1 可測空間，可測関数，測度空間

非空集合 Ω とその部分集合からなるある集合族 \mathcal{A} を考える。\mathcal{A} が次の条件を満たすとき，\mathcal{A} は σ 代数という。

1. $\Omega \in \mathcal{A}$
2. $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$
3. $A_1, A_2, \cdots \in \mathcal{A} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$

そして，組 (Ω, \mathcal{A}) を可測空間といい，\mathcal{A} の要素の集合を可測集合という。

命題 1.1 (Ω, \mathcal{A}) を可測空間としたとき，以下が成立する。

1. $\emptyset \in \mathcal{A}$
2. $A_1, A_2, \cdots \in \mathcal{A} \Rightarrow \bigcap_{i=1}^{\infty} A_i \in \mathcal{A}$
3. $A_1, A_2, \cdots \in \mathcal{A} \Rightarrow \limsup_{n \to \infty} A_n, \liminf_{n \to \infty} A_n \in \mathcal{A}$

ここで，$\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} A_i$, $\liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} A_i$ と定義される。

可測集合列 $\{A_n\}$ について，特に

$$\liminf_{n \to \infty} A_n = \limsup_{n \to \infty} A_n$$

が成立するとき，この共通の集合を $\lim_{n \to \infty} A_n$ と表し，これを $\{A_n\}$ の極限という。

可測集合列 $\{A_n\}$ は，$A_1 \subset A_2 \subset \cdots$ が成立するとき単調増加であるという，$A_1 \supset A_2 \supset \cdots$ が成立するとき単調減少であるという。そして単調増加であるか単調減少であるとき，単に単調であるという。

命題 1.2 可測関数列 $\{A_n\}$ が単調であるとき，その極限 $\lim_{n \to \infty} A_n$ が存在する。単調増加である場合には $\lim_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n$ が成立し，単調減少である場合には $\lim_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} A_n$ が成立する。
ルベーグ積分 2014年度秋学期

命題1.2の結果を参考にして次のような記法を使う。\(A_n \uparrow A \) と、\(A_n \searrow A \) と
したとき、\(\{A_n\} \) は単調増加でありその極限が \(A = \bigcup_{n=1}^{\infty} A_n \) であること、\(A_n \searrow A \) と
したとき、\(\{A_n\} \) は単調減少でありその極限が \(A = \bigcap_{n=1}^{\infty} A_n \) であることを示す。

可測空間 \((\Omega, \mathcal{A}) \) 上で定義された広義実数値関数 \(f : \Omega \to [-\infty, \infty] \) は任意の実数 \(a \) に対し,

\[
f^{-1}((a, \infty]) = \{ \omega \in \Omega : f(\omega) > a \} \in \mathcal{A}
\]

が成立するとき即ち、\(\{ \omega \in \Omega : f(\omega) > a \} \) が可測集合であるとき可測関数であるという。

命題1.3 \(f : \Omega \to [-\infty, \infty] \) が可測であるならば任意の \(a, b \in \mathbb{R} \) に対し以下の主張が成立する。

1. \(f^{-1}([-\infty, a)) = \{ \omega \in \Omega : f(\omega) < a \} \in \mathcal{A} \)
2. \(f^{-1}([-\infty, a]) = \{ \omega \in \Omega : f(\omega) \leq a \} \in \mathcal{A} \)
3. \(f^{-1}([a, \infty]) = \{ \omega \in \Omega : f(\omega) \geq a \} \in \mathcal{A} \)
4. \(f^{-1}((a, b)) = \{ \omega \in \Omega : a < f(\omega) < b \} \in \mathcal{A} \)
5. \(f^{-1}([a, b)) = \{ \omega \in \Omega : a \leq f(\omega) < b \} \in \mathcal{A} \)
6. \(f^{-1}((a, b]) = \{ \omega \in \Omega : a < f(\omega) \leq b \} \in \mathcal{A} \)
7. \(f^{-1}([a, b]) = \{ \omega \in \Omega : a \leq f(\omega) \leq b \} \in \mathcal{A} \)
8. \(f^{-1}\{a\} = \{ \omega \in \Omega : f(\omega) = a \} \in \mathcal{A} \)
9. \(f^{-1}\{\infty\} = \{ \omega \in \Omega : f(\omega) = \infty \} \in \mathcal{A} \)
10. \(f^{-1}\{-\infty\} = \{ \omega \in \Omega : f(\omega) = -\infty \} \in \mathcal{A} \)
11. \(f^{-1}(R) = \{ \omega \in \Omega : f(\omega) \in R \} \in \mathcal{A} \)

命題1.4 可測関数 \(f_1, \ldots, f_m : \Omega \to \mathbb{R} \) と連続関数 \(F : \mathbb{R}^m \to \mathbb{R} \) に関し、その合成関数 \(F(f_1, \ldots, f_m) \) は可測関数である。

証明 \(\mathbb{R}^m \) は第二可算公理をみたすので任意の開集合は閉区間の直積の可算個の和集合として表すことができる。よって、任意の \(a \in \mathbb{R} \) について

\[
\{ x \in \mathbb{R}^m : F(x) > a \} = \bigcup_{n=1}^{\infty} (b_1^n, c_1^n) \times \cdots \times (b_m^n, c_m^n)
\]
と表わせているので，
\[
\{ \omega \in \Omega : F(f_1(\omega), \ldots, f_m(\omega)) > a \} \\
= \bigcup_{n=1}^{\infty} f_1^{-1}((b_1^n, c_1^n)) \cap \cdots \cap f_m^{-1}((b_m^n, c_m^n))
\]
が成立する。よって，\(F(f_1, \ldots, f_m)\) は可測である。□

系 1.5 任意の可測関数 \(f, g : \Omega \to R\) と任意の \(c \in R\) に対し以下の関数はすべて可測である。

1. \(f^2\)
2. \(|f|\)
3. \(f + g\)
4. \(cf\)
5. \(fg\)
6. \(f \vee g, f \wedge g\)

命題 1.6 任意の可測関数の列 \(f_1, f_2, \ldots : \Omega \to R\) に対し以下の関数はすべて可測である。

1. \(\sup \{ f_n : n = 1, 2 \ldots \}, \inf \{ f_n : n = 1, 2 \ldots \}\)
2. \(\limsup_{n \to \infty} f_n, \liminf_{n \to \infty} f_n\)
3. \(\lim_{n \to \infty} f_n\) が存在するならば，\(\lim_{n \to \infty} f_n\)

可測空間 \((\Omega, \mathcal{A})\) に対し，\(\mathcal{A}\) 上の広義実数値関数 \(\mu\) は以下の性質を満たすとき測度という。

1. \(A \in \mathcal{A} \Rightarrow \mu(A) \geq 0\) かつ \(\mu(\emptyset) = 0\)
2. \(A_1, A_2, \ldots \in \mathcal{A}\) について，
\[
\mu\left(\sum_{i=1}^{\infty} A_i \right) = \sum_{i=1}^{\infty} \mu(A_i)
\]
可測空間 \((\Omega, \mathcal{A})\) と測度 \(\mu\) の組 \((\Omega, \mathcal{A}, \mu)\) を測度空間という。
ルベーグ積分 2014年度秋学期

命題 1.7 測度空間 \((\Omega, \mathcal{A}, \mu)\) について，任意の \(A, B, A_n, A_i \in \mathcal{A}\) 対し以下が成立する．

1. \(A \subset B \Rightarrow \mu(A) \leq \mu(B)\)
2. \(A_n \not\subset A \Rightarrow \mu(A_n) \not\subset \mu(A)\)
3. \(A_n \supset A\) かつ \(\mu(A_1) < \infty \Rightarrow \mu(A_n) \supset \mu(A)\)
4. \(\mu(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \mu(A_n)\)
5. \(\mu(\sum_{i=1}^{n} A_i) = \sum_{i=1}^{n} \mu(A_i)\)
6. \(\mu(\bigcup_{i=1}^{n} A_i) \leq \sum_{i=1}^{n} \mu(A_i)\)

測度空間 \((\Omega, \mathcal{A}, \mu)\) は，\(\mu(\Omega) < \infty\) であるとき有限であるといい，\(\mu(\Omega_n) < \infty\) かつ \(\Omega = \bigcup_{n=1}^{\infty} \Omega_n\) である可測集合列 \(\Omega_n\) が存在するとき，\(\sigma\) 有限であるという．このとき，\(\Omega_n\) は互いに素であるようにとれる．

2 非負値単関数と非負値可測関数の積分

可測空間を定義域とする実数値関数でその像が有限集合である可測関数を单関数という．\(\varphi : \Omega \to \mathbb{R}\) を恒等的には \(0\) ではない非負値単関数としその像を \(Y\) とする．任意の \(y \in Y\) に対し，\(\varphi^{-1}(y) \in \mathcal{A}\) が成立し，

\[
\varphi = \sum_{y \in Y \setminus \{0\}} y^{1_{\varphi^{-1}(y)}}
\]

と書けていることは明らかである．この右辺のように非空可測集合の特性関数の正係数の線形結合で \(\varphi\) に等しいものを \(\varphi\) の表現といい，特に上記の表現を標準表現という．このように \(0\) ではない非負値単関数 \(\varphi\) の表現は必ず存在するが複数ありうるのが普通である．

任意の \(0\) ではない非負値単関数 \(\varphi\) に対し，その標準表現 \(\varphi = \sum_{y \in Y \setminus \{0\}} y^{1_{\varphi^{-1}(y)}}\) を使い

\[
I(\varphi) = \sum_{y \in Y \setminus \{0\}} y\mu(\varphi^{-1}(y))
\]

