h−1)),

with h = −H, . . . ,−1, 0, 1, . . . ,H . We further define Ki(A, C) the estimate on the ith block and we aggregate the local
estimates to define the adapted version of K (A, C) as

K̃ (A, C) =

B∑
i=1

Ki(A, C).
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We follow the same line of reasoning as in the proof of Theorem 4 (p. 1530, Barndorff-Nielsen et al., 2008). Accordingly,
we just need to show an adapted version of Theorem 3 (p. 1492). Theorem 1 will then follow from Lemma 1 (p. 1523) and
Property A.8. From now on, we aim to show the adapted version of Theorem 3 (p. 1492, Barndorff-Nielsen et al., 2008) which
is stated in what follows.

Theorem 13 (Adapted Version of Theorem 3 in Barndorff-Nielsen et al. (2008)). We assume that H = cn1/2. As n → ∞ we have
that

n1/4
(
K̃ (X, X) −

∫ T

0
σ 2
u du

)
LX
→ MN

(
0, 4k0,0

•
B1−α
∆B

∫ T

0
σ 4
u c̃

−1
u du

)
, (A.67)

n1/4(K̃ (X,U) + K̃ (U, X))
LX
→ MN

(
0, 8ω2k1,1

•
Bα
∫ T

0
σ 2
u c̃udu

)
. (A.68)

In addition, when k′(0)2 + k′(1)2 = 0, the asymptotic variance of K̃ (U) is equivalent to

4ω4

(
n−1/4B3α−1k2,2

•

B∑
i=1

c3i + (B1/2/(n1/2m))
{
k1,1
•

B∑
i=1

ci +
B∑

i=2

k̃1,1
•

(ci, ci−1)
√
cici−1

})
, (A.69)

where k̃1,1
•

(c1, c2) =
∫ 1
0 k′(x)k′(ax)dx with a = min(c1, c2)/max(c1, c2) and if 1/m → 0√

H̃3

n
K̃ (U, X)

LX
→ N

(
0, 4ω4k2,2

•
B3α−1

B∑
i=1

c3i

)
. (A.70)

To show (A.67), we consider the continuous interpolated martingale Mt =

√
n
H̃

(
K̃ (X, X) −

∫ t
0 σ

2
u du

)
. As for the QMLE,

we aim to use Theorem 2.1 (Jacod, 1997). To show condition (2.9), i.e. that [M,M]t
P

→ 4k0,0
•

B1−α∆B
∫ t
0 σ

4
u c̃

−1
u du, we express

Mt as
∑B

i=1M
(i)
t , where M (i)

t are such that M (i)
t = 0 for t ∈ [0, Ti−1], M

(i)
t = Mt on [Ti−1, Ti] and M (i)

t = MTi for t ∈ [Ti, T ]. We
can easily show that

[M,M]t =

B∑
i=1

[M (i),M (i)
]t . (A.71)

The K (X) case in the proof of Theorem 3 (p. 1528, Barndorff-Nielsen et al., 2008) is based on a martingale theorem which
shows that

[M (i),M (i)
]t

P
→ 4k0,0

•
B1−α(t − Ti−1)

∫ Ti∧t

Ti−1∧t
σ 4
u c̃

−1
u du. (A.72)

In view of (A.71) and (A.72), we have thus shown that [M,M]t
P

→ 4k0,0
•

B1−α∆B
∫ t
0 σ

4
u c̃

−1
u du. We show condition (2.10),

i.e. that ⟨M,W ⟩t
P

→ 0, by a straightforward calculation on the Brownianmotion increments. Also, condition (2.11) is satisfied
becauseM is continuous. Finally we show that condition (2.12) hold, i.e. for any bounded martingale N orthogonal toW we
have that

⟨M,N⟩t = 0. (A.73)

This can be proven with the same line of reasoning as for Lemma A.7 for the QMLE.
The proof for (A.68) can adapt directly from the cross-term K (X,U) + K (U, X) part in the proof of Theorem 3 (p. 1528,

Barndorff-Nielsen et al., 2008). Indeed, on each block we have the convergence discussed on p. 1525, and it is clear that as
the block terms are uncorrelated to each other conditioned on Xt , we obtain the convergence of the vector block estimates,
with correlation limit between two different block terms equal to 0.

