Homework 5 of Stochastic Calculus, An introduction with Application

Keio University

Due: Thursday, July 2020 23rd 23:59pm by email to potiron@fbc.keio.ac.jp

We consider an emblematic problem in financial econometrics for high-frequency data, i.e. estimating volatility. We assume that the underlying efficient price process is defined as $X_{t}=m t+\sigma B_{t}$ on $[0,1]$ where B_{t} is a standard Brownian motion, $m \in \mathbb{R}$ is the drift parameter, and we aim to estimate the variance parameter σ^{2}. Note that $[0,1]$ stands for the economic day of interest.

1 Usual framework from the class

In this part, we assume that we observe the price process X_{t} at regular times $t_{0, n}=$ $0, t_{1, n}=\frac{1}{n}, t_{2, n}=\frac{2}{n}, \cdots, t_{n, n}=1$.

1. Recall the definition of the Realized Volatility (RV) estimator $\widehat{\sigma}_{n}^{2}$. Compute the bias and the variance of $\hat{\sigma}_{n}^{2}$. Interpret about those results when n goes to infinity.
2. Show that $\mathbb{E}\left[\left(\hat{\sigma}_{n}^{2}-\sigma^{2}\right)^{2}\right] \rightarrow 0$.

2 Non regular observations

1. Redo (as much as you can from) Part 1 assuming that X_{t} is observed at deterministic non regular times $t_{0, n}=0, t_{1, n}=f\left(\frac{1}{n}\right), t_{2, n}=f\left(\frac{2}{n}\right), \cdots, t_{n, n}=f(1)$. where
$f:[0,1] \rightarrow[0,1]$ is a strictly increasing smooth function such that $f(0)=0$ and $f(1)=1$.
2. Redo (as much as you can from) Part 1 assuming that the observation times $t_{0, n}, \cdots, t_{N, n}$ where N is random and $t_{i, n}$, which is independent from X_{t}, follows a Poisson point process with parameter $n \mu$ with $\mu>0$, i.e. $\Delta t_{i}:=t_{i}-t_{i-1}$ are i.i.d and follows an exponential distribution with parameter $n \mu$.

3 Noisy observations

1. We assume now that we observe a noisy version of the price process, i.e that we observe $Z_{t}=X_{t}+n^{\alpha} \epsilon_{t}$, where ϵ_{t} are i.i.d random variables distributed as $\mathcal{N}\left(0, \sigma_{\epsilon}^{2}\right)$ and $0 \geq \alpha$, but that the observation times are regular (as in Part 1). Moreover, we assume that ϵ_{t} is independent from X_{t}. Find the natural definition of $\widehat{\sigma}_{n}^{2}(Z)$ in that case by replacing X_{t} by Z_{t} in the original definition. Compute the bias and the variance of $\widehat{\sigma}_{n}^{2}(Z)$. What happens when n goes to infinity? Discuss the different cases related to the choice of the value α.
2. Discuss question 2 of Part 1 in that new case, i.e. calculate $\mathbb{E}\left[\left(\widehat{\sigma}_{n}^{2}(Z)-\sigma^{2}\right)^{2}\right]$. What is the limit depending on α ?