と定義する．\((y > 0\) について \(y \cdot \infty = \infty, \infty + \infty = \infty\) と約束する) そして，定値関数 \(0\) については \(I(0) = 0\) と約束する．
ルベーグ積分 2014 年度秋学期

非負値単関数 \(\varphi \) の任意の表現

\[
\varphi = \sum_{i=1}^{n} a_i 1_{A_i}, \quad A_i \in \mathcal{A}, A_i \neq \emptyset, a_i > 0
\]

について，\(\{1, \ldots, n\} \) の任意の非空部分集合 \(S \) に対し，

\[
A_S = \bigcap_{i \in S} A_i \cap \bigcap_{j \notin S} A_j
\]

とおき（\(\bigcap_{i \in \emptyset} A_i = \Omega \) と約束）, \(\mathcal{S} = \{S : A_S \neq \emptyset\} \) とおく。\(\{A_S\}_{S \in \mathcal{S}} \) は互いに素であり，\(a_S = \sum_{i \in S} a_i \) とおくと \(a_S > 0 \) であり，明らかに

\[
\varphi = \sum_{i=1}^{n} a_i 1_{A_i} = \sum_{S \in \mathcal{S}} a_S 1_{A_S}
\]

\[
\varphi^{-1}(Y \setminus \{0\}) = \bigcup_{i=1}^{n} A_i = \sum_{S \in \mathcal{S}} A_S
\]

が成立する。さらに，\(\{A_S\}_{S \in \mathcal{S}} \) は \(\{\varphi^{-1}(y)\}_{y \in Y \setminus \{0\}} \) の細分である。すなわち，任意の \(S \in \mathcal{S} \) に対し，\(y \in Y \setminus \{0\} \) が存在し \(A_S \subset \varphi^{-1}(y) \) となっており，このとき \(a_S = y \) である。そして \(\sum_{A_S \subset \varphi^{-1}(y)} A_S = \varphi^{-1}(y) \) が成立する。
これらの性質に注意して以下の等式の連鎖が成立することが確認できる。

\[\sum_{i=1}^{n} a_i \mu(A_i) = \sum_{i=1}^{n} a_i \mu \left(\sum_{S \in \mathcal{F}, S \ni i} A_S \right) \]

\[= \sum_{i=1}^{n} \sum_{S \in \mathcal{F}, S \ni i} a_i \mu(A_S) \]

\[= \sum_{(i,S) \in \{1,\ldots,n\} \times \mathcal{F}, i \in S} a_i \mu(A_S) \]

\[= \sum_{S \in \mathcal{F}} \sum_{i \in S} a_i \mu(A_S) \]

\[= \sum_{S \in \mathcal{F}} a_S \mu \left(\sum_{y \in Y \setminus \{0\}} (A_S \cap \varphi^{-1}(y)) \right) \]

\[= \sum_{S \in \mathcal{F}} a_S \sum_{y \in Y \setminus \{0\}} \mu(A_S \cap \varphi^{-1}(y)) \]

\[= \sum_{y \in Y \setminus \{0\}} \sum_{S \in \mathcal{F}, A_S \subset \varphi^{-1}(y)} a_S \mu(A_S) \]

\[= \sum_{y \in Y \setminus \{0\}} \sum_{S \in \mathcal{F}, A_S \subset \varphi^{-1}(y)} y \mu(A_S) \]

\[= \sum_{y \in Y \setminus \{0\}} y \sum_{S \in \mathcal{F}, A_S \subset \varphi^{-1}(y)} \mu(A_S) \]

\[= \sum_{y \in Y \setminus \{0\}} y \mu(\varphi^{-1}(y)) \]

\[= I(\varphi) \]

したがって，\(I(\varphi) \) の値は \(\varphi \) の表現によらずに

\[I(\varphi) = \sum_{i=1}^{n} a_i \mu(A_i) \]

と計算できることがわかる。
ルベーク積分 2014 年度秋学期

任意の $A \in \mathcal{A}$ と任意の非負値単関数 φ に対し，$I_A(\varphi)$ を

$$I_A(\varphi) = I(1_A \varphi)$$

と定義する．$1_A \varphi$ は明らかに非負値単関数なので $I_A(\varphi)$ の定義は正当である．つぎの命題が成立する．

命題 2.1 任意の非負値単関数 φ, ψ と任意の $c \geq 0$ と任意の可測集合 $A, B \in \mathcal{A}$ に対し，

1. $I_A(\varphi + \psi) = I_A(\varphi) + I_A(\psi)$，$I_A(c \varphi) = c I_A(\varphi)$
2. $I_A(\varphi) \geq 0$
3. $\varphi \leq \psi \Rightarrow I_A(\varphi) \leq I_A(\psi)$
4. $A \subset B \Rightarrow I_A(\varphi) \leq I_B(\varphi)$
5. $I_{A+B}(\varphi) = I_A(\varphi) + I_B(\varphi)$

が成立する．

証明 第 1 の主張は $I(\varphi)$ が φ の任意の表現を使って計算できることより明らか．第 2 の主張は I の定義より明らか．第 3 の主張は第 1，第 2 の主張より明らか．第 4 は第 3 より，第 5 は第 1 より明らか．□

次に非負値可測関数 $f : \Omega \to [0, \infty]$ の積分を定義をする．f より小さい非負値単関数 φ をすべて考えその I の値の上限として f の積分を定義する，即ち，

$$\int_A f \, d\mu = \sup \{ I(\varphi) : 0 \leq \varphi \leq f, \varphi は単関数 \}$$

と定義する．これは ∞ となることもあるのが常にこの定義は確定する．さらに，$A \in \mathcal{A}$ に対し，

$$\int_A f \, d\mu = \int f 1_A \, d\mu$$

と定義する．また，非負値単関数 φ については，

$$\int_A \varphi \, d\mu = I_A(\varphi)$$

であることは上の命題 2.1 より導くことができる．
ルベーグ積分 2014年度秋学期

この積分の基本性質を証明するために次のエゴロフの定理が重要な役割を担う。

定理 2.2 \((\Omega, \mathscr{A}, \mu)\) は有限測度空間とする。\(\Omega\) 上の可測関数列 \(f_n : \Omega \to R\) が \(f : \Omega \to R\) に各点収束しているとする。このとき、任意の \(\varepsilon > 0\) に対し、次の性質をもつ \(H \in \mathscr{A}\) が存在する。

1. \(\mu(H) < \varepsilon\)
2. \(H^c\) 上で \(f_n\) は \(f\) に一致収束する

証明 任意の自然数 \(r\) をひとつ固定して考える。

\[
A(r,n) = \bigcap_{k=n}^{\infty} \{ \omega \in \Omega : |f_k(\omega) - f(\omega)| < \frac{1}{2^r} \}
\]

とおくと、\(f_n\) が \(f\) に各点収束しているので、

\[
A(r,n) \nearrow \Omega \quad (n \to \infty)
\]

が成立する。よって、

\[
\mu(A(r,n)) \nearrow \mu(\Omega)
\]

が成立する。従って、\(n_r\) が存在し

\[
\mu(A(r,n_r)) > \mu(\Omega) - \frac{\varepsilon}{2^r}
\]

即ち、

\[
\mu(A(r,n_r)^c) < \frac{\varepsilon}{2^r}
\]

が成立する。

\[
H = \bigcup_{r=1}^{\infty} A(r,n_r)^c
\]
とおくと，

\[
\mu(H) = \mu \left(\bigcup_{r=1}^{\infty} A(r, n_r)^c \right) \\
\leq \sum_{r=1}^{\infty} \mu(A(r, n_r)^c) \\
< \sum_{r=1}^{\infty} \frac{\varepsilon}{2^r} \\
= \varepsilon
\]

となる．

一方，任意の \(\delta > 0 \) が与えられたとする．\(1/2^{r_0} < \delta \) を満たす自然数 \(r_0 \) をとり固定する．\(\omega \in H^c = \bigcap_{r=1}^{\infty} A(r, n_r) \) ならば，\(\omega \in A(r_0, n_{r_0}) \) であるから，すべての \(k \geq n_{r_0} \) について，

\[
|f_k(\omega) - f(\omega)| < \frac{1}{2^{r_0}} < \delta
\]

が成立している．よって，\(H^c \) 上で \(f_k \) は \(f \) に一致収束している．□

一般に非負可測関数について以下の基本的な性質が証明される．

命題 2.3 \(f : \Omega \to [0, \infty] \) を非負可測関数とすると，\(\varphi_n \nearrow f \) となる非負値単関数列が存在する．

証明 各 \(n \) について，

\[
\varphi_n(\omega) = \begin{cases}
\frac{k-1}{2^n} & \omega \in f^{-1}\left(\left[\frac{k-1}{2^n}, \frac{k}{2^n}\right]\right) \quad k = 1, 2, 3, \ldots, n2^n \\
\frac{2^n}{2^n} & \omega \in f^{-1}(n, \infty)
\end{cases}
\]

とおけばよい．特に \(\varphi_n \leq \varphi_{n+1} \) となっていることは，\(\varphi_{n+1} \) を定義する \(\Omega \) の分割が \(\varphi_n \) のそれの細分になっていることから導かれる．□

