Homework 2 of Stochastic Calculus, An introduction with Application

Keio University

Due: Thursday June 2020 4th 23:59pm

How: by sending an email (with Object: [S2020H2] LAST_NAME FIRST_NAME) to potiron@fbc.keio.ac.jp after being converted to PDF format (with the format LastNameFirstName.pdf in Romaji/English) and not handwritten.

1. We recall that for X any random variable, we have:

$$
\operatorname{Var}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right] .
$$

Show that

$$
\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} .
$$

2. It is often the case that we don't know the parameters of the normal distribution, but instead want to estimate them. That is, observing $\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ from n independent random variables normally distributed $\mathcal{N}\left(\mu, \sigma^{2}\right)$ we would like to learn the approximate values of parameters μ and σ^{2}.
(a) We estimate μ with the sample mean as

$$
\hat{\mu}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} .
$$

i. Calculate the bias of $\hat{\mu}_{n}$, i.e. calculate $B_{n}:=\mathbb{E}\left[\left(\hat{\mu}_{n}-\mu\right)\right]$.
ii. Calculate the limit of B_{n} as $n \rightarrow \infty$, and interpret the result.
iii. Calculate the variance of $\hat{\mu}_{n}$, i.e. calculate $V_{n}:=\operatorname{Var}\left[\hat{\mu}_{n}\right]$.
iv. Calculate the limit of V_{n} as $n \rightarrow \infty$, and interpret the result.
(b) We estimate σ^{2} as

$$
\hat{\sigma}_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\hat{\mu}_{n}\right)^{2} .
$$

Redo all the questions of the previous part with this estimator.

