Hamiltonian cycles in bipartite toroidal graphs with a partite set of degree four vertices

Jun Fujisawa∗, Atsuhiro Nakamoto† and Kenta Ozeki‡

Abstract
Let G be a 3-connected bipartite graph with partite sets $X \cup Y$ which is embeddable in the torus. We shall prove that G has a Hamiltonian cycle if (i) G is balanced, i.e., $|X| = |Y|$, and (ii) each vertex $x \in X$ has degree four. In order to prove the result, we establish a result on orientations of quadrangular torus maps possibly with multiple edges. This result implies that every 4-connected toroidal graph with toughness exactly one is Hamiltonian, and partially solves a well-known Nash-Williams’ conjecture.

1 Introduction
A surface is a connected compact 2-dimensional manifold without boundary. A map on a surface F^2 means a fixed embedding of a graph on F^2. A Hamiltonian cycle of a graph G is a cycle passing through all vertices of G exactly once. A graph G is said to be Hamiltonian if G has a Hamiltonian cycle. We would like to consider whether graphs on surfaces have Hamiltonian cycles.

Whitney proved that any 4-connected plane triangulation is Hamiltonian [15], and Tutte improved this result for 4-connected plane graphs [14]. Starting from these results, Hamiltonicity of graphs on surfaces has been extensively studied, for example, Thomas and Yu proved that every 4-connected projective plane map is Hamiltonian [10]. Note that in those theorems, the 4-connectedness cannot be omitted, since some non-4-connected graphs on those surfaces have no Hamiltonian cycles. So next we are interested in is the toroidal case. Actually, Nash-Williams posed the following conjecture.

Conjecture 1 (Nash-Williams [9]). Every 4-connected torus map is Hamiltonian.

∗Department of Applied Science, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan. Email: fujisawa@is.kochi-u.ac.jp
†Department of Mathematics, Yokohama National University, 79-2 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan. Email: nakamoto@ynu.ac.jp
‡Research Fellow of the Japan Society for the Promotion of Science. National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan. Email: ozeki@nii.ac.jp
This conjecture has attracted much attention for long years, but it is still open. Actually, many researchers gave some partial solutions to Conjecture 1. Barnette [4], and Brunet and Richter [5] showed that every 5-connected toroidal triangulation has a Hamiltonian path, and a Hamiltonian cycle, respectively. Thomas and Yu improved these results and showed that every 5-connected toroidal map is Hamiltonian [11], and later, they showed the existence of Hamiltonian paths in 4-connected toroidal graphs [12]. Note that the proofs of the above results used the concept of a “Tutte path or cycle”. For more informations about it, the readers should refer Section 3 of a nice survey [6]. As mentioned later, we also give a partial solution to Conjecture 1 in this paper, but our method is very different from those using a “Tutte path or cycle”.

A quadrangulation on a surface F^2 is a map of a simple graph on F^2 such that each face is bounded by a 4-cycle. Altshuler proved that every 4-connected torus quadrangulation has a Hamiltonian cycle [2]. It is easy to see that a torus quadrangulation is 4-connected if and only if it is 4-regular, and there is a simple standard form of 4-regular torus quadrangulations with a rectangular grid, which helps us to find Hamiltonian cycles in them. (Similarly, the Hamiltonicity of 6-regular torus triangulations is verified in the same paper by using a standard form of them [1]. Alspach and Zhang showed that the dual of such graphs is also Hamiltonian using algebraic approach [3].)

In this paper, restricting bipartite quadrangulations but relaxing the 4-connectivity, we shall prove the following.

Theorem 2. Let Q be a 3-connected bipartite torus quadrangulation. If one of the two partite sets consists only of degree four vertices, then Q is Hamiltonian.

Let us consider the condition of Q to be a quadrangulation in the above theorem. Let Q be a 3-connected bipartite graph on the torus with partite sets X and Y, and assume that every vertex in X has degree 4. Then by Euler’s formula, Q is a quadrangulation if and only if $|E(Q)| = 2|V(Q)|$. On the other hand, since $|E(Q)| = \sum_{x \in X} \deg(x) = 4|X|$, it follows that Q is balanced (i.e., $|X| = |Y|$) if and only if Q is a torus quadrangulation (i.e., $|E(Q)| = 2|V(Q)|$). Hence, exchanging these two conditions in Theorem 2, we obtain Theorem 3, which is equivalent to Theorem 2 but will be more appealing, since the balance of X and Y is a trivial necessary condition for Q to be Hamiltonian.

Theorem 3. Let Q be a 3-connected balanced bipartite graph which is embeddable in the torus. If one of the two partite sets consists only of degree four vertices, then Q is Hamiltonian.

In Section 2, we will make some remarks on Theorems 2 and 3, and in Sections 3–5 we will prove Theorem 2.

Here we put definitions we need later. A cycle C of length k is called a k-cycle. If k is even (resp., odd), then C is said to be even (resp., odd). A simple closed curve l on a non-spherical surface F^2 is said to be essential if l does not bound a 2-cell on F^2. An essential cycle of a graph on F^2 is a cycle whose edges induce an essential curve. A k-vertex (resp., a k-face) is a vertex (resp., face) of degree exactly k.

2
The representativity of a map G on a surface F^2, denoted $r(G)$, is the minimum number of intersecting points of G and γ, where γ ranges over all essential simple closed curves on F^2. We say that G is k-representative if G has representativity at least k.

Let H be a map on a surface F^2 and we suppose that all vertices of H are colored by black. The face subdivision of H, denoted \tilde{H}, is obtained from H by adding a new white vertex to each face of H and joining it to all vertices lying on the corresponding face boundary. The radial graph of H, denoted $R(H)$, is obtained from \tilde{H} by removing all edges joining two black vertices. It is easy to see that $R(H)$ is bipartite and each face of $R(H)$ is quadrilateral. Moreover, $R(H)$ is simple if and only if each face of H is bounded by a cycle.

We say that a graph G is k-tough if $\frac{|S|}{\omega(G-S)} \geq k$ for any $S \subset V(G)$ with $G - S$ disconnected, where $\omega(\cdot)$ is the number of components. The toughness of G is defined to be the maximum real number k such that G is k-tough. It is well-known that if G is Hamiltonian, then G is 1-tough.

2 Remarks on Theorems 2 and 3

In this section, we make four remarks on Theorems 2 and 3.