命題 2.4 \(f : \Omega \to [0, \infty] \) を非負値可測関数とし，\(\varphi_1, \varphi_2, \ldots \) を非負値単関数列で \(\varphi_n \nearrow f \) とするならば，

\[
\int f \, d\mu = \lim_{n \to \infty} \int \varphi_n \, d\mu
\]

が成立する．
証明 極限 \(\lim_{n \to \infty} \int \varphi_n \, d\mu \) が存在すること、そして不等号

\[
\int f \, d\mu \geq \lim_{n \to \infty} \int \varphi_n \, d\mu
\]

は明らかである。

よって以下では

\[
\int f \, d\mu \leq \lim_{n \to \infty} \int \varphi_n \, d\mu
\]

を示す。

\(f \) が実数値で \(\mu(\Omega) < \infty \) の場合．定理 2.2 より，任意の \(\epsilon > 0 \) に対しのある \(H \) が存在し，\(\mu(H) < \epsilon \) かつ \(H^c \) 上で \(\varphi_n \) は \(f \) に等しい収束している。よって，任意の \(\delta > 0 \) に対し，ある \(n_0 \) が存在し任意の \(n \geq n_0 \) と任意の \(\omega \in H^c \) に対し，

\[
\varphi_n(\omega) - f(\omega) > -\delta \quad \text{即ち} \quad \varphi_n(\omega) > f(\omega) - \delta
\]

が成立している。

一方，\(\psi \leq f \) なる任意の単関数 \(\psi \) をとると，任意の \(n \geq n_0 \) と任意の \(\omega \in H^c \) に対し，

\[
\varphi_n(\omega) > f(\omega) - \delta \geq \psi(\omega) - \delta
\]

となっているので，

\[
I(\psi) = I_H(\psi) + I_{H^c}(\psi)
\leq \mu(H) \max_{\omega \in \Omega} \psi(\omega) + I_{H^c}(\varphi_n + \delta)
= \mu(H) \max_{\omega \in \Omega} \psi(\omega) + \delta \mu(H^c) + I_{H^c}(\varphi_n)
\leq \epsilon \max_{\omega \in \Omega} \psi(\omega) + \delta \mu(H^c) + \int \varphi_n \, d\mu
\]

が成立する。よって，任意の \(\epsilon > 0 \) と \(\delta > 0 \) に対し

\[
I(\psi) \leq \epsilon \max_{\omega \in \Omega} \psi(\omega) + \delta \mu(\Omega^c) + \lim_{n \to \infty} \int \varphi_n \, d\mu
\]

が成立する。従って，

\[
I(\psi) \leq \lim_{n \to \infty} \int \varphi_n \, d\mu
\]
ルベーグ積分 2014 年度秋学期

となるので，

$$\int f \, d\mu \leq \lim_{n \to \infty} \int \varphi_n \, d\mu$$

を得る．

次に，f が実数値で $\mu(\Omega) = \infty$ の場合に，

$$\int f \, d\mu \leq \lim_{n \to \infty} \int \varphi_n \, d\mu$$

を示す．

$$\lim_{n \to \infty} \int \varphi_n \, d\mu = \infty$$

のときは明らかなので，

$$\lim_{n \to \infty} \int \varphi_n \, d\mu < \infty$$

と仮定する．$\psi \leq f$ なる任意の非負値単関数 ψ をとると，

$$\psi = \sum_{y \in Y} y 1_{\psi^{-1}(y)}$$

と表現されているが，任意の $y \in Y \setminus \{0\}$ について $\mu(\psi^{-1}(y)) < \infty$ である．実際，$\mu(\psi^{-1}(y)) = \infty$ かつ $y > 0$ なる $y \in Y$ が存在したとすると，

$$\psi \leq f = \lim_{n \to \infty} \varphi_n$$

であることより，

$$B_n = \{\omega \in \psi^{-1}(y) : \varphi_n(\omega) \geq \frac{y}{2}\}$$

とおくと，$B_n \rightarrow \psi^{-1}(y)$ が成立する．よって，

$$\lim_{n \to \infty} \mu(B_n) = \mu(\psi^{-1}(y)) = \infty$$

が成立する．一方，任意の $\omega \in B_n$ について $\varphi_n(\omega) \geq y/2$ であるので

$$\int \varphi_n \, d\mu \geq \frac{y}{2} \mu(B_n)$$

である．よって，

$$\lim_{n \to \infty} \int \varphi_n \, d\mu = \infty$$

が導出されてしまう．
ルベーク積分 2014 年度秋学期

\[\Omega' = \Omega \setminus \psi^{-1}(0) \] とおけば，\(\mu(\Omega') < \infty \) である．\(\Omega' \) 上で考えて \(\mu(\Omega) < \infty \)に関する上の議論を適用すれば，

\[
I_{\Omega'}(\psi) \leq \lim_{n \to \infty} \int_{\Omega'} \varphi_n \, d\mu
\]

が成立するので，

\[
I(\psi) = I_{\Omega'}(\psi) \leq \lim_{n \to \infty} \int_{\Omega'} \varphi_n \, d\mu \leq \lim_{n \to \infty} \int \varphi_n \, d\mu
\]

を得る．従って，\(0 \leq \psi \leq f \) なるいかなる単関数 \(\psi \) についても

\[
I(\psi) \leq \lim_{n \to \infty} \int \varphi_n \, d\mu
\]

が成立しているので

\[
\int f \, d\mu \leq \lim_{n \to \infty} \int \varphi_n \, d\mu
\]

を得る．以上で \(f \) が実数値である場合には証明が完了した．

\(f \) の値が \(\infty \) になる可能性があり，\(\mu(f^{-1}(\infty)) = 0 \) の場合，\(\psi \leq f \) となる単関数 \(\psi \) を任意にとる．

\[
\tilde{f}(\omega) = \begin{cases} f(\omega) & \omega \notin f^{-1}(\infty) \\ 0 & \omega \in f^{-1}(\infty) \end{cases}
\]

と定義し，\(\tilde{\varphi}_n \) や \(\tilde{\psi} \) も同様に定義すると命題 2.1 より，

\[
\int \tilde{\psi} \, d\mu = \int \psi \, d\mu, \quad \int \tilde{\varphi}_n \, d\mu = \int \varphi_n \, d\mu
\]

が成立し，\(\tilde{\psi} \leq \tilde{f} \) と \(\tilde{\varphi}_n \leq \tilde{f} \) も明らかである．よって，

\[
\int \psi \, d\mu = \int \tilde{\psi} \, d\mu \leq \int \tilde{f} \, d\mu \leq \lim_{n \to \infty} \int \tilde{\varphi}_n \, d\mu = \lim_{n \to \infty} \int \varphi_n \, d\mu
\]

が成立するので

\[
\int f \, d\mu \leq \lim_{n \to \infty} \int \varphi_n \, d\mu
\]

を得る．
ルベーグ積分 2014 年度秋学期

最後に $\mu(f^{-1}(\infty)) > 0$ である場合は、任意の実数 α に対し、

$$B_n^\alpha = \{ \omega \in f^{-1}(\infty) : \varphi_n(\omega) \geq \alpha \}$$

とおくと、$B_n^\alpha \uparrow f^{-1}(\infty)$ が各 α に対し成立しているので、

$$\lim_{n \to \infty} \mu(B_n^\alpha) = \mu(f^{-1}(\infty))$$

となる。よって、各 α に対し、$\mu(B_n^\alpha) \geq \mu(f^{-1}(\infty))/2$ となる n_α が存在するので、$\varphi_{n_\alpha} \geq \alpha 1_{B_n^\alpha}$ に注意すると、

$$\frac{1}{2} \mu(f^{-1}(\infty)) \leq I(\varphi_{n_\alpha}) \leq \lim_{n \to \infty} \int \varphi_n d\mu$$

が成立する。α は任意であったことに注意すると、

$$\lim_{n \to \infty} \int \varphi_n d\mu = \infty$$

を得て、証明が完了する。□

補題 2.5 任意の非負値可測関数 f, g と任意の $c \geq 0$ について、

1. \(\int (f + g) d\mu = \int f d\mu + \int g d\mu \)

2. \(\int (cf) d\mu = c \int f d\mu \)

3. \(f \leq g \Rightarrow \int f d\mu \leq \int g d\mu \)

が成立する。

証明

1. $\int f d\mu = \infty$ または $\int g d\mu = \infty$ のときは明らかなので、どちらも有限値をとるものとする。f と g それぞれに対し各点収束する非負値単調増加単調数列 φ_n と ψ_n をとると、明らかに $\varphi_n + \psi_n$ は $f + g$ に各点収束するので命題 2.4 より求まる。
補題 2.6 1. 非負値可測関数列 \(f_n : \Omega \rightarrow [0, \infty] \) について,

\[
\int \sum_{n=1}^{\infty} f_n \, d\mu = \sum_{n=1}^{\infty} \int f_n \, d\mu
\]

が成立する．
2. 非負値可測関数列 \(f_n : \Omega \rightarrow [0, \infty] \) が単調増加であるならば,

\[
\int \lim_{n \to \infty} f_n \, d\mu = \lim_{n \to \infty} \int f_n \, d\mu
\]

が成立する．

証明

1. \(f_n \) に下から各点収束する単調増加な単関数列を \(\varphi_m^n \) とする．

\[
\psi_m = \sum_{n=1}^{m} \varphi_m^n
\]

とけば,

\[
\psi_m - \psi_{m-1} = \sum_{n=1}^{m-1} (\varphi_m^n - \varphi_{m-1}^n) + \varphi_m^m \geq 0
\]