We aim to show now (A.69). In view of (A.3) on p. 1528 in Barndorff-Nielsen et al. (2008), we have

K̃ (U) =

B∑
i=1

{
−

H(i)∑
h=1

(w(i)
h+1 − 2w(i)

h + w
(i)
h−1)V

(i)
h  

Ai

−

H(i)∑
h=1

(w(i)
h+1 − w

(i)
h−1)R

(i)
h  

Ci

}
,

wherew(i)
h = k( h−1

H(i) ) and V (i)
h =

∑in/B
j=(i−1)n/B+1(UtjUtj−h +UtjUtj+h +Utj−1Utj−1−h +Utj−1Utj−1+h ) and Ci is due to end-effects. We

have that Ai
L
→ A(l)

i and Ci
L
→ C (l)

i for some normally distributed variables A(l)
i and C (l)

i from the proof on p. 1529 in Barndorff-
Nielsen et al. (2008). Actually, we can show that the convergence still holds for the random vector (A1, . . . , AB, C1, . . . , CB)
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and thus we have that K̃ (U)
L
→ N(0, V ) where V is equal to∑

1≤i,j≤B

Cov(A(l)
i , A

(l)
j ) + Cov(C (l)

i , C
(l)
j ). (A.74)

We have that n1/2∑B
i=1 Var(A

(i)) = B1/2k2,2
•

∑B
i=1c

3
i , which shows the convergence to the first term in (A.69). The second term

is obtained as

(B1/2/(n1/2m))−1
B∑

i=1

Var(Ci) + 2
B∑

i=2

Cov(Ai, Ai−1) =
{
k1,1
•

B∑
i=1

ci +
B∑

i=2

k̃1,1
•

(ci, ci−1)
√
cici−1

}
.

The other terms in (A.74) go to 0, thus we have shown (A.69). The convergence (A.70) is obtained as a straightforward
consequence of (A.69).

A.6. Proof of Theorem 7

The proof adding jumps and stochastic observation times follows the same line of reasoning as for the QMLE case.

A.7. Proof of Corollaries 2 and 5

By Slutsky’s Lemma, both corollaries will be proved if we have the consistency of the AVAR estimators. This is a

consequence of the consistency of the estimators ˆ∫ Ti
Ti−1

σ 2
u du and ˆ∫ Ti

Ti−1
σ 4
u du by Theorem 3.1 and Remark 4 in Jacod et al.

(2009) along with the consistency of â2 by, e.g., (21) in Zhang et al. (2005).

A.8. Proof of Proposition 3

AVAR
(RK ,c∗i ,2)
[Ti−1,Ti]

takes on the form

AVAR
(RK ,c∗i ,2)
[Ti−1,Ti]

= a0
√
B

(
∆B

∫ Ti

Ti−1

σ 4
u du

)3/4

g(ρ Ti−1,Ti ).

In view of (A.1), we easily obtain 0 < ρ ≤ ρTi−1,Ti ≤ 1 where ρ =
σ2

σ2 . This gives us the estimate 8 ≤ g(ρTi−1,Ti ) ≤ g < ∞ for
some g .

Let us define for B ∈ N, B ≥ 1, the random set JB := {i ∈ {1, . . . , B}|σ jumps on (Ti−1, Ti]}. Because the jumps in σ are
of finite activity, almost surely the cardinal of JB, defined as |JB|, tends to a finite value. Thus we can get rid of the terms
AVAR

(RK ,c∗i ,2)
[Tk−1,Tk]

for which k is contained into JB because∑
i∈JB

AVAR
(RK ,c∗i ,2)
[Ti−1,Ti]

≤ |JB|∆BT 1/2a0σ 3g
a.s.
→ 0,

and similarly

g(1)a0T 1/2
∑
i∈JB

∫ Ti

Ti−1

σ 3
u du

a.s.
→ 0.

Thus, the proposition will be proved if we show∑
i̸∈JB

AVAR
(RK ,c∗i ,2)
[Ti−1,Ti]

− g(1)a0T 1/2
∑
i̸∈JB

∫ Ti

Ti−1

σ 3
u du

a.s.
→ 0.