3-Connectedness and a partite set of 4-vertices. Let us consider whether the conditions in Theorem 2 can be omitted. Let K be a 4-regular bipartite torus quadrangulation, which must be balanced with black and white vertices. Let S and T be the two bipartite plane graphs shown in Figure 1 (1) and (2), respectively. Let T' be the graph T with white and black interchanged.

We first consider the 3-connectedness. Let f be a face of K. Let Q be the bipartite torus quadrangulation obtained from K and S by pasting the boundary 4-cycles of f and that of S so that vertices with the same color are identified. Then Q is a bipartite torus quadrangulation in which all white vertices are of degree four, but it is not 1-tough, since Q with the two white inner vertices of S removed has three components. Hence, if we omit the 3-connectedness of the graph, then Theorem 2 does not hold. (Note that
using other constructions, we can show that Theorem 2 does not hold even if we assume 2-connectedness and “minimum degree at least three”, instead of the 3-connectedness.

We secondly consider the condition for a partite set of 4-vertices. Let e and e' be edges of K which do not lie on the boundary 4-cycle of the same face, and let $K' = K - \{e, e'\}$, where we let h and h' be the hexagonal faces of K' containing e and e' in K, respectively. Let Q be the bipartite torus quadrangulation obtained from K' by pasting T to h and T' to h' so that vertices with the same color coincide. Then Q is a balanced 3-connected bipartite torus quadrangulation, but it is not 1-tough. (Removing the six white vertices of T in Q, we get at least seven components.) Since Q is not Hamiltonian, the condition for a partite set of 4-vertices cannot be omitted, either.

1-Toughness and embeddability in the torus. Let G be any 4-connected graph on any surface F^2 with Euler characteristic $\chi(F^2) \geq 0$. Then G must be 1-tough. (Let $S \subset V(G)$ be any set with $G - S$ disconnected. Let $s = |S|$ and let w denote the number of components of $G - S$. Let K be the graph on F^2 obtained from G by contracting each component of $G - S$ into a single vertex and deleting each edge joining two vertices in S. Since K is a bipartite graph on F^2, we have $|E(K)| \leq 2(s + w) - 2\chi(F^2)$, by Euler’s formula. On the other hand, since G is 4-connected, each component of $G - S$ has at least four edges joined to S in K, and hence we have $|E(K)| \geq 4w$. By the two inequalities, we have $w \leq s - \chi(F^2)$, which means that G is 1-tough since $\chi(F^2) \geq 0$.) On the other hand, if we relax the 4-connectivity, those surfaces admit infinitely many 3-connected balanced bipartite graphs which are not 1-tough, as in the previous. However, restricting the vertex degree in one of the partite sets to be four in 3-connected balanced bipartite toroidal graphs, we get the Hamiltonicity of them as in Theorem 3. Therefore, the condition of Q in Theorem 3 is sufficient for Q to be 1-tough, though it seems difficult to prove it directly from the assumption on Q. So Corollary 4 is worth mentioning.

Corollary 4. Let Q be a 3-connected balanced bipartite graph which is embeddable in the torus. If one of the two partite sets consists only of degree four vertices, then Q is 1-tough.

Here we show that the condition on Q to be embeddable in the torus is necessary in the above corollary (and also in Theorem 3). Let A be three vertices in the same partite set of $K_{3,3}$. Let B be three vertices in the same partite set of a 4-regular bipartite quadrangulation T on the torus which has a unique embedding on the torus. Let G be the graph obtained by joining A and B with a perfect matching. Then G is a 3-connected balanced bipartite graph one of whose partite sets consists only of degree four vertices, but G is not embeddable in the torus since T has a unique embedding on the torus. It is easy to see that G is not 1-tough since $G - A$ has four components.

Conjecture 1 and Theorem 2. Using the notion of face subdivisions, we mention that Theorem 2 partially solves Conjecture 1. Let H be a torus quadrangulation with black vertices, which is bipartite or non-bipartite. It is easy to see that its face subdivision \tilde{H} is 4-connected. Hence, if Conjecture 1 is true, then \tilde{H} is Hamiltonian. Moreover, if \tilde{H} has a Hamiltonian cycle C, then C passes through black and white vertices alternately in \tilde{H},
since the number of vertices equals that of faces in H by Euler’s formula, and since the white vertices are independent in \tilde{H}. Therefore, the radial graph of H is also Hamiltonian and it is nothing but a bipartite torus quadrangulation with each white vertex of degree 4. So the affirmative solution of Conjecture 1 implies Theorem 2. Therefore, Theorem 2 not only solves the Hamiltonicity for a large class of bipartite torus quadrangulations, but the theorem also partially solves Conjecture 1.

4-Connected non-Hamiltonian maps of negative Euler characteristics. Let Q be a quadrangulation on a surface with a negative Euler characteristic. Then, by Euler’s formula, the number of faces of Q is strictly greater than that of vertices, and hence the face subdivision \tilde{Q} of Q is not 1-tough. Therefore, \tilde{Q} is 4-connected but it is not Hamiltonian. Hence, for maps on surfaces with negative Euler characteristics, the 4-connectedness does not necessarily imply the Hamiltonicity. (Yu proved that every 5-connected triangulation on any non-spherical surface with sufficiently large representativity is Hamiltonian [16].)

If we consider the above construction for the torus, then we can get a 4-connected graph on the torus with the toughness exactly 1. (The existence of 4-connected graphs on the torus having the toughness exactly one is a big reason for the difficulty of Conjecture 1.) So Theorem 2 asserts that the face subdivision of any torus quadrangulation has a Hamiltonian cycle, though its toughness is exactly 1.

Hamiltonicity of 4-connected toroidal graphs with toughness exactly one. As mentioned in the previous, there exists 4-connected toroidal graphs with toughness exactly one, which seems to make the problem difficult. However, using Theorem 3, we can prove the following surprising result:

Corollary 5. Let G be a 4-connected toroidal graph. If the toughness of G is exactly one, then G is Hamiltonian.

Proof. Let G be a 4-connected toroidal graph with the toughness exactly one. Then there exists $S \subset V(G)$ such that $\omega(G - S) = |S|$. Here we take S so that $|S|$ is as small as possible. Let H be the torus map obtained from G by contracting each component of $G - S$ to a single vertex and removing all edges joining two vertices of S. Note that H is a balanced bipartite graph of order $|S| + \omega(G - S)$. Since G is 4-connected, we have $|E(H)| \geq 4\omega(G - S)$. Moreover, since G is embeddable in the torus, we have $|E(H)| \leq 2(|S| + \omega(G - S))$, by Euler’s formula. By the fact “$\omega(G - S) = |S|$”, the equalities must hold in the above two inequalities. So any vertex in H corresponding to a component of $G - S$ has degree four, and H is a quadrangular map on the torus.