より \(\psi_m \) は単調増加である単関数列である．また，

\[
\sum_{n=1}^{\infty} f_n \geq \sum_{n=1}^{m} f_n \geq \sum_{n=1}^{m} \varphi_m^n = \psi_m
\]

であり，任意の \(l \) に対し,

\[
\lim_{m \to \infty} \psi_m = \lim_{m \to \infty} \sum_{n=1}^{m} \varphi_m^n \geq \lim_{m \to \infty} \sum_{n=1}^{l} \varphi_m^n = \sum_{n=1}^{l} f_n
\]
が成立するので，\(\lim_{m \to \infty} \psi_m \leq \sum_{n=1}^{\infty} f_n \)
より
\[
\sum_{n=1}^{\infty} f_n = \lim_{m \to \infty} \psi_m
\]
が成立している．よって，命題 2.4 より
\[
\int \sum_{n=1}^{\infty} f_n \, d\mu = \lim_{m \to \infty} \int \psi_m \, d\mu
\]
が成立する．この右辺は
\[
\lim_{m \to \infty} \int \psi_m \, d\mu = \lim_{m \to \infty} \int \sum_{n=1}^{m} \varphi_n \, d\mu
\]
\[
= \lim_{m \to \infty} \sum_{n=1}^{m} \int \varphi_n \, d\mu
\]
\[
\leq \lim_{m \to \infty} \sum_{n=1}^{m} \int f_n \, d\mu
\]
\[
= \sum_{n=1}^{\infty} \int f_n \, d\mu
\]
と計算されるので，
\[
\int \sum_{n=1}^{\infty} f_n \, d\mu \leq \sum_{n=1}^{\infty} \int f_n \, d\mu
\]
が成立する．一方，\(\sum_{n=1}^{\infty} f_n \geq \sum_{n=1}^{m} f_n \) すべての \(m \) について成立するので，
\[
\int \sum_{n=1}^{\infty} f_n \, d\mu \geq \sum_{n=1}^{m} \int f_n \, d\mu
\]
となり，
\[
\int \sum_{n=1}^{\infty} f_n \, d\mu \geq \sum_{n=1}^{\infty} \int f_n \, d\mu
\]
を得る．
2. $g_1 = f_1, g_2 = f_2 - f_1, g_3 = f_3 - f_2, \ldots$ とおくと，$g_m \geq 0$ で，

$$f_n = \sum_{m=1}^{n} g_m$$

が成立しているので，今証明したことより，

$$\int \lim_{n \to \infty} f_n \, d\mu = \int \sum_{m=1}^{\infty} g_m \, d\mu$$

$$= \sum_{m=1}^{\infty} \int g_m \, d\mu$$

$$= \lim_{n \to \infty} \sum_{m=1}^{n} \int g_m \, d\mu$$

$$= \lim_{n \to \infty} \int \sum_{m=1}^{n} g_m \, d\mu$$

$$= \lim_{n \to \infty} \int f_n \, d\mu$$

が成立する．

補題 2.7 (ファトゥの補題)
非負値可測関数列 f_n に対し，

$$\int \liminf_{n \to \infty} f_n \, d\mu \leq \liminf_{n \to \infty} \int f_n \, d\mu$$

が成立する．

証明 $g_n = \inf_{k \geq n} f_k$ とおくと，$g_n \leq f_n$ であり，この g_n は補題 2.6(2) の仮定をみたすので，

$$\lim_{n \to \infty} \int g_n \, d\mu = \int \lim_{n \to \infty} g_n \, d\mu$$

となり，

$$\int \liminf_{n \to \infty} f_n \, d\mu = \int \lim_{n \to \infty} g_n \, d\mu = \lim_{n \to \infty} \int g_n \, d\mu \leq \liminf_{n \to \infty} \int f_n \, d\mu$$
を得る．□

系 2.8 $A_n \in \mathcal{A}$ に対し，
$$\mu(\liminf_{n \to \infty} A_n) \leq \liminf_{n \to \infty} \mu(A_n)$$
証明 $1_{\liminf_{n \to \infty} A_n} = \liminf_{n \to \infty} 1_{A_n}$ が成立することに注意すればよい．□

3 一般の可測関数の積分と収束定理

一般の可測関数 $f : \Omega \to [-\infty, \infty]$ については，その正部分 f^+ と負部分 f^- をそれぞれ
$$f^+ = f \vee 0, \quad f^- = (-f) \vee 0 = -(f \wedge 0)$$
と定義する．これらが非負値可測関数となることはよい．また，
$$f = f^+ - f^- \quad |f| = f^+ + f^-$$
が成立する．そして，
$$\int f^+ \, d\mu < \infty \quad \text{または} \quad \int f^- \, d\mu < \infty$$
であるとき f の積分を
$$\int f \, d\mu = \int f^+ \, d\mu - \int f^- \, d\mu$$
と定義する．非負値可測関数に対し，この積分の定義は前節で定義した積分と一致することは容易に確認できる．さらに，
$$\int f^+ \, d\mu < \infty \quad \text{かつ} \quad \int f^- \, d\mu < \infty$$
であるとき f は積分可能 (可積，ルベーク積分可能，ルベーク可積) であるという．また，任意の可測集合 A について，$1_A f$ の積分が定義可能であるとき，f の A 上の積分を
$$\int_A f \, d\mu = \int 1_A f \, d\mu$$
と定義する．このとき，

\[\int_A f \, d\mu = \int_A f^+ \, d\mu - \int_A f^- \, d\mu \]

が成立することは明らかである．可測集合 \(A \in \mathcal{A} \) に対し，\(1_A f \) が積分可能であるとき \(f \) は \(A \) 上で積分可能であるという．\(f \) が積分可能であれば，\(f \) は \(A \) 上で積分可能であることは明らかである．また，\(f \) が積分可能であることと \(|f|\) が積分可能であることは同値である．\(f \) が積分可能であれば，

\[\mu(f^{-1}(\infty)) = \mu(f^{-1}(-\infty)) = 0 \]

である．

定理 3.1 仮：\(\Omega \to [-\infty, \infty] \) は積分可能ならば，

\[\int \sum_{n=1}^{\infty} A_n \, f \, d\mu = \sum_{n=1}^{\infty} \int A_n \, f \, d\mu \]

が成立する．

証明 仮の正部分 \(f^+ \) について，

\[\int \sum_{n=1}^{\infty} A_n \, f^+ \, d\mu = \int 1 \sum_{n=1}^{\infty} A_n \, f^+ \, d\mu \]

\[= \int \sum_{n=1}^{\infty} A_n \, f^+ \, d\mu \]

\[= \sum_{n=1}^{\infty} \int A_n \, f^+ \, d\mu \]

\[= \sum_{n=1}^{\infty} \int A_n \, f^+ \, d\mu \]

が補題 2.6 より成立する．負部分 \(f^- \) についても同様の等号が成立するので求める等式がえられる．

定理 3.2 \(f, g \) を任意の可測関数，\(c \) を任意の実数とする．

1. \(f, g \) が積分可能で，\(f \leq g \) ならば，

\[\int f \, d\mu \leq \int g \, d\mu \]
ルベーグ積分 2014 年度秋学期

である．特に，$f \geq 0$ ならば，

$$\int f \, d\mu \geq 0$$

である．

2. $f \geq 0$ かつ $\int f \, d\mu = 0$ ならば，$\mu(\{\omega \in \Omega : f(\omega) > 0\}) = 0$ である．

3. f が積分可能ならば，cf も積分可能であり，

$$\int cf \, d\mu = c \int f \, d\mu$$

が成立する．

4. f, g が積分可能ならば，$f + g$ も積分可能であり，

$$\int (f + g) \, d\mu = \int f \, d\mu + \int g \, d\mu$$

が成立する．

5. $A, B \in \mathcal{A} \ , \ A \cap B = \emptyset$ とする．f が A 上で積分可能で，B 上でも積分可能ならば，f は $A + B$ 上で積分可能であり，

$$\int_{A + B} f \, d\mu = \int_A f \, d\mu + \int_B f \, d\mu$$

が成立する．

証明

1. $f \leq g$ ならば，$f^+ \leq g^+$ かつ $f^- \geq g^-$ が成立することに留意すれば明らかである．

2. $\mu(\{\omega \in \Omega : f(\omega) > 0\}) > 0$ と仮定して矛盾を導く．$A_n = \{\omega \in \Omega : f(\omega) > 1/n\}$ とおくと，