As the continuous part of σ is assumed to be an Itô process with bounded components, some calculation shows that for
any p > 0, q ≥ 1, and uniformly in i ̸∈ JB we have the following expansion∫ Ti

Ti−1

σ p
u du = σ

p
Ti−1
∆B + OLq (∆3/2B ),

where A = OLq (C), C > 0 means that E
⏐⏐ A
C

⏐⏐q is bounded. Thus, using again (A.1), we also obtain the expansions ρTi−1,Ti =

1 + OLq (∆1/2B ), g(ρTi−1,Ti ) = g(1) + OLq (∆1/2B ), and (∆B
∫ Ti
Ti−1

σ 4
u du)

3/4
= ∆

1/2
B

∫ Ti
Ti−1

σ 3
u du + OLq (∆2B) to get finally the estimate

AVAR
(RK ,c∗i ,2)
[Ti−1,Ti]

= g(1)a0T 1/2
∫ Ti

Ti−1

σ 3
u du + O Lq (∆3/2B )
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uniformly in i ̸∈ JB. At this stage we have thus proved that∑
i̸∈JB

AVAR
(RK ,c∗i ,2)
[Ti−1,Ti]

− g(1)a0T 1/2
∑
i̸∈JB

∫ Ti

Ti−1

σ 3
u du = O Lq (∆1/2B ).

To get the almost sure convergence to 0, we define YB as the left hand side of the previous equality and note that
E
∑

+∞

B=1|YB|
q < +∞ for any q > 2. This gives us that

∑
+∞

B=1|YB|
q < +∞ a.s. and so |YB|

q a.s.
→ 0, which completes the proof.

A.9. Proof of Remark 2

We show the inequality g(ρ)κ−1
≥ g(1) for any admissible couple (ρ, κ). Note that by the domination κ ≤ ρ1/2 obtained

on the account of (2.1), it is sufficient to show that the function f : ρ → ρ−1/2g(ρ) is decreasing on the interval (0, 1]. We

let p(ρ) =

√
1 +

√
1 + 3d/ρ2, and a short calculation shows us that f ′(ρ) has the same sign as p′(ρ)(1 − p(ρ)−2). Therefore,

the inequality p(ρ) ≥ 1 implies that f is decreasing if and only if p is, which is obvious.

A.10. Proof of Proposition 6

This proof follows the same line of reasoning as for the proof of Proposition 3.

A.11. Proof of Proposition 9

When J = 0, this is a straightforward adaptation of the proof of Proposition 3 using the new estimates for any q ≥ 1

R1/2
(i) = ∆

−1/2
B

(∫ T

0
α−1
s ds

)1/2

α Ti−1 + oLq (∆−1/2
B ),

(
∆BQ(i)

)3/4
= ∆

3/2
B σ 3

Ti−1
+ O Lq (∆2B),

and

g (̃ρTi−1,Ti ) = g(1) + OLq

(
∆

1/2
B

)
.

A.12. Proof of Proposition 11

When J ̸= 0, the situation is fairly different. Let us define the random set

JXB := {i ∈ {1, . . . , B}|X jumps on (Ti−1, Ti]}.

Since J is of finite activity, by taking n sufficiently large, wemay assume that for any i ∈ JXB , X jumps exactly once on (Ti−1, Ti].
Splitting the sum of local variances

AVAR(RK ,rob)
B =

∑
i∈JXB

R1/2
(i) AVAR

(RK ,rob,̃c∗i )
[Ti−1,Ti]

+

∑
i̸∈JXB

R1/2
(i) AVAR

(RK ,rob,̃c∗i )
[Ti−1,Ti]

= I + II,

again by the finite activity property of J we easily deduce from the proof of Proposition 9 that

II
a.s.
→ 8g(1)a0

(∫ T

0
α−1
s ds

)1/2 ∫ T

0
α1/2
s σ 3

s ds.

Now we derive the limit of I . We write τ1, . . . , τÑJ
the jump times of J labeled such that for any i ∈ JXB , Ti−1 < τi ≤ Ti. For

any i ∈ JXB , we have the estimates

σ̄ 2
i

a.s.
∼ ∆

−1
B ∆J

2
τi
,

Q(i)
a.s.
∼ ∆J2τi

(
σ 2
τi

+ σ 2
τi−

)
,

where for the latter expression we used the continuity of α at time τi which is a consequence of the independence of α and
X . We thus have

ρ̃Ti−1,Ti
a.s.
∼ ∆

−1/2
B |∆Jτi |

(
σ 2
τi

+ σ 2
τi−

)−1/2
.
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Combined with g(ρ)
ρ→+∞

∼
16
3

√
ρk0,0• k1,1•

(
1

√
2

+
√
2
)
, we deduce that

I
a.s.
→

16
3

a0

(
1

√
2

+
√
2
)√

k0,0• k1,1•

(∫ T

0
α−1
s ds

)1/2 ∑
0<s≤T

∆J2s
(
σ 2
s αs + σ 2

s−αs−
)1/2

.

A.13. Proof of Propositions 10 and 12

The proofs follow exactly the same line of reasoning as the proofs of Propositions 9 and 11.
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