Suppose that H has distinct two vertices u_1, u_2 with $H - \{u_1, u_2\}$ disconnected. Since H is a quadrangular map, H has two faces, say u_1u_2x and u_1bu_2y such that a and b are inner vertices of the plane subgraph bounded by the 4-cycle u_1xu_2y. Observe that either $u_1, u_2 \in S$ or $u_1, u_2 \notin S$. In the former, $G - \{u_1, u_2\}$ is disconnected, contrary to the 4-connectedness of G. In the latter, we have $a, b, x, y \in S$. If $a \neq b$, then H has two faces xu_1yc and xu_2yd for some $c, d \in V(H)$, since $\deg_H(u_1) = \deg_H(u_2) = 4$. Then $G - \{x, y\}$ is disconnected, contrary to the 4-connectedness of G. On the other hand, if $a = b$, then...
putting $S' = S - \{a\}$, we have $\omega(G - S') = \omega(G - S) - 1 = |S| - 1 = |S'|$, contrary to the minimality of S. Hence H is 3-connected.

By Theorem 3, H has a Hamiltonian cycle T. We shall recover each component of $G - S$ and find a Hamiltonian cycle of G.

Let $v \notin S$ be a vertex in H and let u_1, u_2, u_3, u_4 be four distinct neighbors of v in H lying in this cyclic order on the torus. Let C_v be a component of $G - S$ corresponding to v, and let R_v be the plane graph obtained from the subgraph of G induced by $V(C_v) \cup \{u_1, u_2, u_3, u_4\}$ by adding u_iu_{i+1} for $i = 1, 2, 3, 4$ if $u_iu_{i+1} \notin E(G)$. Thomassen’s result (Main Theorem in [13]) and Thomas and Yu’s result (Lemma (2.4) in [10]) imply that for any distinct $i, j \in \{1, 2, 3, 4\}$, $R - \{u_k, u_l\}$ has a Hamiltonian path T_v connecting u_i and u_j, where $\{k, l\} = \{1, 2, 3, 4\} - \{i, j\}$. Hence, when T passes through v_i, v, v_j in this order in H, then we can take a corresponding path T_v in G. Doing the same procedures for all components of $G - S$, we obtain a Hamiltonian cycle of G. □

3 2-Orientations and vertex-faces curves

Let Q be a quadrangulation and let f be a face of Q bounded by a cycle $abcd$. We say that each of $\{a, c\}$ and $\{b, d\}$ is a diagonal pair of f in Q. A quadrangular map is a map, possibly with multiple edges, such that each face is bounded by a 4-cycle, and in particular, it is a quadrangulation if the graph is simple. It is known that any quadrangular map is 2-connected and 2-representative.

Proposition 6. Let Q be a bipartite torus quadrangulation with black and white vertices in which every white vertex has degree 4. Then there exists a quadrangular map H such that $R(H) = Q$. In particular, if Q is 3-connected, then H has no contractible 2-cycle.

Proof. First, let H be the graph on the black vertices obtained from H by such a way that for each face of Q, we connect two black vertices which form a diagonal pair of the face. Then $R(H) = Q$. It is easy to see that H has no loop. (Otherwise Q has a cut vertex or the representativity at most one, a contradiction.) In particular, every face of H is bounded by a cycle and can be taken as a quadrilateral since each white vertex of Q has degree four.

Suppose that H has a contractible 2-cycle $C = xy$. Then Q has two quadrilateral faces, say $xpyq$ and $xysl$, each of whose diagonal pair is $\{x, y\}$. Since C is contractible on the torus, we can take a contractible simple closed curve γ along C intersecting Q only at x and y. Hence $Q - \{x, y\}$ is disconnected and hence Q is not 3-connected. □

Let G be a map on a surface F^2 and let $L_m = \{l_1, \ldots, l_m\}$ be a set of disjoint simple closed curves on F^2. We say that L_m is a vertex-face m-family for Q if each vertex and each face of Q is visited exactly once by a member of L_m but every l_i crosses no edge of Q transversely. In particular, when $m = 1$, the unique element of L_1 is called a vertex-face curve for Q.

The following is an easy observation, since a vertex-face curve passes through vertices and faces alternately.
Proposition 7. Let G be a map on a surface and let $R(G)$ be the radial graph of Q. Then $R(G)$ is Hamiltonian if and only if G admits a vertex-face curve.

Hence, by Propositions 6 and 7, the following theorem implies Theorem 2. So, showing Theorem 8 is the main purpose of this paper.

Theorem 8. Every quadrangular map Q on the torus with no contractible 2-cycle admits a vertex-face curve.

In [8], Theorem 8 has already been proved when Q is simple and bipartite. So, in this paper, modifying the argument, we prove Theorem 8 when Q is non-bipartite.

In order to prove Theorem 8, we use an orientation of a graph G, that is, an assignment of a direction to each edge of G. Let $-\rightarrow G$ denote the graph with the orientation and distinguish it from the undirected graph G. For a vertex v of $-\rightarrow G$, the outdegree of v is the number of directed edges outgoing from v and denoted by $\text{od}(v)$. We say that $-\rightarrow G$ is a k-orientation or k-oriented if each vertex of $-\rightarrow G$ has outdegree exactly k. We need the following.

Lemma 9. Every quadrangular map with no contractible 2-cycle on the torus admits a 2-orientation.

The above has been proved only for quadrangulations in [8], and we modify the argument to deal with quadrangular map possibly with multiple edges. Let G be a graph and let $f : V(G) \rightarrow \{0, 1, 2, \ldots\}$ be a function. An orientation of G is called an f-orientation if $\text{od}(v) = f(v)$ for any $v \in V(G)$. For $S \subset V(G)$, let $[S]$ denote the subgraph of G induced by S.

Proposition 10 ([8]). Let G be a graph and let $f : V(G) \rightarrow \{0, 1, 2, \ldots\}$ be a function. Then G has an f-orientation $-\rightarrow G$ if and only if $\sum_{v \in V(G)} f(v) = |E(G)|$, and for any $S \subset V(G)$ with $[S]$ connected, $\sum_{s \in S} f(s) \geq |E([S])|$. ■

We shall prove Lemma 9, using Proposition 10.