$$A_n \cap \{\omega \in \Omega : f(\omega) > 0\}$$

が成立するので，$\mu(A_{n_0}) > 0$ となる n_0 が存在する．

$$(1/n_0)1_{A_{n_0}} \leq f$$
が成立するので両辺の積分をとることにより
\[
0 < \frac{1}{n_0} \mu(A_{n_0}) \leq \int f \, d\mu
\]
をえて矛盾が生じる．
3. \(c \geq 0 \) のときは，\((cf)^+ = cf^+，(cf)^- = cf^-\) が成立する．従って，補題 2.5 より，
\[
\int (cf)^+ \, d\mu = c \int f^+ \, d\mu, \quad \int (cf)^- \, d\mu = c \int f^- \, d\mu
\]
が成立するので，\(cf \) は積分可能で
\[
\int cf \, d\mu = c \int f \, d\mu
\]
が成立する．
\(c < 0 \) の場合には，\((cf)^+ = (-c)f^-\) と \((cf)^- = (-c)f^+\) が成立することに注意して今と同じ議論をくりかえせばよい．
4. \(\Omega \) を次の四つの可測集合に分割して考察する．
\[
A = \{ \omega \in \Omega : f(\omega) \geq 0, \ g(\omega) \geq 0 \},
\]
\[
B = \{ \omega \in \Omega : f(\omega) \geq 0, \ g(\omega) < 0 \},
\]
\[
C = \{ \omega \in \Omega : f(\omega) < 0, \ g(\omega) \geq 0 \},
\]
\[
D = \{ \omega \in \Omega : f(\omega) < 0, \ g(\omega) < 0 \}.
\]
\(A \) と \(D \) に関しては補題 2.5 より
\[
\int_A (f + g) \, d\mu = \int_A f \, d\mu + \int_A g \, d\mu
\]
\[
\int_D (f + g) \, d\mu = \int_D f \, d\mu + \int_D g \, d\mu
\]
が成立し，\(f + g \) がそれぞれの集合上で積分可能であることはよい．\(B \) については
\[
B_1 = \{ \omega \in B : f(\omega) + g(\omega) \geq 0 \}, \ B_2 = \{ \omega \in B : f(\omega) + g(\omega) < 0 \}
\]
と B を分割する。B_1 において

$$f = (f + g) + (-g), \quad f + g \geq 0, \quad -g \geq 0$$

であるので、

$$\int_{B_1} f \, d\mu = \int_{B_1} (f + g) \, d\mu + \int_{B_1} (-g) \, d\mu = \int_{B_1} (f + g) \, d\mu - \int_{B_1} g \, d\mu$$

が成立する。よって、

$$\int_{B_1} (f + g) \, d\mu = \int_{B_1} f \, d\mu + \int_{B_1} g \, d\mu < \infty$$

が成立するので、$f + g$ は B_1 上で積分可能である。同様に B_2 において

$$-g = f + (- (f + g)) \geq 0, \quad f \geq 0$$

が成立することに注意して

$$\int_{B_2} -(f + g) \, d\mu = -\int_{B_2} f \, d\mu + \int_{B_2} (-g) \, d\mu < \infty$$

を得る。従って、$f + g$ は B_2 上で積分可能である。さらに、この等式を変形することにより

$$\int_{B_2} (f + g) \, d\mu = \int_{B_2} f \, d\mu + \int_{B_2} g \, d\mu$$

を得る。以上をまとめてと定理 3.1 より

$$\int_{B} (f + g) \, d\mu = \int_{B_1} f \, d\mu + \int_{B_1} g \, d\mu + \int_{B_2} f \, d\mu + \int_{B_2} g \, d\mu$$

$$= \int_{B} f \, d\mu + \int_{B} g \, d\mu$$

C についても B と同様に議論することにより求める等式が得られる。
5. 仮定より $1_A f$ と $1_B f$ が積分可能であるので，4. より $1_{A+B} f = 1_A f + 1_B f$ は積分可能であり，以下の等式が成立する。

\[
\int_{A+B} f \, d\mu = \int 1_{A+B} f \, d\mu = \int (1_A f + 1_B f) \, d\mu
\]
\[
= \int 1_A f \, d\mu + \int 1_B f \, d\mu
\]
\[
= \int_A f \, d\mu + \int_B f \, d\mu
\]

\[
\square
\]

$f_n : \Omega \to R$ を可測関数の列，$f : \Omega \to R$ を可測関数とする．f_n が f に概収束するときは

\[
\mu(\{\omega \in \Omega : \lim_{n \to \infty} f_n(\omega) = f(\omega)\}^c) = 0
\]

が成立することである．このとき，$f_n \to f$ a.e. とかく．この概収束の定義において，集合 $\{\omega \in \Omega : \lim_{n \to \infty} f_n(\omega) = f(\omega)\}$ が可測集合であることは自明ではない．したがってこれを確認する必要があるが，これは

\[
\{\omega \in \Omega : \lim_{n \to \infty} f_n(\omega) = f(\omega)\}
\]
\[
= \bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} \{\omega \in \Omega : |f_k(\omega) - f(\omega)| < \frac{1}{m}\}
\]

に注意すればよい．

定理 3.3 (ルベーグの収束定理) 関数列 f_n が f に概収束し，積分可能関数 g が存在しほとんどいたるところで $|f_n(\omega)| \leq g(\omega)$ が成立するならば，f は積分可能で

\[
\lim_{n \to \infty} \int f_n \, d\mu = \int f \, d\mu
\]

が成立する．

証明 各 n について $\Omega_n = \{\omega \in \Omega : |f_n(\omega)| \leq g(\omega)\}$ とおき，

\[
\Omega' = \{\omega \in \Omega : \lim_{n \to \infty} f_n(\omega) = f(\omega)\} \cap \bigcap_{n=1}^{\infty} \Omega_n
\]
ルベーグ積分 2014年度秋学期

とおけば、仮定より \(\mu(\Omega^c) = 0 \) であることは明らか。\(\Omega' \) 上では \(f, f_n, g \) に等しく \(\Omega^c \) 上では 0 である関数をそれぞれ \(\tilde{f}, \tilde{f}_n, \tilde{g} \) と表す。すべての \(\omega \) について \(\tilde{f}_n(\omega) \rightarrow \tilde{f}(\omega) \) が成立し、\(\tilde{g} \) は積分可能で \(|\tilde{f}|, |\tilde{f}_n| \leq \tilde{g} \) より \(\tilde{f}, \tilde{f}_n \) は積分可能であり、よって、\(f \) は積分可能であり、

\[
\int \tilde{f}_n d\mu = \int f_n d\mu, \quad \int \tilde{f} d\mu = \int f d\mu, \quad \int \tilde{g} d\mu = \int g d\mu
\]

が成立している。

\[
\tilde{g} + \tilde{f}_n \geq 0, \quad \tilde{g} - \tilde{f}_n \geq 0
\]

が成立しているので、補題 2.7 より、

\[
\int \liminf_{n \to \infty} (\tilde{g} + \tilde{f}_n) d\mu \leq \liminf_{n \to \infty} \int (\tilde{g} + \tilde{f}_n) d\mu
\]

\[
\int \liminf_{n \to \infty} (\tilde{g} - \tilde{f}_n) d\mu \leq \liminf_{n \to \infty} \int (\tilde{g} - \tilde{f}_n) d\mu
\]

が成立する。上記二本の不等式の第一式の左辺は

\[
\int \liminf_{n \to \infty} (\tilde{g} + \tilde{f}_n) d\mu = \int (\tilde{g} + \liminf_{n \to \infty} \tilde{f}_n) d\mu
\]

\[
= \int \tilde{g} d\mu + \int \liminf_{n \to \infty} \tilde{f}_n d\mu
\]

\[
= \int \tilde{g} d\mu + \int \tilde{f} d\mu
\]

\[
= \int g d\mu + \int f d\mu
\]

そして右辺は

\[
\liminf_{n \to \infty} \int (\tilde{g} + \tilde{f}_n) d\mu = \int \tilde{g} d\mu + \liminf_{n \to \infty} \int \tilde{f}_n d\mu
\]

\[
= \int g d\mu + \liminf_{n \to \infty} \int f_n d\mu
\]

となり,

\[
\int f d\mu \leq \liminf_{n \to \infty} \int f_n d\mu
\]
ルベーグ積分 2014 年度秋学期

を得る．第二式についても同様の推論を行いながらことにより，不等式

$$\limsup_{n \to \infty} \int f_n \, d\mu \leq \int f \, d\mu$$

を導出でき，まとめ

$$\lim_{n \to \infty} \int f_n \, d\mu = \int f \, d\mu$$

を得る．□

系 3.4 (ルベーグの有界収束定理) $\mu(\Omega) < \infty$ とする．可測関数列 f_n が f に
giô収束し，ある $M > 0$ が存在し，すべての n に対して $|f_n| \leq M$ がほとんどの
すべての ω について成立しているならば，f は積分可能で

$$\lim_{n \to \infty} \int f_n \, d\mu = \int f \, d\mu$$

が成立する．

定理 3.5 (レヴィの定理) 積分可能関数列 f_n は単調増加で，その積分は有界
とする．このとき，$\lim_{n \to \infty} f_n$ は積分可能であり，

$$\int \lim_{n \to \infty} f_n \, d\mu = \lim_{n \to \infty} \int f_n \, d\mu$$

が成立する．

証明 $f_n - f_1$ を考えれば $f_n \geq 0$ と仮定しても一般性は失われない．この場
合補題 2.6 より明らか．□

4 加法的集合関数

可測空間 (Ω, \mathcal{A}) を考える．\mathcal{A} 上の実数値関数 $\nu : \mathcal{A} \to R$ は，互いに素な
集合 $A_1, A_2, \cdots \in \mathcal{A}$ について，

$$\nu \left(\sum_{n=1}^{\infty} A_n \right) = \sum_{n=1}^{\infty} \nu(A_n)$$

が成立するとき加法的集合関数という．
命題 4.1 \{A_n\} を可測空間 \((\Omega, \mathcal{A})\) の任意の可測集合列とし, \(\nu\) を \(\mathcal{A}\) 上の加法的集合関数とする.

1. \(\nu(\emptyset) = 0\), 従って \(\nu\) は有限加法的である.
2. \(A_n \uparrow A\) または \(A_n \downarrow A\) ならば,

\[
\lim_{n \to \infty} \nu(A_n) = \nu(A)
\]

が成立する.

