Homework 5 of Stochastic Calculus, An introduction with Application

Keio University

Due: Thursday, July 2020 23rd 23:59pm by email to potiron@fbc.keio.ac.jp

We consider an emblematic problem in financial econometrics for high-frequency data, i.e. estimating volatility. We assume that the underlying efficient price process is defined as $X_t = mt + \sigma B_t$ on [0, 1] where B_t is a standard Brownian motion, $m \in \mathbb{R}$ is the drift parameter, and we aim to estimate the variance parameter σ^2 . Note that [0, 1] stands for the economic day of interest.

1 Usual framework from the class

In this part, we assume that we observe the price process X_t at regular times $t_{0,n} = 0, t_{1,n} = \frac{1}{n}, t_{2,n} = \frac{2}{n}, \dots, t_{n,n} = 1.$

- 1. Recall the definition of the Realized Volatility (RV) estimator $\hat{\sigma}_n^2$. Compute the bias and the variance of $\hat{\sigma}_n^2$. Interpret about those results when n goes to infinity.
- 2. Show that $\mathbb{E}\left[(\widehat{\sigma}_n^2 \sigma^2)^2\right] \to 0.$

2 Non regular observations

1. Redo (as much as you can from) Part 1 assuming that X_t is observed at deterministic non regular times $t_{0,n} = 0, t_{1,n} = f(\frac{1}{n}), t_{2,n} = f(\frac{2}{n}), \dots, t_{n,n} = f(1)$. where $f:[0,1] \to [0,1]$ is a strictly increasing smooth function such that f(0) = 0 and f(1) = 1.

2. Redo (as much as you can from) Part 1 assuming that the observation times $t_{0,n}, \dots, t_{N,n}$ where N is random and $t_{i,n}$, which is independent from X_t , follows a Poisson point process with parameter $n\mu$ with $\mu > 0$, i.e. $\Delta t_i := t_i - t_{i-1}$ are i.i.d and follows an exponential distribution with parameter $n\mu$.

3 Noisy observations

- 1. We assume now that we observe a noisy version of the price process, i.e that we observe $Z_t = X_t + n^{\alpha} \epsilon_t$, where ϵ_t are i.i.d random variables distributed as $\mathcal{N}(0, \sigma_{\epsilon}^2)$ and $0 \geq \alpha$, but that the observation times are regular (as in Part 1). Moreover, we assume that ϵ_t is independent from X_t . Find the natural definition of $\hat{\sigma}_n^2(Z)$ in that case by replacing X_t by Z_t in the original definition. Compute the bias and the variance of $\hat{\sigma}_n^2(Z)$. What happens when n goes to infinity? Discuss the different cases related to the choice of the value α .
- 2. Discuss question 2 of Part 1 in that new case, i.e. calculate $\mathbb{E}[(\hat{\sigma}_n^2(Z) \sigma^2)^2]$. What is the limit depending on α ?