Proof of Lemma 9. By Proposition 10, a graph Q with n vertices has a 2-orientation if and only if (1) $|E(Q)| = 2n$, and (2) for any connected subgraph T of Q, $|E([S])| \leq 2|V(T)|$. By Euler’s formula, we can verify (1) for Q and so, we prove (2).

We can deal with T as a torus map. Observe that T has no loop, that T has no face bounded by a 2-cycle by the assumption, and that T has no triangular face since Q is a quadrangulation. Hence T has no k-face with $k \leq 3$, and so we have $2|E(T)| \geq 4|F(T)|$. By Euler’s formula, $|V(T)| - |E(T)| + |F(T)| \geq 0$. By these two, we have $2|V(T)| \geq |E(T)|$ and we are done. ■

In our proof, we need the following lemma.

Lemma 11. Every quadrangular map G on the torus has an essential even cycle.
Let G and H be two maps on the same non-spherical surface F^2. We say that H is a surface-minor of G if H is obtained from G by deletions and contractions of edges on F^2. Let G be a k-representative map on a non-spherical surface. We say that G is k-minimal if $r(G) = k$ and $r(G') < k$ for any proper surface-minor G' of G. It is known that for any non-spherical surface F^2 and any fixed integer $k \geq 1$, there exist only finitely many k-minimal maps on F^2, up to homeomorphism. In particular, the complete list for 2-minimal torus maps has been determined in [7].

Theorem 12 (Nakamoto [7]). There exist exactly seven 2-minimal map on the torus, which are T_1, \ldots, T_7 listed in Figure 2, in which each rectangle expresses the torus by identifying the top and the bottom, and the right and the left sides, respectively.

![Figure 2: The 2-minimal maps on the torus](image.png)

Proof of Lemma 11. Since G is 2-representative, G can be transformed by deletions and contractions of edges into one of T_1, \ldots, T_7 in Figure 2, by Theorem 12. Let B be a torus map with a single vertex v and three pairwise non-homotopic loops e_1, e_2, e_3. We can verify that each T_i has B as a surface-minor. Hence, each T_i has an essential cycle.
contracted to e_j, for $j = 1, 2, 3$, since contractions of edges preserve homotopy types of cycles on the surface. Moreover, since some T_i is a surface-minor of G, G also has an essential cycle C_j contracted to e_j, for $j = 1, 2, 3$.

It is easy to see that in a quadrangular map, two homotopic closed walks have the same parity of length. Suppose that C_1 and C_2 have odd length. (Otherwise we are done.) Now cutting the torus where B embeds along e_1 and e_2, we get a rectangle with a diagonal e_3. Hence e_3 is homotopic to the concatenation of e_1 and e_2. Since C_1 and C_2 are non-homotopic on the torus, then they have a common vertex v in G. Let W be a closed walk starting at v, proceeding along C_1 and return to v, and proceeding along C_2 and stopping at v. Then W is an essential closed walk of even length, since C_1 and C_2 are non-homotopic essential odd cycles. Clearly, C_3 is an essential cycle homotopic to W, and hence its length must be even.

4 Converting Q into a bipartite graph

In this paper, we have to prove Theorem 8. In order to do so, we often cut the torus along a simple essential closed curve l to convert a non-bipartite torus quadrangulation into a bipartite torus quadrangulation. Let G be a map on a surface F^2 and suppose that each edge of G lies on l or intersects l at its endpoints. Cutting G along l is to cut F^2 along l so that in the map on the resulting surface, each vertex and each edge of G lying on l appears twice on the boundary. When F^2 is the torus, the map the after cutting is one on the annulus.

Let Q be a non-bipartite torus quadrangular map. Then, by Lemma 11, Q has an essential even cycle $C = v_1v_2\ldots v_p$. Let Q_C be the annulus quadrangular map obtained from Q by cutting along C. Let $Y = y_1y_2\ldots y_p$ and $Z = z_1z_2\ldots z_p$ be the two boundary cycles of Q_C, where y_i and z_i correspond to v_i in Q for each i. Since Q is a quadrangular map and C is an essential even cycle, Q_C is a bipartite graph. Let Q'_C be the bipartite torus quadrangular map naturally obtained from Q_C by adding the edges y_iz_i for $i = 1, \ldots, p$.

In order to prove Theorem 8, the following is the most important argument in this paper, which will be proved in the last section.

Theorem 13. Let Q be a non-bipartite quadrangular map on the torus with no contractible 2-cycle. Then an essential even cycle $C = v_1\ldots v_p$ can be chosen in Q so that the bipartite quadrangular map Q'_C has a 2-orientation which has oriented edges

- $y_{i+1}y_i$, z_iz_{i+1} for any integer i, (the index is taken modulo p)
- z_iz_i for any odd integer i, and
- y_iz_i for any even integer i.

Before proceeding to the next section, we show that Theorem 13 proves Theorem 8, as follows.

Proposition 14. If Theorem 13 holds, then does Theorem 8.
Proof. Let Q be a quadrangular map on the torus with no contractible 2-cycle. If Q is bipartite, then let $G = Q$. Otherwise we take an essential even cycle C and let $G = Q_C$. By Lemma 9 (when $G = Q$) or by Theorem 13 (when $G = Q_C$), G has a 2-orientation and let \overrightarrow{G} be the oriented graph. When Q is non-bipartite, we take a 2-orientation of G satisfying the conclusion of Theorem 13.

Since G is the bipartite graph, let B and W be the partite sets of G. Since the torus is orientable, we can give a clockwise orientation at each point on the torus simultaneously. Suppose that $\{e_1, \ldots, e_m\}$ be the edges of \overrightarrow{G} incident to a vertex v, where $\deg_G(v) = m$ and $\{e_1, \ldots, e_m\}$ appear around v in this clockwise order. Without loss of generality, we may assume that e_1 and e_k are two outgoing edges on v. Now we can put a segment l_v through a vertex v which locally separates all edges incident to v into two sets as shown in Figure 3:

- if $v \in B$, then $e_1 \ldots e_{k-1}$ are located in one of the two sides separated by l_v, and all others are in the other side of l_v;
- if $v \in W$, then $e_2 \ldots e_k$ are located in one of the two sides separated by l_v, and all others are in the other side of l_v.