証明

1. \(\nu\) が実数値であることからでる.
2. 測度の場合と同じ．特に，\(A_n \downarrow A\) の場合は \(\nu\) が実数値であることからでる．

□

補題 4.2 可測空間 \((\Omega, \mathcal{A})\) と, その上の加法的集合関数 \(\nu\) を考える．\(A \in \mathcal{A}\)とする。もし \(\sup_{C \subset A} |\nu(C)| = \infty\) ならば,

\[
|\nu(B)| > |\nu(A)| + 1, \quad \sup_{C \subset B} |\nu(C)| = \infty, \quad B \subset A
\]

をみたす \(B \in \mathcal{A}\) が存在する．

証明 仮定 \(\sup_{C \subset A} |\nu(C)| = \infty\) より

\[
|\nu(B)| > 2|\nu(A)| + 1
\]

をみたす \(B \subset A\) が存在する．\(B' = A \setminus B\) とおくと \(B'\) が \(B\) が求めるものである．

実際，もし \(\sup_{C \subset B} |\nu(C)| = \infty\) であれば，\(B\) が求めるものである．
もし \(\sup_{C \subset B} |\nu(C)| < \infty\) であれば,

\[
\sup_{C \subset B'} |\nu(C)| = \infty
\]
である．実際，もし sup_{C \subseteq B'} |\nu(C)| < \infty であるとすると，任意の C \subseteq A について

\[|\nu(C)| = |\nu(C \cap B) + \nu(C \cap B')| \]
\[\leq |\nu(C \cap B)| + |\nu(C \cap B')| \]
\[\leq \sup_{C \subseteq B} |\nu(C)| + \sup_{C \subseteq B'} |\nu(C)| \]
\[< \infty \]

が成立するので，sup_{C \subseteq A} |\nu(C)| < \infty となり仮定に反する．そして

\[|\nu(B')| = |\nu(A) - \nu(B)| \geq |\nu(B)| - |\nu(A)| > |\nu(A)| + 1 \]

が得られる．

従って，B か B' が求める可測集合となっている．\qed

命題 4.3 加法的集合関数は有界である．

証明 有界ではない加法的集合関数 \nu が存在する，すなわち，

\[\sup_{A \in \mathcal{A}} |\nu(A)| = \infty \]

と仮定する．このとき，A_1 = \Omega とおき補題 4.2 を繰り返し使うことにより，条件

\[A_1 \supset A_2 \supset \ldots, \quad |\nu(A_n)| \geq n - 1, \quad \sup_{B \subseteq A_n} |\nu(B)| = \infty \]

をみたす A_n が存在する．命題 4.1 より \nu(\lim_{n \to \infty} A_n) = \lim_{n \to \infty} \nu(A_n) が成立し，\nu(A_n) は有限値に収束するが，これは |\nu(A_n)| \geq n - 1 に矛盾する．\qed

\nu \in S(\Omega, \mathcal{A}) に対して，

\[\nu^+(A) = \sup_{B \in \mathcal{A}, B \subseteq A} \nu(B), \quad A \in \mathcal{A} \]
\[\nu^-(A) = \sup_{B \in \mathcal{A}, B \subseteq A} (-\nu(B)), \quad A \in \mathcal{A} \]

と定義し，\nu^+ を \nu の正変動といい，\nu^- を \nu の負変動という．
ルベーク積分 2014 年度秋学期

定理 4.4 (ジョルダンの分解定理) \(\nu \in S(\Omega, \mathcal{A}) \) に対して以下の性質が成立する．

1. \(\nu^+, \nu^- \in S(\Omega, \mathcal{A}) \)
2. \(\nu = \nu^+ - \nu^- \)
3. \(\nu^+ = \nu \lor 0 \quad \nu^- = (-\nu) \lor 0 \)

証明

1. \(\nu^+ \in S(\Omega, \mathcal{A}) \) であることを示す．まず，\(\nu^+ \) が実数値であることは命題 4.3 よりよい．次に \(\nu^+ \) が可算加法的であることをいう．\(A_n \in \mathcal{A} \) は互いに素であるとする．任意の \(B \subset \sum_{n=1}^{\infty} A_n \) について

\[
\nu(B) = \sum_{n=1}^{\infty} \nu(B \cap A_n) \leq \sum_{n=1}^{\infty} \nu^+(A_n)
\]

が成立するので，

\[
\nu^+ \left(\sum_{n=1}^{\infty} A_n \right) \leq \sum_{n=1}^{\infty} \nu^+(A_n)
\]

である．一方，任意の \(\varepsilon > 0 \) について，各 \(n \) ごとに

\[
\nu(B_n) \geq \nu^+(A_n) - \frac{\varepsilon}{2^n}, \quad B_n \subset A_n
\]

が成立するような \(B_n \in \mathcal{A} \) が存在する．\(B_n \) は互いに素であるので，

\[
\nu^+ \left(\sum_{n=1}^{\infty} A_n \right) \geq \nu \left(\sum_{n=1}^{\infty} B_n \right)
\]

\[
= \sum_{n=1}^{\infty} \nu(B_n)
\]

\[
\geq \sum_{n=1}^{\infty} \left(\nu^+(A_n) - \frac{\varepsilon}{2^n} \right)
\]

\[
= \sum_{n=1}^{\infty} \nu^+(A_n) - \varepsilon
\]

\(S(\Omega, \mathcal{A}) \) を通常の順位で順序極形空間と見たときの，上限と下限を \(\lor \) と \(\land \) で表している．
ルベーグ積分 2014年度秋学期

が成立する。よって，

\[\nu^+ \left(\sum_{n=1}^{\infty} A_n \right) \geq \sum_{n=1}^{\infty} \nu^+(A_n) \]

である。以上で \(\nu^+ \in S(\Omega, \mathcal{A}) \) が示せた。また，\(\nu \) の代わりに \(-\nu \) を考えれば上記より \(\nu^- \in S(\mathcal{A}, \Omega) \) を得る。

2. \(A \in \mathcal{A} \) を任意にとる。\(B \subset A \) なる任意の \(B \in \mathcal{A} \) について，

\[\nu(A) = \nu(B) + \nu(A \setminus B), \quad A \setminus B \subset A \]

が成立する。従って，

\[\nu(A) - \nu(B) = \nu(A \setminus B) \leq \nu^+(A) \]

となり，\(B \) が任意であることより \(\nu(A) + \nu^-(A) \leq \nu^+(A) \) となり，

\[\nu(A) \leq \nu^+(A) - \nu^-(A) \]

を得る。また，同様にして，

\[\nu(B) - \nu(A) = -\nu(A \setminus B) \leq \nu^-(A) \]

より \(\nu^+(A) - \nu(A) \leq \nu^-(A) \) を導き，

\[\nu(A) \geq \nu^+(A) - \nu^-(A) \]

を得て証明が完了する。

3. \(\nu^+ \geq \nu \) かつ \(\nu^+ \geq 0 \) であることはその定義から明らか。最後に，\(\rho \geq \nu \) かつ \(\rho \geq 0 \) である任意の \(\rho \in S(\Omega, \mathcal{A}) \) を考える。任意の \(A \in \mathcal{A} \) をとり固定する。\(B \subset A \) を満たす任意の \(B \in \mathcal{A} \) について，\(\rho \) は単調なので

\[\nu(B) \leq \rho(B) \leq \rho(A) \]

が成立する。従って，\(\nu^+(A) \leq \rho(A) \) となり \(\nu^+ \leq \rho \) を得る。以上で

\[\nu^+ = \nu \lor 0 \]

が示せた。また \(\nu \) の代わりに \(-\nu \) を考えれば同様にして \(\nu^- = (-\nu) \lor 0 \) を得る。（この証明法をとらなくても線形束の理論で抽象的に証明できる。）
定理 4.5 (ハーンの分解定理) 任意の $\nu \in S(\Omega, \mathcal{A})$ に対し, $E \in \mathcal{A}$ が存在し,

$$\nu^+(E^c) = 0, \quad \nu^-(E) = 0$$

が成立する. 従って, $\nu^+ \wedge \nu^- = 0$ が成立する.