Next we consider whether we can glue l_v’s for all $v \in V(\overrightarrow{G})$ to get a vertex-face m-family for some $m \geq 1$. Let us consider a quadrilateral face f of \overrightarrow{G} bounded by a 4-cycle $bwb'w'$, where $b, b' \in B$ and $w, w' \in W$. Observe that the 4-cycle $bwb'w'$ has seven distinct orientations shown in Figure 4, up to symmetry. In each case, by the definition of l_v’s, we can find that exactly two segments intersect at each face, and glue them at a center of the face. Hence $\bigcup_{v \in V(\overrightarrow{G})} l_v$ form a set of several simple closed curves visiting each vertex and each face of \overrightarrow{G} exactly once, but crossing no edge of \overrightarrow{G} transversely. Therefore, $\bigcup_{v \in V(\overrightarrow{G})} l_v$ can be regarded as a vertex-face m-family $L_m = \{l_1, \ldots, l_m\}$ for some $m \geq 1$.

In [8], it is proved that each l_i is essential in the torus. Then we can take the indices of l_1, \ldots, l_m so that l_i and l_{i+1} bounds an annulus A_i not containing any other l_j. Moreover, when $m \geq 2$, it has been proved that for any i, changing the orientation of some edges in A_i, we can take a simple closed curve l'_i such that $\{l_1, \ldots, l_{i-1}, l'_i, l_{i+2}, \ldots, l_m\}$ is a vertex-face $(m-1)$-family in the new 2-orientation of G. Therefore, if $G = Q$, then by iteration of changing the orientation, we can find a vertex-face curve for Q.

![Figure 3: Segments for vertices](image1)

![Figure 4: Segments for faces](image2)
Now consider the case where $G = Q'_C$. Let A be the annulus bounded by Y and Z and containing the edges $y_i z_i$'s. Then, by the rules for the arrangement of segments and the way to glue them, A contains a single simple closed curve, say l_1, in a vertex-face m-family \{l_1, \ldots, l_m\} for some $m \geq 1$, passing through all z_i with i odd, all y_i with i even and no others. See Figure 5. Since Q'_C has faces not contained in A, we have $m \geq 2$. If $m \geq 3$, then we can merge l_2 and l_3 to get a vertex-face $(m - 1)$-family containing l_1. If $m = 2$, then contracting all edges $y_i z_i$ for $i = 1, \ldots, m$ to eliminate l_1, we get a vertex-face curve for Q as shown in Figure 6, since l_2 passes through all vertices and all faces of Q exactly once.

5 Proof of the theorems

We first prove Theorem 13.

Proof of Theorem 13. If C is a cycle and P is a path which meets C exactly in its end-vertices, then we say that P is a C-path. For an essential cycle C, a C-path P is called an essential C-path if no cycle in $C \cup P$ bounds a 2-cell on F^2. Especially in case of $|E(P)| = 1$, we say that P is an essential C-edge. For two vertices x and y in a graph
Let C be the set of shortest essential even cycles of Q. By Lemma 11, $C \neq \emptyset$. Let $C = v_1 v_2 \ldots v_p$ be a cycle in C. In this section, we always consider the subscript of v as modulo p. Since Q is a quadrangular map, it follows that

\[
\text{if } v_i v_j \in E(Q) \setminus E(C), \text{ then } v_i v_j \text{ is an essential } C \text{-edge.}
\]

(1)

Moreover, since Q is a non-bipartite quadrangular map and C is an essential even cycle, the cycle $v_i v_{i+1} \ldots v_j v_i$ is an odd cycle. (For otherwise, i.e., if it is even, then cutting along $C \cup \{v_i v_j\}$, we get a disk with even length boundary from the torus. Then a bipartition of $C \cup \{v_i v_j\}$ can be extended to that of G, contrary to the non-bipartiteness of Q.) Thus the parities of i and j are the same.

Here we fix an orientation of C and let $E_R(C, v_i)$ and $E_L(C, v_i)$ denote the set of edges in $E(Q) \setminus E(C)$ which are adjacent to v_i on the right-hand side and left-hand side of C, respectively. We define six sets of pairs of indices as follows:

\[
\Lambda_B(C) = \{(i, j) \mid i, j: \text{odd}, v_i v_j \in E_L(C, v_i), v_j v_i \in E_L(C, v_j) \text{ for some } v \in V(C)\} \cup \\
\{(i, j) \mid i, j: \text{even}, v_i v_j \in E_R(C, v_i), v_j v_i \in E_R(C, v_j) \text{ for some } v \in V(C)\},
\]

\[
\Lambda_W(C) = \{(i, j) \mid i, j: \text{odd}, v_i v_j \in E_R(C, v_i), v_j v_i \in E_R(C, v_j) \text{ for some } v \in V(C)\} \cup \\
\{(i, j) \mid i, j: \text{even}, v_i v_j \in E_L(C, v_i), v_j v_i \in E_L(C, v_j) \text{ for some } v \in V(C)\},
\]

\[
\lambda_B(C) = \{(i, j) \mid i, j: \text{odd}, v_i v_j \in E_L(C, v_i), v_j v_i \in E_L(C, v_j) \text{ for some } v \in V(Q) \setminus V(C)\} \cup \\
\{(i, j) \mid i, j: \text{even}, v_i v_j \in E_R(C, v_i), v_j v_i \in E_R(C, v_j) \text{ for some } v \in V(Q) \setminus V(C)\},
\]

\[
\lambda_W(C) = \{(i, j) \mid i, j: \text{odd}, v_i v_j \in E_R(C, v_i), v_j v_i \in E_R(C, v_j) \text{ for some } v \in V(Q) \setminus V(C)\} \cup \\
\{(i, j) \mid i, j: \text{even}, v_i v_j \in E_L(C, v_i), v_j v_i \in E_L(C, v_j) \text{ for some } v \in V(Q) \setminus V(C)\},
\]

\[
X_B(C) = \{(i, j) \mid i: \text{even}, j: \text{odd}, v_i v_j \in E_L(C, v_i), v_{i+2} v_j \in E_L(C, v_{i+2}), \\
v_j v_i \in E_R(C, v_j) \text{ and } v_{j+2} v_i \in E_R(C, v_{j+2}) \text{ for some } v \in V(Q) \setminus V(C)\};
\]

\[
X_W(C) = \{(i, j) \mid i: \text{even}, j: \text{odd}, v_i v_j \in E_L(C, v_i), v_{i+2} v_j \in E_L(C, v_{i+2}), \\
v_j v_i \in E_R(C, v_j) \text{ and } v_{j+2} v_i \in E_R(C, v_{j+2}) \text{ for some } v \in V(Q) \setminus V(C)\}.
\]

By the minimality of C, $d_C(v_i, v_j) = 2$ holds for every $(i, j) \in \Lambda_B(C) \cup \Lambda_W(C)$, that is, $j = i + 2$ or $i = j + 2$. For $(i, i + 2) \in \lambda_W(C)$, we take $v_{i+1}' \in N(v_i) \cap N(v_{i+2})$ such that $v_i v_{i+2} v_{i+2}' v_{i+1}' v_i$ bounds a 2-cell so that $v_i v_{i+1}'$ is the rightmost edge when i is odd, and $v_i v_{i+1}'$ is the leftmost edge when i is even. Let

\[
C' = v_1 v_2 \ldots v_i v_{i+1}' v_{i+2} v_{i+3} \ldots v_1.
\]

(2)

When i is odd (resp. even), there is no common neighbor of v_i and v_{i+2} in the right-hand (resp. left-hand) side of C' by the choice of v_{i+1}', and there is no common neighbor of v_{i+1}' and v_{i+3} in the left-hand (resp. right-hand) side of C' since every edge in $E_L(C', v_{i+1}')$ is contained in the 2-cell bounded by $v_i v_{i+1}' v_{i+2} v_{i+1}$. Therefore, the following hold:

\[
\lambda_W(C') \subseteq \lambda_W(C) \setminus \{(i, i + 2)\},
\]

(3)

\[
X_W(C') \subseteq X_W(C) \text{ and}
\]

(4)

\[
X_W(C) = \emptyset \Rightarrow \Lambda_W(C') \subseteq \Lambda_W(C).
\]

(5)
Here we may assume that $C \in \mathcal{C}$ was chosen so that:

(i) $|\lambda_W(C)|$ is as small as possible and

(ii) $|\Lambda_W(C)|$ is as small as possible, subject to (i).

Now we prove $\Lambda_W(C) = \lambda_W(C) = \emptyset$. If $(i, i + 2) \in \lambda_W(C)$, we can take the new cycle C' as in (2). Then it follows from (3) that $|\lambda_W(C')| < |\lambda_W(C)|$, which is a contradiction. Hence $\lambda_W(C) = \emptyset$ holds.

Next we shall prove $\Lambda_W(C) = \emptyset$. We need the following claim.

Claim 1. Let v_s, v'_s be an essential C-edge and P be an essential C-path joining v_t and v'_t, where $s \neq t$, $s' \neq t'$ and $t \neq t'$. Then

(I) If v_s, v_t, v'_t appear in C in this order or in the order v_s, v'_t, v_t, v_t (possibly, $s = t'$ and/or $s' = t$) then $d_C(v_s, v_t) + d_C(v'_t, v_t) \leq |E(P)| + 1$.

(II) If v_s, v_t, v'_t, v'_t appear in C in an order other than (I), then $d_C(v_s, v'_t) \leq |E(P)|$.

Proof. Assume, to the contrary, that $d_C(v_t, v) + d_C(v'_t, v'_t) \geq |E(P)| + 2$ in the case (I) or $d_C(v_s, v'_s) \geq |E(P)| + 1$ in the case (II). Without loss of generality, we may assume that $s \leq s', t, t'$. Here we define an essential even cycle C' as follows:

(I-1) if $t \leq s' < t'$, then let $C' = v_1v_2 \ldots v_sv_{s'-1}v_tPv_tv_{t+1} \ldots v_1$;

(I-2) if $t' < s' \leq t$, then let $C' = v_s^tv_{s+1} \ldots v_tPv_{t-1} \ldots v_s^tv_s$;

(II-1) if $s' < t < t'$, then let $C' = v_1v_2 \ldots v_sv_{s'-1}v_tPv_tv_{t+1} \ldots v_1$;

(II-2) if $s' < t' < t$, then let $C' = v_1v_2 \ldots v_sv_{s'+1}v_tPv_tv_{t+1} \ldots v_1$;

(II-3) if $t < t' < s'$, then let $C' = v_s^sv_{s+1} \ldots v_tPv_{t+1} \ldots v_s^tv_s$;

(II-4) if $t' < t < s'$, then let $C' = v_s^sv_{s+1} \ldots v_tPv_{t+1} \ldots v_s^tv_s$.

(See Figure 7.) Then

$$|C'| \leq \begin{cases} |C| - d_C(v_s, v_t) - d_C(v'_t, v_t) + |E(P)| + 1 & \text{in the case (I-1) and (I-2)}, \\ |C| - d_C(v_s, v'_s) - d_C(v_t, v'_t) + |E(P)| + 1 & \text{in the case (II-1) - (II-4)}. \end{cases}$$

Since $d_C(v_t, v) + d_C(v'_t, v'_t) \geq |E(P)| + 2$ in the case (I-1) and (I-2), and since $d_C(v_s, v'_s) \geq |E(P)| + 1$ and $d_C(v_t, v'_t) \geq 1$ in the case (II-1) - (II-4), C' is shorter than C. Thus we obtain a contradiction in each case. \square

Assume $\Lambda_W(C) \neq \emptyset$. Then, without loss of generality, we may assume that there exist three vertices v_k, v_l and $v_{k'}$ in $V(C)$ such that $v_kv_k' \in E_R(C, v_k)$ and $v_lv_l \in E_R(C, v_l)$ for some odd integers k and l with $k < l$. Also we may assume that the cycle $v_kv_{k+1} \ldots v_{l-1}v_l$ bounds a 2-cell on the torus. Since Q has no loop, v_k, v_l and $v_{k'}$ are distinct. If $k <$
$k' < l$, then $v_1v_2\ldots v_kv_{k'}v_{k+1}\ldots v_1$ is an essential even cycle which is shorter than C, a contradiction. Hence $k' < k$ or $l < k'$ holds. Without loss of generality, we may assume that $l < k'$. Then we have $k' \geq k + 4$ and $k' \geq l + 2$.

Using Claim 1, we consider possible positions of essential C-edges and essential C-paths, in order to prove $\Lambda_B(C) = \emptyset$ and $X_B(C) = \emptyset$ in the following two paragraphs respectively.

Suppose that there exists an essential C-edge $v_mv_{m'}$ with $v_mv_{m'} \in E_R(C, v_m)$ and $m' \neq k'$. Recall that the parities of m and m' are the same. Now consider Claim 1 for $s = k$ (or $s = l$), $s' = k'$, $t = m$ and $t' = m'$. Since $d_C(v_k, v_{k'}) \geq 2$ and $d_C(v_l, v_{k'}) \geq 2$, the case (II) does not occur for both cases, and hence $k = m$ or $d_C(v_k, v_m) + d_C(v_{k'}, v_{m'}) \leq 2$, and $l = m$ or $d_C(v_l, v_m) + d_C(v_{k'}, v_{m'}) \leq 2$. Since $k' \neq m'$, in either case, we have $d_C(v_k, v_{m'}) \leq 1$ and $d_C(v_l, v_{m'}) \leq 1$. If m is odd, then $d_C(v_k, v_m) = d_C(v_l, v_m) = 0$, contradicting $v_k \neq v_l$.