証明 各 n について,

$$\nu(A_n) > \nu^+(\Omega) - \frac{1}{2^n}$$

となる $A_n \in \mathcal{A}$ が存在する. よって

$$\nu^-(A_n) = \nu^+(A_n) - \nu(A_n)$$
$$< \nu^+(A_n) - \nu^+(\Omega) + \frac{1}{2^n}$$
$$\leq \frac{1}{2^n}$$

が成立する.

$$E = \lim \inf_{n \to \infty} A_n$$

とおくと, ν^- は測度であるので, 系 2.8 より,

$$0 \leq \nu^-(E) \leq \lim \inf_{n \to \infty} \nu^-(A_n)$$

が成立する. よって,

$$\nu^-(E) = 0$$

を得る. 同様に,

$$\nu^+(A_n^c) = \nu^+(\Omega) - \nu^+(A_n)$$
$$= \nu^+(\Omega) - \nu(A_n) - \nu^-(A_n)$$
$$< \frac{1}{2^n} - \nu^- (A_n)$$
$$\leq \frac{1}{2^n}$$
となり，これより任意の \(m \) について

\[
\nu^+(E^c) = \nu^+\left(\limsup_{n \to \infty} A_n^c\right) \leq \nu^+\left(\bigcup_{n=m}^{\infty} A_n^c\right)
\]

\[
\leq \sum_{n=m}^{\infty} \nu^+(A_n^c) \leq \frac{1}{2^{m-1}}
\]

が成立するので，\(\nu^+(E^c) = 0 \) を得る．

\(\nu^+ \wedge \nu^- = 0 \) であることはハーンの分解より明らか．□

\(\nu \in S(\Omega, \mathcal{A}) \) とする．このとき，任意の \(A \in \mathcal{A} \) について

\[
|\nu|(A) = \sup\left\{ \sum_{n=1}^{\infty} |\nu(A_n)| : \sum_{n=1}^{\infty} A_n = A, \ A_n \in \mathcal{A} \right\}
\]

と定義し，新たな集合関数を定義する．これを \(\nu \) の全変動という．次の定理

は全変動と正変動，負変動との関係を示しており，その結果 \(|\nu|\) は加法的集合関数であることが確認できる．

定理 4.6 \(\nu \in S(\Omega, \mathcal{A}) \) に対し，

\[
|\nu| = \nu^+ + \nu^-
\]

が成立する．従って，\(|\nu| \in S(\Omega, \mathcal{A})\) が成立する．さらに，

\[
|\nu| = \nu \vee (-\nu)
\]

が成立する．

証明 任意の \(A \in \mathcal{A} \) に対し，\(\sum_{n=1}^{\infty} A_n = A \) すると，

\[
\sum_{n=1}^{\infty} |\nu(A_n)| \leq \sum_{n=1}^{\infty} (\nu^+(A_n) + \nu^-(A_n))
\]

\[
= \nu^+\left(\sum_{n=1}^{\infty} A_n\right) + \nu^-\left(\sum_{n=1}^{\infty} A_n\right)
\]

\[
= \nu^+(A) + \nu^-(A)
\]

が従い，\(|\nu|(A) \leq \nu^+(A) + \nu^-(A)\) である．
逆の不等式はハーンの分解を与える可測集合 E を使い以下のようにして導く。

$$\nu^+(A) + \nu^-(A)$$

$$= \nu^+(A \cap E) + \nu^+(A \cap E^c) + \nu^-(A \cap E) + \nu^-(A \cap E^c)$$

$$= \nu^+(A \cap E) + \nu^-(A \cap E^c)$$

$$= |\nu^+(A \cap E) - \nu^-(A \cap E)| + |\nu^+(A \cap E^c) - \nu^-(A \cap E^c)|$$

$$= |\nu(A \cap E)| + |\nu(A \cap E^c)|$$

$$\leq |\nu|(A)$$

$|\nu| = \nu^+ + \nu^-$ なので，$|\nu| \geq \nu$ かつ $|\nu| \geq -\nu$ であることは明らかであるが，また，$\rho \geq \nu, -\nu$ である任意の $\rho \in S(\mathcal{A}, \Omega)$ を考えると，任意の $A \in \mathcal{A}$ について，$\rho(A) \geq \nu(A), -\nu(A)$ より $\rho(A) \geq |\nu(A)|$ となるので，$|\nu|$ の定義より，$\rho \geq |\nu|$ を得る。よって，$|\nu| = \nu \vee (-\nu)$ が成立する。（後半の主張については，この証明法をとらなくても線形束の理論で抽象的に証明できる。）□

5 ラドン・ニコディムの定理

測度空間 $(\Omega, \mathcal{A}, \mu)$ 上の加法的集合関数 ν が，

1. 測度 μ について絶対連続であるとは，

$$\mu(A) = 0 \Rightarrow \nu(A) = 0$$

が成立することをいう。

2. 測度 μ について特異であるとは，$\mu(E) = 0$ である $E \in \mathcal{A}$ が存在し，任意の $A \subset E^c$ について $\nu(A) = 0$ が成立することをいう。

補題 5.1 測度空間 $(\Omega, \mathcal{A}, \mu)$ 上の加法的集合関数 ν が μ について絶対連続でありかつ特異であるならば，$\nu = 0$ である。

証明 ν が特異であることより，$A \in \mathcal{A}$ が存在し，$\mu(A) = 0$ でかつ $B \subset A^c$ である任意の $B \in \mathcal{A}$ について $\nu(B) = 0$ である。従って，任意の $C \in \mathcal{A}$ について

$$\nu(C) = \nu(C \cap A) + \nu(C \cap A^c)$$
とみれば、右辺第一項は \(\mu(C \cap A) = 0 \) より 0 であり、第二項も \(A \) のとりかたより 0 である. □

定理 5.2 \((\Omega, \mathcal{A}, \mu)\) を有限測度空間とし、\(\nu \) を非負値加法的集合関数とする。このとき、非負値可積分関数 \(f \) と \(\mu \) について特異な非負値加法的集合関数 \(\lambda \) が一意的に存在し,

\[
\nu(A) = \int_A f \, d\mu + \lambda(A), \quad A \in \mathcal{A}
\]

が成立する。関数 \(f \) の一意性については測度 \(\mu \) の \(a.e. \) についての一意性と解釈する。

証明 可測空間 \((\Omega, \mathcal{A})\) 上の実数値可測関数全体からなる線形束を \(M(\Omega, \mathcal{A}) \) と表す。\[
\mathcal{M} = \left\{ h \in M(\Omega, \mathcal{A}) : h \geq 0, \int_A h \, d\mu \leq \nu(A), A \in \mathcal{A} \right\}
\]
とおき,

\[
\alpha = \sup_{h \in \mathcal{M}} \int h \, d\mu \leq \nu(\Omega)
\]
とある。\[
\lim_{n \to \infty} \int h_n \, d\mu = \alpha
\]
をみたす列 \(h_n \in \mathcal{M} \) をとり,

\[
f = \sup_{n \geq 1} h_n
\]
とおけばこれが求めるべき関数である。

\[
g_n = h_1 \lor \cdots \lor h_n
\]
とおくと、\(g_n \) は単調増加で \(f \) に各点収束していることは明らか。

自然数 \(n \) を任意にとり固定する。

\[
D_1 = \{ \omega \in \Omega : g_n(\omega) = h_1(\omega) \}
\]

\[
D_k = \{ \omega \in \Omega : g_n(\omega) = h_k(\omega) \} \setminus \sum_{i=1}^{k-1} D_i, \quad k = 2, \ldots, n
\]
ルベーク積分 2014 年度秋学期

とおくと，\(\Omega = \sum_{k=1}^{n} D_k \) が成立する．よって，任意の \(A \in \mathcal{A} \) に対し，

\[
\int_{A} g_n \, d\mu = \sum_{k=1}^{n} \int_{D_k \cap A} g_n \, d\mu
\]

\[
= \sum_{k=1}^{n} \int_{D_k \cap A} h_k \, d\mu
\]

\[
\leq \sum_{k=1}^{n} \nu(D_k \cap A)
\]

\[
= \nu(A)
\]

が成立し，\(g_n \) は \(\mathcal{M} \) に属する．\(g_n \) は単調増加で \(f \) に各点収束していて，

\[
\int g_n \, d\mu \leq \alpha
\]

なので，定理 3.5 より，\(f \) は積分可能で，任意の \(A \in \mathcal{A} \) に対し

\[
\int_{A} f \, d\mu = \lim_{n \to \infty \int_{A} g_n \, d\mu \leq \nu(A)
\]

が成立する．従って，\(f \in \mathcal{M} \) であり，

\[
\alpha = \lim_{n \to \infty \int_{A} h_n \, d\mu \leq \lim_{n \to \infty \int_{A} g_n \, d\mu \leq \alpha
\]

より

\[
\int f \, d\mu = \alpha
\]

をえる．ここで，

\[
\rho(A) = \int_{A} f \, d\mu, \quad A \in \mathcal{A}
\]

と集合関数 \(\rho \) を定義すれば，\(\rho \) は定理 3.1 より非負値加法的集合関数で，\(\mu \) について絶対連続である．

\[
\lambda(A) = \nu(A) - \rho(A), \quad A \in \mathcal{A}
\]

とおくと，\(\lambda \) は非負値加法的集合関数である．\(\lambda = 0 \) ならば一意性以外の主張の証明は完了する．\(\lambda \neq 0 \) の場合は

\[
\lambda_n = \lambda - \frac{1}{n} \mu
\]
とおき，λ_nのハーン分解を E_nとする．即ち，

$$\lambda^+_n(E_n^c) = 0, \quad \lambda^-_n(E_n) = 0$$

が成立している．よって，任意の $A \in \mathcal{A}$ に対し，

$$\lambda(A \cap E_n) = \lambda_n(A \cap E_n) + \frac{1}{n} \mu(A \cap E_n)$$

$$= \lambda^+_n(A \cap E_n) - \lambda^-_n(A \cap E_n) + \frac{1}{n} \mu(A \cap E_n)$$

$$= \lambda^+_n(A \cap E_n) + \frac{1}{n} \mu(A \cap E_n) \geq \frac{1}{n} \mu(A \cap E_n)$$

従って，

$$\int_A (f + \frac{1}{n} 1_{E_n}) \, d\mu = \int_A f \, d\mu + \frac{1}{n} \mu(A \cap E_n)$$

$$\leq \int_A f \, d\mu + \lambda(A \cap E_n)$$

$$\leq \int_A f \, d\mu + \lambda(A)$$

$$= \nu(A)$$

より，$f + \frac{1}{n} 1_{E_n}$ は \mathcal{M} に属するので，

$$\int_A (f + \frac{1}{n} 1_{E_n}) \, d\mu \leq \alpha = \int_A f \, d\mu$$

が成立する．よって，

$$\int \frac{1}{n} 1_{E_n} \, d\mu = \frac{1}{n} \mu(E_n) \leq 0$$

となり，$\mu(E_n) = 0$ がすべての n について成立する．

$$E = \bigcup_{n=1}^{\infty} E_n$$

とおけば，

$$\mu(E) = \mu\left(\bigcup_{n=1}^{\infty} E_n\right) \leq \sum_{n=1}^{\infty} \mu(E_n) = 0$$
ルベーグ積分 2014 年度秋学期

一方、上記の議論と同様にして,

$$\lambda(A \cap E_n^c) \leq \frac{1}{n} \mu(A \cap E_n^c)$$

が成立し, $E_n^c \subset E_n^c$ であることに注意すると, $A \subset E_n^c$ なる任意の $A \in \mathcal{A}$ について

$$\lambda(A) = \lambda(A \cap E_n^c) \leq \frac{1}{n} \mu(A \cap E_n^c)$$

$$= \frac{1}{n} (\mu(A \cap E_n^c) + \mu(A \cap E_n)) = \frac{1}{n} \mu(A)$$

が成立する. よって, $\lambda(A) = 0$ が導かれ λ は μ について特異であることが示せた.