If m is even, then $d_C(v_k, v_m) = d_C(v_l, v_m) = 1$. Since the cycle $v_kv_{k+1}\ldots v_kv_{k'}v_k$ bounds a 2-cell on the torus, we have $m \leq k$ or $m \geq l$, and hence $m = k - 1 = l + 1$. However, this implies that $k = 1$ and $l = p - 1$, and hence $k < k' < l$, a contradiction. These implies that there exists no essential C-edge $v_mv_{m'}$ with $v_mv_{m'} \in E_R(C, v_m)$ and $m' \neq k'$, and hence $\Lambda_B(C) = \emptyset$.

Next suppose that there exists an essential C-path $v_mv_{m'}$ of length 2 such that $v_mv \in E_R(C, v_m)$, m is even, and $m' \neq k'$. Note that the parities of m and m' are different, so $d_C(v_k, v_{m'}) \geq 2$. Notice also that $|C| \geq 6$ because k, l and k' are pairwise distinct odd integers. Since the cycle $v_kv_{k+1}\ldots v_kv_{k'}$ bounds a 2-cell on the torus, we have $m < k$ or $m > l$. Now consider Claim 1 for $s = k$ (or $s = l$), $s' = k'$, $t = m$ and $t' = m'$. If the case (I) occurs for the case $s = k$, then $d_C(v_k; v_m) + d_C(v_{k'}, v_{m'}) \leq 3$. Since k is odd and m is even, we have $m = k - 1$ and $m' = k' - 2$ or $k' + 2$; Similarly, if the case (I) occurs for the case $s = l$, then $m = l + 1$ and $m' = k' - 2$ or $k' + 2$. Assume that the case (II) occurs for both cases $s = k$ and $s = l$. Then $d_C(v_k, v_m) \leq 2$ and $d_C(v_{k'}, v_{m'}) \leq 2$, that is, $k' = k - 2 = l + 2$.

Since $m < k$ or $m > l$, we obtain $m = k' \pm 1$. If $m' \neq k' - 2, k' + 2$, then $v_k, v_{m'}, v_{k'}, v_m$ (when $m = k' + 1$) or $v_l, v_m, v_{k'}, v_{m'}$ (when $m = k' - 1$) appear in C in this order, and the case (I) holds, a contradiction. Thus, we have $m' = k' - 2$ or $k' + 2$. In either case,
such that S and Y of black and white and $m_l = k - 2$ or $k' + 2$. This implies that if $(m, m') \in X_B(C)$, then $m = l + 1$, $m + 2 = k - 1$ and $m' = k' - 2$ or $m' = k'$. In this case, $k' = k - 2 = l + 2$. Let v be the vertex such that $vv_n, vv_{n+2}, vv_{n'}, vv_{n'+2} \in E(Q)$. In either case, $v_l v_n v_k v_{k+2}$ is an essential even cycle of length four, contradicting the choice of C. Thus, $X_B(C) = \emptyset$.

By changing the parities of the indices of C, we can find the cycle C_1 with $\Lambda_w(C_1) = X_B(C_1) = \emptyset$. If $\Lambda_w(C_1) = \emptyset$, then C_1 is a desired cycle. If $\Lambda_w(C_1) \neq \emptyset$, then it follows from (3) that we can decrease the value $|\Lambda_w(C_1)|$ by taking a new cycle as in (2). Iterating this operation, we obtain an essential even cycle C' such that $\Lambda_w(C') = \emptyset$. Moreover, since $X_B(C_1) = \emptyset$, it follows from (4) and (5) that $\Lambda_w(C_1') \subseteq \Lambda_w(C_1) = \emptyset$. Consequently we have $\Lambda_w(C) = \emptyset$.

Now we remember the annulus quadrangulation Q_C appeared in Section 4, which is obtained from Q by cutting along C. Let $Y = yi_1 y_i \ldots y_p$ and $Z = z_1 z_2 \ldots z_p$ be the cycles corresponding to two boundary components of Q_C, where yi and zi correspond to the same vertex v_i in Q, for each i. We may assume that $E_{Q_C}(yi) = E(Y) = E_L(C, y_i)$ for any $yi \in Y$, where $E_{Q_C}(yi)$ is the set of edges incident with yi in Q_C. Since Q is a quadrangulation and C is an essential even cycle, Q_C can be regarded as a map on the annulus with each face bounded by an even cycle. Hence Q_C is a bipartite graph. Let

$$Y_W = \bigcup_{i: \text{even}} y_i, \quad Y_B = \bigcup_{i: \text{odd}} y_i, \quad Z_W = \bigcup_{i: \text{odd}} z_i, \quad Z_B = \bigcup_{i: \text{even}} z_i$$

and let

$$\varphi(v) = \begin{cases}
0 & \text{for } v \in Y_W \cup Z_W \\
1 & \text{for } v \in Y_B \cup Z_B \\
2 & \text{for } v \notin Y \cup Z
\end{cases}$$

Let $G = Q_C - (E(Y) \cup E(Z))$. Let W and B be a bipartition of $V(G)$, referred as white and black vertices, where we suppose $Y_W, Z_W \subset W$ and $Y_B, Z_B \subset B$. By (1), each of Y and Z is an independent set in G.

Claim 2. There exists an orientation of G such that $od(v) = \varphi(v)$ for any $v \in V(G)$.

Proof. By Euler’s formula, we have $|E(Q)| = 2|V(Q)|$. Thus $|E(G)| = |E(Q_C)| - 2p = |E(Q)| - p = 2|V(Q)| - p = 2|V(Q_C)| - 3p = 2|V(G)| - 3p = \sum_{v \in V(G)} \varphi(v)$. By Proposition 10, it suffices to prove $|E([S])| \leq \sum_{v \in S} \varphi(v)$ for every $S \subset V(G)$ with $|S|$ connected.

Case 1. $|S|$ contains an essential cycle on the annulus.