一意性については, μ について絶対連続な加法的集合関数 ρ_1 と ρ_2, μ について特異である加法的集合関数 λ_1 と λ_2 があって,

$$\nu = \rho_1 + \lambda_1 = \rho_2 + \lambda_2$$

とかけていたとする. このとき,

$$\rho_1 - \rho_2 = \lambda_2 - \lambda_1$$

が成立し, 左辺は μ について絶対連続であり右辺は μ について特異である. 補題 5.1 よりこの共通の性質をもつ加法的集合関数は 0 に限られるので, $\rho_1 = \rho_2, \lambda_1 = \lambda_2$ を得る. 従って, 特異部分の一意性は示されたことになるので,

$$\int_A f \ d\mu = \int_A g \ d\mu, \quad A \in \mathcal{A}$$

をみたす非負積分可能関数 f と g があったとき, f と g はほとんどいたるところ等しいことを示せば証明は終る.

$$\mu(\{\omega \in \Omega : f(\omega) \neq g(\omega)\})$$

$$= \mu(\{\omega \in \Omega : f(\omega) > g(\omega)\}) + \mu(\{\omega \in \Omega : f(\omega) < g(\omega)\})$$

$$> 0$$
ルベーグ積分 2014 年度秋学期

が成立しているとする．\(\mu(\{ \omega \in \Omega : f(\omega) > g(\omega) \}) > 0 \) と仮定しても一般性は失われない．\(A = \{ \omega \in \Omega : f(\omega) > g(\omega) \} \) とおくと，定理 3.2 より

\[
\int_A (f - g) \, d\mu > 0
\]

となり矛盾が生じる．□

定理 5.3 \((\Omega, \mathcal{A}, \mu)\) を \(\sigma \) 有限測度空間とし，\(\nu \) を加法的集合関数とする．このとき，積分可能な関数 \(f \) と \(\mu \) について特異な加法的集合関数 \(\lambda \) が一意的に存在し，

\[
\nu(A) = \int_A f \, d\mu + \lambda(A), \quad A \in \mathcal{A}
\]

が成立する．関数 \(f \) の一意性については測度 \(\mu \) の a.e. についての一意性と解釈する．

証明 加法的集合関数 \(\nu \) を \(\nu = \nu^+ - \nu^- \) と定理 4.4 により分解する．\((\Omega, \mathcal{A}, \mu)\) が \(\sigma \) 有限であるという仮定より，可測集合の列 \(\Omega_n \uparrow \Omega \) が存在し，各 \(n \) について \(\mu(\Omega_n) < \infty \) が成立している．測度空間 \((\Omega, \mathcal{A}, \mu)\) を \(\Omega_n \) に制限した測度空間を \((\Omega_n, \mathcal{A}_n, \mu_n)\) とする．そして \(\nu^+ \) を \(\mathcal{A}_n \) に制限した加法的集合関数を \(\nu_n^+ \) とする．この \((\Omega_n, \mathcal{A}_n, \mu_n)\) と \(\nu_n^+ \) に対し定理 5.2 を適用すると，\(\Omega_n \) 上の非負値可測関数 \(\hat{f}_n \) と，\(\mu_n \) について特異な \(\mathcal{A}_n \) 上の非負値加法的集合関数 \(\lambda_n \) が存在して，

\[
\nu_n^+(A) = \int_A \hat{f}_n \, d\mu_n + \lambda_n(A)
\]

がすべての \(A \in \mathcal{A}_n \) に対し成立している．\(\hat{f}_n \) の一意性より \(\hat{f}_{n+1} \) は \(\hat{f}_n \) の拡張となっているとみなしてよい．\(\Omega \) 上の非負値可測関数 \(f_n \) を

\[
\begin{align*}
 f_n(\omega) &= \begin{cases}
 \hat{f}_n(\omega) & \omega \in \Omega_n \\
 0 & \omega \notin \Omega_n
 \end{cases}
\end{align*}
\]

と定義すると明らかに

\[
\nu_n^+(A) = \int_A f_n \, d\mu + \lambda_n(A) \quad (1)
\]
ルベーグ積分 2014 年度秋学期

がすべての \(A \in \mathcal{A} \) に対し成立している。そして，\(f_n \) は単調増加なので，非
負値可測関数 \(f = \lim_{n \to \infty} f_n \) が存在する。そして，任意の \(A \in \mathcal{A} \) に対し，

\[
\lim_{n \to \infty} \int_A f_n \, d\mu = \lim_{n \to \infty} \int_{A \cap \Omega_n} f_n \, d\mu = \lim_{n \to \infty} \int_{A \cap \Omega_n} \hat{f}_n \, d\mu
\leq \lim_{n \to \infty} \nu^+_{n} (A \cap \Omega_n) = \lim_{n \to \infty} \nu^+ (A \cap \Omega_n) = \nu^+ (A) < \infty
\]

が成立するので，定理 3.5 より，\(f \) は可積分であり，

\[
\int_A f \, d\mu = \lim_{n \to \infty} \int_A f_n \, d\mu
\]

がすべての \(A \in \mathcal{A} \) に対し成立する。従って，(1) より

\[
\lim_{n \to \infty} \lambda_n (A \cap \Omega_n) = \nu^+ (A) - \int_A f \, d\mu
\]

がすべての \(A \in \mathcal{A} \) に対し成立する。従って，各 \(A \in \mathcal{A} \) に対し，

\[
\lambda (A) = \lim_{n \to \infty} \lambda_n (A \cap \Omega_n) = \nu^+ (A) - \int_A f \, d\mu
\]

と定義すると，\(\lambda \) は \(\mathcal{A} \) 上の非負値加法的集合関数である。次に \(\lambda \) が \(\mu \) につ
いて特異であることを示す。各 \(\lambda_n \) は \(\mu_n \) について特異であるので，\(E_n \subset \Omega_n \) なる可測集
合 \(E_n \) が存在し，\(\mu (E_n) = \mu_n (E_n) = 0 \) で，任意の \(A \subset \Omega_n \setminus E_n \) なる \(A \) について \(\lambda (A) = \lambda_n (A) = 0 \) である。\(E = \bigcup_{n=1}^{\infty} E_n \) とおくと，明らかに \(\mu (E) = 0 \) であり，\(A \subset E^c \) ならばすべての \(n \) について \(A \subset E_n^c \) が成立
するので \(\lambda (A) = \lim_{n \to \infty} \lambda_n (A \cap \Omega_n) = 0 \) をえる。以上で，\(\lambda \) は \(\mu \) について
特異であり，

\[
\nu^+ (A) = \int_A f \, d\mu + \lambda (A)
\]

が成立することが証明された。

\(\nu^- \) についても同様にして，非負値可積分関数 \(g \) と \(\mu \) について特異な非負
値加法的集合関数 \(\rho \) が存在し，

\[
\nu^- (A) = \int_A g \, d\mu + \rho (A)
\]
ルベーグ積分 2014 年度秋学期

が成立する。よって、任意の \(A \in \mathcal{A} \) に対し，

\[
\nu(A) = \int_A (f - g) d\mu + (\lambda - \rho)(A)
\]

が成立する。\(f - g \) が可積分で、\(\lambda - \rho \) が \(\mu \) について特異な加法的集合関数であることは明らかである。そして、これらの一意性は定理 5.2 の証明の対応する議論と同様にして確認することができる。\(\square \)

系 5.4 \((\Omega, \mathcal{A}, \mu)\) を \(\sigma \) 有限測度空間とし、\(\nu \) を \(\mu \) について絶対連続な加法的集合関数とする。このとき、積分可能な関数 \(f \) が一意的に存在し，

\[
\nu(A) = \int_A f \, d\mu, \quad A \in \mathcal{A}
\]

が成立する。関数 \(f \) の一意性については測度 \(\mu \) の a.e. についての一意性と解釈する。

加法的集合関数 \(\nu \) が \(\mu \) について絶対連続であるとき、一意的に決定される

\[
\nu(A) = \int_A f \, d\mu, \quad A \in \mathcal{A}
\]

をみたす積分可能関数 \(f \) を \(\nu \) のラドン・ニコディムの微分あるいはラドン・ニコディムの密度関数といい，\(d\nu/d\mu \) とかく。