Observe that $|S|$ has two boundary walks $L_1 = a_1 a_2 \ldots a_l a_1$ and $L_2 = b_1 b_2 \ldots b_l b_1$ such that $S \cap Y \subset L_1$ and $S \cap Z \subset L_2$. Let $Y_W' = Y_B \cap L_1$, $Y_W' = Y_W \cap L_1$, $Z_B' = Z_B \cap L_2$ and $Z_W' = Z_W \cap L_2$. Note that $l_1 \geq \{a_i, a_{i+1} \mid a_i \notin Y_B\} \cup \{a_{i-1}, a_i, a_{i+1}, a_{i+2} \mid a_i \in Y_W\}$. Since Y is independent, $a_{i+1} \notin Y_B$ holds for every $a_i \in Y_B$. Moreover, for every $a_i \in Y_W$, $\{a_{i-2}, a_{i-1}, a_{i+1}, a_{i+2}\} \cap Y_B' = \emptyset$ holds since G is bipartite and Y is independent,
and \{a_{i+1}, a_{i+2}, a_{i+3}\} \cap Y'_W = \emptyset holds since \Lambda_W(C) = \lambda_W(C) = \emptyset. Therefore we have
l_1 \geq 2|Y'_B| + 4|Y'_W|. Similarly, \(l_2 \geq 2|Z'_B| + 4|Z'_W|\) holds. Thus by Euler’s formula,
\[
|E([S])| \leq 2|S| - \frac{l_1 + l_2}{2} \\
\leq 2|S| - (|Y'_B| + |Z'_B| + 2(|Y'_W| + |Z'_W|)) \\
= \sum_{v \in S} \varphi(v).
\]

Case 2. \([S]\) contains no essential cycle on the annulus.

Let \(L = a_1 a_2 \ldots a_t a_1\) be the boundary closed walk of \([S]\), where we note \(S \cap (Y \cup Z) \subset L\). Let \(Y'_B = Y_B \cap L, Y'_W = Y_W \cap L, Z'_B = Z_B \cap L\) and \(Z'_W = Z_W \cap L\). Here we choose two subwalks \(L_Y = a_1 \ldots a_t, L_Z = a_{s+1} \ldots a_t\) of \(L\) so that \(L_Y\) and \(L_Z\) are as short as possible subject to \(1 \leq r < s \leq t, L \cap Y \subset L_Y\) and \(L \cap Z \subset L_Z\).

Since \(Y\) is independent, \(a_{i+1} \notin Y'_B\) holds for every \(a_i \in Y'_B\). Moreover, for every \(a_i \in Y'_W, \{a_{i-2}, a_{i-1}, a_{i+1}, a_{i+2}\} \cap Y'_B = \emptyset\) holds since \(G\) is bipartite and \(Y\) is independent, and \(\{a_{i+1}, a_{i+2}, a_{i+3}\} \cap Y'_W = \emptyset\) holds since \(\Lambda_W(C) = \lambda_W(C) = \emptyset\). Now the vertices in \(\{a_i, a_{i+1} | a_i \in Y'_B\} \cup \{a_{i-1}, a_i, a_{i+1}, a_{i+2} | a_i \in Y'_W\}\) are contained in

- the segment \(a_1 a_2 \ldots a_r a_{r+1} a_{r+2}\) of \(L\) when \(a_1, a_r \in Y'_W\);
- the segment \(a_1 a_2 \ldots a_r a_{r+1}\) of \(L\) when \(a_1 \in Y'_W\) and \(a_r \notin Y'_W\);
- the segment \(a_1 a_2 \ldots a_r a_{r+1} a_{r+2}\) of \(L\) when \(a_r \in Y'_W\) and \(a_1 \notin Y'_W\);
- the segment \(a_1 a_2 \ldots a_r a_{r+1}\) of \(L\) when \(a_1, a_r \notin Y'_W\).

Hence we have \(r + 1 + |\{a_1, a_r\} \cap Y'_W| \geq |\{a_1, a_{i+1} | a_i \in Y'_B\} \cup \{a_{i-1}, a_i, a_{i+1}, a_{i+2} | a_i \in Y'_W\}| = 2|Y'_B| + 4|Y'_W|,\) and thus \(r \geq 2|Y'_B| + 4|Y'_W| - 1 - |\{a_1, a_r\} \cap Y'_W|\) holds. Similarly we obtain \(t - s + 1 \geq 2|Z'_B| + 4|Z'_W| - 1 - |\{a_s, a_t\} \cap Z'_W|\). Consequently,
\[
l = r + (t - s + 1) + (l - t) + (s - 1 - r) \\
\geq 2|Y'_B| + 4|Y'_W| - 1 - |\{a_1, a_r\} \cap Y'_W| \\
\quad + 2|Z'_B| + 4|Z'_W| - 1 - |\{a_s, a_t\} \cap Z'_W| + (l - t) + (s - 1 - r).
\]

Here \(l - t \geq 1\) when \(\{|a_1\} \cap Y'_W| + |\{a_t\} \cap Z'_W| = 2,\) and \(s - 1 - r \geq 1\) when \(|\{a_r\} \cap Y'_W| + |\{a_s\} \cap Z'_W| = 2,\) Hence \(-|\{a_1, a_r\} \cap Y'_W| - |\{a_s, a_t\} \cap Z'_W| + (l - t) + (s - 1 - r) \geq -2,\) which implies \(l \geq 4(|Y'_B| + |Z'_W|) + 2(|Y'_B| + |Z'_W|) - 4.\) Thus by Euler’s formula,
\[
|E([S])| \leq 2|S| - l/2 - 2 \\
\leq 2|S| - 2(|Y'_W| + |Z'_W|) + |Y'_B| + |Z'_B| \\
= \sum_{v \in S} \varphi(v).
\]

This completes the proof of Claim 2. □
Consider the orientation of Q_C which is obtained from the orientation of G constructed in Claim 2 and oriented edges $y_{i+1}y_i, z_iz_{i+1}$ for any integer i, zy_i for any odd integer i, and yz_i for any even integer i for this direction. Then this is an orientation of Q_C required in the lemma, and hence we are done.

Finally, we shall prove Theorem 2.

Proof of Theorem 2. Let Q be a 3-connected bipartite torus quadrangulation one of whose partite set consists of degree four vertices. By Proposition 6, there exists a quadrangular map H with no contractible 2-cycle such that the radial graph of H is isomorphic to Q. Now observe that Theorem 8 has been proved by Theorem 13 and Proposition 14. So H has a vertex-face curve, and hence, by Proposition 7, Q is Hamiltonian.

References

